Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography
Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji
2013-01-01
OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2008-03-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
2009-06-01
131 cases with 131 biopsy proven masses, of which 27 were malignant and 104 benign. The true locations of the masses were identified by an experi- enced ...two acquisitions would cause differ- ences in the subtlety of the masses on the FFDMs and SFMs. However, assuming that the differences are ran- dom... Lado , M. Souto, and J. J. Vidal, “Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms,” Med. Phys. 25, 957–964
2007-06-01
the masses were identified by an experi- enced Mammography Quality Standards Act (MQSA) radiologist. The no-mass data set contained 98 cases. The time...force, and the difference in time between the two acquisitions would cause differ- ences in the subtlety of the masses on the FFDMs and SFMs. However...images," Medical Physics 18, 955-963 (1991). 20A. J. Mendez, P. G. Tahoces, M. J. Lado , M. Souto, and J. J. Vidal, "Computer-aided diagnosis: Automatic
Computer-aided US diagnosis of breast lesions by using cell-based contour grouping.
Cheng, Jie-Zhi; Chou, Yi-Hong; Huang, Chiun-Sheng; Chang, Yeun-Chung; Tiu, Chui-Mei; Chen, Kuei-Wu; Chen, Chung-Ming
2010-06-01
To develop a computer-aided diagnostic algorithm with automatic boundary delineation for differential diagnosis of benign and malignant breast lesions at ultrasonography (US) and investigate the effect of boundary quality on the performance of a computer-aided diagnostic algorithm. This was an institutional review board-approved retrospective study with waiver of informed consent. A cell-based contour grouping (CBCG) segmentation algorithm was used to delineate the lesion boundaries automatically. Seven morphologic features were extracted. The classifier was a logistic regression function. Five hundred twenty breast US scans were obtained from 520 subjects (age range, 15-89 years), including 275 benign (mean size, 15 mm; range, 5-35 mm) and 245 malignant (mean size, 18 mm; range, 8-29 mm) lesions. The newly developed computer-aided diagnostic algorithm was evaluated on the basis of boundary quality and differentiation performance. The segmentation algorithms and features in two conventional computer-aided diagnostic algorithms were used for comparative study. The CBCG-generated boundaries were shown to be comparable with the manually delineated boundaries. The area under the receiver operating characteristic curve (AUC) and differentiation accuracy were 0.968 +/- 0.010 and 93.1% +/- 0.7, respectively, for all 520 breast lesions. At the 5% significance level, the newly developed algorithm was shown to be superior to the use of the boundaries and features of the two conventional computer-aided diagnostic algorithms in terms of AUC (0.974 +/- 0.007 versus 0.890 +/- 0.008 and 0.788 +/- 0.024, respectively). The newly developed computer-aided diagnostic algorithm that used a CBCG segmentation method to measure boundaries achieved a high differentiation performance. Copyright RSNA, 2010
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou
2006-03-01
Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki
2009-02-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Singh, Anushikha; Dutta, Malay Kishore
2017-12-01
The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Khelassi, Abdeldjalil
2014-01-01
Active research is being conducted to determine the prognosis for breast cancer. However, the uncertainty is a major obstacle in this domain of medical research. In that context, explanation-aware computing has the potential for providing meaningful interactions between complex medical applications and users, which would ensure a significant reduction of uncertainty and risks. This paper presents an explanation-aware agent, supported by Intensive Knowledge-Distributed Case-Based Reasoning Classifier (IK-DCBRC), to reduce the uncertainty and risks associated with the diagnosis of breast cancer. A meaningful explanation is generated by inferring from a rule-based system according to the level of abstraction and the reasoning traces. The computer-aided detection is conducted by IK-DCBRC, which is a multi-agent system that applies the case-based reasoning paradigm and a fuzzy similarity function for the automatic prognosis by the class of breast tumors, i.e. malignant or benign, from a pattern of cytological images. A meaningful interaction between the physician and the computer-aided diagnosis system, IK-DCBRC, is achieved via an intelligent agent. The physician can observe the trace of reasoning, terms, justifications, and the strategy to be used to decrease the risks and doubts associated with the automatic diagnosis. The capability of the system we have developed was proven by an example in which conflicts were clarified and transparency was ensured. The explanation agent ensures the transparency of the automatic diagnosis of breast cancer supported by IK-DCBRC, which decreases uncertainty and risks and detects some conflicts.
