NASA Technical Reports Server (NTRS)
Coggeshall, M. E.; Hoffer, R. M.
1973-01-01
Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.
ERIC Educational Resources Information Center
Kurtz, Peter; And Others
This report is concerned with the implementation of two interrelated computer systems: an automatic document analysis and classification package, and an on-line interactive information retrieval system which utilizes the information gathered during the automatic classification phase. Well-known techniques developed by Salton and Dennis have been…
ERIC Educational Resources Information Center
Montoya, Isaac D.
2008-01-01
Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…
NASA Technical Reports Server (NTRS)
Rado, B. Q.
1975-01-01
Automatic classification techniques are described in relation to future information and natural resource planning systems with emphasis on application to Georgia resource management problems. The concept, design, and purpose of Georgia's statewide Resource AS Assessment Program is reviewed along with participation in a workshop at the Earth Resources Laboratory. Potential areas of application discussed include: agriculture, forestry, water resources, environmental planning, and geology.
Lu, Yingjie
2013-01-01
To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.
An automatic taxonomy of galaxy morphology using unsupervised machine learning
NASA Astrophysics Data System (ADS)
Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil
2018-01-01
We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.
An unsupervised classification technique for multispectral remote sensing data.
NASA Technical Reports Server (NTRS)
Su, M. Y.; Cummings, R. E.
1973-01-01
Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.
Seeberg, Trine M.; Tjønnås, Johannes; Haugnes, Pål; Sandbakk, Øyvind
2017-01-01
The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier’s arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier’s arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we achieved a classification accuracy of 93.9% on the test-data. Furthermore, we illustrate how an accurate classification of sub-techniques can be combined with data from standard sports equipment including position, altitude, speed and heart rate measuring systems. Combining this information has the potential to provide novel insight into physiological and biomechanical aspects valuable to coaches, athletes and researchers. PMID:29283421
Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.
Caixinha, Miguel; Santos, Mário; Santos, Jaime
2016-04-01
To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Unsupervised classification of earth resources data.
NASA Technical Reports Server (NTRS)
Su, M. Y.; Jayroe, R. R., Jr.; Cummings, R. E.
1972-01-01
A new clustering technique is presented. It consists of two parts: (a) a sequential statistical clustering which is essentially a sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by existing supervised maximum liklihood classification technique.
2012-01-01
Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Sarker, Abeed; O'Connor, Karen; Ginn, Rachel; Scotch, Matthew; Smith, Karen; Malone, Dan; Gonzalez, Graciela
2016-03-01
Prescription medication overdose is the fastest growing drug-related problem in the USA. The growing nature of this problem necessitates the implementation of improved monitoring strategies for investigating the prevalence and patterns of abuse of specific medications. Our primary aims were to assess the possibility of utilizing social media as a resource for automatic monitoring of prescription medication abuse and to devise an automatic classification technique that can identify potentially abuse-indicating user posts. We collected Twitter user posts (tweets) associated with three commonly abused medications (Adderall(®), oxycodone, and quetiapine). We manually annotated 6400 tweets mentioning these three medications and a control medication (metformin) that is not the subject of abuse due to its mechanism of action. We performed quantitative and qualitative analyses of the annotated data to determine whether posts on Twitter contain signals of prescription medication abuse. Finally, we designed an automatic supervised classification technique to distinguish posts containing signals of medication abuse from those that do not and assessed the utility of Twitter in investigating patterns of abuse over time. Our analyses show that clear signals of medication abuse can be drawn from Twitter posts and the percentage of tweets containing abuse signals are significantly higher for the three case medications (Adderall(®): 23 %, quetiapine: 5.0 %, oxycodone: 12 %) than the proportion for the control medication (metformin: 0.3 %). Our automatic classification approach achieves 82 % accuracy overall (medication abuse class recall: 0.51, precision: 0.41, F measure: 0.46). To illustrate the utility of automatic classification, we show how the classification data can be used to analyze abuse patterns over time. Our study indicates that social media can be a crucial resource for obtaining abuse-related information for medications, and that automatic approaches involving supervised classification and natural language processing hold promises for essential future monitoring and intervention tasks.
NASA Technical Reports Server (NTRS)
Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.
1976-01-01
A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.
Adaptive video-based vehicle classification technique for monitoring traffic : [executive summary].
DOT National Transportation Integrated Search
2015-08-01
Federal Highway Administration (FHWA) recommends axle-based classification standards to map : passenger vehicles, single unit trucks, and multi-unit trucks, at Automatic Traffic Recorder (ATR) stations : statewide. Many state Departments of Transport...
A new blood vessel extraction technique using edge enhancement and object classification.
Badsha, Shahriar; Reza, Ahmed Wasif; Tan, Kim Geok; Dimyati, Kaharudin
2013-12-01
Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.
Papageorgiou, Eirini; Nieuwenhuys, Angela; Desloovere, Kaat
2017-01-01
Background This study aimed to improve the automatic probabilistic classification of joint motion gait patterns in children with cerebral palsy by using the expert knowledge available via a recently developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and Logistic Regression classification with varying degrees of usage of the expert knowledge (expert-defined and discretized features). A database of 356 patients and 1719 gait trials was used to validate the classification performance of eleven joint motions. Hypotheses Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can be automatically classified following a probabilistic approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of clinical expert knowledge in the selection of relevant gait features and the discretization of continuous features increases the performance of automatic probabilistic joint motion classification. Findings This study provided objective evidence supporting the first hypothesis. Automatic probabilistic gait classification using the expert knowledge available from the Delphi-consensus study resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher accuracy than that obtained with non-expert raters (78%). Regarding the second hypothesis, this study demonstrated that the use of more advanced machine learning techniques such as automatic feature selection and discretization instead of expert-defined and discretized features can result in slightly higher joint motion classification performance. However, the increase in performance is limited and does not outweigh the additional computational cost and the higher risk of loss of clinical interpretability, which threatens the clinical acceptance and applicability. PMID:28570616
Methods for automatically analyzing humpback song units.
Rickwood, Peter; Taylor, Andrew
2008-03-01
This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.
NASA Astrophysics Data System (ADS)
Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng
2016-09-01
It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.
Open Dataset for the Automatic Recognition of Sedentary Behaviors.
Possos, William; Cruz, Robinson; Cerón, Jesús D; López, Diego M; Sierra-Torres, Carlos H
2017-01-01
Sedentarism is associated with the development of noncommunicable diseases (NCD) such as cardiovascular diseases (CVD), type 2 diabetes, and cancer. Therefore, the identification of specific sedentary behaviors (TV viewing, sitting at work, driving, relaxing, etc.) is especially relevant for planning personalized prevention programs. To build and evaluate a public a dataset for the automatic recognition (classification) of sedentary behaviors. The dataset included data from 30 subjects, who performed 23 sedentary behaviors while wearing a commercial wearable on the wrist, a smartphone on the hip and another in the thigh. Bluetooth Low Energy (BLE) beacons were used in order to improve the automatic classification of different sedentary behaviors. The study also compared six well know data mining classification techniques in order to identify the more precise method of solving the classification problem of the 23 defined behaviors. A better classification accuracy was obtained using the Random Forest algorithm and when data were collected from the phone on the hip. Furthermore, the use of beacons as a reference for obtaining the symbolic location of the individual improved the precision of the classification.
The composite sequential clustering technique for analysis of multispectral scanner data
NASA Technical Reports Server (NTRS)
Su, M. Y.
1972-01-01
The clustering technique consists of two parts: (1) a sequential statistical clustering which is essentially a sequential variance analysis, and (2) a generalized K-means clustering. In this composite clustering technique, the output of (1) is a set of initial clusters which are input to (2) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum likelihood classification techniques. The mathematical algorithms for the composite sequential clustering program and a detailed computer program description with job setup are given.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa
2018-07-01
Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie
2014-11-01
User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.
Vetter, Jeffrey S.
2005-02-01
The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.
High-throughput automatic defect review for 300mm blank wafers with atomic force microscope
NASA Astrophysics Data System (ADS)
Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il
2015-03-01
While feature size in lithography process continuously becomes smaller, defect sizes on blank wafers become more comparable to device sizes. Defects with nm-scale characteristic size could be misclassified by automated optical inspection (AOI) and require post-processing for proper classification. Atomic force microscope (AFM) is known to provide high lateral and the highest vertical resolution by mechanical probing among all techniques. However, its low throughput and tip life in addition to the laborious efforts for finding the defects have been the major limitations of this technique. In this paper we introduce automatic defect review (ADR) AFM as a post-inspection metrology tool for defect study and classification for 300 mm blank wafers and to overcome the limitations stated above. The ADR AFM provides high throughput, high resolution, and non-destructive means for obtaining 3D information for nm-scale defect review and classification.
Automatic classification of atypical lymphoid B cells using digital blood image processing.
Alférez, S; Merino, A; Mujica, L E; Ruiz, M; Bigorra, L; Rodellar, J
2014-08-01
There are automated systems for digital peripheral blood (PB) cell analysis, but they operate most effectively in nonpathological blood samples. The objective of this work was to design a methodology to improve the automatic classification of abnormal lymphoid cells. We analyzed 340 digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96:150 chronic lymphocytic leukemia (CLL) cells, 100 hairy cell leukemia (HCL) cells, and 90 normal lymphocytes (N). We implemented the Watershed Transformation to segment the nucleus, the cytoplasm, and the peripheral cell region. We extracted 44 features and then the clustering Fuzzy C-Means (FCM) was applied in two steps for the lymphocyte classification. The images were automatically clustered in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was clustered again using FCM and texture features. The two new groups contained 83.3% of the N cells and 71.3% of the CLL cells, respectively. The approach has been able to automatically classify with high precision three types of lymphoid cells. The addition of more descriptors and other classification techniques will allow extending the classification to other classes of atypical lymphoid cells. © 2013 John Wiley & Sons Ltd.
Report on Information Retrieval and Library Automation Studies.
ERIC Educational Resources Information Center
Alberta Univ., Edmonton. Dept. of Computing Science.
Short abstracts of works in progress or completed in the Department of Computing Science at the University of Alberta are presented under five major headings. The five categories are: Storage and search techniques for document data bases, Automatic classification, Study of indexing and classification languages through computer manipulation of data…
Automatic Classification of Question & Answer Discourse Segments from Teacher's Speech in Classrooms
ERIC Educational Resources Information Center
Blanchard, Nathaniel; D'Mello, Sidney; Olney, Andrew M.; Nystrand, Martin
2015-01-01
Question-answer (Q&A) is fundamental for dialogic instruction, an important pedagogical technique based on the free exchange of ideas and open-ended discussion. Automatically detecting Q&A is key to providing teachers with feedback on appropriate use of dialogic instructional strategies. In line with this, this paper studies the…
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2017-01-01
Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2017-01-01
Objectives Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Methods Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Results Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. Conclusion The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports. PMID:28166263
Mane, Vijay Mahadeo; Jadhav, D V
2017-05-24
Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.
Morphological feature extraction for the classification of digital images of cancerous tissues.
Thiran, J P; Macq, B
1996-10-01
This paper presents a new method for automatic recognition of cancerous tissues from an image of a microscopic section. Based on the shape and the size analysis of the observed cells, this method provides the physician with nonsubjective numerical values for four criteria of malignancy. This automatic approach is based on mathematical morphology, and more specifically on the use of Geodesy. This technique is used first to remove the background noise from the image and then to operate a segmentation of the nuclei of the cells and an analysis of their shape, their size, and their texture. From the values of the extracted criteria, an automatic classification of the image (cancerous or not) is finally operated.
Lidar-based individual tree species classification using convolutional neural network
NASA Astrophysics Data System (ADS)
Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi
2017-06-01
Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.
Automatic grade classification of Barretts Esophagus through feature enhancement
NASA Astrophysics Data System (ADS)
Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid
2017-03-01
Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.
Support vector machine for automatic pain recognition
NASA Astrophysics Data System (ADS)
Monwar, Md Maruf; Rezaei, Siamak
2009-02-01
Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.
Optimizing Input/Output Using Adaptive File System Policies
NASA Technical Reports Server (NTRS)
Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.
1996-01-01
Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.
Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan
A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.
Automatic crack detection and classification method for subway tunnel safety monitoring.
Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun
2014-10-16
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.
Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring
Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun
2014-01-01
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337
An Automated Classification Technique for Detecting Defects in Battery Cells
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2006-01-01
Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.
Automatic Classification of Time-variable X-Ray Sources
NASA Astrophysics Data System (ADS)
Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.
2014-05-01
To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.
Zhang, Fan; Zhang, Xinhong
2011-01-01
Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744
Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla
2010-12-01
The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Messmore, J. A.
1976-01-01
The feasibility of using digital satellite imagery and automatic data processing techniques as a means of mapping swamp forest vegetation was considered, using multispectral scanner data acquired by the LANDSAT-1 satellite. The site for this investigation was the Dismal Swamp, a 210,000 acre swamp forest located south of Suffolk, Va. on the Virginia-North Carolina border. Two basic classification strategies were employed. The initial classification utilized unsupervised techniques which produced a map of the swamp indicating the distribution of thirteen forest spectral classes. These classes were later combined into three informational categories: Atlantic white cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous forest. The subsequent classification employed supervised techniques which mapped Atlantic white cedar, Loblolly pine, deciduous forest, water and agriculture within the study site. A classification accuracy of 82.5% was produced by unsupervised techniques compared with 89% accuracy using supervised techniques.
Automatic photointerpretation for land use management in Minnesota
NASA Technical Reports Server (NTRS)
Swanlund, G. D. (Principal Investigator); Kirvida, L.; Cheung, M.; Pile, D.; Zirkle, R.
1974-01-01
The author has identified the following significant results. Automatic photointerpretation techniques were utilized to evaluate the feasibility of data for land use management. It was shown that ERTS-1 MSS data can produce thematic maps of adequate resolution and accuracy to update land use maps. In particular, five typical land use areas were mapped with classification accuracies ranging from 77% to over 90%.
NASA Astrophysics Data System (ADS)
Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.
2015-08-01
Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, AdaBoost, and Decision Tree) and is a good technique for automatic classification of exoplanet-transit-like signal.
Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura
2016-01-01
The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Using deep learning in image hyper spectral segmentation, classification, and detection
NASA Astrophysics Data System (ADS)
Zhao, Xiuying; Su, Zhenyu
2018-02-01
Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.
Zare, Marzieh; Rezvani, Zahra; Benasich, April A
2016-07-01
This study assesses the ability of a novel, "automatic classification" approach to facilitate identification of infants at highest familial risk for language-learning disorders (LLD) and to provide converging assessments to enable earlier detection of developmental disorders that disrupt language acquisition. Network connectivity measures derived from 62-channel electroencephalogram (EEG) recording were used to identify selected features within two infant groups who differed on LLD risk: infants with a family history of LLD (FH+) and typically-developing infants without such a history (FH-). A support vector machine was deployed; global efficiency and global and local clustering coefficients were computed. A novel minimum spanning tree (MST) approach was also applied. Cross-validation was employed to assess the resultant classification. Infants were classified with about 80% accuracy into FH+ and FH- groups with 89% specificity and precision of 92%. Clustering patterns differed by risk group and MST network analysis suggests that FH+ infants' EEG complexity patterns were significantly different from FH- infants. The automatic classification techniques used here were shown to be both robust and reliable and should provide valuable information when applied to early identification of risk or clinical groups. The ability to identify infants at highest risk for LLD using "automatic classification" strategies is a novel convergent approach that may facilitate earlier diagnosis and remediation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Context-based automated defect classification system using multiple morphological masks
Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed
2002-01-01
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.
Automatic classification of time-variable X-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Kitty K.; Farrell, Sean; Murphy, Tara
2014-05-01
To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less
Automated simultaneous multiple feature classification of MTI data
NASA Astrophysics Data System (ADS)
Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.
2002-08-01
Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.
Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques
NASA Technical Reports Server (NTRS)
Messmore, J.; Copeland, G. E.; Levy, G. F.
1975-01-01
This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95%), and progress is being made towards identifying the mapped spectral classes.
Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques
NASA Technical Reports Server (NTRS)
Messmore, J.; Copeland, G. E.; Levy, G. F.
1975-01-01
This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95 percent), and progress is being made towards identifying the mapped spectral classes.
Adaptive sleep-wake discrimination for wearable devices.
Karlen, Walter; Floreano, Dario
2011-04-01
Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.
An Investigation of Automatic Change Detection for Topographic Map Updating
NASA Astrophysics Data System (ADS)
Duncan, P.; Smit, J.
2012-08-01
Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.
Ben Chaabane, Salim; Fnaiech, Farhat
2014-01-23
Color image segmentation has been so far applied in many areas; hence, recently many different techniques have been developed and proposed. In the medical imaging area, the image segmentation may be helpful to provide assistance to doctor in order to follow-up the disease of a certain patient from the breast cancer processed images. The main objective of this work is to rebuild and also to enhance each cell from the three component images provided by an input image. Indeed, from an initial segmentation obtained using the statistical features and histogram threshold techniques, the resulting segmentation may represent accurately the non complete and pasted cells and enhance them. This allows real help to doctors, and consequently, these cells become clear and easy to be counted. A novel method for color edges extraction based on statistical features and automatic threshold is presented. The traditional edge detector, based on the first and the second order neighborhood, describing the relationship between the current pixel and its neighbors, is extended to the statistical domain. Hence, color edges in an image are obtained by combining the statistical features and the automatic threshold techniques. Finally, on the obtained color edges with specific primitive color, a combination rule is used to integrate the edge results over the three color components. Breast cancer cell images were used to evaluate the performance of the proposed method both quantitatively and qualitatively. Hence, a visual and a numerical assessment based on the probability of correct classification (PC), the false classification (Pf), and the classification accuracy (Sens(%)) are presented and compared with existing techniques. The proposed method shows its superiority in the detection of points which really belong to the cells, and also the facility of counting the number of the processed cells. Computer simulations highlight that the proposed method substantially enhances the segmented image with smaller error rates better than other existing algorithms under the same settings (patterns and parameters). Moreover, it provides high classification accuracy, reaching the rate of 97.94%. Additionally, the segmentation method may be extended to other medical imaging types having similar properties.
ADP of multispectral scanner data for land use mapping
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1971-01-01
The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.
Agarwal, Krishna; Macháň, Radek; Prasad, Dilip K
2018-03-21
Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples.
Text Classification for Organizational Researchers
Kobayashi, Vladimer B.; Mol, Stefan T.; Berkers, Hannah A.; Kismihók, Gábor; Den Hartog, Deanne N.
2017-01-01
Organizations are increasingly interested in classifying texts or parts thereof into categories, as this enables more effective use of their information. Manual procedures for text classification work well for up to a few hundred documents. However, when the number of documents is larger, manual procedures become laborious, time-consuming, and potentially unreliable. Techniques from text mining facilitate the automatic assignment of text strings to categories, making classification expedient, fast, and reliable, which creates potential for its application in organizational research. The purpose of this article is to familiarize organizational researchers with text mining techniques from machine learning and statistics. We describe the text classification process in several roughly sequential steps, namely training data preparation, preprocessing, transformation, application of classification techniques, and validation, and provide concrete recommendations at each step. To help researchers develop their own text classifiers, the R code associated with each step is presented in a tutorial. The tutorial draws from our own work on job vacancy mining. We end the article by discussing how researchers can validate a text classification model and the associated output. PMID:29881249
Sorting Olive Batches for the Milling Process Using Image Processing
Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan
2015-01-01
The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729
Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm
2005-01-01
The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.
Sleep violence--forensic science implications: polygraphic and video documentation.
Mahowald, M W; Bundlie, S R; Hurwitz, T D; Schenck, C H
1990-03-01
During the past century, infrequent, anecdotal reports of sleep-related violence with forensic science implications have appeared. Recent rapid developments in the field of sleep-disorders medicine have resulted in greater understanding of a variety of sleep-related behaviors, and formal sleep-behavior monitoring techniques have permitted their documentation and classification. Sleep-related violence can be associated with a number of diagnosable and treatable sleep disorders, including (1) night terrors/sleepwalking, (2) nocturnal seizures, (3) rapid eye movement (REM) sleep-behavior disorder, (4) sleep drunkenness, and (5) psychogenic dissociative states occurring during the sleep period. Potentially violent automatized behavior, without consciousness, can and does occur during sleep. The violence resulting from these disorders may be misinterpreted as purposeful suicide, assault, or even homicide. Sleep-related violence must be added to the list of automatisms. A classification system of both waking and sleep-related automatic behavior is proposed, with recommendations for assessment of such behavior.
Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura
2018-01-01
Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N = 20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.
Early Detection of Severe Apnoea through Voice Analysis and Automatic Speaker Recognition Techniques
NASA Astrophysics Data System (ADS)
Fernández, Ruben; Blanco, Jose Luis; Díaz, David; Hernández, Luis A.; López, Eduardo; Alcázar, José
This study is part of an on-going collaborative effort between the medical and the signal processing communities to promote research on applying voice analysis and Automatic Speaker Recognition techniques (ASR) for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based diagnosis could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we present and discuss the possibilities of using generative Gaussian Mixture Models (GMMs), generally used in ASR systems, to model distinctive apnoea voice characteristics (i.e. abnormal nasalization). Finally, we present experimental findings regarding the discriminative power of speaker recognition techniques applied to severe apnoea detection. We have achieved an 81.25 % correct classification rate, which is very promising and underpins the interest in this line of inquiry.
Convolutional neural networks with balanced batches for facial expressions recognition
NASA Astrophysics Data System (ADS)
Battini Sönmez, Elena; Cangelosi, Angelo
2017-03-01
This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.
An Ultrasonographic Periodontal Probe
NASA Astrophysics Data System (ADS)
Bertoncini, C. A.; Hinders, M. K.
2010-02-01
Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.
NASA Astrophysics Data System (ADS)
Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo
2008-11-01
This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
Nineteen hundred seventy three significant accomplishments. [Landsat satellite data applications
NASA Technical Reports Server (NTRS)
1974-01-01
Data collected by the Skylab remote sensing satellites was used to develop applications techniques and to combine automatic data classification with statistical clustering methods. Continuing research was concentrated in the correlation and registration of data products and in the definition of the atmospheric effects on remote sensing. The causes of errors encountered in the automated classification of agricultural data are identified. Other applications in forestry, geography, environmental geology, and land use are discussed.
New technique for real-time distortion-invariant multiobject recognition and classification
NASA Astrophysics Data System (ADS)
Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan
2001-04-01
A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
Computer assisted analysis of auroral images obtained from high altitude polar satellites
NASA Technical Reports Server (NTRS)
Samadani, Ramin; Flynn, Michael
1993-01-01
Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.
A manual and an automatic TERS based virus discrimination
NASA Astrophysics Data System (ADS)
Olschewski, Konstanze; Kämmer, Evelyn; Stöckel, Stephan; Bocklitz, Thomas; Deckert-Gaudig, Tanja; Zell, Roland; Cialla-May, Dana; Weber, Karina; Deckert, Volker; Popp, Jürgen
2015-02-01
Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%.Rapid techniques for virus identification are more relevant today than ever. Conventional virus detection and identification strategies generally rest upon various microbiological methods and genomic approaches, which are not suited for the analysis of single virus particles. In contrast, the highly sensitive spectroscopic technique tip-enhanced Raman spectroscopy (TERS) allows the characterisation of biological nano-structures like virions on a single-particle level. In this study, the feasibility of TERS in combination with chemometrics to discriminate two pathogenic viruses, Varicella-zoster virus (VZV) and Porcine teschovirus (PTV), was investigated. In a first step, chemometric methods transformed the spectral data in such a way that a rapid visual discrimination of the two examined viruses was enabled. In a further step, these methods were utilised to perform an automatic quality rating of the measured spectra. Spectra that passed this test were eventually used to calculate a classification model, through which a successful discrimination of the two viral species based on TERS spectra of single virus particles was also realised with a classification accuracy of 91%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07033j
NASA Astrophysics Data System (ADS)
Wang, Qingjie; Xin, Jingmin; Wu, Jiayi; Zheng, Nanning
2017-03-01
Microaneurysms are the earliest clinic signs of diabetic retinopathy, and many algorithms were developed for the automatic classification of these specific pathology. However, the imbalanced class distribution of dataset usually causes the classification accuracy of true microaneurysms be low. Therefore, by combining the borderline synthetic minority over-sampling technique (BSMOTE) with the data cleaning techniques such as Tomek links and Wilson's edited nearest neighbor rule (ENN) to resample the imbalanced dataset, we propose two new support vector machine (SVM) classification algorithms for the microaneurysms. The proposed BSMOTE-Tomek and BSMOTE-ENN algorithms consist of: 1) the adaptive synthesis of the minority samples in the neighborhood of the borderline, and 2) the remove of redundant training samples for improving the efficiency of data utilization. Moreover, the modified SVM classifier with probabilistic outputs is used to divide the microaneurysm candidates into two groups: true microaneurysms and false microaneurysms. The experiments with a public microaneurysms database shows that the proposed algorithms have better classification performance including the receiver operating characteristic (ROC) curve and the free-response receiver operating characteristic (FROC) curve.
NASA Astrophysics Data System (ADS)
Shvelidze, Teimuraz; Malyuto, Valeri
2015-08-01
Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for several hundred stars. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre, the main meridional section of the Galaxy and etc. Very rich collection of photographic objective spectral plates (30,000 were accumulated during last 60 years) is available at Abastumani Observatory-wavelength range 3900-4900 A, about 2A resolution. Availability of new devices for automatic registration of spectra from photographic plates as well as some recently developed classification techniques may allow now to create a modern system of automatic spectral classification and with expension of classification techniques to additional types (B-A, M spectral classes). The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.
Automatic welding detection by an intelligent tool pipe inspection
NASA Astrophysics Data System (ADS)
Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.
2015-07-01
This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
Automatic Classification of Aerial Imagery for Urban Hydrological Applications
NASA Astrophysics Data System (ADS)
Paul, A.; Yang, C.; Breitkopf, U.; Liu, Y.; Wang, Z.; Rottensteiner, F.; Wallner, M.; Verworn, A.; Heipke, C.
2018-04-01
In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85 % for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4 % for the CRF-based classification, and 3.8 % for the RF-based classification.
Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L
2005-12-01
Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.
Documentation of procedures for textural/spatial pattern recognition techniques
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Bryant, W. F.
1976-01-01
A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.
Automatic classification of radiological reports for clinical care.
Gerevini, Alfonso Emilio; Lavelli, Alberto; Maffi, Alessandro; Maroldi, Roberto; Minard, Anne-Lyse; Serina, Ivan; Squassina, Guido
2018-06-07
Radiological reporting generates a large amount of free-text clinical narratives, a potentially valuable source of information for improving clinical care and supporting research. The use of automatic techniques to analyze such reports is necessary to make their content effectively available to radiologists in an aggregated form. In this paper we focus on the classification of chest computed tomography reports according to a classification schema proposed for this task by radiologists of the Italian hospital ASST Spedali Civili di Brescia. The proposed system is built exploiting a training data set containing reports annotated by radiologists. Each report is classified according to the schema developed by radiologists and textual evidences are marked in the report. The annotations are then used to train different machine learning based classifiers. We present in this paper a method based on a cascade of classifiers which make use of a set of syntactic and semantic features. The resulting system is a novel hierarchical classification system for the given task, that we have experimentally evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.
Automatic emotional expression analysis from eye area
NASA Astrophysics Data System (ADS)
Akkoç, Betül; Arslan, Ahmet
2015-02-01
Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunton, Steven
Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less
Artificial intelligence in sports on the example of weight training.
Novatchkov, Hristo; Baca, Arnold
2013-01-01
The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements.Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates.
Artificial Intelligence in Sports on the Example of Weight Training
Novatchkov, Hristo; Baca, Arnold
2013-01-01
The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data measurements. Artificial neural networks applied for the analysis of weight training data show good performance and high classification rates. PMID:24149722
Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F
2014-06-01
To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.
Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina
2016-12-01
Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.
Breast cancer detection in rotational thermography images using texture features
NASA Astrophysics Data System (ADS)
Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.
2014-11-01
Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.
Kalpathy-Cramer, Jayashree; Hersh, William
2008-01-01
In 2006 and 2007, Oregon Health & Science University (OHSU) participated in the automatic image annotation task for medical images at ImageCLEF, an annual international benchmarking event that is part of the Cross Language Evaluation Forum (CLEF). The goal of the automatic annotation task was to classify 1000 test images based on the Image Retrieval in Medical Applications (IRMA) code, given a set of 10,000 training images. There were 116 distinct classes in 2006 and 2007. We evaluated the efficacy of a variety of primarily global features for this classification task. These included features based on histograms, gray level correlation matrices and the gist technique. A multitude of classifiers including k-nearest neighbors, two-level neural networks, support vector machines, and maximum likelihood classifiers were evaluated. Our official error rates for the 1000 test images were 26% in 2006 using the flat classification structure. The error count in 2007 was 67.8 using the hierarchical classification error computation based on the IRMA code in 2007. Confusion matrices as well as clustering experiments were used to identify visually similar classes. The use of the IRMA code did not help us in the classification task as the semantic hierarchy of the IRMA classes did not correspond well with the hierarchy based on clustering of image features that we used. Our most frequent misclassification errors were along the view axis. Subsequent experiments based on a two-stage classification system decreased our error rate to 19.8% for the 2006 dataset and our error count to 55.4 for the 2007 data. PMID:19884953
A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong
2015-08-01
Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.
Distinguish self- and hetero-perceived stress through behavioral imaging and physiological features.
Spodenkiewicz, Michel; Aigrain, Jonathan; Bourvis, Nadège; Dubuisson, Séverine; Chetouani, Mohamed; Cohen, David
2018-03-02
Stress reactivity is a complex phenomenon associated to multiple and multimodal expressions. Response to stressors has an obvious survival function and may be seen as an internal regulation to adapt to threat or danger. The intensity of this internal response can be assessed as the self-perception of the stress response. In species with social organization, this response also serves a communicative function, so-called hetero-perception. Our study presents multimodal stress detection assessment - a new methodology combining behavioral imaging and physiological monitoring for analyzing stress from these two perspectives. The system is based on automatic extraction of 39 behavioral (2D+3D video recording) and 62 physiological (Nexus-10 recording) features during a socially evaluated mental arithmetic test. The analysis with machine learning techniques for automatic classification using Support Vector Machine (SVM) show that self-perception and hetero-perception of social stress are both close but different phenomena: self-perception was significantly correlated with hetero-perception but significantly differed from it. Also, assessing stress with SVM through multimodality gave excellent classification results (F1 score values: 0.9±0.012 for hetero-perception and 0.87±0.021 for self-perception). In the best selected feature subsets, we found some common behavioral and physiological features that allow classification of both self- and hetero-perceived stress. However, we also found the contributing features for automatic classifications had opposite distributions: self-perception classification was mainly based on physiological features and hetero-perception was mainly based on behavioral features. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Fernández Pozo, Rubén; Blanco Murillo, Jose Luis; Hernández Gómez, Luis; López Gonzalo, Eduardo; Alcázar Ramírez, José; Toledano, Doroteo T.
2009-12-01
This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.
Stöggl, Thomas; Holst, Anders; Jonasson, Arndt; Andersson, Erik; Wunsch, Tobias; Norström, Christer; Holmberg, Hans-Christer
2014-10-31
The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear.
Automatic classification of seismic events within a regional seismograph network
NASA Astrophysics Data System (ADS)
Tiira, Timo; Kortström, Jari; Uski, Marja
2015-04-01
A fully automatic method for seismic event classification within a sparse regional seismograph network is presented. The tool is based on a supervised pattern recognition technique, Support Vector Machine (SVM), trained here to distinguish weak local earthquakes from a bulk of human-made or spurious seismic events. The classification rules rely on differences in signal energy distribution between natural and artificial seismic sources. Seismic records are divided into four windows, P, P coda, S, and S coda. For each signal window STA is computed in 20 narrow frequency bands between 1 and 41 Hz. The 80 discrimination parameters are used as a training data for the SVM. The SVM models are calculated for 19 on-line seismic stations in Finland. The event data are compiled mainly from fully automatic event solutions that are manually classified after automatic location process. The station-specific SVM training events include 11-302 positive (earthquake) and 227-1048 negative (non-earthquake) examples. The best voting rules for combining results from different stations are determined during an independent testing period. Finally, the network processing rules are applied to an independent evaluation period comprising 4681 fully automatic event determinations, of which 98 % have been manually identified as explosions or noise and 2 % as earthquakes. The SVM method correctly identifies 94 % of the non-earthquakes and all the earthquakes. The results imply that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of confidence. The tool helps to reduce work-load in manual seismic analysis by leaving only ~5 % of the automatic event determinations, i.e. the probable earthquakes for more detailed seismological analysis. The approach presented is easy to adjust to requirements of a denser or wider high-frequency network, once enough training examples for building a station-specific data set are available.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Valeriano, D. D.
1981-01-01
An evaluation of the multispectral image analyzer (system Image 1-100), using automatic classification, is presented. The region studied is situated. The automatic was carried out using the maximum likelihood (MAXVER) classification system. The following classes were established: urban area, bare soil, sugar cane, citrus culture (oranges), pastures, and reforestation. The classification matrix of the test sites indicate that the percentage of correct classification varied between 63% and 100%.
NASA Astrophysics Data System (ADS)
Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.
2006-12-01
Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.
Computer-aided diagnosis system: a Bayesian hybrid classification method.
Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J
2013-10-01
A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Towards an Effective Theory of Reformulation. Part 1; Semantics
NASA Technical Reports Server (NTRS)
Benjamin, D. Paul
1992-01-01
This paper describes an investigation into the structure of representations of sets of actions, utilizing semigroup theory. The goals of this project are twofold: to shed light on the relationship between tasks and representations, leading to a classification of tasks according to the representations they admit; and to develop techniques for automatically transforming representations so as to improve problem-solving performance. A method is demonstrated for automatically generating serial algorithms for representations whose actions form a finite group. This method is then extended to representations whose actions form a finite inverse semigroup.
NASA Astrophysics Data System (ADS)
Polsterer, K. L.; Gieseke, F.; Igel, C.
2015-09-01
In the last decades more and more all-sky surveys created an enormous amount of data which is publicly available on the Internet. Crowd-sourcing projects such as Galaxy-Zoo and Radio-Galaxy-Zoo used encouraged users from all over the world to manually conduct various classification tasks. The combination of the pattern-recognition capabilities of thousands of volunteers enabled scientists to finish the data analysis within acceptable time. For up-coming surveys with billions of sources, however, this approach is not feasible anymore. In this work, we present an unsupervised method that can automatically process large amounts of galaxy data and which generates a set of prototypes. This resulting model can be used to both visualize the given galaxy data as well as to classify so far unseen images.
Multi-class SVM model for fMRI-based classification and grading of liver fibrosis
NASA Astrophysics Data System (ADS)
Freiman, M.; Sela, Y.; Edrei, Y.; Pappo, O.; Joskowicz, L.; Abramovitch, R.
2010-03-01
We present a novel non-invasive automatic method for the classification and grading of liver fibrosis from fMRI maps based on hepatic hemodynamic changes. This method automatically creates a model for liver fibrosis grading based on training datasets. Our supervised learning method evaluates hepatic hemodynamics from an anatomical MRI image and three T2*-W fMRI signal intensity time-course scans acquired during the breathing of air, air-carbon dioxide, and carbogen. It constructs a statistical model of liver fibrosis from these fMRI scans using a binary-based one-against-all multi class Support Vector Machine (SVM) classifier. We evaluated the resulting classification model with the leave-one out technique and compared it to both full multi-class SVM and K-Nearest Neighbor (KNN) classifications. Our experimental study analyzed 57 slice sets from 13 mice, and yielded a 98.2% separation accuracy between healthy and low grade fibrotic subjects, and an overall accuracy of 84.2% for fibrosis grading. These results are better than the existing image-based methods which can only discriminate between healthy and high grade fibrosis subjects. With appropriate extensions, our method may be used for non-invasive classification and progression monitoring of liver fibrosis in human patients instead of more invasive approaches, such as biopsy or contrast-enhanced imaging.
Cohen, Aaron M
2008-01-01
We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.
Automated spectral classification and the GAIA project
NASA Technical Reports Server (NTRS)
Lasala, Jerry; Kurtz, Michael J.
1995-01-01
Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.
Automatic Classification of Medical Text: The Influence of Publication Form1
Cole, William G.; Michael, Patricia A.; Stewart, James G.; Blois, Marsden S.
1988-01-01
Previous research has shown that within the domain of medical journal abstracts the statistical distribution of words is neither random nor uniform, but is highly characteristic. Many words are used mainly or solely by one medical specialty or when writing about one particular level of description. Due to this regularity of usage, automatic classification within journal abstracts has proved quite successful. The present research asks two further questions. It investigates whether this statistical regularity and automatic classification success can also be achieved in medical textbook chapters. It then goes on to see whether the statistical distribution found in textbooks is sufficiently similar to that found in abstracts to permit accurate classification of abstracts based solely on previous knowledge of textbooks. 14 textbook chapters and 45 MEDLINE abstracts were submitted to an automatic classification program that had been trained only on chapters drawn from a standard textbook series. Statistical analysis of the properties of abstracts vs. chapters revealed important differences in word use. Automatic classification performance was good for chapters, but poor for abstracts.
Sarker, Abeed; Gonzalez, Graciela
2015-02-01
Automatic detection of adverse drug reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media-where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing (NLP) approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Portable Automatic Text Classification for Adverse Drug Reaction Detection via Multi-corpus Training
Gonzalez, Graciela
2014-01-01
Objective Automatic detection of Adverse Drug Reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media — where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. Methods One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. Results Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. Conclusions Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future. PMID:25451103
Localized contourlet features in vehicle make and model recognition
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, B. S.
2009-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudipta; Deb, Debasis
2016-07-01
Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.
Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.
Exploiting the systematic review protocol for classification of medical abstracts.
Frunza, Oana; Inkpen, Diana; Matwin, Stan; Klement, William; O'Blenis, Peter
2011-01-01
To determine whether the automatic classification of documents can be useful in systematic reviews on medical topics, and specifically if the performance of the automatic classification can be enhanced by using the particular protocol of questions employed by the human reviewers to create multiple classifiers. The test collection is the data used in large-scale systematic review on the topic of the dissemination strategy of health care services for elderly people. From a group of 47,274 abstracts marked by human reviewers to be included in or excluded from further screening, we randomly selected 20,000 as a training set, with the remaining 27,274 becoming a separate test set. As a machine learning algorithm we used complement naïve Bayes. We tested both a global classification method, where a single classifier is trained on instances of abstracts and their classification (i.e., included or excluded), and a novel per-question classification method that trains multiple classifiers for each abstract, exploiting the specific protocol (questions) of the systematic review. For the per-question method we tested four ways of combining the results of the classifiers trained for the individual questions. As evaluation measures, we calculated precision and recall for several settings of the two methods. It is most important not to exclude any relevant documents (i.e., to attain high recall for the class of interest) but also desirable to exclude most of the non-relevant documents (i.e., to attain high precision on the class of interest) in order to reduce human workload. For the global method, the highest recall was 67.8% and the highest precision was 37.9%. For the per-question method, the highest recall was 99.2%, and the highest precision was 63%. The human-machine workflow proposed in this paper achieved a recall value of 99.6%, and a precision value of 17.8%. The per-question method that combines classifiers following the specific protocol of the review leads to better results than the global method in terms of recall. Because neither method is efficient enough to classify abstracts reliably by itself, the technology should be applied in a semi-automatic way, with a human expert still involved. When the workflow includes one human expert and the trained automatic classifier, recall improves to an acceptable level, showing that automatic classification techniques can reduce the human workload in the process of building a systematic review. Copyright © 2010 Elsevier B.V. All rights reserved.
Classification of human carcinoma cells using multispectral imagery
NASA Astrophysics Data System (ADS)
Ćinar, Umut; Y. Ćetin, Yasemin; Ćetin-Atalay, Rengul; Ćetin, Enis
2016-03-01
In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.
Automatic analysis for neuron by confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko
2005-12-01
The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.
Revis, J; Galant, C; Fredouille, C; Ghio, A; Giovanni, A
2012-01-01
Widely studied in terms of perception, acoustics or aerodynamics, dysphonia stays nevertheless a speech phenomenon, closely related to the phonetic composition of the message conveyed by the voice. In this paper, we present a series of three works with the aim to understand the implications of the phonetic manifestation of dysphonia. Our first study proposes a new approach to the perceptual analysis of dysphonia (the phonetic labeling), which principle is to listen and evaluate each phoneme in a sentence separately. This study confirms the hypothesis of Laver that the dysphonia is not a constant noise added to the speech signal, but a discontinuous phenomenon, occurring on certain phonemes, based on the phonetic context. However, the burden of executing the task has led us to look to the techniques of automatic speaker recognition (ASR) to automate the procedure. With the collaboration of the LIA, we have developed a system for automatic classification of dysphonia from the techniques of ASR. This is the subject of our second study. The first results obtained with this system suggest that the unvoiced consonants show predominant performance in the task of automatic classification of dysphonia. This result is surprising since it is often assumed that dysphonia occurs only on laryngeal vibration. We started looking for explanations of this phenomenon and we present our assumptions and experiences in the third work we present.
Fine-grained leukocyte classification with deep residual learning for microscopic images.
Qin, Feiwei; Gao, Nannan; Peng, Yong; Wu, Zizhao; Shen, Shuying; Grudtsin, Artur
2018-08-01
Leukocyte classification and cytometry have wide applications in medical domain, previous researches usually exploit machine learning techniques to classify leukocytes automatically. However, constrained by the past development of machine learning techniques, for example, extracting distinctive features from raw microscopic images are difficult, the widely used SVM classifier only has relative few parameters to tune, these methods cannot efficiently handle fine-grained classification cases when the white blood cells have up to 40 categories. Based on deep learning theory, a systematic study is conducted on finer leukocyte classification in this paper. A deep residual neural network based leukocyte classifier is constructed at first, which can imitate the domain expert's cell recognition process, and extract salient features robustly and automatically. Then the deep neural network classifier's topology is adjusted according to the prior knowledge of white blood cell test. After that the microscopic image dataset with almost one hundred thousand labeled leukocytes belonging to 40 categories is built, and combined training strategies are adopted to make the designed classifier has good generalization ability. The proposed deep residual neural network based classifier was tested on microscopic image dataset with 40 leukocyte categories. It achieves top-1 accuracy of 77.80%, top-5 accuracy of 98.75% during the training procedure. The average accuracy on the test set is nearly 76.84%. This paper presents a fine-grained leukocyte classification method for microscopic images, based on deep residual learning theory and medical domain knowledge. Experimental results validate the feasibility and effectiveness of our approach. Extended experiments support that the fine-grained leukocyte classifier could be used in real medical applications, assist doctors in diagnosing diseases, reduce human power significantly. Copyright © 2018 Elsevier B.V. All rights reserved.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim
2015-07-30
Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.
Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi
2016-12-01
This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Automatic classification of minimally invasive instruments based on endoscopic image sequences
NASA Astrophysics Data System (ADS)
Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger
2009-02-01
Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.
NASA Astrophysics Data System (ADS)
Kachach, Redouane; Cañas, José María
2016-05-01
Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.
Delineation and geometric modeling of road networks
NASA Astrophysics Data System (ADS)
Poullis, Charalambos; You, Suya
In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.
NASA Astrophysics Data System (ADS)
Ghoraani, Behnaz; Krishnan, Sridhar
2009-12-01
The number of people affected by speech problems is increasing as the modern world places increasing demands on the human voice via mobile telephones, voice recognition software, and interpersonal verbal communications. In this paper, we propose a novel methodology for automatic pattern classification of pathological voices. The main contribution of this paper is extraction of meaningful and unique features using Adaptive time-frequency distribution (TFD) and nonnegative matrix factorization (NMF). We construct Adaptive TFD as an effective signal analysis domain to dynamically track the nonstationarity in the speech and utilize NMF as a matrix decomposition (MD) technique to quantify the constructed TFD. The proposed method extracts meaningful and unique features from the joint TFD of the speech, and automatically identifies and measures the abnormality of the signal. Depending on the abnormality measure of each signal, we classify the signal into normal or pathological. The proposed method is applied on the Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database which consists of 161 pathological and 51 normal speakers, and an overall classification accuracy of 98.6% was achieved.
A compressed sensing method with analytical results for lidar feature classification
NASA Astrophysics Data System (ADS)
Allen, Josef D.; Yuan, Jiangbo; Liu, Xiuwen; Rahmes, Mark
2011-04-01
We present an innovative way to autonomously classify LiDAR points into bare earth, building, vegetation, and other categories. One desirable product of LiDAR data is the automatic classification of the points in the scene. Our algorithm automatically classifies scene points using Compressed Sensing Methods via Orthogonal Matching Pursuit algorithms utilizing a generalized K-Means clustering algorithm to extract buildings and foliage from a Digital Surface Models (DSM). This technology reduces manual editing while being cost effective for large scale automated global scene modeling. Quantitative analyses are provided using Receiver Operating Characteristics (ROC) curves to show Probability of Detection and False Alarm of buildings vs. vegetation classification. Histograms are shown with sample size metrics. Our inpainting algorithms then fill the voids where buildings and vegetation were removed, utilizing Computational Fluid Dynamics (CFD) techniques and Partial Differential Equations (PDE) to create an accurate Digital Terrain Model (DTM) [6]. Inpainting preserves building height contour consistency and edge sharpness of identified inpainted regions. Qualitative results illustrate other benefits such as Terrain Inpainting's unique ability to minimize or eliminate undesirable terrain data artifacts.
NASA Technical Reports Server (NTRS)
Butera, M. K.
1981-01-01
An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.
Nonlinear, non-stationary image processing technique for eddy current NDE
NASA Astrophysics Data System (ADS)
Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita
2012-05-01
Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.
Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal
2018-01-17
The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.
Detecting brain tumor in pathological slides using hyperspectral imaging
Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M.; Sarmiento, Roberto
2018-01-01
Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides. PMID:29552415
Detecting brain tumor in pathological slides using hyperspectral imaging.
Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M; Sarmiento, Roberto
2018-02-01
Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides.
Dimitriadis, Stavros I; Salis, Christos; Linden, David
2018-04-01
Limitations of the manual scoring of polysomnograms, which include data from electroencephalogram (EEG), electro-oculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) channels have long been recognized. Manual staging is resource intensive and time consuming, and thus considerable effort must be spent to ensure inter-rater reliability. As a result, there is a great interest in techniques based on signal processing and machine learning for a completely Automatic Sleep Stage Classification (ASSC). In this paper, we present a single-EEG-sensor ASSC technique based on the dynamic reconfiguration of different aspects of cross-frequency coupling (CFC) estimated between predefined frequency pairs over 5 s epoch lengths. The proposed analytic scheme is demonstrated using the PhysioNet Sleep European Data Format (EDF) Database with repeat recordings from 20 healthy young adults. We validate our methodology in a second sleep dataset. We achieved very high classification sensitivity, specificity and accuracy of 96.2 ± 2.2%, 94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively, and also a high mean F1 score (92%, range 90-94%) when a multi-class Naive Bayes classifier was applied. High classification performance has been achieved also in the second sleep dataset. Our method outperformed the accuracy of previous studies not only on different datasets but also on the same database. Single-sensor ASSC makes the entire methodology appropriate for longitudinal monitoring using wearable EEG in real-world and laboratory-oriented environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Classifying seismic waveforms from scratch: a case study in the alpine environment
NASA Astrophysics Data System (ADS)
Hammer, C.; Ohrnberger, M.; Fäh, D.
2013-01-01
Nowadays, an increasing amount of seismic data is collected by daily observatory routines. The basic step for successfully analyzing those data is the correct detection of various event types. However, the visually scanning process is a time-consuming task. Applying standard techniques for detection like the STA/LTA trigger still requires the manual control for classification. Here, we present a useful alternative. The incoming data stream is scanned automatically for events of interest. A stochastic classifier, called hidden Markov model, is learned for each class of interest enabling the recognition of highly variable waveforms. In contrast to other automatic techniques as neural networks or support vector machines the algorithm allows to start the classification from scratch as soon as interesting events are identified. Neither the tedious process of collecting training samples nor a time-consuming configuration of the classifier is required. An approach originally introduced for the volcanic task force action allows to learn classifier properties from a single waveform example and some hours of background recording. Besides a reduction of required workload this also enables to detect very rare events. Especially the latter feature provides a milestone point for the use of seismic devices in alpine warning systems. Furthermore, the system offers the opportunity to flag new signal classes that have not been defined before. We demonstrate the application of the classification system using a data set from the Swiss Seismological Survey achieving very high recognition rates. In detail we document all refinements of the classifier providing a step-by-step guide for the fast set up of a well-working classification system.
An automatic agricultural zone classification procedure for crop inventory satellite images
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Kux, H. J.; Velasco, F. R. D.; Deoliveira, M. O. B.
1982-01-01
A classification procedure for assessing crop areal proportion in multispectral scanner image is discussed. The procedure is into four parts: labeling; classification; proportion estimation; and evaluation. The procedure also has the following characteristics: multitemporal classification; the need for a minimum field information; and verification capability between automatic classification and analyst labeling. The processing steps and the main algorithms involved are discussed. An outlook on the future of this technology is also presented.
NASA Astrophysics Data System (ADS)
Sanger, Demas S.; Haneishi, Hideaki; Miyake, Yoichi
1995-08-01
This paper proposed a simple and automatic method for recognizing the light sources from various color negative film brands by means of digital image processing. First, we stretched the image obtained from a negative based on the standardized scaling factors, then extracted the dominant color component among red, green, and blue components of the stretched image. The dominant color component became the discriminator for the recognition. The experimental results verified that any one of the three techniques could recognize the light source from negatives of any film brands and all brands greater than 93.2 and 96.6% correct recognitions, respectively. This method is significant for the automation of color quality control in color reproduction from color negative film in mass processing and printing machine.
Salimi-Khorshidi, Gholamreza; Douaud, Gwenaëlle; Beckmann, Christian F; Glasser, Matthew F; Griffanti, Ludovica; Smith, Stephen M
2014-01-01
Many sources of fluctuation contribute to the fMRI signal, and this makes identifying the effects that are truly related to the underlying neuronal activity difficult. Independent component analysis (ICA) - one of the most widely used techniques for the exploratory analysis of fMRI data - has shown to be a powerful technique in identifying various sources of neuronally-related and artefactual fluctuation in fMRI data (both with the application of external stimuli and with the subject “at rest”). ICA decomposes fMRI data into patterns of activity (a set of spatial maps and their corresponding time series) that are statistically independent and add linearly to explain voxel-wise time series. Given the set of ICA components, if the components representing “signal” (brain activity) can be distinguished form the “noise” components (effects of motion, non-neuronal physiology, scanner artefacts and other nuisance sources), the latter can then be removed from the data, providing an effective cleanup of structured noise. Manual classification of components is labour intensive and requires expertise; hence, a fully automatic noise detection algorithm that can reliably detect various types of noise sources (in both task and resting fMRI) is desirable. In this paper, we introduce FIX (“FMRIB’s ICA-based X-noiseifier”), which provides an automatic solution for denoising fMRI data via accurate classification of ICA components. For each ICA component FIX generates a large number of distinct spatial and temporal features, each describing a different aspect of the data (e.g., what proportion of temporal fluctuations are at high frequencies). The set of features is then fed into a multi-level classifier (built around several different Classifiers). Once trained through the hand-classification of a sufficient number of training datasets, the classifier can then automatically classify new datasets. The noise components can then be subtracted from (or regressed out of) the original data, to provide automated cleanup. On conventional resting-state fMRI (rfMRI) single-run datasets, FIX achieved about 95% overall accuracy. On high-quality rfMRI data from the Human Connectome Project, FIX achieves over 99% classification accuracy, and as a result is being used in the default rfMRI processing pipeline for generating HCP connectomes. FIX is publicly available as a plugin for FSL. PMID:24389422
Automatic classification of fish germ cells through optimum-path forest.
Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A
2011-01-01
The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.
Breaking the Cost Barrier in Automatic Classification.
ERIC Educational Resources Information Center
Doyle, L. B.
A low-cost automatic classification method is reported that uses computer time in proportion to NlogN, where N is the number of information items and the base is a parameter, some barriers besides cost are treated briefly in the opening section, including types of intellectual resistance to the idea of doing classification by content-word…
The impact of OCR accuracy on automated cancer classification of pathology reports.
Zuccon, Guido; Nguyen, Anthony N; Bergheim, Anton; Wickman, Sandra; Grayson, Narelle
2012-01-01
To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.
Activity classification using realistic data from wearable sensors.
Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka
2006-01-01
Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.
Stöggl, Thomas; Holst, Anders; Jonasson, Arndt; Andersson, Erik; Wunsch, Tobias; Norström, Christer; Holmberg, Hans-Christer
2014-01-01
The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear. PMID:25365459
Evolving forest fire burn severity classification algorithms for multispectral imagery
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.
2001-08-01
Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.
Using reconstructed IVUS images for coronary plaque classification.
Caballero, Karla L; Barajas, Joel; Pujol, Oriol; Rodriguez, Oriol; Radeva, Petia
2007-01-01
Coronary plaque rupture is one of the principal causes of sudden death in western societies. Reliable diagnostic of the different plaque types are of great interest for the medical community the predicting their evolution and applying an effective treatment. To achieve this, a tissue classification must be performed. Intravascular Ultrasound (IVUS) represents a technique to explore the vessel walls and to observe its histological properties. In this paper, a method to reconstruct IVUS images from the raw Radio Frequency (RF) data coming from ultrasound catheter is proposed. This framework offers a normalization scheme to compare accurately different patient studies. The automatic tissue classification is based on texture analysis and Adapting Boosting (Adaboost) learning technique combined with Error Correcting Output Codes (ECOC). In this study, 9 in-vivo cases are reconstructed with 7 different parameter set. This method improves the classification rate based on images, yielding a 91% of well-detected tissue using the best parameter set. It also reduces the inter-patient variability compared with the analysis of DICOM images, which are obtained from the commercial equipment.
NASA Astrophysics Data System (ADS)
Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine
2009-12-01
This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.
Automatic classification of sleep stages based on the time-frequency image of EEG signals.
Bajaj, Varun; Pachori, Ram Bilas
2013-12-01
In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
An efficient scheme for automatic web pages categorization using the support vector machine
NASA Astrophysics Data System (ADS)
Bhalla, Vinod Kumar; Kumar, Neeraj
2016-07-01
In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.
Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid
2013-06-01
Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Agarwal, Smriti; Singh, Dharmendra
2016-04-01
Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.
Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery
NASA Technical Reports Server (NTRS)
McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve
2012-01-01
We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.
Accelerometer-based on-body sensor localization for health and medical monitoring applications
Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid
2011-01-01
In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840
Support Vector Machine Model for Automatic Detection and Classification of Seismic Events
NASA Astrophysics Data System (ADS)
Barros, Vesna; Barros, Lucas
2016-04-01
The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector network to various classical learning algorithms used before in seismic detection and classification is an essential final step to analyze the advantages and disadvantages of the model.
A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques
NASA Astrophysics Data System (ADS)
Techo, Jakkrit; Nattee, Cholwich; Theeramunkong, Thanaruk
While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naïve Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.93±0.50% when the first rank is selected while it gains 97.26±0.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naïve Bayes classifier and the vanilla version. Another result on applying only best features show 93.93±0.22% and up to 98.85±0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.
Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Conclusions Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations. PMID:28880923
A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
S K, Somasundaram; P, Alli
2017-11-09
The main complication of diabetes is Diabetic retinopathy (DR), retinal vascular disease and it leads to the blindness. Regular screening for early DR disease detection is considered as an intensive labor and resource oriented task. Therefore, automatic detection of DR diseases is performed only by using the computational technique is the great solution. An automatic method is more reliable to determine the presence of an abnormality in Fundus images (FI) but, the classification process is poorly performed. Recently, few research works have been designed for analyzing texture discrimination capacity in FI to distinguish the healthy images. However, the feature extraction (FE) process was not performed well, due to the high dimensionality. Therefore, to identify retinal features for DR disease diagnosis and early detection using Machine Learning and Ensemble Classification method, called, Machine Learning Bagging Ensemble Classifier (ML-BEC) is designed. The ML-BEC method comprises of two stages. The first stage in ML-BEC method comprises extraction of the candidate objects from Retinal Images (RI). The candidate objects or the features for DR disease diagnosis include blood vessels, optic nerve, neural tissue, neuroretinal rim, optic disc size, thickness and variance. These features are initially extracted by applying Machine Learning technique called, t-distributed Stochastic Neighbor Embedding (t-SNE). Besides, t-SNE generates a probability distribution across high-dimensional images where the images are separated into similar and dissimilar pairs. Then, t-SNE describes a similar probability distribution across the points in the low-dimensional map. This lessens the Kullback-Leibler divergence among two distributions regarding the locations of the points on the map. The second stage comprises of application of ensemble classifiers to the extracted features for providing accurate analysis of digital FI using machine learning. In this stage, an automatic detection of DR screening system using Bagging Ensemble Classifier (BEC) is investigated. With the help of voting the process in ML-BEC, bagging minimizes the error due to variance of the base classifier. With the publicly available retinal image databases, our classifier is trained with 25% of RI. Results show that the ensemble classifier can achieve better classification accuracy (CA) than single classification models. Empirical experiments suggest that the machine learning-based ensemble classifier is efficient for further reducing DR classification time (CT).
Automated 3D Phenotype Analysis Using Data Mining
Plyusnin, Ilya; Evans, Alistair R.; Karme, Aleksis; Gionis, Aristides; Jernvall, Jukka
2008-01-01
The ability to analyze and classify three-dimensional (3D) biological morphology has lagged behind the analysis of other biological data types such as gene sequences. Here, we introduce the techniques of data mining to the study of 3D biological shapes to bring the analyses of phenomes closer to the efficiency of studying genomes. We compiled five training sets of highly variable morphologies of mammalian teeth from the MorphoBrowser database. Samples were labeled either by dietary class or by conventional dental types (e.g. carnassial, selenodont). We automatically extracted a multitude of topological attributes using Geographic Information Systems (GIS)-like procedures that were then used in several combinations of feature selection schemes and probabilistic classification models to build and optimize classifiers for predicting the labels of the training sets. In terms of classification accuracy, computational time and size of the feature sets used, non-repeated best-first search combined with 1-nearest neighbor classifier was the best approach. However, several other classification models combined with the same searching scheme proved practical. The current study represents a first step in the automatic analysis of 3D phenotypes, which will be increasingly valuable with the future increase in 3D morphology and phenomics databases. PMID:18320060
Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Bassier, M.; Vergauwen, M.; Van Genechten, B.
2017-08-01
Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.