NASA Astrophysics Data System (ADS)
Wu, T. Y.; Lin, S. F.
2013-10-01
Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.
Computer-aided head film analysis: the University of California San Francisco method.
Baumrind, S; Miller, D M
1980-07-01
Computer technology is already assuming an important role in the management of orthodontic practices. The next 10 years are likely to see expansion in computer usage into the areas of diagnosis, treatment planning, and treatment-record keeping. In the areas of diagnosis and treatment planning, one of the first problems to be attacked will be the automation of head film analysis. The problems of constructing computer-aided systems for this purpose are considered herein in the light of the authors' 10 years of experience in developing a similar system for research purposes. The need for building in methods for automatic detection and correction of gross errors is discussed and the authors' method for doing so is presented. The construction of a rudimentary machine-readable data base for research and clinical purposes is described.
Automatic glaucoma diagnosis through medical imaging informatics.
Liu, Jiang; Zhang, Zhuo; Wong, Damon Wing Kee; Xu, Yanwu; Yin, Fengshou; Cheng, Jun; Tan, Ngan Meng; Kwoh, Chee Keong; Xu, Dong; Tham, Yih Chung; Aung, Tin; Wong, Tien Yin
2013-01-01
Computer-aided diagnosis for screening utilizes computer-based analytical methodologies to process patient information. Glaucoma is the leading irreversible cause of blindness. Due to the lack of an effective and standard screening practice, more than 50% of the cases are undiagnosed, which prevents the early treatment of the disease. To design an automatic glaucoma diagnosis architecture automatic glaucoma diagnosis through medical imaging informatics (AGLAIA-MII) that combines patient personal data, medical retinal fundus image, and patient's genome information for screening. 2258 cases from a population study were used to evaluate the screening software. These cases were attributed with patient personal data, retinal images and quality controlled genome data. Utilizing the multiple kernel learning-based classifier, AGLAIA-MII, combined patient personal data, major image features, and important genome single nucleotide polymorphism (SNP) features. Receiver operating characteristic curves were plotted to compare AGLAIA-MII's performance with classifiers using patient personal data, images, and genome SNP separately. AGLAIA-MII was able to achieve an area under curve value of 0.866, better than 0.551, 0.722 and 0.810 by the individual personal data, image and genome information components, respectively. AGLAIA-MII also demonstrated a substantial improvement over the current glaucoma screening approach based on intraocular pressure. AGLAIA-MII demonstrates for the first time the capability of integrating patients' personal data, medical retinal image and genome information for automatic glaucoma diagnosis and screening in a large dataset from a population study. It paves the way for a holistic approach for automatic objective glaucoma diagnosis and screening.
Jiang, Jiewei; Liu, Xiyang; Zhang, Kai; Long, Erping; Wang, Liming; Li, Wangting; Liu, Lin; Wang, Shuai; Zhu, Mingmin; Cui, Jiangtao; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Wang, Jinghui; Lin, Haotian
2017-11-21
Ocular images play an essential role in ophthalmological diagnoses. Having an imbalanced dataset is an inevitable issue in automated ocular diseases diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of severe patients during the classification task. Exploring an effective computer-aided diagnostic method to deal with imbalanced ophthalmological dataset is crucial. In this paper, we develop an effective cost-sensitive deep residual convolutional neural network (CS-ResCNN) classifier to diagnose ophthalmic diseases using retro-illumination images. First, the regions of interest (crystalline lens) are automatically identified via twice-applied Canny detection and Hough transformation. Then, the localized zones are fed into the CS-ResCNN to extract high-level features for subsequent use in automatic diagnosis. Second, the impacts of cost factors on the CS-ResCNN are further analyzed using a grid-search procedure to verify that our proposed system is robust and efficient. Qualitative analyses and quantitative experimental results demonstrate that our proposed method outperforms other conventional approaches and offers exceptional mean accuracy (92.24%), specificity (93.19%), sensitivity (89.66%) and AUC (97.11%) results. Moreover, the sensitivity of the CS-ResCNN is enhanced by over 13.6% compared to the native CNN method. Our study provides a practical strategy for addressing imbalanced ophthalmological datasets and has the potential to be applied to other medical images. The developed and deployed CS-ResCNN could serve as computer-aided diagnosis software for ophthalmologists in clinical application.