Automatic Target Recognition Classification System Evaluation Methodology
2002-09-01
Testing Set of Two-Class XOR Data (250 Samples)......................................... 2-59 2.27 Decision Analysis Process Flow Chart...ROC curve meta - analysis , which is the estimation of the true ROC curve of a given diagnostic system through ROC analysis across many studies or...technique can be very effective in sensitivity analysis ; trying to determine which data points have the most effect on the solution, and in
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya
2015-01-01
The classification of subjects' pathologies enables a rigorousness to be applied to the treatment of certain pathologies, as doctors on occasions play with so many variables that they can end up confusing some illnesses with others. Thanks to Machine Learning techniques applied to a health-record database, it is possible to make using our algorithm. hClass contains a non-linear classification of either a supervised, non-supervised or semi-supervised type. The machine is configured using other techniques such as validation of the set to be classified (cross-validation), reduction in features (PCA) and committees for assessing the various classifiers. The tool is easy to use, and the sample matrix and features that one wishes to classify, the number of iterations and the subjects who are going to be used to train the machine all need to be introduced as inputs. As a result, the success rate is shown either via a classifier or via a committee if one has been formed. A 90% success rate is obtained in the ADABoost classifier and 89.7% in the case of a committee (comprising three classifiers) when PCA is applied. This tool can be expanded to allow the user to totally characterise the classifiers by adjusting them to each classification use.
Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak
2014-01-01
Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.
Evolving land cover classification algorithms for multispectral and multitemporal imagery
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.
2002-01-01
The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.
Land cover classification of VHR airborne images for citrus grove identification
NASA Astrophysics Data System (ADS)
Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.
Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.
Automatic classification of endoscopic images for premalignant conditions of the esophagus
NASA Astrophysics Data System (ADS)
Boschetto, Davide; Gambaretto, Gloria; Grisan, Enrico
2016-03-01
Barrett's esophagus (BE) is a precancerous complication of gastroesophageal reflux disease in which normal stratified squamous epithelium lining the esophagus is replaced by intestinal metaplastic columnar epithelium. Repeated endoscopies and multiple biopsies are often necessary to establish the presence of intestinal metaplasia. Narrow Band Imaging (NBI) is an imaging technique commonly used with endoscopies that enhances the contrast of vascular pattern on the mucosa. We present a computer-based method for the automatic normal/metaplastic classification of endoscopic NBI images. Superpixel segmentation is used to identify and cluster pixels belonging to uniform regions. From each uniform clustered region of pixels, eight features maximizing differences among normal and metaplastic epithelium are extracted for the classification step. For each superpixel, the three mean intensities of each color channel are firstly selected as features. Three added features are the mean intensities for each superpixel after separately applying to the red-channel image three different morphological filters (top-hat filtering, entropy filtering and range filtering). The last two features require the computation of the Grey-Level Co-Occurrence Matrix (GLCM), and are reflective of the contrast and the homogeneity of each superpixel. The classification step is performed using an ensemble of 50 classification trees, with a 10-fold cross-validation scheme by training the classifier at each step on a random 70% of the images and testing on the remaining 30% of the dataset. Sensitivity and Specificity are respectively of 79.2% and 87.3%, with an overall accuracy of 83.9%.
Nho, Kwangsik; Shen, Li; Kim, Sungeun; Risacher, Shannon L.; West, John D.; Foroud, Tatiana; Jack, Clifford R.; Weiner, Michael W.; Saykin, Andrew J.
2010-01-01
Mild Cognitive Impairment (MCI) is thought to be a precursor to the development of early Alzheimer’s disease (AD). For early diagnosis of AD, the development of a model that is able to predict the conversion of amnestic MCI to AD is challenging. Using automatic whole-brain MRI analysis techniques and pattern classification methods, we developed a model to differentiate AD from healthy controls (HC), and then applied it to the prediction of MCI conversion to AD. Classification was performed using support vector machines (SVMs) together with a SVM-based feature selection method, which selected a set of most discriminating predictors for optimizing prediction accuracy. We obtained 90.5% cross-validation accuracy for classifying AD and HC, and 72.3% accuracy for predicting MCI conversion to AD. These analyses suggest that a classifier trained to separate HC vs. AD has substantial potential for predicting MCI conversion to AD. PMID:21347037
Burlina, Philippe; Billings, Seth; Joshi, Neil
2017-01-01
Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220
Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima
2017-01-01
To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.
Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Hajnal, Joseph V.; Duncan, John S.; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2012-01-01
Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study. PMID:22523539
Automatic detection of sleep macrostructure based on a sensorized T-shirt.
Bianchi, Anna M; Mendez, Martin O
2010-01-01
In the present work we apply a fully automatic procedure to the analysis of signal coming from a sensorized T-shit, worn during the night, for sleep evaluation. The goodness and reliability of the signals recorded trough the T-shirt was previously tested, while the employed algorithms for feature extraction and sleep classification were previously developed on standard ECG recordings and the obtained classification was compared to the standard clinical practice based on polysomnography (PSG). In the present work we combined T-shirt recordings and automatic classification and could obtain reliable sleep profiles, i.e. the sleep classification in WAKE, REM (rapid eye movement) and NREM stages, based on heart rate variability (HRV), respiration and movement signals.
Automatic adventitious respiratory sound analysis: A systematic review.
Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther
2017-01-01
Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases.
Automatic adventitious respiratory sound analysis: A systematic review
Bowyer, Stuart; Rodriguez-Villegas, Esther
2017-01-01
Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Limitations Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. Conclusion A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases. PMID:28552969
Speaker emotion recognition: from classical classifiers to deep neural networks
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2018-04-01
Speaker emotion recognition is considered among the most challenging tasks in recent years. In fact, automatic systems for security, medicine or education can be improved when considering the speech affective state. In this paper, a twofold approach for speech emotion classification is proposed. At the first side, a relevant set of features is adopted, and then at the second one, numerous supervised training techniques, involving classic methods as well as deep learning, are experimented. Experimental results indicate that deep architecture can improve classification performance on two affective databases, the Berlin Dataset of Emotional Speech and the SAVEE Dataset Surrey Audio-Visual Expressed Emotion.
An overview of very high level software design methods
NASA Technical Reports Server (NTRS)
Asdjodi, Maryam; Hooper, James W.
1988-01-01
Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems.
Extracting the Textual and Temporal Structure of Supercomputing Logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, S; Singh, I; Chandra, A
2009-05-26
Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less
A software tool for automatic classification and segmentation of 2D/3D medical images
NASA Astrophysics Data System (ADS)
Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur
2013-02-01
Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.
Metric learning for automatic sleep stage classification.
Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung
2013-01-01
We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.
Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.
2016-04-01
Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution
Image-based deep learning for classification of noise transients in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Razzano, Massimiliano; Cuoco, Elena
2018-05-01
The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.
Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations
Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.
2016-01-01
Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941
Discriminating Induced-Microearthquakes Using New Seismic Features
NASA Astrophysics Data System (ADS)
Mousavi, S. M.; Horton, S.
2016-12-01
We studied characteristics of induced-microearthquakes on the basis of the waveforms recorded on a limited number of surface receivers using machine-learning techniques. Forty features in the time, frequency, and time-frequency domains were measured on each waveform, and several techniques such as correlation-based feature selection, Artificial Neural Networks (ANNs), Logistic Regression (LR) and X-mean were used as research tools to explore the relationship between these seismic features and source parameters. The results show that spectral features have the highest correlation to source depth. Two new measurements developed as seismic features for this study, spectral centroids and 2D cross-correlations in the time-frequency domain, performed better than the common seismic measurements. These features can be used by machine learning techniques for efficient automatic classification of low energy signals recorded at one or more seismic stations. We applied the technique to 440 microearthquakes-1.7Reference: Mousavi, S.M., S.P. Horton, C. A. Langston, B. Samei, (2016) Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophys. J. Int. doi: 10.1093/gji/ggw258.
SAR-based change detection using hypothesis testing and Markov random field modelling
NASA Astrophysics Data System (ADS)
Cao, W.; Martinis, S.
2015-04-01
The objective of this study is to automatically detect changed areas caused by natural disasters from bi-temporal co-registered and calibrated TerraSAR-X data. The technique in this paper consists of two steps: Firstly, an automatic coarse detection step is applied based on a statistical hypothesis test for initializing the classification. The original analytical formula as proposed in the constant false alarm rate (CFAR) edge detector is reviewed and rewritten in a compact form of the incomplete beta function, which is a builtin routine in commercial scientific software such as MATLAB and IDL. Secondly, a post-classification step is introduced to optimize the noisy classification result in the previous step. Generally, an optimization problem can be formulated as a Markov random field (MRF) on which the quality of a classification is measured by an energy function. The optimal classification based on the MRF is related to the lowest energy value. Previous studies provide methods for the optimization problem using MRFs, such as the iterated conditional modes (ICM) algorithm. Recently, a novel algorithm was presented based on graph-cut theory. This method transforms a MRF to an equivalent graph and solves the optimization problem by a max-flow/min-cut algorithm on the graph. In this study this graph-cut algorithm is applied iteratively to improve the coarse classification. At each iteration the parameters of the energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). Experiments are performed using two flood events in Germany and Australia in 2011 and a forest fire on La Palma in 2009 using pre- and post-event TerraSAR-X data. The results show convincing coarse classifications and considerable improvement by the graph-cut post-classification step.
Zhang, Junming; Wu, Yan
2018-03-28
Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.
A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation
Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga
2014-01-01
The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638
Pattern recognition and image processing for environmental monitoring
NASA Astrophysics Data System (ADS)
Siddiqui, Khalid J.; Eastwood, DeLyle
1999-12-01
Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.
Automatic age and gender classification using supervised appearance model
NASA Astrophysics Data System (ADS)
Bukar, Ali Maina; Ugail, Hassan; Connah, David
2016-11-01
Age and gender classification are two important problems that recently gained popularity in the research community, due to their wide range of applications. Research has shown that both age and gender information are encoded in the face shape and texture, hence the active appearance model (AAM), a statistical model that captures shape and texture variations, has been one of the most widely used feature extraction techniques for the aforementioned problems. However, AAM suffers from some drawbacks, especially when used for classification. This is primarily because principal component analysis (PCA), which is at the core of the model, works in an unsupervised manner, i.e., PCA dimensionality reduction does not take into account how the predictor variables relate to the response (class labels). Rather, it explores only the underlying structure of the predictor variables, thus, it is no surprise if PCA discards valuable parts of the data that represent discriminatory features. Toward this end, we propose a supervised appearance model (sAM) that improves on AAM by replacing PCA with partial least-squares regression. This feature extraction technique is then used for the problems of age and gender classification. Our experiments show that sAM has better predictive power than the conventional AAM.
Boudissa, M; Orfeuvre, B; Chabanas, M; Tonetti, J
2017-09-01
The Letournel classification of acetabular fracture shows poor reproducibility in inexperienced observers, despite the introduction of 3D imaging. We therefore developed a method of semi-automatic segmentation based on CT data. The present prospective study aimed to assess: (1) whether semi-automatic bone-fragment segmentation increased the rate of correct classification; (2) if so, in which fracture types; and (3) feasibility using the open-source itksnap 3.0 software package without incurring extra cost for users. Semi-automatic segmentation of acetabular fractures significantly increases the rate of correct classification by orthopedic surgery residents. Twelve orthopedic surgery residents classified 23 acetabular fractures. Six used conventional 3D reconstructions provided by the center's radiology department (conventional group) and 6 others used reconstructions obtained by semi-automatic segmentation using the open-source itksnap 3.0 software package (segmentation group). Bone fragments were identified by specific colors. Correct classification rates were compared between groups on Chi 2 test. Assessment was repeated 2 weeks later, to determine intra-observer reproducibility. Correct classification rates were significantly higher in the "segmentation" group: 114/138 (83%) versus 71/138 (52%); P<0.0001. The difference was greater for simple (36/36 (100%) versus 17/36 (47%); P<0.0001) than complex fractures (79/102 (77%) versus 54/102 (53%); P=0.0004). Mean segmentation time per fracture was 27±3min [range, 21-35min]. The segmentation group showed excellent intra-observer correlation coefficients, overall (ICC=0.88), and for simple (ICC=0.92) and complex fractures (ICC=0.84). Semi-automatic segmentation, identifying the various bone fragments, was effective in increasing the rate of correct acetabular fracture classification on the Letournel system by orthopedic surgery residents. It may be considered for routine use in education and training. III: prospective case-control study of a diagnostic procedure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Mendonca, F. J.
1980-01-01
Ten segments of the size 20 x 10 km were aerially photographed and used as training areas for automatic classifications. The study areas was covered by four LANDSAT paths: 235, 236, 237, and 238. The percentages of overall correct classification for these paths range from 79.56 percent for path 238 to 95.59 percent for path 237.
An automatic aerosol classification for earlinet: application and results
NASA Astrophysics Data System (ADS)
Papagiannopoulos, Nikolaos; Mona, Lucia; Amiridis, Vassilis; Binietoglou, Ioannis; D'Amico, Giuseppe; Guma-Claramunt, P.; Schwarz, Anja; Alados-Arboledas, Lucas; Amodeo, Aldo; Apituley, Arnoud; Baars, Holger; Bortoli, Daniele; Comeron, Adolfo; Guerrero-Rascado, Juan Luis; Kokkalis, Panos; Nicolae, Doina; Papayannis, Alex; Pappalardo, Gelsomina; Wandinger, Ulla; Wiegner, Matthias
2018-04-01
Aerosol typing is essential for understanding the impact of the different aerosol sources on climate, weather system and air quality. An aerosol classification method for EARLINET (European Aerosol Research Lidar Network) measurements is introduced which makes use the Mahalanobis distance classifier. The performance of the automatic classification is tested against manually classified EARLINET data. Results of the application of the method to an extensive aerosol dataset will be presented.
Wang, Xinglong; Rak, Rafal; Restificar, Angelo; Nobata, Chikashi; Rupp, C J; Batista-Navarro, Riza Theresa B; Nawaz, Raheel; Ananiadou, Sophia
2011-10-03
The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest's Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task's development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew's Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance.
Automatic red eye correction and its quality metric
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho
2008-01-01
The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.
Automatic Analysis of Pronunciations for Children with Speech Sound Disorders.
Dudy, Shiran; Bedrick, Steven; Asgari, Meysam; Kain, Alexander
2018-07-01
Computer-Assisted Pronunciation Training (CAPT) systems aim to help a child learn the correct pronunciations of words. However, while there are many online commercial CAPT apps, there is no consensus among Speech Language Therapists (SLPs) or non-professionals about which CAPT systems, if any, work well. The prevailing assumption is that practicing with such programs is less reliable and thus does not provide the feedback necessary to allow children to improve their performance. The most common method for assessing pronunciation performance is the Goodness of Pronunciation (GOP) technique. Our paper proposes two new GOP techniques. We have found that pronunciation models that use explicit knowledge about error pronunciation patterns can lead to more accurate classification whether a phoneme was correctly pronounced or not. We evaluate the proposed pronunciation assessment methods against a baseline state of the art GOP approach, and show that the proposed techniques lead to classification performance that is more similar to that of a human expert.
NASA Technical Reports Server (NTRS)
Kocurek, Michael J.
2005-01-01
The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.
Diaz-Varela, R A; Zarco-Tejada, P J; Angileri, V; Loudjani, P
2014-02-15
Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghaffarian, S.; Ghaffarian, S.
2014-08-01
This paper presents a novel approach to detect the buildings by automization of the training area collecting stage for supervised classification. The method based on the fact that a 3d building structure should cast a shadow under suitable imaging conditions. Therefore, the methodology begins with the detection and masking out the shadow areas using luminance component of the LAB color space, which indicates the lightness of the image, and a novel double thresholding technique. Further, the training areas for supervised classification are selected by automatically determining a buffer zone on each building whose shadow is detected by using the shadow shape and the sun illumination direction. Thereafter, by calculating the statistic values of each buffer zone which is collected from the building areas the Improved Parallelepiped Supervised Classification is executed to detect the buildings. Standard deviation thresholding applied to the Parallelepiped classification method to improve its accuracy. Finally, simple morphological operations conducted for releasing the noises and increasing the accuracy of the results. The experiments were performed on set of high resolution Google Earth images. The performance of the proposed approach was assessed by comparing the results of the proposed approach with the reference data by using well-known quality measurements (Precision, Recall and F1-score) to evaluate the pixel-based and object-based performances of the proposed approach. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.4 % and 853 % overall pixel-based and object-based precision performances, respectively.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
Design of Automatic Extraction Algorithm of Knowledge Points for MOOCs
Chen, Haijian; Han, Dongmei; Zhao, Lina
2015-01-01
In recent years, Massive Open Online Courses (MOOCs) are very popular among college students and have a powerful impact on academic institutions. In the MOOCs environment, knowledge discovery and knowledge sharing are very important, which currently are often achieved by ontology techniques. In building ontology, automatic extraction technology is crucial. Because the general methods of text mining algorithm do not have obvious effect on online course, we designed automatic extracting course knowledge points (AECKP) algorithm for online course. It includes document classification, Chinese word segmentation, and POS tagging for each document. Vector Space Model (VSM) is used to calculate similarity and design the weight to optimize the TF-IDF algorithm output values, and the higher scores will be selected as knowledge points. Course documents of “C programming language” are selected for the experiment in this study. The results show that the proposed approach can achieve satisfactory accuracy rate and recall rate. PMID:26448738
Automatic extraction of blocks from 3D point clouds of fractured rock
NASA Astrophysics Data System (ADS)
Chen, Na; Kemeny, John; Jiang, Qinghui; Pan, Zhiwen
2017-12-01
This paper presents a new method for extracting blocks and calculating block size automatically from rock surface 3D point clouds. Block size is an important rock mass characteristic and forms the basis for several rock mass classification schemes. The proposed method consists of four steps: 1) the automatic extraction of discontinuities using an improved Ransac Shape Detection method, 2) the calculation of discontinuity intersections based on plane geometry, 3) the extraction of block candidates based on three discontinuities intersecting one another to form corners, and 4) the identification of "true" blocks using an improved Floodfill algorithm. The calculated block sizes were compared with manual measurements in two case studies, one with fabricated cardboard blocks and the other from an actual rock mass outcrop. The results demonstrate that the proposed method is accurate and overcomes the inaccuracies, safety hazards, and biases of traditional techniques.
Automated object-based classification of topography from SRTM data
Drăguţ, Lucian; Eisank, Clemens
2012-01-01
We introduce an object-based method to automatically classify topography from SRTM data. The new method relies on the concept of decomposing land-surface complexity into more homogeneous domains. An elevation layer is automatically segmented and classified at three scale levels that represent domains of complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting from segmentation are partitioned into sub-domains based on thresholds given by the mean values of elevation and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at regional level. The method is simple and fully automated. The input data consist of only one layer, which does not need any pre-processing. Both segmentation and classification rely on only two parameters: elevation and standard deviation of elevation. The methodology is implemented as a customized process for the eCognition® software, available as online download. The results are embedded in a web application with functionalities of visualization and download. PMID:22485060
Automated object-based classification of topography from SRTM data
NASA Astrophysics Data System (ADS)
Drăguţ, Lucian; Eisank, Clemens
2012-03-01
We introduce an object-based method to automatically classify topography from SRTM data. The new method relies on the concept of decomposing land-surface complexity into more homogeneous domains. An elevation layer is automatically segmented and classified at three scale levels that represent domains of complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting from segmentation are partitioned into sub-domains based on thresholds given by the mean values of elevation and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at regional level. The method is simple and fully automated. The input data consist of only one layer, which does not need any pre-processing. Both segmentation and classification rely on only two parameters: elevation and standard deviation of elevation. The methodology is implemented as a customized process for the eCognition® software, available as online download. The results are embedded in a web application with functionalities of visualization and download.
The utility of ERTS-1 data for applications in land use classification. [Texas Gulf Coast
NASA Technical Reports Server (NTRS)
Dornbach, J. E.; Mckain, G. E.
1974-01-01
A comprehensive study has been undertaken to determine the extent to which conventional image interpretation and computer-aided (spectral pattern recognition) analysis techniques using ERTS-1 data could be used to detect, identify (classify), locate, and measure current land use over large geographic areas. It can be concluded that most of the level 1 and 2 categories in the USGS Circular no. 671 can be detected in the Houston-Gulf Coast area using a combination of both techniques for analysis. These capabilities could be exercised over larger geographic areas, however, certain factors such as different vegetative cover, topography, etc. may have to be considered in other geographic regions. The best results in identification (classification), location, and measurement of level 1 and 2 type categories appear to be obtainable through automatic data processing of multispectral scanner computer compatible tapes.
Improved EEG Event Classification Using Differential Energy.
Harati, A; Golmohammadi, M; Lopez, S; Obeid, I; Picone, J
2015-12-01
Feature extraction for automatic classification of EEG signals typically relies on time frequency representations of the signal. Techniques such as cepstral-based filter banks or wavelets are popular analysis techniques in many signal processing applications including EEG classification. In this paper, we present a comparison of a variety of approaches to estimating and postprocessing features. To further aid in discrimination of periodic signals from aperiodic signals, we add a differential energy term. We evaluate our approaches on the TUH EEG Corpus, which is the largest publicly available EEG corpus and an exceedingly challenging task due to the clinical nature of the data. We demonstrate that a variant of a standard filter bank-based approach, coupled with first and second derivatives, provides a substantial reduction in the overall error rate. The combination of differential energy and derivatives produces a 24 % absolute reduction in the error rate and improves our ability to discriminate between signal events and background noise. This relatively simple approach proves to be comparable to other popular feature extraction approaches such as wavelets, but is much more computationally efficient.
Automatic detection of malaria parasite in blood images using two parameters.
Kim, Jong-Dae; Nam, Kyeong-Min; Park, Chan-Young; Kim, Yu-Seop; Song, Hye-Jeong
2015-01-01
Malaria must be diagnosed quickly and accurately at the initial infection stage and treated early to cure it properly. The malaria diagnosis method using a microscope requires much labor and time of a skilled expert and the diagnosis results vary greatly between individual diagnosticians. Therefore, to be able to measure the malaria parasite infection quickly and accurately, studies have been conducted for automated classification techniques using various parameters. In this study, by measuring classification technique performance according to changes of two parameters, the parameter values were determined that best distinguish normal from plasmodium-infected red blood cells. To reduce the stain deviation of the acquired images, a principal component analysis (PCA) grayscale conversion method was used, and as parameters, we used a malaria infected area and a threshold value used in binarization. The parameter values with the best classification performance were determined by selecting the value (72) corresponding to the lowest error rate on the basis of cell threshold value 128 for the malaria threshold value for detecting plasmodium-infected red blood cells.
Automated lidar-derived canopy height estimates for the Upper Mississippi River System
Hlavacek, Enrika
2015-01-01
Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.
Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains
Souza, Junior Silva; da Silva, Gercina Gonçalves
2016-01-01
The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology and melissopalynology. This paper presents the first annotated image dataset for the Brazilian Savannah pollen types that can be used to train and test computer vision based automatic pollen classifiers. A first baseline human and computer performance for this dataset has been established using 805 pollen images of 23 pollen types. In order to access the computer performance, a combination of three feature extractors and four machine learning techniques has been implemented, fine tuned and tested. The results of these tests are also presented in this paper. PMID:27276196
Automatic 3d Building Model Generations with Airborne LiDAR Data
NASA Astrophysics Data System (ADS)
Yastikli, N.; Cetin, Z.
2017-11-01
LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.
NASA Astrophysics Data System (ADS)
Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore
2015-04-01
With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The system is hitherto one of the main automatic alerting tools to identify impending eruptive events at Etna. The currently operating software named KKAnalysis is applied to the data stream continuously recorded at two seismic stations. The data are merged with reference datasets of past eruptive episodes. In doing so, the results of pattern classification can be immediately compared to previous eruptive scenarios. Given the rich material collected in recent years, here we propose the application of the alert system to a wider range (up to a total of eleven) stations at different elevations (1200-3050 m) and distances (1-8 km) from the summit craters. Critical alert parameters were empirically defined to obtain an optimal tuning of the alert system for each station. To verify the robustness of this new, multistation alert system, a dataset encompassing about eight years of continuous seismic records (since 2006) was processed automatically using KKAnalysis and collateral software offline. Then, we analyzed the performance of the classifier in terms of timing and spatial distribution of the stations.
Cascaded deep decision networks for classification of endoscopic images
NASA Astrophysics Data System (ADS)
Murthy, Venkatesh N.; Singh, Vivek; Sun, Shanhui; Bhattacharya, Subhabrata; Chen, Terrence; Comaniciu, Dorin
2017-02-01
Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review process or to have automatic indication for highly suspicious areas during an online guidance. This also applies to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role. Image classification is a standard pattern recognition problem and is well studied in the literature. However, performance on the challenging endoscopic images still has room for improvement. In this paper, we present a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard Deep neural network based methods. During the learning phase, CDDN automatically builds a network which discards samples that are classified with high confidence scores by a previously trained network and concentrates only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%. In addition, CDDN can also be applied to other image classification problems.
Research on Automatic Classification, Indexing and Extracting. Annual Progress Report.
ERIC Educational Resources Information Center
Baker, F.T.; And Others
In order to contribute to the success of several studies for automatic classification, indexing and extracting currently in progress, as well as to further the theoretical and practical understanding of textual item distributions, the development of a frequency program capable of supplying these types of information was undertaken. The program…
Automatic interpretation of ERTS data for forest management
NASA Technical Reports Server (NTRS)
Kirvida, L.; Johnson, G. R.
1973-01-01
Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wild life management, forest inventory and forest condition monitoring. Automatic procedures based on both multi-spectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74% was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 99% was obtained.
PI2GIS: processing image to geographical information systems, a learning tool for QGIS
NASA Astrophysics Data System (ADS)
Correia, R.; Teodoro, A.; Duarte, L.
2017-10-01
To perform an accurate interpretation of remote sensing images, it is necessary to extract information using different image processing techniques. Nowadays, it became usual to use image processing plugins to add new capabilities/functionalities integrated in Geographical Information System (GIS) software. The aim of this work was to develop an open source application to automatically process and classify remote sensing images from a set of satellite input data. The application was integrated in a GIS software (QGIS), automating several image processing steps. The use of QGIS for this purpose is justified since it is easy and quick to develop new plugins, using Python language. This plugin is inspired in the Semi-Automatic Classification Plugin (SCP) developed by Luca Congedo. SCP allows the supervised classification of remote sensing images, the calculation of vegetation indices such as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) and other image processing operations. When analysing SCP, it was realized that a set of operations, that are very useful in teaching classes of remote sensing and image processing tasks, were lacking, such as the visualization of histograms, the application of filters, different image corrections, unsupervised classification and several environmental indices computation. The new set of operations included in the PI2GIS plugin can be divided into three groups: pre-processing, processing, and classification procedures. The application was tested consider an image from Landsat 8 OLI from a North area of Portugal.
Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.
Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K
2016-08-01
Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.
Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro
2011-01-01
The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu’s method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production. PMID:22163940
Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging
NASA Astrophysics Data System (ADS)
Jaffery, Zainul Abdin; Dubey, Ashwani Kumar; Irshad; Haque, Ahteshamul
2017-06-01
Degradation of PV modules can cause excessive overheating which results in a reduced power output and eventually failure of solar panel. To maintain the long term reliability of solar modules and maximize the power output, faults in modules need to be diagnosed at an early stage. This paper provides a comprehensive algorithm for fault diagnosis in solar modules using infrared thermography. Infrared Thermography (IRT) is a reliable, non-destructive, fast and cost effective technique which is widely used to identify where and how faults occurred in an electrical installation. Infrared images were used for condition monitoring of solar modules and fuzzy logic have been used to incorporate intelligent classification of faults. An automatic approach has been suggested for fault detection, classification and analysis. IR images were acquired using an IR camera. To have an estimation of thermal condition of PV module, the faulty panel images were compared to a healthy PV module thermal image. A fuzzy rule-base was used to classify faults automatically. Maintenance actions have been advised based on type of faults.
Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A
2011-10-01
Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.
Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro
2011-01-01
The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu's method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production.
On the clustering of multidimensional pictorial data
NASA Technical Reports Server (NTRS)
Bryant, J. D. (Principal Investigator)
1979-01-01
Obvious approaches to reducing the cost (in computer resources) of applying current clustering techniques to the problem of remote sensing are discussed. The use of spatial information in finding fields and in classifying mixture pixels is examined, and the AMOEBA clustering program is described. Internally, a pattern recognition program, from without, AMOEBA appears to be an unsupervised clustering program. It is fast and automatic. No choices (such as arbitrary thresholds to set split/combine sequences) need be made. The problem of finding the number of clusters is solved automatically. At the conclusion of the program, all points in the scene are classified; however, a provision is included for a reject classification of some points which, within the theoretical framework, cannot rationally be assigned to any cluster.
On search guide phrase compilation for recommending home medical products.
Luo, Gang
2010-01-01
To help people find desired home medical products (HMPs), we developed an intelligent personal health record (iPHR) system that can automatically recommend HMPs based on users' health issues. Using nursing knowledge, we pre-compile a set of "search guide" phrases that provides semantic translation from words describing health issues to their underlying medical meanings. Then iPHR automatically generates queries from those phrases and uses them and a search engine to retrieve HMPs. To avoid missing relevant HMPs during retrieval, the compiled search guide phrases need to be comprehensive. Such compilation is a challenging task because nursing knowledge updates frequently and contains numerous details scattered in many sources. This paper presents a semi-automatic tool facilitating such compilation. Our idea is to formulate the phrase compilation task as a multi-label classification problem. For each newly obtained search guide phrase, we first use nursing knowledge and information retrieval techniques to identify a small set of potentially relevant classes with corresponding hints. Then a nurse makes the final decision on assigning this phrase to proper classes based on those hints. We demonstrate the effectiveness of our techniques by compiling search guide phrases from an occupational therapy textbook.