A deep-learning based automatic pulmonary nodule detection system
NASA Astrophysics Data System (ADS)
Zhao, Yiyuan; Zhao, Liang; Yan, Zhennan; Wolf, Matthias; Zhan, Yiqiang
2018-02-01
Lung cancer is the deadliest cancer worldwide. Early detection of lung cancer is a promising way to lower the risk of dying. Accurate pulmonary nodule detection in computed tomography (CT) images is crucial for early diagnosis of lung cancer. The development of computer-aided detection (CAD) system of pulmonary nodules contributes to making the CT analysis more accurate and with more efficiency. Recent studies from other groups have been focusing on lung cancer diagnosis CAD system by detecting medium to large nodules. However, to fully investigate the relevance between nodule features and cancer diagnosis, a CAD that is capable of detecting nodules with all sizes is needed. In this paper, we present a deep-learning based automatic all size pulmonary nodule detection system by cascading two artificial neural networks. We firstly use a U-net like 3D network to generate nodule candidates from CT images. Then, we use another 3D neural network to refine the locations of the nodule candidates generated from the previous subsystem. With the second sub-system, we bring the nodule candidates closer to the center of the ground truth nodule locations. We evaluate our system on a public CT dataset provided by the Lung Nodule Analysis (LUNA) 2016 grand challenge. The performance on the testing dataset shows that our system achieves 90% sensitivity with an average of 4 false positives per scan. This indicates that our system can be an aid for automatic nodule detection, which is beneficial for lung cancer diagnosis.
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter
2000-06-01
We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.
Cavalli, Fabio; Lusnig, Luca; Trentin, Edmondo
2017-05-01
Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.
Optic cup segmentation from fundus images for glaucoma diagnosis.
Hu, Man; Zhu, Chenghao; Li, Xiaoxing; Xu, Yongli
2017-01-02
Glaucoma is a serious disease that can cause complete, permanent blindness, and its early diagnosis is very difficult. In recent years, computer-aided screening and diagnosis of glaucoma has made considerable progress. The optic cup segmentation from fundus images is an extremely important part for the computer-aided screening and diagnosis of glaucoma. This paper presented an automatic optic cup segmentation method that used both color difference information and vessel bends information from fundus images to determine the optic cup boundary. During the implementation of this algorithm, not only were the locations of the 2 types of information points used, but also the confidences of the information points were evaluated. In this way, the information points with higher confidence levels contributed more to the determination of the final cup boundary. The proposed method was evaluated using a public database for fundus images. The experimental results demonstrated that the cup boundaries obtained by the proposed method were more consistent than existing methods with the results obtained by ophthalmologists.
Optic cup segmentation from fundus images for glaucoma diagnosis
Hu, Man; Zhu, Chenghao; Li, Xiaoxing; Xu, Yongli
2017-01-01
ABSTRACT Glaucoma is a serious disease that can cause complete, permanent blindness, and its early diagnosis is very difficult. In recent years, computer-aided screening and diagnosis of glaucoma has made considerable progress. The optic cup segmentation from fundus images is an extremely important part for the computer-aided screening and diagnosis of glaucoma. This paper presented an automatic optic cup segmentation method that used both color difference information and vessel bends information from fundus images to determine the optic cup boundary. During the implementation of this algorithm, not only were the locations of the 2 types of information points used, but also the confidences of the information points were evaluated. In this way, the information points with higher confidence levels contributed more to the determination of the final cup boundary. The proposed method was evaluated using a public database for fundus images. The experimental results demonstrated that the cup boundaries obtained by the proposed method were more consistent than existing methods with the results obtained by ophthalmologists. PMID:27764542
Automatic segmentation of relevant structures in DCE MR mammograms
NASA Astrophysics Data System (ADS)
Koenig, Matthias; Laue, Hendrik; Boehler, Tobias; Peitgen, Heinz-Otto
2007-03-01
The automatic segmentation of relevant structures such as skin edge, chest wall, or nipple in dynamic contrast enhanced MR imaging (DCE MRI) of the breast provides additional information for computer aided diagnosis (CAD) systems. Automatic reporting using BI-RADS criteria benefits of information about location of those structures. Lesion positions can be automatically described relatively to such reference structures for reporting purposes. Furthermore, this information can assist data reduction for computation expensive preprocessing such as registration, or for visualization of only the segments of current interest. In this paper, a novel automatic method for determining the air-breast boundary resp. skin edge, for approximation of the chest wall, and locating of the nipples is presented. The method consists of several steps which are built on top of each other. Automatic threshold computation leads to the air-breast boundary which is then analyzed to determine the location of the nipple. Finally, results of both steps are starting point for approximation of the chest wall. The proposed process was evaluated on a large data set of DCE MRI recorded by T1 sequences and yielded reasonable results in all cases.