Sinha, S K; Karray, F
2002-01-01
Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.
Angular relational signature-based chest radiograph image view classification.
Santosh, K C; Wendling, Laurent
2018-01-22
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
Automatic evidence quality prediction to support evidence-based decision making.
Sarker, Abeed; Mollá, Diego; Paris, Cécile
2015-06-01
Evidence-based medicine practice requires practitioners to obtain the best available medical evidence, and appraise the quality of the evidence when making clinical decisions. Primarily due to the plethora of electronically available data from the medical literature, the manual appraisal of the quality of evidence is a time-consuming process. We present a fully automatic approach for predicting the quality of medical evidence in order to aid practitioners at point-of-care. Our approach extracts relevant information from medical article abstracts and utilises data from a specialised corpus to apply supervised machine learning for the prediction of the quality grades. Following an in-depth analysis of the usefulness of features (e.g., publication types of articles), they are extracted from the text via rule-based approaches and from the meta-data associated with the articles, and then applied in the supervised classification model. We propose the use of a highly scalable and portable approach using a sequence of high precision classifiers, and introduce a simple evaluation metric called average error distance (AED) that simplifies the comparison of systems. We also perform elaborate human evaluations to compare the performance of our system against human judgments. We test and evaluate our approaches on a publicly available, specialised, annotated corpus containing 1132 evidence-based recommendations. Our rule-based approach performs exceptionally well at the automatic extraction of publication types of articles, with F-scores of up to 0.99 for high-quality publication types. For evidence quality classification, our approach obtains an accuracy of 63.84% and an AED of 0.271. The human evaluations show that the performance of our system, in terms of AED and accuracy, is comparable to the performance of humans on the same data. The experiments suggest that our structured text classification framework achieves evaluation results comparable to those of human performance. Our overall classification approach and evaluation technique are also highly portable and can be used for various evidence grading scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Pham, Tuyen Danh; Nguyen, Dat Tien; Kim, Wan; Park, Sung Ho; Park, Kang Ryoung
2018-01-01
In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods. PMID:29415447
Using Gaussian mixture models to detect and classify dolphin whistles and pulses.
Peso Parada, Pablo; Cardenal-López, Antonio
2014-06-01
In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.
Object oriented classification of high resolution data for inventory of horticultural crops
NASA Astrophysics Data System (ADS)
Hebbar, R.; Ravishankar, H. M.; Trivedi, S.; Subramoniam, S. R.; Uday, R.; Dadhwal, V. K.
2014-11-01
High resolution satellite images are associated with large variance and thus, per pixel classifiers often result in poor accuracy especially in delineation of horticultural crops. In this context, object oriented techniques are powerful and promising methods for classification. In the present study, a semi-automatic object oriented feature extraction model has been used for delineation of horticultural fruit and plantation crops using Erdas Objective Imagine. Multi-resolution data from Resourcesat LISS-IV and Cartosat-1 have been used as source data in the feature extraction model. Spectral and textural information along with NDVI were used as inputs for generation of Spectral Feature Probability (SFP) layers using sample training pixels. The SFP layers were then converted into raster objects using threshold and clump function resulting in pixel probability layer. A set of raster and vector operators was employed in the subsequent steps for generating thematic layer in the vector format. This semi-automatic feature extraction model was employed for classification of major fruit and plantations crops viz., mango, banana, citrus, coffee and coconut grown under different agro-climatic conditions. In general, the classification accuracy of about 75-80 per cent was achieved for these crops using object based classification alone and the same was further improved using minimal visual editing of misclassified areas. A comparison of on-screen visual interpretation with object oriented approach showed good agreement. It was observed that old and mature plantations were classified more accurately while young and recently planted ones (3 years or less) showed poor classification accuracy due to mixed spectral signature, wider spacing and poor stands of plantations. The results indicated the potential use of object oriented approach for classification of high resolution data for delineation of horticultural fruit and plantation crops. The present methodology is applicable at local levels and future development is focused on up-scaling the methodology for generation of fruit and plantation crop maps at regional and national level which is important for creation of database for overall horticultural crop development.
Jung, Chanho; Kim, Changick
2014-08-01
Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions. © 2014 International Society for Advancement of Cytometry.
Study on a pattern classification method of soil quality based on simplified learning sample dataset
Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.
2011-01-01
Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.
Automating the expert consensus paradigm for robust lung tissue classification
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.
2012-03-01
Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.
Towards a controlled vocabulary on software engineering education
NASA Astrophysics Data System (ADS)
Pizard, Sebastián; Vallespir, Diego
2017-11-01
Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common approach to understand a thematic area. This study examines previous publications in software engineering education to obtain a first controlled vocabulary (a more formal definition of a classification schema) in the field. Publications from 1988 to 2014 were collected and processed using automatic clustering techniques and the outcomes were analysed manually. The result is an initial controlled vocabulary with a taxonomy form with 43 concepts that were identified as the most used in the research publications. We present the classification of the concepts in three facets: 'what to teach', 'how to teach' and 'where to teach' and the evolution of concepts over time.
Automatic Detection and Classification of Unsafe Events During Power Wheelchair Use.
Pineau, Joelle; Moghaddam, Athena K; Yuen, Hiu Kim; Archambault, Philippe S; Routhier, François; Michaud, François; Boissy, Patrick
2014-01-01
Using a powered wheelchair (PW) is a complex task requiring advanced perceptual and motor control skills. Unfortunately, PW incidents and accidents are not uncommon and their consequences can be serious. The objective of this paper is to develop technological tools that can be used to characterize a wheelchair user's driving behavior under various settings. In the experiments conducted, PWs are outfitted with a datalogging platform that records, in real-time, the 3-D acceleration of the PW. Data collection was conducted over 35 different activities, designed to capture a spectrum of PW driving events performed at different speeds (collisions with fixed or moving objects, rolling on incline plane, and rolling across multiple types obstacles). The data was processed using time-series analysis and data mining techniques, to automatically detect and identify the different events. We compared the classification accuracy using four different types of time-series features: 1) time-delay embeddings; 2) time-domain characterization; 3) frequency-domain features; and 4) wavelet transforms. In the analysis, we compared the classification accuracy obtained when distinguishing between safe and unsafe events during each of the 35 different activities. For the purposes of this study, unsafe events were defined as activities containing collisions against objects at different speed, and the remainder were defined as safe events. We were able to accurately detect 98% of unsafe events, with a low (12%) false positive rate, using only five examples of each activity. This proof-of-concept study shows that the proposed approach has the potential of capturing, based on limited input from embedded sensors, contextual information on PW use, and of automatically characterizing a user's PW driving behavior.
Automatic characterization of neointimal tissue by intravascular optical coherence tomography.
Ughi, Giovanni J; Steigerwald, Kristin; Adriaenssens, Tom; Desmet, Walter; Guagliumi, Giulio; Joner, Michael; D'hooge, Jan
2014-02-01
Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for assessing vessel healing after stent implantation due to its unique axial resolution <20 μm. The amount of neointimal coverage is an important parameter. In addition, the characterization of neointimal tissue maturity is also of importance for an accurate analysis, especially in the case of drug-eluting and bioresorbable stent devices. Previous studies indicated that well-organized mature neointimal tissue appears as a high-intensity, smooth, and homogeneous region in IVOCT images, while lower-intensity signal areas might correspond to immature tissue mainly composed of acellular material. A new method for automatic neointimal tissue characterization, based on statistical texture analysis and a supervised classification technique, is presented. Algorithm training and validation were obtained through the use of 53 IVOCT images supported by histology data from atherosclerotic New Zealand White rabbits. A pixel-wise classification accuracy of 87% and a two-dimensional region-based analysis accuracy of 92% (with sensitivity and specificity of 91% and 93%, respectively) were found, suggesting that a reliable automatic characterization of neointimal tissue was achieved. This may potentially expand the clinical value of IVOCT in assessing the completeness of stent healing and speed up the current analysis methodologies (which are, due to their time- and energy-consuming character, not suitable for application in large clinical trials and clinical practice), potentially allowing for a wider use of IVOCT technology.
Classifying Chinese Questions Related to Health Care Posted by Consumers Via the Internet.
Guo, Haihong; Na, Xu; Hou, Li; Li, Jiao
2017-06-20
In question answering (QA) system development, question classification is crucial for identifying information needs and improving the accuracy of returned answers. Although the questions are domain-specific, they are asked by non-professionals, making the question classification task more challenging. This study aimed to classify health care-related questions posted by the general public (Chinese speakers) on the Internet. A topic-based classification schema for health-related questions was built by manually annotating randomly selected questions. The Kappa statistic was used to measure the interrater reliability of multiple annotation results. Using the above corpus, we developed a machine-learning method to automatically classify these questions into one of the following six classes: Condition Management, Healthy Lifestyle, Diagnosis, Health Provider Choice, Treatment, and Epidemiology. The consumer health question schema was developed with a four-hierarchical-level of specificity, comprising 48 quaternary categories and 35 annotation rules. The 2000 sample questions were coded with 2000 major codes and 607 minor codes. Using natural language processing techniques, we expressed the Chinese questions as a set of lexical, grammatical, and semantic features. Furthermore, the effective features were selected to improve the question classification performance. From the 6-category classification results, we achieved an average precision of 91.41%, recall of 89.62%, and F 1 score of 90.24%. In this study, we developed an automatic method to classify questions related to Chinese health care posted by the general public. It enables Artificial Intelligence (AI) agents to understand Internet users' information needs on health care. ©Haihong Guo, Xu Na, Li Hou, Jiao Li. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.06.2017.
NASA Astrophysics Data System (ADS)
Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian
2015-10-01
The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.
Kocevar, Gabriel; Stamile, Claudio; Hannoun, Salem; Cotton, François; Vukusic, Sandra; Durand-Dubief, Françoise; Sappey-Marinier, Dominique
2016-01-01
Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS) patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles. Materials and Methods: Sixty-four MS patients [12 Clinical Isolated Syndrome (CIS), 24 Relapsing Remitting (RR), 24 Secondary Progressive (SP), and 17 Primary Progressive (PP)] along with 26 healthy controls (HC) underwent MR examination. T1 and diffusion tensor imaging (DTI) were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects' groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM) combined with Radial Basic Function (RBF) kernel. Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity, and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F -Measures (91.8, 91.8, 75.6, and 70.6%) were obtained for binary (HC-CIS, CIS-RR, RR-PP) and multi-class (CIS-RR-SP) classification tasks, respectively. When using only one graph metric, the best F -Measures (83.6, 88.9, and 70.7%) were achieved for modularity with previous binary classification tasks. Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients' clinical profiles.
Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography
NASA Astrophysics Data System (ADS)
Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz
2015-12-01
In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63 ± 3.65%, Dice Similarity Coefficient (DSC) 89.74 ± 8.84% and Jaccard Similarity Coefficient 82.39 ± 12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.
Automatic photointerpretation for plant species and stress identification (ERTS-A1)
NASA Technical Reports Server (NTRS)
Swanlund, G. D. (Principal Investigator); Kirvida, L.; Johnson, G. R.
1973-01-01
The author has identified the following significant results. Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wildlife management, forest inventory, and forest condition monitoring. Automatic procedures based on both multispectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74 percent was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 90 percent was obtained.
Design of partially supervised classifiers for multispectral image data
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David
1993-01-01
A partially supervised classification problem is addressed, especially when the class definition and corresponding training samples are provided a priori only for just one particular class. In practical applications of pattern classification techniques, a frequently observed characteristic is the heavy, often nearly impossible requirements on representative prior statistical class characteristics of all classes in a given data set. Considering the effort in both time and man-power required to have a well-defined, exhaustive list of classes with a corresponding representative set of training samples, this 'partially' supervised capability would be very desirable, assuming adequate classifier performance can be obtained. Two different classification algorithms are developed to achieve simplicity in classifier design by reducing the requirement of prior statistical information without sacrificing significant classifying capability. The first one is based on optimal significance testing, where the optimal acceptance probability is estimated directly from the data set. In the second approach, the partially supervised classification is considered as a problem of unsupervised clustering with initially one known cluster or class. A weighted unsupervised clustering procedure is developed to automatically define other classes and estimate their class statistics. The operational simplicity thus realized should make these partially supervised classification schemes very viable tools in pattern classification.
Semi-automatic recognition of marine debris on beaches
NASA Astrophysics Data System (ADS)
Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji
2016-05-01
An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.
1984-01-01
The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.
Automatic liver volume segmentation and fibrosis classification
NASA Astrophysics Data System (ADS)
Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit
2018-02-01
In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.
ERIC Educational Resources Information Center
Cheng, Gary
2017-01-01
This study aimed to develop an automatic classification system, namely ACTIVE, for generating immediate and individualised feedback on students' reflective entries about their second language (L2) learning experiences. It also aimed to explore students' attitudes towards using the system to support the development of their reflective skills in L2…
Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan
NASA Technical Reports Server (NTRS)
Hall, F. G.; Bizzell, R. M.
1975-01-01
A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.
Deep learning aided decision support for pulmonary nodules diagnosing: a review.
Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping; He, Jianxing; Liu, Bo
2018-04-01
Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing.
NASA Astrophysics Data System (ADS)
Karsi, Redouane; Zaim, Mounia; El Alami, Jamila
2017-07-01
Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.
Automatic speech recognition using a predictive echo state network classifier.
Skowronski, Mark D; Harris, John G
2007-04-01
We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.
2011-01-01
Background The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest’s Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. Results We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task’s development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew’s Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Conclusions Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance. PMID:22151769
NASA Technical Reports Server (NTRS)
Klockhoff, I.
1977-01-01
An automatic, computerized method was developed to classify results from a screening of employees exposed to noise, resulting in a fast and effective method of identifying and taking measures against auditory trauma. This technique also satisfies the urgent need for quick discovery of cases which deserve compensation in accordance with the Law on Industrial Accident Insurance. Unfortunately, use of this method increases the burden on the already overloaded investigatory resources of the auditory health care system.
2014-03-27
and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Digital computer processing of peach orchard multispectral aerial photography
NASA Technical Reports Server (NTRS)
Atkinson, R. J.
1976-01-01
Several methods of analysis using digital computers applicable to digitized multispectral aerial photography, are described, with particular application to peach orchard test sites. This effort was stimulated by the recent premature death of peach trees in the Southeastern United States. The techniques discussed are: (1) correction of intensity variations by digital filtering, (2) automatic detection and enumeration of trees in five size categories, (3) determination of unhealthy foliage by infrared reflectances, and (4) four band multispectral classification into healthy and declining categories.
Understanding overlay signatures using machine learning on non-lithography context information
NASA Astrophysics Data System (ADS)
Overcast, Marshall; Mellegaard, Corey; Daniel, David; Habets, Boris; Erley, Georg; Guhlemann, Steffen; Thrun, Xaver; Buhl, Stefan; Tottewitz, Steven
2018-03-01
Overlay errors between two layers can be caused by non-lithography processes. While these errors can be compensated by the run-to-run system, such process and tool signatures are not always stable. In order to monitor the impact of non-lithography context on overlay at regular intervals, a systematic approach is needed. Using various machine learning techniques, significant context parameters that relate to deviating overlay signatures are automatically identified. Once the most influential context parameters are found, a run-to-run simulation is performed to see how much improvement can be obtained. The resulting analysis shows good potential for reducing the influence of hidden context parameters on overlay performance. Non-lithographic contexts are significant contributors, and their automatic detection and classification will enable the overlay roadmap, given the corresponding control capabilities.
NASA Astrophysics Data System (ADS)
Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip
2018-02-01
We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.
Automatic classification of animal vocalizations
NASA Astrophysics Data System (ADS)
Clemins, Patrick J.
2005-11-01
Bioacoustics, the study of animal vocalizations, has begun to use increasingly sophisticated analysis techniques in recent years. Some common tasks in bioacoustics are repertoire determination, call detection, individual identification, stress detection, and behavior correlation. Each research study, however, uses a wide variety of different measured variables, called features, and classification systems to accomplish these tasks. The well-established field of human speech processing has developed a number of different techniques to perform many of the aforementioned bioacoustics tasks. Melfrequency cepstral coefficients (MFCCs) and perceptual linear prediction (PLP) coefficients are two popular feature sets. The hidden Markov model (HMM), a statistical model similar to a finite autonoma machine, is the most commonly used supervised classification model and is capable of modeling both temporal and spectral variations. This research designs a framework that applies models from human speech processing for bioacoustic analysis tasks. The development of the generalized perceptual linear prediction (gPLP) feature extraction model is one of the more important novel contributions of the framework. Perceptual information from the species under study can be incorporated into the gPLP feature extraction model to represent the vocalizations as the animals might perceive them. By including this perceptual information and modifying parameters of the HMM classification system, this framework can be applied to a wide range of species. The effectiveness of the framework is shown by analyzing African elephant and beluga whale vocalizations. The features extracted from the African elephant data are used as input to a supervised classification system and compared to results from traditional statistical tests. The gPLP features extracted from the beluga whale data are used in an unsupervised classification system and the results are compared to labels assigned by experts. The development of a framework from which to build animal vocalization classifiers will provide bioacoustics researchers with a consistent platform to analyze and classify vocalizations. A common framework will also allow studies to compare results across species and institutions. In addition, the use of automated classification techniques can speed analysis and uncover behavioral correlations not readily apparent using traditional techniques.
Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita
2017-11-27
We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.
Koopman Operator Framework for Time Series Modeling and Analysis
NASA Astrophysics Data System (ADS)
Surana, Amit
2018-01-01
We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.
Transfer learning improves supervised image segmentation across imaging protocols.
van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen
2015-05-01
The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.
Experiments in automatic word class and word sense identification for information retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauch, S.; Futrelle, R.P.
Automatic identification of related words and automatic detection of word senses are two long-standing goals of researchers in natural language processing. Word class information and word sense identification may enhance the performance of information retrieval system4ms. Large online corpora and increased computational capabilities make new techniques based on corpus linguisitics feasible. Corpus-based analysis is especially needed for corpora from specialized fields for which no electronic dictionaries or thesauri exist. The methods described here use a combination of mutual information and word context to establish word similarities. Then, unsupervised classification is done using clustering in the word space, identifying word classesmore » without pretagging. We also describe an extension of the method to handle the difficult problems of disambiguation and of determining part-of-speech and semantic information for low-frequency words. The method is powerful enough to produce high-quality results on a small corpus of 200,000 words from abstracts in a field of molecular biology.« less
A preliminary study of DTI Fingerprinting on stroke analysis.
Ma, Heather T; Ye, Chenfei; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo
2014-01-01
DTI (Diffusion Tensor Imaging) is a well-known MRI (Magnetic Resonance Imaging) technique which provides useful structural information about human brain. However, the quantitative measurement to physiological variation of subtypes of ischemic stroke is not available. An automatically quantitative method for DTI analysis will enhance the DTI application in clinics. In this study, we proposed a DTI Fingerprinting technology to quantitatively analyze white matter tissue, which was applied in stroke classification. The TBSS (Tract Based Spatial Statistics) method was employed to generate mask automatically. To evaluate the clustering performance of the automatic method, lesion ROI (Region of Interest) is manually drawn on the DWI images as a reference. The results from the DTI Fingerprinting were compared with those obtained from the reference ROIs. It indicates that the DTI Fingerprinting could identify different states of ischemic stroke and has promising potential to provide a more comprehensive measure of the DTI data. Further development should be carried out to improve DTI Fingerprinting technology in clinics.
Using statistical text classification to identify health information technology incidents
Chai, Kevin E K; Anthony, Stephen; Coiera, Enrico; Magrabi, Farah
2013-01-01
Objective To examine the feasibility of using statistical text classification to automatically identify health information technology (HIT) incidents in the USA Food and Drug Administration (FDA) Manufacturer and User Facility Device Experience (MAUDE) database. Design We used a subset of 570 272 incidents including 1534 HIT incidents reported to MAUDE between 1 January 2008 and 1 July 2010. Text classifiers using regularized logistic regression were evaluated with both ‘balanced’ (50% HIT) and ‘stratified’ (0.297% HIT) datasets for training, validation, and testing. Dataset preparation, feature extraction, feature selection, cross-validation, classification, performance evaluation, and error analysis were performed iteratively to further improve the classifiers. Feature-selection techniques such as removing short words and stop words, stemming, lemmatization, and principal component analysis were examined. Measurements κ statistic, F1 score, precision and recall. Results Classification performance was similar on both the stratified (0.954 F1 score) and balanced (0.995 F1 score) datasets. Stemming was the most effective technique, reducing the feature set size to 79% while maintaining comparable performance. Training with balanced datasets improved recall (0.989) but reduced precision (0.165). Conclusions Statistical text classification appears to be a feasible method for identifying HIT reports within large databases of incidents. Automated identification should enable more HIT problems to be detected, analyzed, and addressed in a timely manner. Semi-supervised learning may be necessary when applying machine learning to big data analysis of patient safety incidents and requires further investigation. PMID:23666777
Self-organizing ontology of biochemically relevant small molecules
2012-01-01
Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development. PMID:22221313
A study and evaluation of image analysis techniques applied to remotely sensed data
NASA Technical Reports Server (NTRS)
Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.
1976-01-01
An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.
Younghak Shin; Balasingham, Ilangko
2017-07-01
Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Measures of voiced frication for automatic classification
NASA Astrophysics Data System (ADS)
Jackson, Philip J. B.; Jesus, Luis M. T.; Shadle, Christine H.; Pincas, Jonathan
2004-05-01
As an approach to understanding the characteristics of the acoustic sources in voiced fricatives, it seems apt to draw on knowledge of vowels and voiceless fricatives, which have been relatively well studied. However, the presence of both phonation and frication in these mixed-source sounds offers the possibility of mutual interaction effects, with variations across place of articulation. This paper examines the acoustic and articulatory consequences of these interactions and explores automatic techniques for finding parametric and statistical descriptions of these phenomena. A reliable and consistent set of such acoustic cues could be used for phonetic classification or speech recognition. Following work on devoicing of European Portuguese voiced fricatives [Jesus and Shadle, in Mamede et al. (eds.) (Springer-Verlag, Berlin, 2003), pp. 1-8]. and the modulating effect of voicing on frication [Jackson and Shadle, J. Acoust. Soc. Am. 108, 1421-1434 (2000)], the present study focuses on three types of information: (i) sequences and durations of acoustic events in VC transitions, (ii) temporal, spectral and modulation measures from the periodic and aperiodic components of the acoustic signal, and (iii) voicing activity derived from simultaneous EGG data. Analysis of interactions observed in British/American English and European Portuguese speech corpora will be compared, and the principal findings discussed.
NASA Astrophysics Data System (ADS)
Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale
2015-11-01
Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.
Geophysical phenomena classification by artificial neural networks
NASA Technical Reports Server (NTRS)
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Infrared machine vision system for the automatic detection of olive fruit quality.
Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A
2013-11-15
External quality is an important factor in the extraction of olive oil and the marketing of olive fruits. The appearance and presence of external damage are factors that influence the quality of the oil extracted and the perception of consumers, determining the level of acceptance prior to purchase in the case of table olives. The aim of this paper is to report on artificial vision techniques developed for the online estimation of olive quality and to assess the effectiveness of these techniques in evaluating quality based on detecting external defects. This method of classifying olives according to the presence of defects is based on an infrared (IR) vision system. Images of defects were acquired using a digital monochrome camera with band-pass filters on near-infrared (NIR). The original images were processed using segmentation algorithms, edge detection and pixel value intensity to classify the whole fruit. The detection of the defect involved a pixel classification procedure based on nonparametric models of the healthy and defective areas of olives. Classification tests were performed on olives to assess the effectiveness of the proposed method. This research showed that the IR vision system is a useful technology for the automatic assessment of olives that has the potential for use in offline inspection and for online sorting for defects and the presence of surface damage, easily distinguishing those that do not meet minimum quality requirements. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Automatic Fault Characterization via Abnormality-Enhanced Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G; Laguna, I; de Supinski, B R
Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less
Automated retinal vessel type classification in color fundus images
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.
2013-02-01
Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.
Applying Machine Learning to Star Cluster Classification
NASA Astrophysics Data System (ADS)
Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar
2016-01-01
Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.
A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.
Sarrouti, Mourad; Ouatik El Alaoui, Said
2017-05-18
Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.
Exploiting range imagery: techniques and applications
NASA Astrophysics Data System (ADS)
Armbruster, Walter
2009-07-01
Practically no applications exist for which automatic processing of 2D intensity imagery can equal human visual perception. This is not the case for range imagery. The paper gives examples of 3D laser radar applications, for which automatic data processing can exceed human visual cognition capabilities and describes basic processing techniques for attaining these results. The examples are drawn from the fields of helicopter obstacle avoidance, object detection in surveillance applications, object recognition at high range, multi-object-tracking, and object re-identification in range image sequences. Processing times and recognition performances are summarized. The techniques used exploit the bijective continuity of the imaging process as well as its independence of object reflectivity, emissivity and illumination. This allows precise formulations of the probability distributions involved in figure-ground segmentation, feature-based object classification and model based object recognition. The probabilistic approach guarantees optimal solutions for single images and enables Bayesian learning in range image sequences. Finally, due to recent results in 3D-surface completion, no prior model libraries are required for recognizing and re-identifying objects of quite general object categories, opening the way to unsupervised learning and fully autonomous cognitive systems.
Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.
Kilic, Niyazi; Hosgormez, Erkan
2016-03-01
Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.
Application of Classification Methods for Forecasting Mid-Term Power Load Patterns
NASA Astrophysics Data System (ADS)
Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho
Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Speaker gender identification based on majority vote classifiers
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2017-03-01
Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.
The DTW-based representation space for seismic pattern classification
NASA Astrophysics Data System (ADS)
Orozco-Alzate, Mauricio; Castro-Cabrera, Paola Alexandra; Bicego, Manuele; Londoño-Bonilla, John Makario
2015-12-01
Distinguishing among the different seismic volcanic patterns is still one of the most important and labor-intensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias by using automatic classification techniques. In this context, a core but often overlooked issue is the choice of an appropriate representation of the data to be classified. Recently, it has been suggested that using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the relational information contained in the dissimilarities to derive highly discriminant vector spaces, where any classifier can be used. According to that motivation, this paper investigates the suitability of a dynamic time warping (DTW) dissimilarity-based vector representation for the classification of seismic patterns. Results show the usefulness of such a representation in the seismic pattern classification scenario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm such as the proper selection of representation sets and the combination of different dissimilarity representations that might be available for the same data.
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-12-09
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less
Using hyperspectral remote sensing for land cover classification
NASA Astrophysics Data System (ADS)
Zhang, Wendy W.; Sriharan, Shobha
2005-01-01
This project used hyperspectral data set to classify land cover using remote sensing techniques. Many different earth-sensing satellites, with diverse sensors mounted on sophisticated platforms, are currently in earth orbit. These sensors are designed to cover a wide range of the electromagnetic spectrum and are generating enormous amounts of data that must be processed, stored, and made available to the user community. The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) collects data in 224 bands that are approximately 9.6 nm wide in contiguous bands between 0.40 and 2.45 mm. Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands throughout the visible, near-IR, and thermal IR portions of the spectrum. The unsupervised image classification procedure automatically categorizes the pixels in an image into land cover classes or themes. Experiments on using hyperspectral remote sensing for land cover classification were conducted during the 2003 and 2004 NASA Summer Faculty Fellowship Program at Stennis Space Center. Research Systems Inc.'s (RSI) ENVI software package was used in this application framework. In this application, emphasis was placed on: (1) Spectrally oriented classification procedures for land cover mapping, particularly, the supervised surface classification using AVIRIS data; and (2) Identifying data endmembers.
Temporally-aware algorithms for the classification of anuran sounds.
Luque, Amalia; Romero-Lemos, Javier; Carrasco, Alejandro; Gonzalez-Abril, Luis
2018-01-01
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. Hence, the recording, storage and further processing of a huge number of anuran sounds, distributed over time and space, are required in order to obtain this indicator. Furthermore, it is desirable to have algorithms and tools for the automatic classification of the different classes of sounds. In this paper, six classification methods are proposed, all based on the data-mining domain, which strive to take advantage of the temporal character of the sounds. The definition and comparison of these classification methods is undertaken using several approaches. The main conclusions of this paper are that: (i) the sliding window method attained the best results in the experiments presented, and even outperformed the hidden Markov models usually employed in similar applications; (ii) noteworthy overall classification performance has been obtained, which is an especially striking result considering that the sounds analysed were affected by a highly noisy background; (iii) the instance selection for the determination of the sounds in the training dataset offers better results than cross-validation techniques; and (iv) the temporally-aware classifiers have revealed that they can obtain better performance than their non-temporally-aware counterparts.
Temporally-aware algorithms for the classification of anuran sounds
Gonzalez-Abril, Luis
2018-01-01
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. Hence, the recording, storage and further processing of a huge number of anuran sounds, distributed over time and space, are required in order to obtain this indicator. Furthermore, it is desirable to have algorithms and tools for the automatic classification of the different classes of sounds. In this paper, six classification methods are proposed, all based on the data-mining domain, which strive to take advantage of the temporal character of the sounds. The definition and comparison of these classification methods is undertaken using several approaches. The main conclusions of this paper are that: (i) the sliding window method attained the best results in the experiments presented, and even outperformed the hidden Markov models usually employed in similar applications; (ii) noteworthy overall classification performance has been obtained, which is an especially striking result considering that the sounds analysed were affected by a highly noisy background; (iii) the instance selection for the determination of the sounds in the training dataset offers better results than cross-validation techniques; and (iv) the temporally-aware classifiers have revealed that they can obtain better performance than their non-temporally-aware counterparts. PMID:29740517
Supervised classification of aerial imagery and multi-source data fusion for flood assessment
NASA Astrophysics Data System (ADS)
Sava, E.; Harding, L.; Cervone, G.