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter
2001-05-01
The purpose of the study was to evaluate a computer aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Two radiologists in consensus reported 88 consecutive spiral CT examinations. All examinations were reviewed using a UNIX-based CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm was designed to detect nodules with at least 5 mm diameter. The results of automatic nodule detection were compared to the consensus reporting of two radiologists as gold standard. Additional CAD findings were regarded as nodules initially missed by the radiologists or as false positive results. A total of 153 nodules were detected with all modalities (diameter: 85 nodules <5mm, 63 nodules 5-9 mm, 5 nodules >= 10 mm). Reasons for failure of automatic nodule detection were assessed. Sensitivity of radiologists for nodules >=5 mm was 85%, sensitivity of CAD was 38%. For nodules >=5 mm without pleural contact sensitivity was 84% for radiologists at 45% for CAD. CAD detected 15 (10%) nodules not mentioned in the radiologist's report but representing real nodules, among them 10 (15%) nodules with a diameter $GREW5 mm. Reasons for nodules missed by CAD include: exclusion because of morphological features during region analysis (33%), nodule density below the detection threshold (26%), pleural contact (33%), segmentation errors (5%) and other reasons (2%). CAD improves detection of pulmonary nodules at spiral CT significantly and is a valuable second opinion in a clinical setting for lung cancer screening. Optimization of region analysis and an appropriate density threshold have a potential for further improvement of automatic nodule detection.
A computer-aided diagnosis system of nuclear cataract.
Li, Huiqi; Lim, Joo Hwee; Liu, Jiang; Mitchell, Paul; Tan, Ava Grace; Wang, Jie Jin; Wong, Tien Yin
2010-07-01
Cataracts are the leading cause of blindness worldwide, and nuclear cataract is the most common form of cataract. An algorithm for automatic diagnosis of nuclear cataract is investigated in this paper. Nuclear cataract is graded according to the severity of opacity using slit lamp lens images. Anatomical structure in the lens image is detected using a modified active shape model. On the basis of the anatomical landmark, local features are extracted according to clinical grading protocol. Support vector machine regression is employed for grade prediction. This is the first time that the nucleus region can be detected automatically in slit lamp images. The system is validated using clinical images and clinical ground truth on >5000 images. The success rate of structure detection is 95% and the average grading difference is 0.36 on a 5.0 scale. The automatic diagnosis system can improve the grading objectivity and potentially be used in clinics and population studies to save the workload of ophthalmologists.
Computer-aided diagnostic detection system of venous beading in retinal images
NASA Astrophysics Data System (ADS)
Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.
2000-05-01
The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.
NASA Astrophysics Data System (ADS)
Erdt, Marius; Sakas, Georgios
2010-03-01
This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.
Computer-aided diagnosis software for vulvovaginal candidiasis detection from Pap smear images.
Momenzadeh, Mohammadreza; Vard, Alireza; Talebi, Ardeshir; Mehri Dehnavi, Alireza; Rabbani, Hossein
2018-01-01
Vulvovaginal candidiasis (VVC) is a common gynecologic infection and it occurs when there is overgrowth of the yeast called Candida. VVC diagnosis is usually done by observing a Pap smear sample under a microscope and searching for the conidium and mycelium components of Candida. This manual method is time consuming, subjective and tedious. Any diagnosis tools that detect VVC, semi- or full-automatically, can be very helpful to pathologists. This article presents a computer aided diagnosis (CAD) software to improve human diagnosis of VVC from Pap smear samples. The proposed software is designed based on phenotypic and morphology features of the Candida in Pap smear sample images. This software provide a user-friendly interface which consists of a set of image processing tools and analytical results that helps to detect Candida and determine severity of illness. The software was evaluated on 200 Pap smear sample images and obtained specificity of 91.04% and sensitivity of 92.48% to detect VVC. As a result, the use of the proposed software reduces diagnostic time and can be employed as a second objective opinion for pathologists. © 2017 Wiley Periodicals, Inc.
Levrini, G; Sghedoni, R; Mori, C; Botti, A; Vacondio, R; Nitrosi, A; Iori, M; Nicoli, F
2011-10-01
The aim of this study was to investigate the efficacy of a dedicated software tool for automated volume measurement of breast lesions in contrast-enhanced (CE) magnetic resonance mammography (MRM). The size of 52 breast lesions with a known histopathological diagnosis (three benign, 49 malignant) was automatically evaluated using different techniques. The volume of all lesions was measured automatically (AVM) from CE 3D MRM examinations by means of a computer-aided detection (CAD) system and compared with the size estimates based on maximum diameter measurement (MDM) on MRM, ultrasonography (US), mammography and histopathology. Compared with histopathology as the reference method, AVM understimated lesion size by 4% on average. This result was similar to MDM (3% understimation, not significantly different) but significantly better than US and mammographic lesion measurements (24% and 33% size underestimation, respectively). AVM is as accurate as MDM but faster. Both methods are more accurate for size assessment of breast lesions compared with US and mammography.
DOT National Transportation Integrated Search
1999-09-01
This report documents what happened to employees' work procedures when their employer when their employer installed Computer Aided Disptach/Automatic Vehicle Locator (CAD/AVL) technology to provide real-time surveillance of vehicles and to upgrade ra...
46 CFR 15.816 - Automatic radar plotting aids (ARPAs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Automatic radar plotting aids (ARPAs). 15.816 Section 15.816 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.816 Automatic radar plotting aids (ARPAs). Every person in the required...
Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat
2017-09-27
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki
2010-03-01
Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M.; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong
2016-01-01
Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss. PMID:27807415
Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong
2016-01-01
Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss.
Visualization of suspicious lesions in breast MRI based on intelligent neural systems
NASA Astrophysics Data System (ADS)
Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke
2006-05-01
Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.
Digital ocular fundus imaging: a review.
Bernardes, Rui; Serranho, Pedro; Lobo, Conceição
2011-01-01
Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs. Copyright © 2011 S. Karger AG, Basel.
Web-based computer-aided-diagnosis (CAD) system for bone age assessment (BAA) of children
NASA Astrophysics Data System (ADS)
Zhang, Aifeng; Uyeda, Joshua; Tsao, Sinchai; Ma, Kevin; Vachon, Linda A.; Liu, Brent J.; Huang, H. K.
2008-03-01
Bone age assessment (BAA) of children is a clinical procedure frequently performed in pediatric radiology to evaluate the stage of skeletal maturation based on a left hand and wrist radiograph. The most commonly used standard: Greulich and Pyle (G&P) Hand Atlas was developed 50 years ago and exclusively based on Caucasian population. Moreover, inter- & intra-observer discrepancies using this method create a need of an objective and automatic BAA method. A digital hand atlas (DHA) has been collected with 1,400 hand images of normal children from Asian, African American, Caucasian and Hispanic descends. Based on DHA, a fully automatic, objective computer-aided-diagnosis (CAD) method was developed and it was adapted to specific population. To bring DHA and CAD method to the clinical environment as a useful tool in assisting radiologist to achieve higher accuracy in BAA, a web-based system with direct connection to a clinical site is designed as a novel clinical implementation approach for online and real time BAA. The core of the system, a CAD server receives the image from clinical site, processes it by the CAD method and finally, generates report. A web service publishes the results and radiologists at the clinical site can review it online within minutes. This prototype can be easily extended to multiple clinical sites and will provide the foundation for broader use of the CAD system for BAA.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2007-03-01
Multislice CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multislice CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. Moreover, we have provided diagnostic assistance methods to medical screening specialists by using a lung cancer screening algorithm built into mobile helical CT scanner for the lung cancer mass screening done in the region without the hospital. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system.
NASA Astrophysics Data System (ADS)
Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae
2012-09-01
This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.