2015-12-01
Floods are among the most devastating natural hazards and the ability to produce an accurate and timely flood assessment before, during, and after an event is critical for their mitigation and response. Remote sensing technologies have become the de-facto approach for observing the Earth and its environment. However, satellite remote sensing data are not always available. For these reasons, it is crucial to develop new techniques in order to produce flood assessments during and after an event. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. This research presents a fusion technique using satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and tweets. A new computational methodology is proposed based on machine learning algorithms to automatically identify water pixels in CAP imagery. Specifically, wavelet transformations are paired with multiple classifiers, run in parallel, to build models discriminating water and non-water regions. The learned classification models are first tested against a set of control cases, and then used to automatically classify each image separately. A measure of uncertainty is computed for each pixel in an image proportional to the number of models classifying the pixel as water. Geo-tagged tweets are continuously harvested and stored on a MongoDB and queried in real time. They are fused with CAP classified data, and with satellite remote sensing derived flood extent results to produce comprehensive flood assessment maps. The final maps are then compared with FEMA generated flood extents to assess their accuracy. The proposed methodology is applied on two test cases, relative to the 2013 floods in Boulder CO, and the 2015 floods in Texas.
Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara
2017-01-01
Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.
NASA Astrophysics Data System (ADS)
Reynen, Andrew; Audet, Pascal
2017-09-01
A new method using a machine learning technique is applied to event classification and detection at seismic networks. This method is applicable to a variety of network sizes and settings. The algorithm makes use of a small catalogue of known observations across the entire network. Two attributes, the polarization and frequency content, are used as input to regression. These attributes are extracted at predicted arrival times for P and S waves using only an approximate velocity model, as attributes are calculated over large time spans. This method of waveform characterization is shown to be able to distinguish between blasts and earthquakes with 99 per cent accuracy using a network of 13 stations located in Southern California. The combination of machine learning with generalized waveform features is further applied to event detection in Oklahoma, United States. The event detection algorithm makes use of a pair of unique seismic phases to locate events, with a precision directly related to the sampling rate of the generalized waveform features. Over a week of data from 30 stations in Oklahoma, United States are used to automatically detect 25 times more events than the catalogue of the local geological survey, with a false detection rate of less than 2 per cent. This method provides a highly confident way of detecting and locating events. Furthermore, a large number of seismic events can be automatically detected with low false alarm, allowing for a larger automatic event catalogue with a high degree of trust.
Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra
2014-01-01
Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. The aims were to describe how to:(i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and(ii) automatically identify the features that best distinguish the groups. The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described - simple or complex; presentation order - which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo 18 were used,which included 200 healthy Brazilians of both genders. A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods.
NASA Astrophysics Data System (ADS)
Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning
2017-03-01
The Gleason grading system was developed for assessing prostate histopathology slides. It is correlated to the outcome and incidence of relapse in prostate cancer. Although this grading is part of a standard protocol performed by pathologists, visual inspection of whole slide images (WSIs) has an inherent subjectivity when evaluated by different pathologists. Computer aided pathology has been proposed to generate an objective and reproducible assessment that can help pathologists in their evaluation of new tissue samples. Deep convolutional neural networks are a promising approach for the automatic classification of histopathology images and can hierarchically learn subtle visual features from the data. However, a large number of manual annotations from pathologists are commonly required to obtain sufficient statistical generalization when training new models that can evaluate the daily generated large amounts of pathology data. A fully automatic approach that detects prostatectomy WSIs with high-grade Gleason score is proposed. We evaluate the performance of various deep learning architectures training them with patches extracted from automatically generated regions-of-interest rather than from manually segmented ones. Relevant parameters for training the deep learning model such as size and number of patches as well as the inclusion or not of data augmentation are compared between the tested deep learning architectures. 235 prostate tissue WSIs with their pathology report from the publicly available TCGA data set were used. An accuracy of 78% was obtained in a balanced set of 46 unseen test images with different Gleason grades in a 2-class decision: high vs. low Gleason grade. Grades 7-8, which represent the boundary decision of the proposed task, were particularly well classified. The method is scalable to larger data sets with straightforward re-training of the model to include data from multiple sources, scanners and acquisition techniques. Automatically generated heatmaps for theWSIs could be useful for improving the selection of patches when training networks for big data sets and to guide the visual inspection of these images.
Methods for automatic detection of artifacts in microelectrode recordings.
Bakštein, Eduard; Sieger, Tomáš; Wild, Jiří; Novák, Daniel; Schneider, Jakub; Vostatek, Pavel; Urgošík, Dušan; Jech, Robert
2017-10-01
Extracellular microelectrode recording (MER) is a prominent technique for studies of extracellular single-unit neuronal activity. In order to achieve robust results in more complex analysis pipelines, it is necessary to have high quality input data with a low amount of artifacts. We show that noise (mainly electromagnetic interference and motion artifacts) may affect more than 25% of the recording length in a clinical MER database. We present several methods for automatic detection of noise in MER signals, based on (i) unsupervised detection of stationary segments, (ii) large peaks in the power spectral density, and (iii) a classifier based on multiple time- and frequency-domain features. We evaluate the proposed methods on a manually annotated database of 5735 ten-second MER signals from 58 Parkinson's disease patients. The existing methods for artifact detection in single-channel MER that have been rigorously tested, are based on unsupervised change-point detection. We show on an extensive real MER database that the presented techniques are better suited for the task of artifact identification and achieve much better results. The best-performing classifiers (bagging and decision tree) achieved artifact classification accuracy of up to 89% on an unseen test set and outperformed the unsupervised techniques by 5-10%. This was close to the level of agreement among raters using manual annotation (93.5%). We conclude that the proposed methods are suitable for automatic MER denoising and may help in the efficient elimination of undesirable signal artifacts. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón
A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.
Microaneurysm detection with radon transform-based classification on retina images.
Giancardo, L; Meriaudeau, F; Karnowski, T P; Li, Y; Tobin, K W; Chaum, E
2011-01-01
The creation of an automatic diabetic retinopathy screening system using retina cameras is currently receiving considerable interest in the medical imaging community. The detection of microaneurysms is a key element in this effort. In this work, we propose a new microaneurysms segmentation technique based on a novel application of the radon transform, which is able to identify these lesions without any previous knowledge of the retina morphological features and with minimal image preprocessing. The algorithm has been evaluated on the Retinopathy Online Challenge public dataset, and its performance compares with the best current techniques. The performance is particularly good at low false positive ratios, which makes it an ideal candidate for diabetic retinopathy screening systems.
Classification of cloud fields based on textural characteristics
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1987-01-01
The present study reexamines the applicability of texture-based features for automatic cloud classification using very high spatial resolution (57 m) Landsat multispectral scanner digital data. It is concluded that cloud classification can be accomplished using only a single visible channel.
Automatic comparison of striation marks and automatic classification of shoe prints
NASA Astrophysics Data System (ADS)
Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac
1995-09-01
A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.
Towards automatic music transcription: note extraction based on independent subspace analysis
NASA Astrophysics Data System (ADS)
Wellhausen, Jens; Hoynck, Michael
2005-01-01
Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.
Towards automatic music transcription: note extraction based on independent subspace analysis
NASA Astrophysics Data System (ADS)
Wellhausen, Jens; Höynck, Michael
2004-12-01
Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Automatic Generalizability Method of Urban Drainage Pipe Network Considering Multi-Features
NASA Astrophysics Data System (ADS)
Zhu, S.; Yang, Q.; Shao, J.
2018-05-01
Urban drainage systems are indispensable dataset for storm-flooding simulation. Given data availability and current computing power, the structure and complexity of urban drainage systems require to be simplify. However, till data, the simplify procedure mainly depend on manual operation that always leads to mistakes and lower work efficiency. This work referenced the classification methodology of road system, and proposed a conception of pipeline stroke. Further, length of pipeline, angle between two pipelines, the pipeline belonged road level and diameter of pipeline were chosen as the similarity criterion to generate the pipeline stroke. Finally, designed the automatic method to generalize drainage systems with the concern of multi-features. This technique can improve the efficiency and accuracy of the generalization of drainage systems. In addition, it is beneficial to the study of urban storm-floods.
Hardware Neural Network for a Visual Inspection System
NASA Astrophysics Data System (ADS)
Chun, Seungwoo; Hayakawa, Yoshihiro; Nakajima, Koji
The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.
NASA Astrophysics Data System (ADS)
Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins
2016-08-01
The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.
Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing
2017-12-28
Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.
Phan, Thanh Vân; Seoud, Lama; Chakor, Hadi; Cheriet, Farida
2016-01-01
Age-related macular degeneration (AMD) is a disease which causes visual deficiency and irreversible blindness to the elderly. In this paper, an automatic classification method for AMD is proposed to perform robust and reproducible assessments in a telemedicine context. First, a study was carried out to highlight the most relevant features for AMD characterization based on texture, color, and visual context in fundus images. A support vector machine and a random forest were used to classify images according to the different AMD stages following the AREDS protocol and to evaluate the features' relevance. Experiments were conducted on a database of 279 fundus images coming from a telemedicine platform. The results demonstrate that local binary patterns in multiresolution are the most relevant for AMD classification, regardless of the classifier used. Depending on the classification task, our method achieves promising performances with areas under the ROC curve between 0.739 and 0.874 for screening and between 0.469 and 0.685 for grading. Moreover, the proposed automatic AMD classification system is robust with respect to image quality. PMID:27190636
Pollettini, Juliana T; Panico, Sylvia R G; Daneluzzi, Julio C; Tinós, Renato; Baranauskas, José A; Macedo, Alessandra A
2012-12-01
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
Person detection and tracking with a 360° lidar system
NASA Astrophysics Data System (ADS)
Hammer, Marcus; Hebel, Marcus; Arens, Michael
2017-10-01
Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.
A Minimum Spanning Forest Based Method for Noninvasive Cancer Detection with Hyperspectral Imaging
Pike, Robert; Lu, Guolan; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei
2016-01-01
Goal The purpose of this paper is to develop a classification method that combines both spectral and spatial information for distinguishing cancer from healthy tissue on hyperspectral images in an animal model. Methods An automated algorithm based on a minimum spanning forest (MSF) and optimal band selection has been proposed to classify healthy and cancerous tissue on hyperspectral images. A support vector machine (SVM) classifier is trained to create a pixel-wise classification probability map of cancerous and healthy tissue. This map is then used to identify markers that are used to compute mutual information for a range of bands in the hyperspectral image and thus select the optimal bands. An MSF is finally grown to segment the image using spatial and spectral information. Conclusion The MSF based method with automatically selected bands proved to be accurate in determining the tumor boundary on hyperspectral images. Significance Hyperspectral imaging combined with the proposed classification technique has the potential to provide a noninvasive tool for cancer detection. PMID:26285052
Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.
ERIC Educational Resources Information Center
Griffiths, Alan; And Others
1984-01-01
Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…
Local pulmonary structure classification for computer-aided nodule detection
NASA Astrophysics Data System (ADS)
Bahlmann, Claus; Li, Xianlin; Okada, Kazunori
2006-03-01
We propose a new method of classifying the local structure types, such as nodules, vessels, and junctions, in thoracic CT scans. This classification is important in the context of computer aided detection (CAD) of lung nodules. The proposed method can be used as a post-process component of any lung CAD system. In such a scenario, the classification results provide an effective means of removing false positives caused by vessels and junctions thus improving overall performance. As main advantage, the proposed solution transforms the complex problem of classifying various 3D topological structures into much simpler 2D data clustering problem, to which more generic and flexible solutions are available in literature, and which is better suited for visualization. Given a nodule candidate, first, our solution robustly fits an anisotropic Gaussian to the data. The resulting Gaussian center and spread parameters are used to affine-normalize the data domain so as to warp the fitted anisotropic ellipsoid into a fixed-size isotropic sphere. We propose an automatic method to extract a 3D spherical manifold, containing the appropriate bounding surface of the target structure. Scale selection is performed by a data driven entropy minimization approach. The manifold is analyzed for high intensity clusters, corresponding to protruding structures. Techniques involve EMclustering with automatic mode number estimation, directional statistics, and hierarchical clustering with a modified Bhattacharyya distance. The estimated number of high intensity clusters explicitly determines the type of pulmonary structures: nodule (0), attached nodule (1), vessel (2), junction (>3). We show accurate classification results for selected examples in thoracic CT scans. This local procedure is more flexible and efficient than current state of the art and will help to improve the accuracy of general lung CAD systems.
Identification of granite varieties from colour spectrum data.
Araújo, María; Martínez, Javier; Ordóñez, Celestino; Vilán, José Antonio
2010-01-01
The granite processing sector of the northwest of Spain handles many varieties of granite with specific technical and aesthetic properties that command different prices in the natural stone market. Hence, correct granite identification and classification from the outset of processing to the end-product stage optimizes the management and control of stocks of granite slabs and tiles and facilitates the operation of traceability systems. We describe a methodology for automatically identifying granite varieties by processing spectral information captured by a spectrophotometer at various stages of processing using functional machine learning techniques.
Identification of Granite Varieties from Colour Spectrum Data
Araújo, María; Martínez, Javier; Ordóñez, Celestino; Vilán, José Antonio
2010-01-01
The granite processing sector of the northwest of Spain handles many varieties of granite with specific technical and aesthetic properties that command different prices in the natural stone market. Hence, correct granite identification and classification from the outset of processing to the end-product stage optimizes the management and control of stocks of granite slabs and tiles and facilitates the operation of traceability systems. We describe a methodology for automatically identifying granite varieties by processing spectral information captured by a spectrophotometer at various stages of processing using functional machine learning techniques. PMID:22163673
Multiple directed graph large-class multi-spectral processor
NASA Technical Reports Server (NTRS)
Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki
1988-01-01
Numerical analysis techniques for the interpretation of high-resolution imaging-spectrometer data are described and demonstrated. The method proposed involves the use of (1) a hierarchical classifier with a tree structure generated automatically by a Fisher linear-discriminant-function algorithm and (2) a novel multiple-directed-graph scheme which reduces the local maxima and the number of perturbations required. Results for a 500-class test problem involving simulated imaging-spectrometer data are presented in tables and graphs; 100-percent-correct classification is achieved with an improvement factor of 5.
NASA Technical Reports Server (NTRS)
Thorley, G. A.; Draeger, W. C.; Lauer, D. T.; Lent, J.; Roberts, E.
1971-01-01
The four problem are as being investigated are: (1) determination of the feasibility of providing the resource manager with operationally useful information through the use of remote sensing techniques; (2) definition of the spectral characteristics of earth resources and the optimum procedures for calibrating tone and color characteristics of multispectral imagery (3) determination of the extent to which humans can extract useful earth resource information through remote sensing imagery; (4) determination of the extent to which automatic classification and data processing can extract useful information from remote sensing data.
6 CFR 7.28 - Automatic declassification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define... years after the date of its original classification with the exception of specific information exempt...
NASA Astrophysics Data System (ADS)
Fonseca, Pablo; Mendoza, Julio; Wainer, Jacques; Ferrer, Jose; Pinto, Joseph; Guerrero, Jorge; Castaneda, Benjamin
2015-03-01
Breast parenchymal density is considered a strong indicator of breast cancer risk and therefore useful for preventive tasks. Measurement of breast density is often qualitative and requires the subjective judgment of radiologists. Here we explore an automatic breast composition classification workflow based on convolutional neural networks for feature extraction in combination with a support vector machines classifier. This is compared to the assessments of seven experienced radiologists. The experiments yielded an average kappa value of 0.58 when using the mode of the radiologists' classifications as ground truth. Individual radiologist performance against this ground truth yielded kappa values between 0.56 and 0.79.
An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.
Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed
2018-01-01
The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Workshop on Algorithms for Time-Series Analysis
NASA Astrophysics Data System (ADS)
Protopapas, Pavlos
2012-04-01
abstract-type="normal">SummaryThis Workshop covered the four major subjects listed below in two 90-minute sessions. Each talk or tutorial allowed questions, and concluded with a discussion. Classification: Automatic classification using machine-learning methods is becoming a standard in surveys that generate large datasets. Ashish Mahabal (Caltech) reviewed various methods, and presented examples of several applications. Time-Series Modelling: Suzanne Aigrain (Oxford University) discussed autoregressive models and multivariate approaches such as Gaussian Processes. Meta-classification/mixture of expert models: Karim Pichara (Pontificia Universidad Católica, Chile) described the substantial promise which machine-learning classification methods are now showing in automatic classification, and discussed how the various methods can be combined together. Event Detection: Pavlos Protopapas (Harvard) addressed methods of fast identification of events with low signal-to-noise ratios, enlarging on the characterization and statistical issues of low signal-to-noise ratios and rare events.
Semi-automatic recognition of marine debris on beaches
Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji
2016-01-01
An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments. PMID:27156433
Terahertz spectroscopic investigation of human gastric normal and tumor tissues
NASA Astrophysics Data System (ADS)
Hou, Dibo; Li, Xian; Cai, Jinhui; Ma, Yehao; Kang, Xusheng; Huang, Pingjie; Zhang, Guangxin
2014-09-01
Human dehydrated normal and cancerous gastric tissues were measured using transmission time-domain terahertz spectroscopy. Based on the obtained terahertz absorption spectra, the contrasts between the two kinds of tissue were investigated and techniques for automatic identification of cancerous tissue were studied. Distinctive differences were demonstrated in both the shape and amplitude of the absorption spectra between normal and tumor tissue. Additionally, some spectral features in the range of 0.2~0.5 THz and 1~1.5 THz were revealed for all cancerous gastric tissues. To systematically achieve the identification of gastric cancer, principal component analysis combined with t-test was used to extract valuable information indicating the best distinction between the two types. Two clustering approaches, K-means and support vector machine (SVM), were then performed to classify the processed terahertz data into normal and cancerous groups. SVM presented a satisfactory result with less false classification cases. The results of this study implicate the potential of the terahertz technique to detect gastric cancer. The applied data analysis methodology provides a suggestion for automatic discrimination of terahertz spectra in other applications.
Deep learning aided decision support for pulmonary nodules diagnosing: a review
Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping
2018-01-01
Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing. PMID:29780633
NASA Astrophysics Data System (ADS)
Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.
2016-03-01
Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.
Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports
Yim, Wen-wai; Kwan, Sharon W; Johnson, Guy; Yetisgen, Meliha
2017-01-01
Cancer stage information is important for clinical research. However, they are not always explicitly noted in electronic medical records. In this paper, we present our work on automatic classification of hepatocellular carcinoma (HCC) stages from free-text clinical and radiology notes. To accomplish this, we defined 11 stage parameters used in the three HCC staging systems, American Joint Committee on Cancer (AJCC), Barcelona Clinic Liver Cancer (BCLC), and Cancer of the Liver Italian Program (CLIP). After aggregating stage parameters to the patient-level, the final stage classifications were achieved using an expert-created decision logic. Each stage parameter relevant for staging was extracted using several classification methods, e.g. sentence classification and automatic information structuring, to identify and normalize text as cancer stage parameter values. Stage parameter extraction for the test set performed at 0.81 F1. Cancer stage prediction for AJCC, BCLC, and CLIP stage classifications were 0.55, 0.50, and 0.43 F1.
Early classification of pathological heartbeats on wireless body sensor nodes.
Braojos, Rubén; Beretta, Ivan; Ansaloni, Giovanni; Atienza, David
2014-11-27
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually constrained in terms of computational power and transmission bandwidth. It is therefore essential to identify in the early stages which parts of an ECG are critical for the diagnosis and, only in these cases, activate on demand more detailed and computationally intensive analysis algorithms. In this work, we present a comprehensive framework for real-time automatic classification of normal and abnormal heartbeats, targeting embedded and resource-constrained WBSNs. In particular, we provide a comparative analysis of different strategies to reduce the heartbeat representation dimensionality, and therefore the required computational effort. We then combine these techniques with a neuro-fuzzy classification strategy, which effectively discerns normal and pathological heartbeats with a minimal run time and memory overhead. We prove that, by performing a detailed analysis only on the heartbeats that our classifier identifies as abnormal, a WBSN system can drastically reduce its overall energy consumption. Finally, we assess the choice of neuro-fuzzy classification by comparing its performance and workload with respect to other state-of-the-art strategies. Experimental results using the MIT-BIH Arrhythmia database show energy savings of as much as 60% in the signal processing stage, and 63% in the subsequent wireless transmission, when a neuro-fuzzy classification structure is employed, coupled with a dimensionality reduction technique based on random projections.
Early Classification of Pathological Heartbeats on Wireless Body Sensor Nodes
Braojos, Rubén; Beretta, Ivan; Ansaloni, Giovanni; Atienza, David
2014-01-01
Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually constrained in terms of computational power and transmission bandwidth. It is therefore essential to identify in the early stages which parts of an ECG are critical for the diagnosis and, only in these cases, activate on demand more detailed and computationally intensive analysis algorithms. In this work, we present a comprehensive framework for real-time automatic classification of normal and abnormal heartbeats, targeting embedded and resource-constrained WBSNs. In particular, we provide a comparative analysis of different strategies to reduce the heartbeat representation dimensionality, and therefore the required computational effort. We then combine these techniques with a neuro-fuzzy classification strategy, which effectively discerns normal and pathological heartbeats with a minimal run time and memory overhead. We prove that, by performing a detailed analysis only on the heartbeats that our classifier identifies as abnormal, a WBSN system can drastically reduce its overall energy consumption. Finally, we assess the choice of neuro-fuzzy classification by comparing its performance and workload with respect to other state-of-the-art strategies. Experimental results using the MIT-BIH Arrhythmia database show energy savings of as much as 60% in the signal processing stage, and 63% in the subsequent wireless transmission, when a neuro-fuzzy classification structure is employed, coupled with a dimensionality reduction technique based on random projections. PMID:25436654
Automatic morphological classification of galaxy images
Shamir, Lior
2009-01-01
We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594
Murray, Andrea K; Feng, Kaiyan; Moore, Tonia L; Allen, Phillip D; Taylor, Christopher J; Herrick, Ariane L
2011-08-01
Nailfold capillaroscopy is well established in screening patients with Raynaud's phenomenon for underlying SSc-spectrum disorders, by identifying abnormal capillaries. Our aim was to compare semi-automatic feature measurement from newly developed software with manual measurements, and determine the degree to which semi-automated data allows disease group classification. Images from 46 healthy controls, 21 patients with PRP and 49 with SSc were preprocessed, and semi-automated measurements of intercapillary distance and capillary width, tortuosity, and derangement were performed. These were compared with manual measurements. Features were used to classify images into the three subject groups. Comparison of automatic and manual measures for distance, width, tortuosity, and derangement had correlations of r=0.583, 0.624, 0.495 (p<0.001), and 0.195 (p=0.040). For automatic measures, correlations were found between width and intercapillary distance, r=0.374, and width and tortuosity, r=0.573 (p<0.001). Significant differences between subject groups were found for all features (p<0.002). Overall, 75% of images correctly matched clinical classification using semi-automated features, compared with 71% for manual measurements. Semi-automatic and manual measurements of distance, width, and tortuosity showed moderate (but statistically significant) correlations. Correlation for derangement was weaker. Semi-automatic measurements are faster than manual measurements. Semi-automatic parameters identify differences between groups, and are as good as manual measurements for between-group classification. © 2011 John Wiley & Sons Ltd.
Automatic classification of blank substrate defects
NASA Astrophysics Data System (ADS)
Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati
2014-10-01
Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.
Automatic detection of confusion in elderly users of a web-based health instruction video.
Postma-Nilsenová, Marie; Postma, Eric; Tates, Kiek
2015-06-01
Because of cognitive limitations and lower health literacy, many elderly patients have difficulty understanding verbal medical instructions. Automatic detection of facial movements provides a nonintrusive basis for building technological tools supporting confusion detection in healthcare delivery applications on the Internet. Twenty-four elderly participants (70-90 years old) were recorded while watching Web-based health instruction videos involving easy and complex medical terminology. Relevant fragments of the participants' facial expressions were rated by 40 medical students for perceived level of confusion and analyzed with automatic software for facial movement recognition. A computer classification of the automatically detected facial features performed more accurately and with a higher sensitivity than the human observers (automatic detection and classification, 64% accuracy, 0.64 sensitivity; human observers, 41% accuracy, 0.43 sensitivity). A drill-down analysis of cues to confusion indicated the importance of the eye and eyebrow region. Confusion caused by misunderstanding of medical terminology is signaled by facial cues that can be automatically detected with currently available facial expression detection technology. The findings are relevant for the development of Web-based services for healthcare consumers.
Image acquisition system for traffic monitoring applications
NASA Astrophysics Data System (ADS)
Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben
1995-03-01
An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic classification of vehicle class and recording of vehicle numberplates with a success rate around 90 percent in a period of 24 hours.
Defect inspection and printability study for 14 nm node and beyond photomask
NASA Astrophysics Data System (ADS)
Seki, Kazunori; Yonetani, Masashi; Badger, Karen; Dechene, Dan J.; Akima, Shinji
2016-10-01
Two different mask inspection techniques are developed and compared for 14 nm node and beyond photomasks, High resolution and Litho-based inspection. High resolution inspection is the general inspection method in which a 19x nm wavelength laser is used with the High NA inspection optics. Litho-based inspection is a new inspection technology. This inspection uses the wafer lithography information, and as such, this method has automatic defect classification capability which is based on wafer printability. Both High resolution and Litho-based inspection methods are compared using 14 nm and 7 nm node programmed defect and production design masks. The defect sensitivity and mask inspectability is compared, in addition to comparing the defect classification and throughput. Additionally, the Cost / Infrastructure comparison is analyzed and the impact of each inspection method is discussed.
Discrete mathematics for spatial data classification and understanding
NASA Astrophysics Data System (ADS)
Mussio, Luigi; Nocera, Rossella; Poli, Daniela
1998-12-01
Data processing, in the field of information technology, requires new tools, involving discrete mathematics, like data compression, signal enhancement, data classification and understanding, hypertexts and multimedia (considering educational aspects too), because the mass of data implies automatic data management and doesn't permit any a priori knowledge. The methodologies and procedures used in this class of problems concern different kinds of segmentation techniques and relational strategies, like clustering, parsing, vectorization, formalization, fitting and matching. On the other hand, the complexity of this approach imposes to perform optimal sampling and outlier detection just at the beginning, in order to define the set of data to be processed: rough data supply very poor information. For these reasons, no hypotheses about the distribution behavior of the data can be generally done and a judgment should be acquired by distribution-free inference only.
Automatic detection of erythemato-squamous diseases using k-means clustering.
Ubeyli, Elif Derya; Doğdu, Erdoğan
2010-04-01
A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.
Automatic tissue characterization from ultrasound imagery
NASA Astrophysics Data System (ADS)
Kadah, Yasser M.; Farag, Aly A.; Youssef, Abou-Bakr M.; Badawi, Ahmed M.
1993-08-01
In this work, feature extraction algorithms are proposed to extract the tissue characterization parameters from liver images. Then the resulting parameter set is further processed to obtain the minimum number of parameters representing the most discriminating pattern space for classification. This preprocessing step was applied to over 120 pathology-investigated cases to obtain the learning data for designing the classifier. The extracted features are divided into independent training and test sets and are used to construct both statistical and neural classifiers. The optimal criteria for these classifiers are set to have minimum error, ease of implementation and learning, and the flexibility for future modifications. Various algorithms for implementing various classification techniques are presented and tested on the data. The best performance was obtained using a single layer tensor model functional link network. Also, the voting k-nearest neighbor classifier provided comparably good diagnostic rates.
Forest inventory using multistage sampling with probability proportional to size. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Lee, D. C. L.; Hernandezfilho, P.; Shimabukuro, Y. E.; Deassis, O. R.; Demedeiros, J. S.
1984-01-01
A multistage sampling technique, with probability proportional to size, for forest volume inventory using remote sensing data is developed and evaluated. The study area is located in the Southeastern Brazil. The LANDSAT 4 digital data of the study area are used in the first stage for automatic classification of reforested areas. Four classes of pine and eucalypt with different tree volumes are classified utilizing a maximum likelihood classification algorithm. Color infrared aerial photographs are utilized in the second stage of sampling. In the third state (ground level) the time volume of each class is determined. The total time volume of each class is expanded through a statistical procedure taking into account all the three stages of sampling. This procedure results in an accurate time volume estimate with a smaller number of aerial photographs and reduced time in field work.
Tixier, Eliott; Raphel, Fabien; Lombardi, Damiano; Gerbeau, Jean-Frédéric
2017-01-01
The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology measurements that are less labor-intensive than patch-clamp based techniques. Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it represents a new and promising paradigm for automated and accurate in vitro drug safety evaluation. In this article, the following question is addressed: which features of the MEA signals should be measured to better classify the effects of drugs? A framework for the classification of drugs using MEA measurements is proposed. The classification is based on the ion channels blockades induced by the drugs. It relies on an in silico electrophysiology model of the MEA, a feature selection algorithm and automatic classification tools. An in silico model of the MEA is developed and is used to generate synthetic measurements. An algorithm that extracts MEA measurements features designed to perform well in a classification context is described. These features are called composite biomarkers. A state-of-the-art machine learning program is used to carry out the classification of drugs using experimental MEA measurements. The experiments are carried out using five different drugs: mexiletine, flecainide, diltiazem, moxifloxacin, and dofetilide. We show that the composite biomarkers outperform the classical ones in different classification scenarios. We show that using both synthetic and experimental MEA measurements improves the robustness of the composite biomarkers and that the classification scores are increased.