Multi-view information fusion for automatic BI-RADS description of mammographic masses
NASA Astrophysics Data System (ADS)
Narvaez, Fabián; Díaz, Gloria; Romero, Eduardo
2011-03-01
Most CBIR-based CAD systems (Content Based Image Retrieval systems for Computer Aided Diagnosis) identify lesions that are eventually relevant. These systems base their analysis upon a single independent view. This article presents a CBIR framework which automatically describes mammographic masses with the BI-RADS lexicon, fusing information from the two mammographic views. After an expert selects a Region of Interest (RoI) at the two views, a CBIR strategy searches similar masses in the database by automatically computing the Mahalanobis distance between shape and texture feature vectors of the mammography. The strategy was assessed in a set of 400 cases, for which the suggested descriptions were compared with the ground truth provided by the data base. Two information fusion strategies were evaluated, allowing a retrieval precision rate of 89.6% in the best scheme. Likewise, the best performance obtained for shape, margin and pathology description, using a ROC methodology, was reported as AUC = 0.86, AUC = 0.72 and AUC = 0.85, respectively.
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.
Raja, D Siva Sundhara; Vasuki, S
2015-01-01
Diabetic retinopathy (DR) is a leading cause of vision loss in diabetic patients. DR is mainly caused due to the damage of retinal blood vessels in the diabetic patients. It is essential to detect and segment the retinal blood vessels for DR detection and diagnosis, which prevents earlier vision loss in diabetic patients. The computer aided automatic detection and segmentation of blood vessels through the elimination of optic disc (OD) region in retina are proposed in this paper. The OD region is segmented using anisotropic diffusion filter and subsequentially the retinal blood vessels are detected using mathematical binary morphological operations. The proposed methodology is tested on two different publicly available datasets and achieved 93.99% sensitivity, 98.37% specificity, 98.08% accuracy in DRIVE dataset and 93.6% sensitivity, 98.96% specificity, and 95.94% accuracy in STARE dataset, respectively.
Pulmonary embolism detection using localized vessel-based features in dual energy CT
NASA Astrophysics Data System (ADS)
Dicente Cid, Yashin; Depeursinge, Adrien; Foncubierta Rodríguez, Antonio; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning
2015-03-01
Pulmonary embolism (PE) affects up to 600,000 patients and contributes to at least 100,000 deaths every year in the United States alone. Diagnosis of PE can be difficult as most symptoms are unspecific and early diagnosis is essential for successful treatment. Computed Tomography (CT) images can show morphological anomalies that suggest the existence of PE. Various image-based procedures have been proposed for improving computer-aided diagnosis of PE. We propose a novel method for detecting PE based on localized vessel-based features computed in Dual Energy CT (DECT) images. DECT provides 4D data indexed by the three spatial coordinates and the energy level. The proposed features encode the variation of the Hounsfield Units across the different levels and the CT attenuation related to the amount of iodine contrast in each vessel. A local classification of the vessels is obtained through the classification of these features. Moreover, the localization of the vessel in the lung provides better comparison between patients. Results show that the simple features designed are able to classify pulmonary embolism patients with an AUC (area under the receiver operating curve) of 0.71 on a lobe basis. Prior segmentation of the lung lobes is not necessary because an automatic atlas-based segmentation obtains similar AUC levels (0.65) for the same dataset. The automatic atlas reaches 0.80 AUC in a larger dataset with more control cases.
CAD system for footwear design based on whole real 3D data of last surface
NASA Astrophysics Data System (ADS)
Song, Wanzhong; Su, Xianyu
2000-10-01
Two major parts of application of CAD in footwear design are studied: the development of last surface; computer-aided design of planar shoe-template. A new quasi-experiential development algorithm of last surface based on triangulation approximation is presented. This development algorithm consumes less time and does not need any interactive operation for precisely development compared with other development algorithm of last surface. Based on this algorithm, a software, SHOEMAKERTM, which contains computer aided automatic measurement, automatic development of last surface and computer aide design of shoe-template has been developed.
A survey on computer aided diagnosis for ocular diseases
2014-01-01
Background Computer Aided Diagnosis (CAD), which can automate the detection process for ocular diseases, has attracted extensive attention from clinicians and researchers alike. It not only alleviates the burden on the clinicians by providing objective opinion with valuable insights, but also offers early detection and easy access for patients. Method We review ocular CAD methodologies for various data types. For each data type, we investigate the databases and the algorithms to detect different ocular diseases. Their advantages and shortcomings are analyzed and discussed. Result We have studied three types of data (i.e., clinical, genetic and imaging) that have been commonly used in existing methods for CAD. The recent developments in methods used in CAD of ocular diseases (such as Diabetic Retinopathy, Glaucoma, Age-related Macular Degeneration and Pathological Myopia) are investigated and summarized comprehensively. Conclusion While CAD for ocular diseases has shown considerable progress over the past years, the clinical importance of fully automatic CAD systems which are able to embed clinical knowledge and integrate heterogeneous data sources still show great potential for future breakthrough. PMID:25175552
Song, Yang; Zhang, Yu-Dong; Yan, Xu; Liu, Hui; Zhou, Minxiong; Hu, Bingwen; Yang, Guang
2018-04-16
Deep learning is the most promising methodology for automatic computer-aided diagnosis of prostate cancer (PCa) with multiparametric MRI (mp-MRI). To develop an automatic approach based on deep convolutional neural network (DCNN) to classify PCa and noncancerous tissues (NC) with mp-MRI. Retrospective. In all, 195 patients with localized PCa were collected from a PROSTATEx database. In total, 159/17/19 patients with 444/48/55 observations (215/23/23 PCas and 229/25/32 NCs) were randomly selected for training/validation/testing, respectively. T 2 -weighted, diffusion-weighted, and apparent diffusion coefficient images. A radiologist manually labeled the regions of interest of PCas and NCs and estimated the Prostate Imaging Reporting and Data System (PI-RADS) scores for each region. Inspired by VGG-Net, we designed a patch-based DCNN model to distinguish between PCa and NCs based on a combination of mp-MRI data. Additionally, an enhanced prediction method was used to improve the prediction accuracy. The performance of DCNN prediction was tested using a receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Moreover, the predicted result was compared with the PI-RADS score to evaluate its clinical value using decision curve analysis. Two-sided Wilcoxon signed-rank test with statistical significance set at 0.05. The DCNN produced excellent diagnostic performance in distinguishing between PCa and NC for testing datasets with an AUC of 0.944 (95% confidence interval: 0.876-0.994), sensitivity of 87.0%, specificity of 90.6%, PPV of 87.0%, and NPV of 90.6%. The decision curve analysis revealed that the joint model of PI-RADS and DCNN provided additional net benefits compared with the DCNN model and the PI-RADS scheme. The proposed DCNN-based model with enhanced prediction yielded high performance in statistical analysis, suggesting that DCNN could be used in computer-aided diagnosis (CAD) for PCa classification. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Traverso, A.; Lopez Torres, E.; Fantacci, M. E.; Cerello, P.
2017-05-01
Lung cancer is one of the most lethal types of cancer, because its early diagnosis is not good enough. In fact, the detection of pulmonary nodule, potential lung cancers, in Computed Tomography scans is a very challenging and time-consuming task for radiologists. To support radiologists, researchers have developed Computer-Aided Diagnosis (CAD) systems for the automated detection of pulmonary nodules in chest Computed Tomography scans. Despite the high level of technological developments and the proved benefits on the overall detection performance, the usage of Computer-Aided Diagnosis in clinical practice is far from being a common procedure. In this paper we investigate the causes underlying this discrepancy and present a solution to tackle it: the M5L WEB- and Cloud-based on-demand Computer-Aided Diagnosis. In addition, we prove how the combination of traditional imaging processing techniques with state-of-art advanced classification algorithms allows to build a system whose performance could be much larger than any Computer-Aided Diagnosis developed so far. This outcome opens the possibility to use the CAD as clinical decision support for radiologists.
Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography
NASA Astrophysics Data System (ADS)
Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz
2015-12-01
In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63 ± 3.65%, Dice Similarity Coefficient (DSC) 89.74 ± 8.84% and Jaccard Similarity Coefficient 82.39 ± 12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Convolution neural-network-based detection of lung structures
NASA Astrophysics Data System (ADS)
Hasegawa, Akira; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.
1994-05-01
Chest radiography is one of the most primary and widely used techniques in diagnostic imaging. Nowadays