Automatic classification of canine PRG neuronal discharge patterns using K-means clustering.
Zuperku, Edward J; Prkic, Ivana; Stucke, Astrid G; Miller, Justin R; Hopp, Francis A; Stuth, Eckehard A
2015-02-01
Respiratory-related neurons in the parabrachial-Kölliker-Fuse (PB-KF) region of the pons play a key role in the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according to their discharge contours. This report presents a method that automatically classifies neurons according to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional methods for choosing the optimal number of clusters are described. Analysis of the results suggests that the K-means clustering method offers a robust objective means of both automatically categorizing neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge patterns of group of neurons. Published by Elsevier B.V.
Crescent Evaluation : appendix D : crescent computer system components evaluation report
DOT National Transportation Integrated Search
1994-02-01
In 1990, Lockheed Integrated Systems Company (LISC) was awarded a contract, under the Crescent Demonstration Project, to demonstrate the integration of Weigh In Motion (WIM), Automatic Vehicle Classification (AVC) and Automatic Vehicle Identification...
[Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].
Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong
2016-10-01
Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
Linguistically informed digital fingerprints for text
NASA Astrophysics Data System (ADS)
Uzuner, Özlem
2006-02-01
Digital fingerprinting, watermarking, and tracking technologies have gained importance in the recent years in response to growing problems such as digital copyright infringement. While fingerprints and watermarks can be generated in many different ways, use of natural language processing for these purposes has so far been limited. Measuring similarity of literary works for automatic copyright infringement detection requires identifying and comparing creative expression of content in documents. In this paper, we present a linguistic approach to automatically fingerprinting novels based on their expression of content. We use natural language processing techniques to generate "expression fingerprints". These fingerprints consist of both syntactic and semantic elements of language, i.e., syntactic and semantic elements of expression. Our experiments indicate that syntactic and semantic elements of expression enable accurate identification of novels and their paraphrases, providing a significant improvement over techniques used in text classification literature for automatic copy recognition. We show that these elements of expression can be used to fingerprint, label, or watermark works; they represent features that are essential to the character of works and that remain fairly consistent in the works even when works are paraphrased. These features can be directly extracted from the contents of the works on demand and can be used to recognize works that would not be correctly identified either in the absence of pre-existing labels or by verbatim-copy detectors.
Melanoma recognition framework based on expert definition of ABCD for dermoscopic images.
Abbas, Qaisar; Emre Celebi, M; Garcia, Irene Fondón; Ahmad, Waqar
2013-02-01
Melanoma Recognition based on clinical ABCD rule is widely used for clinical diagnosis of pigmented skin lesions in dermoscopy images. However, the current computer-aided diagnostic (CAD) systems for classification between malignant and nevus lesions using the ABCD criteria are imperfect due to use of ineffective computerized techniques. In this study, a novel melanoma recognition system (MRS) is presented by focusing more on extracting features from the lesions using ABCD criteria. The complete MRS system consists of the following six major steps: transformation to the CIEL*a*b* color space, preprocessing to enhance the tumor region, black-frame and hair artifacts removal, tumor-area segmentation, quantification of feature using ABCD criteria and normalization, and finally feature selection and classification. The MRS system for melanoma-nevus lesions is tested on a total of 120 dermoscopic images. To test the performance of the MRS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 88.2%, specificity of 91.3%, and AUC of 0.880. The experimental results show that the proposed MRS system can accurately distinguish between malignant and benign lesions. The MRS technique is fully automatic and can easily integrate to an existing CAD system. To increase the classification accuracy of MRS, the CASH pattern recognition technique, visual inspection of dermatologist, contextual information from the patients, and the histopathological tests can be included to investigate the impact with this system. © 2012 John Wiley & Sons A/S.
Second Language Writing Classification System Based on Word-Alignment Distribution
ERIC Educational Resources Information Center
Kotani, Katsunori; Yoshimi, Takehiko
2010-01-01
The present paper introduces an automatic classification system for assisting second language (L2) writing evaluation. This system, which classifies sentences written by L2 learners as either native speaker-like or learner-like sentences, is constructed by machine learning algorithms using word-alignment distributions as classification features…
Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.
ERIC Educational Resources Information Center
Mostafa, J.; Lam, W.
2000-01-01
Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…
Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Timothy; Steinmaus, Karen L.
2005-02-01
New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.
NASA Astrophysics Data System (ADS)
Starkey, Andrew; Usman Ahmad, Aliyu; Hamdoun, Hassan
2017-10-01
This paper investigates the application of a novel method for classification called Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a converged standard Self Organizing Map (SOM) to automatically guide the selection of important inputs during training for improved classification of data with redundant inputs, examined against two traditional approaches namely neural networks and Support Vector Machines (SVM) for the classification of EEG data as presented in previous work. In particular, the novel method looks to identify the features that are important for classification automatically, and in this way the important features can be used to improve the diagnostic ability of any of the above methods. The paper presents the results and shows how the automated identification of the important features successfully identified the important features in the dataset and how this results in an improvement of the classification results for all methods apart from linear discriminatory methods which cannot separate the underlying nonlinear relationship in the data. The FWSOM in addition to achieving higher classification accuracy has given insights into what features are important in the classification of each class (left and right-hand movements), and these are corroborated by already published work in this area.
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Feiveson, A. H.; Hall, F. G.; Bauer, M. E.; Davis, B. J.; Malila, W. A.; Rice, D. P.
1975-01-01
The CITARS was an experiment designed to quantitatively evaluate crop identification performance for corn and soybeans in various environments using a well-defined set of automatic data processing (ADP) techniques. Each technique was applied to data acquired to recognize and estimate proportions of corn and soybeans. The CITARS documentation summarizes, interprets, and discusses the crop identification performances obtained using (1) different ADP procedures; (2) a linear versus a quadratic classifier; (3) prior probability information derived from historic data; (4) local versus nonlocal recognition training statistics and the associated use of preprocessing; (5) multitemporal data; (6) classification bias and mixed pixels in proportion estimation; and (7) data with differnt site characteristics, including crop, soil, atmospheric effects, and stages of crop maturity.
EUCLID: automatic classification of proteins in functional classes by their database annotations.
Tamames, J; Ouzounis, C; Casari, G; Sander, C; Valencia, A
1998-01-01
A tool is described for the automatic classification of sequences in functional classes using their database annotations. The Euclid system is based on a simple learning procedure from examples provided by human experts. Euclid is freely available for academics at http://www.gredos.cnb.uam.es/EUCLID, with the corresponding dictionaries for the generation of three, eight and 14 functional classes. E-mail: valencia@cnb.uam.es The results of the EUCLID classification of different genomes are available at http://www.sander.ebi.ac. uk/genequiz/. A detailed description of the different applications mentioned in the text is available at http://www.gredos.cnb.uam. es/EUCLID/Full_Paper
Texture operator for snow particle classification into snowflake and graupel
NASA Astrophysics Data System (ADS)
Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro
2012-11-01
In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.
Flow-guided sketch and accentuated-tone adjusting for pencil drawing generation
NASA Astrophysics Data System (ADS)
Li, Ruirui; Yang, Lei; Hu, Wei
2017-07-01
Pencil drawing is an important artistic style which is widely used in draft sketch and finished rendering. It is non-trivial if we can automatically generate the pencil drawing more precisely in order to ease the human efforts. In this paper, we propose flow-guided sketch and accentuated-tone adjusting techniques to transform the pencil drawing from natural images. This work is extended from the existing pencil drawing framework where authors combine sketch and tone together for penciling purpose. Through an edge tangent flow guided classification and convolution, we can obtain more coherent and smooth strokes, especially for portraits. In addition, we also introduce a hierarchical approach to generate strokes. According to saliency map, we can adjust the tone of images automatically. The experimental results indicate the generated toned pencil drawings by our approach are of fewer artifacts and could even solve the images with dark background
Godino-Llorente, J I; Gómez-Vilda, P
2004-02-01
It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.
Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra
2014-01-01
Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. Objective The aims were to describe how to: (i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and (ii) automatically identify the features that best distinguish the groups. Methods The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described – simple or complex; presentation order – which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo18 were used,which included 200 healthy Brazilians of both genders. Results and Conclusion A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods. PMID:29213908
A novel fuzzy approach for automatic Brunnstrom stage classification using surface electromyography.
Liparulo, Luca; Zhang, Zhe; Panella, Massimo; Gu, Xudong; Fang, Qiang
2017-08-01
Clinical assessment plays a major role in post-stroke rehabilitation programs for evaluating impairment level and tracking recovery progress. Conventionally, this process is manually performed by clinicians using chart-based ordinal scales which can be both subjective and inefficient. In this paper, a novel approach based on fuzzy logic is proposed which automatically evaluates stroke patients' impairment level using single-channel surface electromyography (sEMG) signals and generates objective classification results based on the widely used Brunnstrom stages of recovery. The correlation between stroke-induced motor impairment and sEMG features on both time and frequency domain is investigated, and a specifically designed fuzzy kernel classifier based on geometrically unconstrained membership function is introduced in the study to tackle the challenges in discriminating data classes with complex separating surfaces. Experiments using sEMG data collected from stroke patients have been carried out to examine the validity and feasibility of the proposed method. In order to ensure the generalization capability of the classifier, a cross-validation test has been performed. The results, verified using the evaluation decisions provided by an expert panel, have reached a rate of success of the 92.47%. The proposed fuzzy classifier is also compared with other pattern recognition techniques to demonstrate its superior performance in this application.
Real-time road detection in infrared imagery
NASA Astrophysics Data System (ADS)
Andre, Haritini E.; McCoy, Keith
1990-09-01
Automatic road detection is an important part in many scene recognition applications. The extraction of roads provides a means of navigation and position update for remotely piloted vehicles or autonomous vehicles. Roads supply strong contextual information which can be used to improve the performance of automatic target recognition (ATh) systems by directing the search for targets and adjusting target classification confidences. This paper will describe algorithmic techniques for labeling roads in high-resolution infrared imagery. In addition, realtime implementation of this structural approach using a processor array based on the Martin Marietta Geometric Arithmetic Parallel Processor (GAPPTh) chip will be addressed. The algorithm described is based on the hypothesis that a road consists of pairs of line segments separated by a distance "d" with opposite gradient directions (antiparallel). The general nature of the algorithm, in addition to its parallel implementation in a single instruction, multiple data (SIMD) machine, are improvements to existing work. The algorithm seeks to identify line segments meeting the road hypothesis in a manner that performs well, even when the side of the road is fragmented due to occlusion or intersections. The use of geometrical relationships between line segments is a powerful yet flexible method of road classification which is independent of orientation. In addition, this approach can be used to nominate other types of objects with minor parametric changes.
Classification of independent components of EEG into multiple artifact classes.
Frølich, Laura; Andersen, Tobias S; Mørup, Morten
2015-01-01
In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them. Copyright © 2014 Society for Psychophysiological Research.
Xu, Kele; Feng, Dawei; Mi, Haibo
2017-11-23
The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.
Towards Automatic Classification of Wikipedia Content
NASA Astrophysics Data System (ADS)
Szymański, Julian
Wikipedia - the Free Encyclopedia encounters the problem of proper classification of new articles everyday. The process of assignment of articles to categories is performed manually and it is a time consuming task. It requires knowledge about Wikipedia structure, which is beyond typical editor competence, which leads to human-caused mistakes - omitting or wrong assignments of articles to categories. The article presents application of SVM classifier for automatic classification of documents from The Free Encyclopedia. The classifier application has been tested while using two text representations: inter-documents connections (hyperlinks) and word content. The results of the performed experiments evaluated on hand crafted data show that the Wikipedia classification process can be partially automated. The proposed approach can be used for building a decision support system which suggests editors the best categories that fit new content entered to Wikipedia.
NASA Astrophysics Data System (ADS)
Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric
2011-03-01
Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.
Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs
NASA Astrophysics Data System (ADS)
Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio
2017-03-01
The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.
A new classification scheme of plastic wastes based upon recycling labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr
Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Figueroa, Rosa L; Flores, Christopher A
2016-08-01
Obesity is a chronic disease with an increasing impact on the world's population. In this work, we present a method of identifying obesity automatically using text mining techniques and information related to body weight measures and obesity comorbidities. We used a dataset of 3015 de-identified medical records that contain labels for two classification problems. The first classification problem distinguishes between obesity, overweight, normal weight, and underweight. The second classification problem differentiates between obesity types: super obesity, morbid obesity, severe obesity and moderate obesity. We used a Bag of Words approach to represent the records together with unigram and bigram representations of the features. We implemented two approaches: a hierarchical method and a nonhierarchical one. We used Support Vector Machine and Naïve Bayes together with ten-fold cross validation to evaluate and compare performances. Our results indicate that the hierarchical approach does not work as well as the nonhierarchical one. In general, our results show that Support Vector Machine obtains better performances than Naïve Bayes for both classification problems. We also observed that bigram representation improves performance compared with unigram representation.
Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines.
Jaworek-Korjakowska, Joanna
2016-01-01
Background. One of the fatal disorders causing death is malignant melanoma, the deadliest form of skin cancer. The aim of the modern dermatology is the early detection of skin cancer, which usually results in reducing the mortality rate and less extensive treatment. This paper presents a study on classification of melanoma in the early stage of development using SVMs as a useful technique for data classification. Method. In this paper an automatic algorithm for the classification of melanomas in their early stage, with a diameter under 5 mm, has been presented. The system contains the following steps: image enhancement, lesion segmentation, feature calculation and selection, and classification stage using SVMs. Results. The algorithm has been tested on 200 images including 70 melanomas and 130 benign lesions. The SVM classifier achieved sensitivity of 90% and specificity of 96%. The results indicate that the proposed approach captured most of the malignant cases and could provide reliable information for effective skin mole examination. Conclusions. Micro-melanomas due to the small size and low advancement of development create enormous difficulties during the diagnosis even for experts. The use of advanced equipment and sophisticated computer systems can help in the early diagnosis of skin lesions.
Feature generation and representations for protein-protein interaction classification.
Lan, Man; Tan, Chew Lim; Su, Jian
2009-10-01
Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.
Zu, Qin; Zhang, Shui-fa; Cao, Yang; Zhao, Hui-yi; Dang, Chang-qing
2015-02-01
Weeds automatic identification is the key technique and also the bottleneck for implementation of variable spraying and precision pesticide. Therefore, accurate, rapid and non-destructive automatic identification of weeds has become a very important research direction for precision agriculture. Hyperspectral imaging system was used to capture the hyperspectral images of cabbage seedlings and five kinds of weeds such as pigweed, barnyard grass, goosegrass, crabgrass and setaria with the wavelength ranging from 1000 to 2500 nm. In ENVI, by utilizing the MNF rotation to implement the noise reduction and de-correlation of hyperspectral data and reduce the band dimensions from 256 to 11, and extracting the region of interest to get the spectral library as standard spectra, finally, using the SAM taxonomy to identify cabbages and weeds, the classification effect was good when the spectral angle threshold was set as 0. 1 radians. In HSI Analyzer, after selecting the training pixels to obtain the standard spectrum, the SAM taxonomy was used to distinguish weeds from cabbages. Furthermore, in order to measure the recognition accuracy of weeds quantificationally, the statistical data of the weeds and non-weeds were obtained by comparing the SAM classification image with the best classification effects to the manual classification image. The experimental results demonstrated that, when the parameters were set as 5-point smoothing, 0-order derivative and 7-degree spectral angle, the best classification result was acquired and the recognition rate of weeds, non-weeds and overall samples was 80%, 97.3% and 96.8% respectively. The method that combined the spectral imaging technology and the SAM taxonomy together took full advantage of fusion information of spectrum and image. By applying the spatial classification algorithms to establishing training sets for spectral identification, checking the similarity among spectral vectors in the pixel level, integrating the advantages of spectra and images meanwhile considering their accuracy and rapidity and improving weeds detection range in the full range that could detect weeds between and within crop rows, the above method contributes relevant analysis tools and means to the application field requiring the accurate information of plants in agricultural precision management
An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.
Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan
2015-01-01
A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.
NASA Astrophysics Data System (ADS)
Patton, J.; Yeck, W.; Benz, H.
2017-12-01
The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.
Himmel, Wolfgang; Reincke, Ulrich; Michelmann, Hans Wilhelm
2009-07-22
Both healthy and sick people increasingly use electronic media to obtain medical information and advice. For example, Internet users may send requests to Web-based expert forums, or so-called "ask the doctor" services. To automatically classify lay requests to an Internet medical expert forum using a combination of different text-mining strategies. We first manually classified a sample of 988 requests directed to a involuntary childlessness forum on the German website "Rund ums Baby" ("Everything about Babies") into one or more of 38 categories belonging to two dimensions ("subject matter" and "expectations"). After creating start and synonym lists, we calculated the average Cramer's V statistic for the association of each word with each category. We also used principle component analysis and singular value decomposition as further text-mining strategies. With these measures we trained regression models and determined, on the basis of best regression models, for any request the probability of belonging to each of the 38 different categories, with a cutoff of 50%. Recall and precision of a test sample were calculated as a measure of quality for the automatic classification. According to the manual classification of 988 documents, 102 (10%) documents fell into the category "in vitro fertilization (IVF)," 81 (8%) into the category "ovulation," 79 (8%) into "cycle," and 57 (6%) into "semen analysis." These were the four most frequent categories in the subject matter dimension (consisting of 32 categories). The expectation dimension comprised six categories; we classified 533 documents (54%) as "general information" and 351 (36%) as a wish for "treatment recommendations." The generation of indicator variables based on the chi-square analysis and Cramer's V proved to be the best approach for automatic classification in about half of the categories. In combination with the two other approaches, 100% precision and 100% recall were realized in 18 (47%) out of the 38 categories in the test sample. For 35 (92%) categories, precision and recall were better than 80%. For some categories, the input variables (ie, "words") also included variables from other categories, most often with a negative sign. For example, absence of words predictive for "menstruation" was a strong indicator for the category "pregnancy test." Our approach suggests a way of automatically classifying and analyzing unstructured information in Internet expert forums. The technique can perform a preliminary categorization of new requests and help Internet medical experts to better handle the mass of information and to give professional feedback.
Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia
2012-12-01
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Automatic analysis and classification of surface electromyography.
Abou-Chadi, F E; Nashar, A; Saad, M
2001-01-01
In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.
The Crescent Project : an evaluation of an element of the HELP Program : executive summary
DOT National Transportation Integrated Search
1994-02-01
The HELP/Crescent Project on the West Coast evaluated the applicability of four technologies for screening transponder-equipped vehicles. The technologies included automatic vehicle identification, weigh-in-motion, automatic vehicle classification, a...
[Severity classification of chronic obstructive pulmonary disease based on deep learning].
Ying, Jun; Yang, Ceyuan; Li, Quanzheng; Xue, Wanguo; Li, Tanshi; Cao, Wenzhe
2017-12-01
In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.
An automatic graph-based approach for artery/vein classification in retinal images.
Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio
2014-03-01
The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
1988-01-01
MONITORING ORGANIZATION Northeast Artificial (If applicaole)nelincCostum(AcRome Air Development Center (COCU) Inteligence Consortium (NAIC)I 6c. ADDRESS...f, Offell RADC-TR-88-1 1, Vol IV (of eight) Interim Technical ReportS June 1988 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986...13441-5700 EMENT NO NO NO ACCESSION NO62702F 5 8 71 " " over) I 58 27 13 " TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE
Passive Polarimetric Information Processing for Target Classification
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz; Sadjadi, Farzad
Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).
Li, Yachun; Charalampaki, Patra; Liu, Yong; Yang, Guang-Zhong; Giannarou, Stamatia
2018-06-13
Probe-based confocal laser endomicroscopy (pCLE) enables in vivo, in situ tissue characterisation without changes in the surgical setting and simplifies the oncological surgical workflow. The potential of this technique in identifying residual cancer tissue and improving resection rates of brain tumours has been recently verified in pilot studies. The interpretation of endomicroscopic information is challenging, particularly for surgeons who do not themselves routinely review histopathology. Also, the diagnosis can be examiner-dependent, leading to considerable inter-observer variability. Therefore, automatic tissue characterisation with pCLE would support the surgeon in establishing diagnosis as well as guide robot-assisted intervention procedures. The aim of this work is to propose a deep learning-based framework for brain tissue characterisation for context aware diagnosis support in neurosurgical oncology. An efficient representation of the context information of pCLE data is presented by exploring state-of-the-art CNN models with different tuning configurations. A novel video classification framework based on the combination of convolutional layers with long-range temporal recursion has been proposed to estimate the probability of each tumour class. The video classification accuracy is compared for different network architectures and data representation and video segmentation methods. We demonstrate the application of the proposed deep learning framework to classify Glioblastoma and Meningioma brain tumours based on endomicroscopic data. Results show significant improvement of our proposed image classification framework over state-of-the-art feature-based methods. The use of video data further improves the classification performance, achieving accuracy equal to 99.49%. This work demonstrates that deep learning can provide an efficient representation of pCLE data and accurately classify Glioblastoma and Meningioma tumours. The performance evaluation analysis shows the potential clinical value of the technique.
a Two-Step Classification Approach to Distinguishing Similar Objects in Mobile LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
He, H.; Khoshelham, K.; Fraser, C.
2017-09-01
Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... and Radiological Health (CDRH) guidance documents is available at http://www.fda.gov/MedicalDevices... ``De Novo Classification Process (Evaluation of Automatic Class III Designation)'' from CDRH you may...
Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.
Hsu, Wei-Yen
2013-12-01
In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.
Accelerometry-based classification of human activities using Markov modeling.
Mannini, Andrea; Sabatini, Angelo Maria
2011-01-01
Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.
Mouriño García, Marcos Antonio; Pérez Rodríguez, Roberto; Anido Rifón, Luis E
2015-01-01
Automatic classification of text documents into a set of categories has a lot of applications. Among those applications, the automatic classification of biomedical literature stands out as an important application for automatic document classification strategies. Biomedical staff and researchers have to deal with a lot of literature in their daily activities, so it would be useful a system that allows for accessing to documents of interest in a simple and effective way; thus, it is necessary that these documents are sorted based on some criteria-that is to say, they have to be classified. Documents to classify are usually represented following the bag-of-words (BoW) paradigm. Features are words in the text-thus suffering from synonymy and polysemy-and their weights are just based on their frequency of occurrence. This paper presents an empirical study of the efficiency of a classifier that leverages encyclopedic background knowledge-concretely Wikipedia-in order to create bag-of-concepts (BoC) representations of documents, understanding concept as "unit of meaning", and thus tackling synonymy and polysemy. Besides, the weighting of concepts is based on their semantic relevance in the text. For the evaluation of the proposal, empirical experiments have been conducted with one of the commonly used corpora for evaluating classification and retrieval of biomedical information, OHSUMED, and also with a purpose-built corpus of MEDLINE biomedical abstracts, UVigoMED. Results obtained show that the Wikipedia-based bag-of-concepts representation outperforms the classical bag-of-words representation up to 157% in the single-label classification problem and up to 100% in the multi-label problem for OHSUMED corpus, and up to 122% in the single-label classification problem and up to 155% in the multi-label problem for UVigoMED corpus.
Pérez Rodríguez, Roberto; Anido Rifón, Luis E.
2015-01-01
Automatic classification of text documents into a set of categories has a lot of applications. Among those applications, the automatic classification of biomedical literature stands out as an important application for automatic document classification strategies. Biomedical staff and researchers have to deal with a lot of literature in their daily activities, so it would be useful a system that allows for accessing to documents of interest in a simple and effective way; thus, it is necessary that these documents are sorted based on some criteria—that is to say, they have to be classified. Documents to classify are usually represented following the bag-of-words (BoW) paradigm. Features are words in the text—thus suffering from synonymy and polysemy—and their weights are just based on their frequency of occurrence. This paper presents an empirical study of the efficiency of a classifier that leverages encyclopedic background knowledge—concretely Wikipedia—in order to create bag-of-concepts (BoC) representations of documents, understanding concept as “unit of meaning”, and thus tackling synonymy and polysemy. Besides, the weighting of concepts is based on their semantic relevance in the text. For the evaluation of the proposal, empirical experiments have been conducted with one of the commonly used corpora for evaluating classification and retrieval of biomedical information, OHSUMED, and also with a purpose-built corpus of MEDLINE biomedical abstracts, UVigoMED. Results obtained show that the Wikipedia-based bag-of-concepts representation outperforms the classical bag-of-words representation up to 157% in the single-label classification problem and up to 100% in the multi-label problem for OHSUMED corpus, and up to 122% in the single-label classification problem and up to 155% in the multi-label problem for UVigoMED corpus. PMID:26468436
Automated measurement of retinal vascular tortuosity.
Hart, W. E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M. R.
1997-01-01
Automatic measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. We describe a suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images. The tortuosity measures were evaluated in two classification tasks: (1) classifying the tortuosity of blood vessel segments and (2) classifying the tortuosity of blood vessel networks. These tortuosity measures were able to achieve a classification rate of 91% for the first problem and 95% on the second problem, which confirms that they capture much of the ophthalmologists' notion of tortuosity. Images Figure 1 PMID:9357668
Galleske, I; Castellanos, J
2002-05-01
This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.
A SVM-based method for sentiment analysis in Persian language
NASA Astrophysics Data System (ADS)
Hajmohammadi, Mohammad Sadegh; Ibrahim, Roliana
2013-03-01
Persian language is the official language of Iran, Tajikistan and Afghanistan. Local online users often represent their opinions and experiences on the web with written Persian. Although the information in those reviews is valuable to potential consumers and sellers, the huge amount of web reviews make it difficult to give an unbiased evaluation to a product. In this paper, standard machine learning techniques SVM and naive Bayes are incorporated into the domain of online Persian Movie reviews to automatically classify user reviews as positive or negative and performance of these two classifiers is compared with each other in this language. The effects of feature presentations on classification performance are discussed. We find that accuracy is influenced by interaction between the classification models and the feature options. The SVM classifier achieves as well as or better accuracy than naive Bayes in Persian movie. Unigrams are proved better features than bigrams and trigrams in capturing Persian sentiment orientation.
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
A linear-RBF multikernel SVM to classify big text corpora.
Romero, R; Iglesias, E L; Borrajo, L
2015-01-01
Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.
Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions
Latino, Diogo A. R. S.; Aires-de-Sousa, João
2014-01-01
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. PMID:24551112
Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.
Latino, Diogo A R S; Aires-de-Sousa, João
2014-01-01
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
NASA Astrophysics Data System (ADS)
Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.
2006-11-01
The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.
Leucocyte classification for leukaemia detection using image processing techniques.
Putzu, Lorenzo; Caocci, Giovanni; Di Ruberto, Cecilia
2014-11-01
The counting and classification of blood cells allow for the evaluation and diagnosis of a vast number of diseases. The analysis of white blood cells (WBCs) allows for the detection of acute lymphoblastic leukaemia (ALL), a blood cancer that can be fatal if left untreated. Currently, the morphological analysis of blood cells is performed manually by skilled operators. However, this method has numerous drawbacks, such as slow analysis, non-standard accuracy, and dependences on the operator's skill. Few examples of automated systems that can analyse and classify blood cells have been reported in the literature, and most of these systems are only partially developed. This paper presents a complete and fully automated method for WBC identification and classification using microscopic images. In contrast to other approaches that identify the nuclei first, which are more prominent than other components, the proposed approach isolates the whole leucocyte and then separates the nucleus and cytoplasm. This approach is necessary to analyse each cell component in detail. From each cell component, different features, such as shape, colour and texture, are extracted using a new approach for background pixel removal. This feature set was used to train different classification models in order to determine which one is most suitable for the detection of leukaemia. Using our method, 245 of 267 total leucocytes were properly identified (92% accuracy) from 33 images taken with the same camera and under the same lighting conditions. Performing this evaluation using different classification models allowed us to establish that the support vector machine with a Gaussian radial basis kernel is the most suitable model for the identification of ALL, with an accuracy of 93% and a sensitivity of 98%. Furthermore, we evaluated the goodness of our new feature set, which displayed better performance with each evaluated classification model. The proposed method permits the analysis of blood cells automatically via image processing techniques, and it represents a medical tool to avoid the numerous drawbacks associated with manual observation. This process could also be used for counting, as it provides excellent performance and allows for early diagnostic suspicion, which can then be confirmed by a haematologist through specialised techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Bertani, Francesca R; Mozetic, Pamela; Fioramonti, Marco; Iuliani, Michele; Ribelli, Giulia; Pantano, Francesco; Santini, Daniele; Tonini, Giuseppe; Trombetta, Marcella; Businaro, Luca; Selci, Stefano; Rainer, Alberto
2017-08-21
The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.
Prediction of carbonate rock type from NMR responses using data mining techniques
NASA Astrophysics Data System (ADS)
Gonçalves, Eduardo Corrêa; da Silva, Pablo Nascimento; Silveira, Carla Semiramis; Carneiro, Giovanna; Domingues, Ana Beatriz; Moss, Adam; Pritchard, Tim; Plastino, Alexandre; Azeredo, Rodrigo Bagueira de Vasconcellos
2017-05-01
Recent studies have indicated that the accurate identification of carbonate rock types in a reservoir can be employed as a preliminary step to enhance the effectiveness of petrophysical property modeling. Furthermore, rock typing activity has been shown to be of key importance in several steps of formation evaluation, such as the study of sedimentary series, reservoir zonation and well-to-well correlation. In this paper, a methodology based exclusively on the analysis of 1H-NMR (Nuclear Magnetic Resonance) relaxation responses - using data mining algorithms - is evaluated to perform the automatic classification of carbonate samples according to their rock type. We analyze the effectiveness of six different classification algorithms (k-NN, Naïve Bayes, C4.5, Random Forest, SMO and Multilayer Perceptron) and two data preprocessing strategies (discretization and feature selection). The dataset used in this evaluation is formed by 78 1H-NMR T2 distributions of fully brine-saturated rock samples from six different rock type classes. The experiments reveal that the combination of preprocessing strategies with classification algorithms is able to achieve a prediction accuracy of 97.4%.
Identification and Mapping of Tree Species in Urban Areas Using WORLDVIEW-2 Imagery
NASA Astrophysics Data System (ADS)
Mustafa, Y. T.; Habeeb, H. N.; Stein, A.; Sulaiman, F. Y.
2015-10-01
Monitoring and mapping of urban trees are essential to provide urban forestry authorities with timely and consistent information. Modern techniques increasingly facilitate these tasks, but require the development of semi-automatic tree detection and classification methods. In this article, we propose an approach to delineate and map the crown of 15 tree species in the city of Duhok, Kurdistan Region of Iraq using WorldView-2 (WV-2) imagery. A tree crown object is identified first and is subsequently delineated as an image object (IO) using vegetation indices and texture measurements. Next, three classification methods: Maximum Likelihood, Neural Network, and Support Vector Machine were used to classify IOs using selected IO features. The best results are obtained with Support Vector Machine classification that gives the best map of urban tree species in Duhok. The overall accuracy was between 60.93% to 88.92% and κ-coefficient was between 0.57 to 0.75. We conclude that fifteen tree species were identified and mapped at a satisfactory accuracy in urban areas of this study.
2D image classification for 3D anatomy localization: employing deep convolutional neural networks
NASA Astrophysics Data System (ADS)
de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana
2016-03-01
Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.
Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua
2013-01-01
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts. PMID:24236224
NASA Astrophysics Data System (ADS)
Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua
2012-03-01
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.
Comparative analysis of classification based algorithms for diabetes diagnosis using iris images.
Samant, Piyush; Agarwal, Ravinder
2018-01-01
Photo-diagnosis is always an intriguing area for the researchers, with the advancement of image processing and computer machine vision techniques it have become more reliable and popular in recent years. The objective of this paper is to study the change in the features of iris, particularly irregularities in the pigmentation of certain areas of the iris with respect to diabetic health of an individual. Apart from the point that iris recognition concentrates on the overall structure of the iris, diagnostic techniques emphasises the local variations in the particular area of iris. Pre-image processing techniques have been applied to extract iris and thereafter, region of interest from the extracted iris have been cropped out. In order to observe the changes in the tissue pigmentation of region of interest, statistical, texture textural and wavelet features have been extracted. At the end, a comparison of accuracies of five different classifiers has been presented to classify two subject groups of diabetic and non-diabetic. Best classification accuracy has been calculated as 89.66% by the random forest classifier. Results have been shown the effectiveness and diagnostic significance of the proposed methodology. Presented piece of work offers a novel systemic perspective of non-invasive and automatic diabetic diagnosis.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
New York State Thruway Authority automatic vehicle classification (AVC) : research report.
DOT National Transportation Integrated Search
2008-03-31
In December 2007, the N.Y.S. Thruway Authority (Thruway) concluded a Federal : funded research effort to study technology and develop a design for retrofitting : devices required in implementing a fully automated vehicle classification system i...
Liljeqvist, Henning T G; Muscatello, David; Sara, Grant; Dinh, Michael; Lawrence, Glenda L
2014-09-23
Syndromic surveillance in emergency departments (EDs) may be used to deliver early warnings of increases in disease activity, to provide situational awareness during events of public health significance, to supplement other information on trends in acute disease and injury, and to support the development and monitoring of prevention or response strategies. Changes in mental health related ED presentations may be relevant to these goals, provided they can be identified accurately and efficiently. This study aimed to measure the accuracy of using diagnostic codes in electronic ED presentation records to identify mental health-related visits. We selected a random sample of 500 records from a total of 1,815,588 ED electronic presentation records from 59 NSW public hospitals during 2010. ED diagnoses were recorded using any of ICD-9, ICD-10 or SNOMED CT classifications. Three clinicians, blinded to the automatically generated syndromic grouping and each other's classification, reviewed the triage notes and classified each of the 500 visits as mental health-related or not. A "mental health problem presentation" for the purposes of this study was defined as any ED presentation where either a mental disorder or a mental health problem was the reason for the ED visit. The combined clinicians' assessment of the records was used as reference standard to measure the sensitivity, specificity, and positive and negative predictive values of the automatic classification of coded emergency department diagnoses. Agreement between the reference standard and the automated coded classification was estimated using the Kappa statistic. Agreement between clinician's classification and automated coded classification was substantial (Kappa = 0.73. 95% CI: 0.58 - 0.87). The automatic syndromic grouping of coded ED diagnoses for mental health-related visits was found to be moderately sensitive (68% 95% CI: 46%-84%) and highly specific at 99% (95% CI: 98%-99.7%) when compared with the reference standard in identifying mental health related ED visits. Positive predictive value was 81% (95% CI: 0.57 - 0.94) and negative predictive value was 98% (95% CI: 0.97-0.99). Mental health presentations identified using diagnoses coded with various classifications in electronic ED presentation records offers sufficient accuracy for application in near real-time syndromic surveillance.
Automatic recognition of lactating sow behaviors through depth image processing
USDA-ARS?s Scientific Manuscript database
Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shiftin...
A semi-automatic traffic sign detection, classification, and positioning system
NASA Astrophysics Data System (ADS)
Creusen, I. M.; Hazelhoff, L.; de With, P. H. N.
2012-01-01
The availability of large-scale databases containing street-level panoramic images offers the possibility to perform semi-automatic surveying of real-world objects such as traffic signs. These inventories can be performed significantly more efficiently than using conventional methods. Governmental agencies are interested in these inventories for maintenance and safety reasons. This paper introduces a complete semi-automatic traffic sign inventory system. The system consists of several components. First, a detection algorithm locates the 2D position of the traffic signs in the panoramic images. Second, a classification algorithm is used to identify the traffic sign. Third, the 3D position of the traffic sign is calculated using the GPS position of the photographs. Finally, the results are listed in a table for quick inspection and are also visualized in a web browser.
Orlandi, Silvia; Reyes Garcia, Carlos Alberto; Bandini, Andrea; Donzelli, Gianpaolo; Manfredi, Claudia
2016-11-01
Scientific and clinical advances in perinatology and neonatology have enhanced the chances of survival of preterm and very low weight neonates. Infant cry analysis is a suitable noninvasive complementary tool to assess the neurologic state of infants particularly important in the case of preterm neonates. This article aims at exploiting differences between full-term and preterm infant cry with robust automatic acoustical analysis and data mining techniques. Twenty-two acoustical parameters are estimated in more than 3000 cry units from cry recordings of 28 full-term and 10 preterm newborns. Feature extraction is performed through the BioVoice dedicated software tool, developed at the Biomedical Engineering Lab, University of Firenze, Italy. Classification and pattern recognition is based on genetic algorithms for the selection of the best attributes. Training is performed comparing four classifiers: Logistic Curve, Multilayer Perceptron, Support Vector Machine, and Random Forest and three different testing options: full training set, 10-fold cross-validation, and 66% split. Results show that the best feature set is made up by 10 parameters capable to assess differences between preterm and full-term newborns with about 87% of accuracy. Best results are obtained with the Random Forest method (receiver operating characteristic area, 0.94). These 10 cry features might convey important additional information to assist the clinical specialist in the diagnosis and follow-up of possible delays or disorders in the neurologic development due to premature birth in this extremely vulnerable population of patients. The proposed approach is a first step toward an automatic infant cry recognition system for fast and proper identification of risk in preterm babies. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sigman, John Brevard
Buried explosive hazards present a pressing problem worldwide. Millions of acres and thousands of sites are contaminated in the United States alone [1, 2]. There are three categories of explosive hazards: metallic, intermediate-electrical conducting (IEC), and non-conducting targets. Metallic target detection and classification by electromagnetic (EM) signature has been the subject of research for many years. Key to the success of this research is modern multi-static Electromagnetic Induction (EMI) sensors, which are able to measure the wideband EMI response from metallic buried targets. However, no hardware solutions exist which can characterize IEC and non-conducting targets. While high-conducting metallic targets exhibit a quadrature peak response for frequencies in a traditional EMI regime under 100 kHz, the response of intermediate-conducting objects manifests at higher frequencies, between 100 kHz and 15 MHz. In addition to high-quality electromagnetic sensor data and robust electromagnetic models, a classification procedure is required to discriminate Targets of Interest (TOI) from clutter. Currently, costly human experts are used for this task. This expense and effort can be spared by using statistical signal processing and machine learning. This thesis has two main parts. In the first part, we explore using the high frequency EMI (HFEMI) band (100 kHz-15 MHz) for detection of carbon fiber UXO, voids, and of materials with characteristics that may be associated with improvised explosive devices (IED). We constructed an HFEMI sensing instrument, and apply the techniques of metal detection to sensing in a band of frequencies which are the transition between the induction and radar bands. In this transition domain, physical considerations and technological issues arise that cannot be solved via the approaches used in either of the bracketing lower and higher frequency ranges. In the second half of this thesis, we present a procedure for automatic classification of UXO. For maximum generality, our algorithm is robust and can handle sparse training examples of multi-class data. This procedure uses an unsupervised starter, semi-supervised techniques to gather training data, and concludes with supervised learning until all TOI are found. Additionally, an inference method for estimating the number of remaining true positives from a partial Receiver Operating Characteristic (ROC) curve is presented and applied to live-site dig histories.
Improving Student Question Classification
ERIC Educational Resources Information Center
Heiner, Cecily; Zachary, Joseph L.
2009-01-01
Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…
Sources of error in estimating truck traffic from automatic vehicle classification data
DOT National Transportation Integrated Search
1998-10-01
Truck annual average daily traffic estimation errors resulting from sample classification counts are computed in this paper under two scenarios. One scenario investigates an improper factoring procedure that may be used by highway agencies. The study...
6 CFR 7.28 - Automatic declassification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...
6 CFR 7.28 - Automatic declassification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...
6 CFR 7.28 - Automatic declassification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...
6 CFR 7.28 - Automatic declassification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...
Zhao, Yu; Ge, Fangfei; Liu, Tianming
2018-07-01
fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.
Youn, Su Hyun; Sim, Taeyong; Choi, Ahnryul; Song, Jinsung; Shin, Ki Young; Lee, Il Kwon; Heo, Hyun Mu; Lee, Daeweon; Mun, Joung Hwan
2015-06-01
Ultrasonic surgical units (USUs) have the advantage of minimizing tissue damage during surgeries that require tissue dissection by reducing problems such as coagulation and unwanted carbonization, but the disadvantage of requiring manual adjustment of power output according to the target tissue. In order to overcome this limitation, it is necessary to determine the properties of in vivo tissues automatically. We propose a multi-classifier that can accurately classify tissues based on the unique impedance of each tissue. For this purpose, a multi-classifier was built based on single classifiers with high classification rates, and the classification accuracy of the proposed model was compared with that of single classifiers for various electrode types (Type-I: 6 mm invasive; Type-II: 3 mm invasive; Type-III: surface). The sensitivity and positive predictive value (PPV) of the multi-classifier by cross checks were determined. According to the 10-fold cross validation results, the classification accuracy of the proposed model was significantly higher (p<0.05 or <0.01) than that of existing single classifiers for all electrode types. In particular, the classification accuracy of the proposed model was highest when the 3mm invasive electrode (Type-II) was used (sensitivity=97.33-100.00%; PPV=96.71-100.00%). The results of this study are an important contribution to achieving automatic optimal output power adjustment of USUs according to the properties of individual tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quality Evaluation of Land-Cover Classification Using Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Dang, Y.; Zhang, J.; Zhao, Y.; Luo, F.; Ma, W.; Yu, F.
2018-04-01
Land-cover classification is one of the most important products of earth observation, which focuses mainly on profiling the physical characters of the land surface with temporal and distribution attributes and contains the information of both natural and man-made coverage elements, such as vegetation, soil, glaciers, rivers, lakes, marsh wetlands and various man-made structures. In recent years, the amount of high-resolution remote sensing data has increased sharply. Accordingly, the volume of land-cover classification products increases, as well as the need to evaluate such frequently updated products that is a big challenge. Conventionally, the automatic quality evaluation of land-cover classification is made through pixel-based classifying algorithms, which lead to a much trickier task and consequently hard to keep peace with the required updating frequency. In this paper, we propose a novel quality evaluation approach for evaluating the land-cover classification by a scene classification method Convolutional Neural Network (CNN) model. By learning from remote sensing data, those randomly generated kernels that serve as filter matrixes evolved to some operators that has similar functions to man-crafted operators, like Sobel operator or Canny operator, and there are other kernels learned by the CNN model that are much more complex and can't be understood as existing filters. The method using CNN approach as the core algorithm serves quality-evaluation tasks well since it calculates a bunch of outputs which directly represent the image's membership grade to certain classes. An automatic quality evaluation approach for the land-cover DLG-DOM coupling data (DLG for Digital Line Graphic, DOM for Digital Orthophoto Map) will be introduced in this paper. The CNN model as an robustness method for image evaluation, then brought out the idea of an automatic quality evaluation approach for land-cover classification. Based on this experiment, new ideas of quality evaluation of DLG-DOM coupling land-cover classification or other kinds of labelled remote sensing data can be further studied.
Duchrow, Timo; Shtatland, Timur; Guettler, Daniel; Pivovarov, Misha; Kramer, Stefan; Weissleder, Ralph
2009-01-01
Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at . PMID:19799796
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
NASA Technical Reports Server (NTRS)
Wardroper, A. M. K.; Brooks, P. W.; Humberston, M. J.; Maxwell, J. R.
1977-01-01
A computer method is described for the automatic classification of triterpanes and steranes into gross structural type from their mass spectral characteristics. The method has been applied to the spectra obtained by gas-chromatographic/mass-spectroscopic analysis of two mixtures of standards and of hydrocarbon fractions isolated from Green River and Messel oil shales. Almost all of the steranes and triterpanes identified previously in both shales were classified, in addition to a number of new components. The results indicate that classification of such alkanes is possible with a laboratory computer system. The method has application to diagenesis and maturation studies as well as to oil/oil and oil/source rock correlations in which rapid screening of large numbers of samples is required.
Delavarian, Mona; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Dibajnia, Parvin
2011-07-12
Automatic classification of different behavioral disorders with many similarities (e.g. in symptoms) by using an automated approach will help psychiatrists to concentrate on correct disorder and its treatment as soon as possible, to avoid wasting time on diagnosis, and to increase the accuracy of diagnosis. In this study, we tried to differentiate and classify (diagnose) 306 children with many similar symptoms and different behavioral disorders such as ADHD, depression, anxiety, comorbid depression and anxiety and conduct disorder with high accuracy. Classification was based on the symptoms and their severity. With examining 16 different available classifiers, by using "Prtools", we have proposed nearest mean classifier as the most accurate classifier with 96.92% accuracy in this research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Äijälä, Mikko; Heikkinen, Liine; Fröhlich, Roman; Canonaco, Francesco; Prévôt, André S. H.; Junninen, Heikki; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael
2017-03-01
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statistics-based data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k-means+ + , for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral similarity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.
Low-cost real-time automatic wheel classification system
NASA Astrophysics Data System (ADS)
Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria
1992-11-01
This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.
Automatic differentiation of melanoma and clark nevus skin lesions
NASA Astrophysics Data System (ADS)
LeAnder, R. W.; Kasture, A.; Pandey, A.; Umbaugh, S. E.
2007-03-01
Skin cancer is the most common form of cancer in the United States. Although melanoma accounts for just 11% of all types of skin cancer, it is responsible for most of the deaths, claiming more than 7910 lives annually. Melanoma is visually difficult for clinicians to differentiate from Clark nevus lesions which are benign. The application of pattern recognition techniques to these lesions may be useful as an educational tool for teaching physicians to differentiate lesions, as well as for contributing information about the essential optical characteristics that identify them. Purpose: This study sought to find the most effective features to extract from melanoma, melanoma in situ and Clark nevus lesions, and to find the most effective pattern-classification criteria and algorithms for differentiating those lesions, using the Computer Vision and Image Processing Tools (CVIPtools) software package. Methods: Due to changes in ambient lighting during the photographic process, color differences between images can occur. These differences were minimized by capturing dermoscopic images instead of photographic images. Differences in skin color between patients were minimized via image color normalization, by converting original color images to relative-color images. Relative-color images also helped minimize changes in color that occur due to changes in the photographic and digitization processes. Tumors in the relative-color images were segmented and morphologically filtered. Filtered, relative-color, tumor features were then extracted and various pattern-classification schemes were applied. Results: Experimentation resulted in four useful pattern classification methods, the best of which was an overall classification rate of 100% for melanoma and melanoma in situ (grouped) and 60% for Clark nevus. Conclusion: Melanoma and melanoma in situ have feature parameters and feature values that are similar enough to be considered one class of tumor that significantly differs from Clark nevus. Consequently, grouping melanoma and melanoma in situ together achieves the best results in classifying and automatically differentiating melanoma from Clark nevus lesions.
A dictionary learning approach for human sperm heads classification.
Shaker, Fariba; Monadjemi, S Amirhassan; Alirezaie, Javad; Naghsh-Nilchi, Ahmad Reza
2017-12-01
To diagnose infertility in men, semen analysis is conducted in which sperm morphology is one of the factors that are evaluated. Since manual assessment of sperm morphology is time-consuming and subjective, automatic classification methods are being developed. Automatic classification of sperm heads is a complicated task due to the intra-class differences and inter-class similarities of class objects. In this research, a Dictionary Learning (DL) technique is utilized to construct a dictionary of sperm head shapes. This dictionary is used to classify the sperm heads into four different classes. Square patches are extracted from the sperm head images. Columnized patches from each class of sperm are used to learn class-specific dictionaries. The patches from a test image are reconstructed using each class-specific dictionary and the overall reconstruction error for each class is used to select the best matching class. Average accuracy, precision, recall, and F-score are used to evaluate the classification method. The method is evaluated using two publicly available datasets of human sperm head shapes. The proposed DL based method achieved an average accuracy of 92.2% on the HuSHeM dataset, and an average recall of 62% on the SCIAN-MorphoSpermGS dataset. The results show a significant improvement compared to a previously published shape-feature-based method. We have achieved high-performance results. In addition, our proposed approach offers a more balanced classifier in which all four classes are recognized with high precision and recall. In this paper, we use a Dictionary Learning approach in classifying human sperm heads. It is shown that the Dictionary Learning method is far more effective in classifying human sperm heads than classifiers using shape-based features. Also, a dataset of human sperm head shapes is introduced to facilitate future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.
2017-05-01
Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results.
Genetic programming based ensemble system for microarray data classification.
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.
Genetic Programming Based Ensemble System for Microarray Data Classification
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748
NASA Astrophysics Data System (ADS)
de Garidel-Thoron, T.; Marchant, R.; Soto, E.; Gally, Y.; Beaufort, L.; Bolton, C. T.; Bouslama, M.; Licari, L.; Mazur, J. C.; Brutti, J. M.; Norsa, F.
2017-12-01
Foraminifera tests are the main proxy carriers for paleoceanographic reconstructions. Both geochemical and taxonomical studies require large numbers of tests to achieve statistical relevance. To date, the extraction of foraminifera from the sediment coarse fraction is still done by hand and thus time-consuming. Moreover, the recognition of morphotypes, ecologically relevant, requires some taxonomical skills not easily taught. The automatic recognition and extraction of foraminifera would largely help paleoceanographers to overcome these issues. Recent advances in automatic image classification using machine learning opens the way to automatic extraction of foraminifera. Here we detail progress on the design of an automatic picking machine as part of the FIRST project. The machine handles 30 pre-sieved samples (100-1000µm), separating them into individual particles (including foraminifera) and imaging each in pseudo-3D. The particles are classified and specimens of interest are sorted either for Individual Foraminifera Analyses (44 per slide) and/or for classical multiple analyses (8 morphological classes per slide, up to 1000 individuals per hole). The classification is based on machine learning using Convolutional Neural Networks (CNNs), similar to the approach used in the coccolithophorid imaging system SYRACO. To prove its feasibility, we built two training image datasets of modern planktonic foraminifera containing approximately 2000 and 5000 images each, corresponding to 15 & 25 morphological classes. Using a CNN with a residual topology (ResNet) we achieve over 95% correct classification for each dataset. We tested the network on 160,000 images from 45 depths of a sediment core from the Pacific ocean, for which we have human counts. The current algorithm is able to reproduce the downcore variability in both Globigerinoides ruber and the fragmentation index (r2 = 0.58 and 0.88 respectively). The FIRST prototype yields some promising results for high-resolution paleoceanographic studies and evolutionary studies.
Lee, Boon-Giin; Lee, Boon-Leng; Chung, Wan-Young
2014-01-01
Driving drowsiness is a major cause of traffic accidents worldwide and has drawn the attention of researchers in recent decades. This paper presents an application for in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset in real time. The proposed application classifies the driving mental fatigue condition by analyzing the electroencephalogram (EEG) and respiration signals of a driver in the time and frequency domains. Our concept is heavily reliant on mobile technology, particularly remote physiological monitoring using Bluetooth. Respiratory events are gathered, and eight-channel EEG readings are captured from the frontal, central, and parietal (Fpz-Cz, Pz-Oz) regions. EEGs are preprocessed with a Butterworth bandpass filter, and features are subsequently extracted from the filtered EEG signals by employing the wavelet-packet-transform (WPT) method to categorize the signals into four frequency bands: α, β, θ, and δ. A mutual information (MI) technique selects the most descriptive features for further classification. The reduction in the number of prominent features improves the sleep-onset classification speed in the support vector machine (SVM) and results in a high sleep-onset recognition rate. Test results reveal that the combined use of the EEG and respiration signals results in 98.6% recognition accuracy. Our proposed application explores the possibility of processing long-term multi-channel signals. PMID:25264954
NASA Astrophysics Data System (ADS)
Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia
2014-05-01
The recovery of materials from Demolition Waste (DW) represents one of the main target of the recycling industry and the its characterization is important in order to set up efficient sorting and/or quality control systems. End-Of-Life (EOL) concrete materials identification is necessary to maximize DW conversion into useful secondary raw materials, so it is fundamental to develop strategies for the implementation of an automatic recognition system of the recovered products. In this paper, HyperSpectral Imaging (HSI) technique was applied in order to detect DW composition. Hyperspectral images were acquired by a laboratory device equipped with a HSI sensing device working in the near infrared range (1000-1700 nm): NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Acquired spectral data were analyzed adopting the PLS_Toolbox (Version 7.5, Eigenvector Research, Inc.) under Matlab® environment (Version 7.11.1, The Mathworks, Inc.), applying different chemometric methods: Principal Component Analysis (PCA) for exploratory data approach and Partial Least Square- Discriminant Analysis (PLS-DA) to build classification models. Results showed that it is possible to recognize DW materials, distinguishing recycled aggregates from contaminants (e.g. bricks, gypsum, plastics, wood, foam, etc.). The developed procedure is cheap, fast and non-destructive: it could be used to make some steps of the recycling process more efficient and less expensive.
Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM
NASA Astrophysics Data System (ADS)
Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il
2016-03-01
Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low light scattering. Likewise, SEM cannot be used effectively for post-inspection defect review and classification of these very shallow types of defects. To verify and obtain accurate shape and three-dimensional information of those defects, automatic defect review AFM (ADR AFM) is utilized for accurate locating and imaging of DOI. In ADR AFM, non-contact mode imaging is used for non-destructive characterization and preserving tip sharpness for data repeatability and reproducibility. Locating DOI and imaging are performed automatically with a throughput of many defects per hour. Topography images of DOI has been collected and compared with SEM images. The ADR AFM has been shown as a non-destructive metrology tool for defect review and obtaining three-dimensional topography information.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
Performance of wavelet analysis and neural networks for pathological voices identification
NASA Astrophysics Data System (ADS)
Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane
2011-09-01
Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.
Classification of microscopic images of breast tissue
NASA Astrophysics Data System (ADS)
Ballerini, Lucia; Franzen, Lennart
2004-05-01
Breast cancer is the most common form of cancer among women. The diagnosis is usually performed by the pathologist, that subjectively evaluates tissue samples. The aim of our research is to develop techniques for the automatic classification of cancerous tissue, by analyzing histological samples of intact tissue taken with a biopsy. In our study, we considered 200 images presenting four different conditions: normal tissue, fibroadenosis, ductal cancer and lobular cancer. Methods to extract features have been investigated and described. One method is based on granulometries, which are size-shape descriptors widely used in mathematical morphology. Applications of granulometries lead to distribution functions whose moments are used as features. A second method is based on fractal geometry, that seems very suitable to quantify biological structures. The fractal dimension of binary images has been computed using the euclidean distance mapping. Image classification has then been performed using the extracted features as input of a back-propagation neural network. A new method that combines genetic algorithms and morphological filters has been also investigated. In this case, the classification is based on a correlation measure. Very encouraging results have been obtained with pilot experiments using a small subset of images as training set. Experimental results indicate the effectiveness of the proposed methods. Cancerous tissue was correctly classified in 92.5% of the cases.
Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors
Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus
2014-01-01
Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281
Automated texture-based identification of ovarian cancer in confocal microendoscope images
NASA Astrophysics Data System (ADS)
Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.
2005-03-01
The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.
Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.
Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus
2014-01-01
Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.
Data mining in bioinformatics using Weka.
Frank, Eibe; Hall, Mark; Trigg, Len; Holmes, Geoffrey; Witten, Ian H
2004-10-12
The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. http://www.cs.waikato.ac.nz/ml/weka.
NASA Astrophysics Data System (ADS)
Aufaristama, Muhammad; Hölbling, Daniel; Höskuldsson, Ármann; Jónsdóttir, Ingibjörg
2017-04-01
The Krafla volcanic system is part of the Icelandic North Volcanic Zone (NVZ). During Holocene, two eruptive events occurred in Krafla, 1724-1729 and 1975-1984. The last eruptive episode (1975-1984), known as the "Krafla Fires", resulted in nine volcanic eruption episodes. The total area covered by the lavas from this eruptive episode is 36 km2 and the volume is about 0.25-0.3 km3. Lava morphology is related to the characteristics of the surface morphology of a lava flow after solidification. The typical morphology of lava can be used as primary basis for the classification of lava flows when rheological properties cannot be directly observed during emplacement, and also for better understanding the behavior of lava flow models. Although mapping of lava flows in the field is relatively accurate such traditional methods are time consuming, especially when the lava covers large areas such as it is the case in Krafla. Semi-automatic mapping methods that make use of satellite remote sensing data allow for an efficient and fast mapping of lava morphology. In this study, two semi-automatic methods for lava morphology classification are presented and compared using Landsat 8 (30 m spatial resolution) and SPOT-5 (10 m spatial resolution) satellite images. For assessing the classification accuracy, the results from semi-automatic mapping were compared to the respective results from visual interpretation. On the one hand, the Spectral Angle Mapper (SAM) classification method was used. With this method an image is classified according to the spectral similarity between the image reflectance spectrums and the reference reflectance spectra. SAM successfully produced detailed lava surface morphology maps. However, the pixel-based approach partly leads to a salt-and-pepper effect. On the other hand, we applied the Random Forest (RF) classification method within an object-based image analysis (OBIA) framework. This statistical classifier uses a randomly selected subset of training samples to produce multiple decision trees. For final classification of pixels or - in the present case - image objects, the average of the class assignments probability predicted by the different decision trees is used. While the resulting OBIA classification of lava morphology types shows a high coincidence with the reference data, the approach is sensitive to the segmentation-derived image objects that constitute the base units for classification. Both semi-automatic methods produce reasonable results in the Krafla lava field, even if the identification of different pahoehoe and aa types of lava appeared to be difficult. The use of satellite remote sensing data shows a high potential for fast and efficient classification of lava morphology, particularly over large and inaccessible areas.
Innovative use of self-organising maps (SOMs) in model validation.
NASA Astrophysics Data System (ADS)
Jolly, Ben; McDonald, Adrian; Coggins, Jack
2016-04-01
We present an innovative combination of techniques for validation of numerical weather prediction (NWP) output against both observations and reanalyses using two classification schemes, demonstrated by a validation of the operational NWP 'AMPS' (the Antarctic Mesoscale Prediction System). Historically, model validation techniques have centred on case studies or statistics at various time scales (yearly/seasonal/monthly). Within the past decade the latter technique has been expanded by the addition of classification schemes in place of time scales, allowing more precise analysis. Classifications are typically generated for either the model or the observations, then used to create composites for both which are compared. Our method creates and trains a single self-organising map (SOM) on both the model output and observations, which is then used to classify both datasets using the same class definitions. In addition to the standard statistics on class composites, we compare the classifications themselves between the model and the observations. To add further context to the area studied, we use the same techniques to compare the SOM classifications with regimes developed for another study to great effect. The AMPS validation study compares model output against surface observations from SNOWWEB and existing University of Wisconsin-Madison Antarctic Automatic Weather Stations (AWS) during two months over the austral summer of 2014-15. Twelve SOM classes were defined in a '4 x 3' pattern, trained on both model output and observations of 2 m wind components, then used to classify both training datasets. Simple statistics (correlation, bias and normalised root-mean-square-difference) computed for SOM class composites showed that AMPS performed well during extreme weather events, but less well during lighter winds and poorly during the more changeable conditions between either extreme. Comparison of the classification time-series showed that, while correlations were lower during lighter wind periods, AMPS actually forecast the existence of those periods well suggesting that the correlations may be unfairly low. Further investigation showed poor temporal alignment during more changeable conditions, highlighting problems AMPS has around the exact timing of events. There was also a tendency for AMPS to over-predict certain wind flow patterns at the expense of others. In order to gain a larger scale perspective, we compared our mesoscale SOM classification time-series with synoptic scale regimes developed by another study using ERA-Interim reanalysis output and k-means clustering. There was good alignment between the regimes and the observations classifications (observations/regimes), highlighting the effect of synoptic scale forcing on the area. However, comparing the alignment between observations/regimes and AMPS/regimes showed that AMPS may have problems accurately resolving the strength and location of cyclones in the Ross Sea to the north of the target area.
ERIC Educational Resources Information Center
Salton, G.
1980-01-01
Summarizes studies of pseudoclassification, a process of utilizing user relevance assessments of certain documents with respect to certain queries to build term classes designed to retrieve relevant documents. Conclusions are reached concerning the effectiveness and feasibility of constructing term classifications based on human relevance…
28 CFR 17.28 - Automatic declassification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...
28 CFR 17.28 - Automatic declassification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...
28 CFR 17.28 - Automatic declassification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...
28 CFR 17.28 - Automatic declassification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...
28 CFR 17.28 - Automatic declassification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...
Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring
NASA Astrophysics Data System (ADS)
Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo
2013-12-01
During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST software, with new detection, filtering and classification algorithms. Particularly, dedicated filtering algorithm development based on Wavelet filtering was exploited for the improvement of oil spill detection and classification. In this work we present the functionalities of the developed software and the main results in support of the developed algorithm validity.
Identifying key hospital service quality factors in online health communities.
Jung, Yuchul; Hur, Cinyoung; Jung, Dain; Kim, Minki
2015-04-07
The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. We defined social media-based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea's two biggest online portals were used to test the effectiveness of detection of social media-based key quality factors for hospitals. To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is 78% on average. Extraction and classification performance still has room for improvement, but the extraction results are applicable to more detailed analysis. Further analysis of the extracted information reveals that there are differences in the details of social media-based key quality factors for hospitals according to the regions in Korea, and the patterns of change seem to accurately reflect social events (eg, influenza epidemics). These findings could be used to provide timely information to caregivers, hospital officials, and medical officials for health care policies.
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications.
VanDam, Mark; Silbert, Noah H
2016-01-01
Automatic speech processing (ASP) has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA) system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output.
Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications
2016-01-01
Automatic speech processing (ASP) has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA) system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output. PMID:27529813
Automatic Identification of Critical Follow-Up Recommendation Sentences in Radiology Reports
Yetisgen-Yildiz, Meliha; Gunn, Martin L.; Xia, Fei; Payne, Thomas H.
2011-01-01
Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports. PMID:22195225
Automatic classification of killer whale vocalizations using dynamic time warping.
Brown, Judith C; Miller, Patrick J O
2007-08-01
A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.
Automatic identification of critical follow-up recommendation sentences in radiology reports.
Yetisgen-Yildiz, Meliha; Gunn, Martin L; Xia, Fei; Payne, Thomas H
2011-01-01
Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports.
An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
Li, Pengfei; Wang, Yu; Tian, Yu; Zhou, Tian-Shu; Li, Jing-Song
2017-03-01
In recent years, an increasing number of people have become concerned about their health. Most chronic diseases are related to lifestyle, and daily activity records can be used as an important indicator of health. Specifically, using advanced technology to automatically monitor actual activities can effectively prevent and manage chronic diseases. The data used in this paper were obtained from acceleration sensors and gyroscopes integrated in smartphones. We designed an efficient Adaboost-Stump running on a smartphone to classify five common activities: cycling, running, sitting, standing, and walking and achieved a satisfactory classification accuracy of 98%. We designed an online learning method, and the classification model requires continuous training with actual data. The parameters in the model then become increasingly fitted to the specific user, which allows the classification accuracy to reach 95% under different use environments. In addition, this paper also utilized the OpenCL framework to design the program in parallel. This process can enhance the computing efficiency approximately ninefold.
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...
2015-10-09
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
NASA Astrophysics Data System (ADS)
Postadjian, T.; Le Bris, A.; Sahbi, H.; Mallet, C.
2017-05-01
Semantic classification is a core remote sensing task as it provides the fundamental input for land-cover map generation. The very recent literature has shown the superior performance of deep convolutional neural networks (DCNN) for many classification tasks including the automatic analysis of Very High Spatial Resolution (VHR) geospatial images. Most of the recent initiatives have focused on very high discrimination capacity combined with accurate object boundary retrieval. Therefore, current architectures are perfectly tailored for urban areas over restricted areas but not designed for large-scale purposes. This paper presents an end-to-end automatic processing chain, based on DCNNs, that aims at performing large-scale classification of VHR satellite images (here SPOT 6/7). Since this work assesses, through various experiments, the potential of DCNNs for country-scale VHR land-cover map generation, a simple yet effective architecture is proposed, efficiently discriminating the main classes of interest (namely buildings, roads, water, crops, vegetated areas) by exploiting existing VHR land-cover maps for training.
Knowledge Representation Of CT Scans Of The Head
NASA Astrophysics Data System (ADS)
Ackerman, Laurens V.; Burke, M. W.; Rada, Roy
1984-06-01
We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.
System steganalysis with automatic fingerprint extraction
Sloan, Tom; Hernandez-Castro, Julio; Isasi, Pedro
2018-01-01
This paper tries to tackle the modern challenge of practical steganalysis over large data by presenting a novel approach whose aim is to perform with perfect accuracy and in a completely automatic manner. The objective is to detect changes introduced by the steganographic process in those data objects, including signatures related to the tools being used. Our approach achieves this by first extracting reliable regularities by analyzing pairs of modified and unmodified data objects; then, combines these findings by creating general patterns present on data used for training. Finally, we construct a Naive Bayes model that is used to perform classification, and operates on attributes extracted using the aforementioned patterns. This technique has been be applied for different steganographic tools that operate in media files of several types. We are able to replicate or improve on a number or previously published results, but more importantly, we in addition present new steganalytic findings over a number of popular tools that had no previous known attacks. PMID:29694366
Prick test: evolution towards automated reading.
Justo, X; Díaz, I; Gil, J J; Gastaminza, G
2016-08-01
The prick test is one of the most common medical methods for diagnosing allergies, and it has been carried out in a similar and laborious manner over many decades. In an attempt to standardize the reading of the test, many researchers have tried to automate the process of measuring the allergic reactions found by developing systems and algorithms based on multiple technologies. This work reviews the techniques for automatic wheal measurement with the aim of pointing out their advantages and disadvantages and the progress in the field. Furthermore, it provides a classification scheme for the different technologies applied. The works discussed herein provide evidence that significant challenges still exist for the development of an automatic wheal measurement system that not only helps allergists in their medical practice but also allows for the standardization of the reading and data exchange. As such, the aim of the work was to serve as guideline for the development of a proper and feasible system. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reincke, Ulrich; Michelmann, Hans Wilhelm
2009-01-01
Background Both healthy and sick people increasingly use electronic media to obtain medical information and advice. For example, Internet users may send requests to Web-based expert forums, or so-called “ask the doctor” services. Objective To automatically classify lay requests to an Internet medical expert forum using a combination of different text-mining strategies. Methods We first manually classified a sample of 988 requests directed to a involuntary childlessness forum on the German website “Rund ums Baby” (“Everything about Babies”) into one or more of 38 categories belonging to two dimensions (“subject matter” and “expectations”). After creating start and synonym lists, we calculated the average Cramer’s V statistic for the association of each word with each category. We also used principle component analysis and singular value decomposition as further text-mining strategies. With these measures we trained regression models and determined, on the basis of best regression models, for any request the probability of belonging to each of the 38 different categories, with a cutoff of 50%. Recall and precision of a test sample were calculated as a measure of quality for the automatic classification. Results According to the manual classification of 988 documents, 102 (10%) documents fell into the category “in vitro fertilization (IVF),” 81 (8%) into the category “ovulation,” 79 (8%) into “cycle,” and 57 (6%) into “semen analysis.” These were the four most frequent categories in the subject matter dimension (consisting of 32 categories). The expectation dimension comprised six categories; we classified 533 documents (54%) as “general information” and 351 (36%) as a wish for “treatment recommendations.” The generation of indicator variables based on the chi-square analysis and Cramer’s V proved to be the best approach for automatic classification in about half of the categories. In combination with the two other approaches, 100% precision and 100% recall were realized in 18 (47%) out of the 38 categories in the test sample. For 35 (92%) categories, precision and recall were better than 80%. For some categories, the input variables (ie, “words”) also included variables from other categories, most often with a negative sign. For example, absence of words predictive for “menstruation” was a strong indicator for the category “pregnancy test.” Conclusions Our approach suggests a way of automatically classifying and analyzing unstructured information in Internet expert forums. The technique can perform a preliminary categorization of new requests and help Internet medical experts to better handle the mass of information and to give professional feedback. PMID:19632978
Knowledge discovery with classification rules in a cardiovascular dataset.
Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan
2005-12-01
In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.
Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.
Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R
2018-01-01
Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.
Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition
NASA Astrophysics Data System (ADS)
Buciu, Ioan; Pitas, Ioannis
Two main theories exist with respect to face encoding and representation in the human visual system (HVS). The first one refers to the dense (holistic) representation of the face, where faces have "holon"-like appearance. The second one claims that a more appropriate face representation is given by a sparse code, where only a small fraction of the neural cells corresponding to face encoding is activated. Theoretical and experimental evidence suggest that the HVS performs face analysis (encoding, storing, face recognition, facial expression recognition) in a structured and hierarchical way, where both representations have their own contribution and goal. According to neuropsychological experiments, it seems that encoding for face recognition, relies on holistic image representation, while a sparse image representation is used for facial expression analysis and classification. From the computer vision perspective, the techniques developed for automatic face and facial expression recognition fall into the same two representation types. Like in Neuroscience, the techniques which perform better for face recognition yield a holistic image representation, while those techniques suitable for facial expression recognition use a sparse or local image representation. The proposed mathematical models of image formation and encoding try to simulate the efficient storing, organization and coding of data in the human cortex. This is equivalent with embedding constraints in the model design regarding dimensionality reduction, redundant information minimization, mutual information minimization, non-negativity constraints, class information, etc. The presented techniques are applied as a feature extraction step followed by a classification method, which also heavily influences the recognition results.
GMM-based speaker age and gender classification in Czech and Slovak
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Matoušek, Jindřich
2017-01-01
The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.
The decision tree approach to classification
NASA Technical Reports Server (NTRS)
Wu, C.; Landgrebe, D. A.; Swain, P. H.
1975-01-01
A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.
Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data
NASA Astrophysics Data System (ADS)
Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.
2016-06-01
Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.
Automated aural classification used for inter-species discrimination of cetaceans.
Binder, Carolyn M; Hines, Paul C
2014-04-01
Passive acoustic methods are in widespread use to detect and classify cetacean species; however, passive acoustic systems often suffer from large false detection rates resulting from numerous transient sources. To reduce the acoustic analyst workload, automatic recognition methods may be implemented in a two-stage process. First, a general automatic detector is implemented that produces many detections to ensure cetacean presence is noted. Then an automatic classifier is used to significantly reduce the number of false detections and classify the cetacean species. This process requires development of a robust classifier capable of performing inter-species classification. Because human analysts can aurally discriminate species, an automated aural classifier that uses perceptual signal features was tested on a cetacean data set. The classifier successfully discriminated between four species of cetaceans-bowhead, humpback, North Atlantic right, and sperm whales-with 85% accuracy. It also performed well (100% accuracy) for discriminating sperm whale clicks from right whale gunshots. An accuracy of 92% and area under the receiver operating characteristic curve of 0.97 were obtained for the relatively challenging bowhead and humpback recognition case. These results demonstrated that the perceptual features employed by the aural classifier provided powerful discrimination cues for inter-species classification of cetaceans.
Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images
NASA Astrophysics Data System (ADS)
Wang, Liming; Zhang, Kai; Liu, Xiyang; Long, Erping; Jiang, Jiewei; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Li, Wangting; Lin, Haotian
2017-01-01
There are many image classification methods, but it remains unclear which methods are most helpful for analyzing and intelligently identifying ophthalmic images. We select representative slit-lamp images which show the complexity of ocular images as research material to compare image classification algorithms for diagnosing ophthalmic diseases. To facilitate this study, some feature extraction algorithms and classifiers are combined to automatic diagnose pediatric cataract with same dataset and then their performance are compared using multiple criteria. This comparative study reveals the general characteristics of the existing methods for automatic identification of ophthalmic images and provides new insights into the strengths and shortcomings of these methods. The relevant methods (local binary pattern +SVMs, wavelet transformation +SVMs) which achieve an average accuracy of 87% and can be adopted in specific situations to aid doctors in preliminarily disease screening. Furthermore, some methods requiring fewer computational resources and less time could be applied in remote places or mobile devices to assist individuals in understanding the condition of their body. In addition, it would be helpful to accelerate the development of innovative approaches and to apply these methods to assist doctors in diagnosing ophthalmic disease.
Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer
2008-01-01
Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.
NASA Astrophysics Data System (ADS)
Kukunda, Collins B.; Duque-Lazo, Joaquín; González-Ferreiro, Eduardo; Thaden, Hauke; Kleinn, Christoph
2018-03-01
Distinguishing tree species is relevant in many contexts of remote sensing assisted forest inventory. Accurate tree species maps support management and conservation planning, pest and disease control and biomass estimation. This study evaluated the performance of applying ensemble techniques with the goal of automatically distinguishing Pinus sylvestris L. and Pinus uncinata Mill. Ex Mirb within a 1.3 km2 mountainous area in Barcelonnette (France). Three modelling schemes were examined, based on: (1) high-density LiDAR data (160 returns m-2), (2) Worldview-2 multispectral imagery, and (3) Worldview-2 and LiDAR in combination. Variables related to the crown structure and height of individual trees were extracted from the normalized LiDAR point cloud at individual-tree level, after performing individual tree crown (ITC) delineation. Vegetation indices and the Haralick texture indices were derived from Worldview-2 images and served as independent spectral variables. Selection of the best predictor subset was done after a comparison of three variable selection procedures: (1) Random Forests with cross validation (AUCRFcv), (2) Akaike Information Criterion (AIC) and (3) Bayesian Information Criterion (BIC). To classify the species, 9 regression techniques were combined using ensemble models. Predictions were evaluated using cross validation and an independent dataset. Integration of datasets and models improved individual tree species classification (True Skills Statistic, TSS; from 0.67 to 0.81) over individual techniques and maintained strong predictive power (Relative Operating Characteristic, ROC = 0.91). Assemblage of regression models and integration of the datasets provided more reliable species distribution maps and associated tree-scale mapping uncertainties. Our study highlights the potential of model and data assemblage at improving species classifications needed in present-day forest planning and management.
NASA Astrophysics Data System (ADS)
Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad
2014-12-01
Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.
Automatic counting and classification of bacterial colonies using hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictu...
Hybrid Automatic Building Interpretation System
NASA Astrophysics Data System (ADS)
Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.
2011-09-01
HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.
Automatic Web-based Calibration of Network-Capable Shipboard Sensors
2007-09-01
Server, Java , Applet, and Servlet . 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE...49 b. Sensor Applet...........................................................................49 3. Java Servlet ...Table 1. Required System Environment Variables for Java Servlet Development. ......25 Table 2. Payload Data Format of the POST Requests from
A Framework for Automated Marmoset Vocalization Detection And Classification
2016-09-08
recent push to automate vocalization monitoring in a range of mammals. Such efforts have been used to classify bird songs [11], African elephants [12... Elephant ( Loxodonta africana ) Vocalizations,” vol. 117, no. 2, pp. 956–963, 2005. [13] J. C. Brown, “Automatic classification of killer whale
AstroCV: Astronomy computer vision library
NASA Astrophysics Data System (ADS)
González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.
2018-04-01
AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.
NASA Astrophysics Data System (ADS)
Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard
2015-03-01
The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.
Fuzzy C-means classification for corrosion evolution of steel images
NASA Astrophysics Data System (ADS)
Trujillo, Maite; Sadki, Mustapha
2004-05-01
An unavoidable problem of metal structures is their exposure to rust degradation during their operational life. Thus, the surfaces need to be assessed in order to avoid potential catastrophes. There is considerable interest in the use of patch repair strategies which minimize the project costs. However, to operate such strategies with confidence in the long useful life of the repair, it is essential that the condition of the existing coatings and the steel substrate can be accurately quantified and classified. This paper describes the application of fuzzy set theory for steel surfaces classification according to the steel rust time. We propose a semi-automatic technique to obtain image clustering using the Fuzzy C-means (FCM) algorithm and we analyze two kinds of data to study the classification performance. Firstly, we investigate the use of raw images" pixels without any pre-processing methods and neighborhood pixels. Secondly, we apply Gaussian noise to the images with different standard deviation to study the FCM method tolerance to Gaussian noise. The noisy images simulate the possible perturbations of the images due to the weather or rust deposits in the steel surfaces during typical on-site acquisition procedures
Deep learning based beat event detection in action movie franchises
NASA Astrophysics Data System (ADS)
Ejaz, N.; Khan, U. A.; Martínez-del-Amor, M. A.; Sparenberg, H.
2018-04-01
Automatic understanding and interpretation of movies can be used in a variety of ways to semantically manage the massive volumes of movies data. "Action Movie Franchises" dataset is a collection of twenty Hollywood action movies from five famous franchises with ground truth annotations at shot and beat level of each movie. In this dataset, the annotations are provided for eleven semantic beat categories. In this work, we propose a deep learning based method to classify shots and beat-events on this dataset. The training dataset for each of the eleven beat categories is developed and then a Convolution Neural Network is trained. After finding the shot boundaries, key frames are extracted for each shot and then three classification labels are assigned to each key frame. The classification labels for each of the key frames in a particular shot are then used to assign a unique label to each shot. A simple sliding window based method is then used to group adjacent shots having the same label in order to find a particular beat event. The results of beat event classification are presented based on criteria of precision, recall, and F-measure. The results are compared with the existing technique and significant improvements are recorded.
Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei
2012-10-01
To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.
Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei
2012-01-01
Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675
Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R
2015-05-01
The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.
An optimal transportation approach for nuclear structure-based pathology.
Wang, Wei; Ozolek, John A; Slepčev, Dejan; Lee, Ann B; Chen, Cheng; Rohde, Gustavo K
2011-03-01
Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data. We describe a method to characterize and contrast the distribution of nuclear structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on quantifying chromatin morphology in different groups of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and multidimensional scaling techniques. We show that the optimal transportation metric is able to measure relevant biological information as it enables automatic determination of the class (e.g., normal versus cancer) of a set of nuclei. We show that the classification accuracies obtained using this metric are, on average, as good or better than those obtained utilizing a set of previously described numerical features. We apply our methods to two diagnostic challenges for surgical pathology: one in the liver and one in the thyroid. Results automatically computed using this technique show potentially biologically relevant differences in nuclear structure in liver and thyroid cancers.
New approach for cognitive analysis and understanding of medical patterns and visualizations
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Tadeusiewicz, Ryszard
2003-11-01
This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.
An optimal transportation approach for nuclear structure-based pathology
Wang, Wei; Ozolek, John A.; Slepčev, Dejan; Lee, Ann B.; Chen, Cheng; Rohde, Gustavo K.
2012-01-01
Nuclear morphology and structure as visualized from histopathology microscopy images can yield important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative information about nuclear structure and morphology, however, is currently not available for many diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences from image data. We describe a method to characterize and contrast the distribution of nuclear structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on quantifying chromatin morphology in different groups of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and multidimensional scaling techniques. We show that the optimal transportation metric is able to measure relevant biological information as it enables automatic determination of the class (e.g. normal vs. cancer) of a set of nuclei. We show that the classification accuracies obtained using this metric are, on average, as good or better than those obtained utilizing a set of previously described numerical features. We apply our methods to two diagnostic challenges for surgical pathology: one in the liver and one in the thyroid. Results automatically computed using this technique show potentially biologically relevant differences in nuclear structure in liver and thyroid cancers. PMID:20977984
Multi-label literature classification based on the Gene Ontology graph.
Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua
2008-12-08
The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.
A classification model of Hyperion image base on SAM combined decision tree
NASA Astrophysics Data System (ADS)
Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin
2009-10-01
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.
Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn
2016-01-01
We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert
2015-01-01
Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591
Infinite hidden conditional random fields for human behavior analysis.
Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja
2013-01-01
Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs--chosen via cross-validation--for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Chen, Ting; Rangarajan, Anand; Vemuri, Baba C.
2010-01-01
This paper presents a novel classification via aggregated regression algorithm – dubbed CAVIAR – and its application to the OASIS MRI brain image database. The CAVIAR algorithm simultaneously combines a set of weak learners based on the assumption that the weight combination for the final strong hypothesis in CAVIAR depends on both the weak learners and the training data. A regularization scheme using the nearest neighbor method is imposed in the testing stage to avoid overfitting. A closed form solution to the cost function is derived for this algorithm. We use a novel feature – the histogram of the deformation field between the MRI brain scan and the atlas which captures the structural changes in the scan with respect to the atlas brain – and this allows us to automatically discriminate between various classes within OASIS [1] using CAVIAR. We empirically show that CAVIAR significantly increases the performance of the weak classifiers by showcasing the performance of our technique on OASIS. PMID:21151847
Chen, Ting; Rangarajan, Anand; Vemuri, Baba C
2010-04-14
This paper presents a novel classification via aggregated regression algorithm - dubbed CAVIAR - and its application to the OASIS MRI brain image database. The CAVIAR algorithm simultaneously combines a set of weak learners based on the assumption that the weight combination for the final strong hypothesis in CAVIAR depends on both the weak learners and the training data. A regularization scheme using the nearest neighbor method is imposed in the testing stage to avoid overfitting. A closed form solution to the cost function is derived for this algorithm. We use a novel feature - the histogram of the deformation field between the MRI brain scan and the atlas which captures the structural changes in the scan with respect to the atlas brain - and this allows us to automatically discriminate between various classes within OASIS [1] using CAVIAR. We empirically show that CAVIAR significantly increases the performance of the weak classifiers by showcasing the performance of our technique on OASIS.
Al-Masni, Mohammed A; Al-Antari, Mugahed A; Park, Jeong-Min; Gi, Geon; Kim, Tae-Yeon; Rivera, Patricio; Valarezo, Edwin; Choi, Mun-Taek; Han, Seung-Moo; Kim, Tae-Seong
2018-04-01
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Automatic detection and classification of obstacles with applications in autonomous mobile robots
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.
2016-04-01
Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.
Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials.
Finke, Mareike; Billinger, Martin; Büchner, Andreas
Cochlear implants (CIs) restore hearing to the profoundly deaf by direct electrical stimulation of the auditory nerve. To provide an optimal electrical stimulation pattern the CI must be individually fitted to each CI user. To date, CI fitting is primarily based on subjective feedback from the user. However, not all CI users are able to provide such feedback, for example, small children. This study explores the possibility of using the electroencephalogram (EEG) to objectively determine if CI users are able to hear differences in tones presented to them, which has potential applications in CI fitting or closed loop systems. Deviant and standard stimuli were presented to 12 CI users in an active auditory oddball paradigm. The EEG was recorded in two sessions and classification of the EEG data was performed with shrinkage linear discriminant analysis. Also, the impact of CI artifact removal on classification performance and the possibility to reuse a trained classifier in future sessions were evaluated. Overall, classification performance was above chance level for all participants although performance varied considerably between participants. Also, artifacts were successfully removed from the EEG without impairing classification performance. Finally, reuse of the classifier causes only a small loss in classification performance. Our data provide first evidence that EEG can be automatically classified on single-trial basis in CI users. Despite the slightly poorer classification performance over sessions, classifier and CI artifact correction appear stable over successive sessions. Thus, classifier and artifact correction weights can be reused without repeating the set-up procedure in every session, which makes the technique easier applicable. With our present data, we can show successful classification of event-related cortical potential patterns in CI users. In the future, this has the potential to objectify and automate parts of CI fitting procedures.
NASA Astrophysics Data System (ADS)
Ahmed, H. O. A.; Wong, M. L. D.; Nandi, A. K.
2018-01-01
Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.
Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs
NASA Astrophysics Data System (ADS)
Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.
2018-05-01
We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.
Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey
Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2015-01-01
Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751
A smart technique for attendance system to recognize faces through parallelism
NASA Astrophysics Data System (ADS)
Prabhavathi, B.; Tanuja, V.; Madhu Viswanatham, V.; Rajashekhara Babu, M.
2017-11-01
Major part of recognising a person is face with the help of image processing techniques we can exploit the physical features of a person. In the old approach method that is used in schools and colleges it is there that the professor calls the student name and then the attendance for the students marked. Here in paper want to deviate from the old approach and go with the new approach by using techniques that are there in image processing. In this paper we presenting spontaneous presence for students in classroom. At first classroom image has been in use and after that image is kept in data record. For the images that are stored in the database we apply system algorithm which includes steps such as, histogram classification, noise removal, face detection and face recognition methods. So by using these steps we detect the faces and then compare it with the database. The attendance gets marked automatically if the system recognizes the faces.
Multi-stage robust scheme for citrus identification from high resolution airborne images
NASA Astrophysics Data System (ADS)
Amorós-López, Julia; Izquierdo Verdiguier, Emma; Gómez-Chova, Luis; Muñoz-Marí, Jordi; Zoilo Rodríguez-Barreiro, Jorge; Camps-Valls, Gustavo; Calpe-Maravilla, Javier
2008-10-01
Identification of land cover types is one of the most critical activities in remote sensing. Nowadays, managing land resources by using remote sensing techniques is becoming a common procedure to speed up the process while reducing costs. However, data analysis procedures should satisfy the accuracy figures demanded by institutions and governments for further administrative actions. This paper presents a methodological scheme to update the citrus Geographical Information Systems (GIS) of the Comunidad Valenciana autonomous region, Spain). The proposed approach introduces a multi-stage automatic scheme to reduce visual photointerpretation and ground validation tasks. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution (VHR) images (0.5m) acquired in the visible and near infrared. Next, several automatic classifiers (decision trees, multilayer perceptron, and support vector machines) are trained and combined to improve the final accuracy of the results. The proposed strategy fulfills the high accuracy demanded by policy makers by means of combining automatic classification methods with visual photointerpretation available resources. A level of confidence based on the agreement between classifiers allows us an effective management by fixing the quantity of parcels to be reviewed. The proposed methodology can be applied to similar problems and applications.
Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.
Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades
2015-01-01
DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.
Automatic identification of artifacts in electrodermal activity data.
Taylor, Sara; Jaques, Natasha; Chen, Weixuan; Fedor, Szymon; Sano, Akane; Picard, Rosalind
2015-01-01
Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.
Satellite image based methods for fuels maps updating
NASA Astrophysics Data System (ADS)
Alonso-Benito, Alfonso; Hernandez-Leal, Pedro A.; Arbelo, Manuel; Gonzalez-Calvo, Alejandro; Moreno-Ruiz, Jose A.; Garcia-Lazaro, Jose R.
2016-10-01
Regular updating of fuels maps is important for forest fire management. Nevertheless complex and time consuming field work is usually necessary for this purpose, which prevents a more frequent update. That is why the assessment of the usefulness of satellite data and the development of remote sensing techniques that enable the automatic updating of these maps, is of vital interest. In this work, we have tested the use of the spectral bands of OLI (Operational Land Imager) sensor on board Landsat 8 satellite, for updating the fuels map of El Hierro Island (Spain). From previously digitized map, a set of 200 reference plots for different fuel types was created. A 50% of the plots were randomly used as a training set and the rest were considered for validation. Six supervised and 2 unsupervised classification methods were applied, considering two levels of detail. A first level with only 5 classes (Meadow, Brushwood, Undergrowth canopy cover >50%, Undergrowth canopy cover <15%, and Xeric formations), and the second one containing 19 fuel types. The level 1 classification methods yielded an overall accuracy ranging from 44% for Parellelepided to an 84% for Maximun Likelihood. Meanwhile, level 2 results showed at best, an unacceptable overall accuracy of 34%, which prevents the use of this data for such a detailed characterization. Anyway it has been demonstrated that in some conditions, images of medium spatial resolution, like Landsat 8-OLI, could be a valid tool for an automatic upgrade of fuels maps, minimizing costs and complementing traditional methodologies.
Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets
ERIC Educational Resources Information Center
Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.
2012-01-01
This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…
Land use surveys by means of automatic interpretation of LANDSAT system data
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.
1981-01-01
Analyses for seven land-use classes are presented. The classes are: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation, and natural vegetation. The automatic classification of LANDSAT MSS data using a maximum likelihood algorithm shows a 39% average error of emission and a 3.45 error of commission for the seven classes.
Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches
Hauschild, Anne-Christin; Kopczynski, Dominik; D’Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan
2013-01-01
Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME). We manually generated a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors’ results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications. PMID:24957992
Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches.
Hauschild, Anne-Christin; Kopczynski, Dominik; D'Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan
2013-04-16
Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME).We manually generated Metabolites 2013, 3 278 a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors' results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications.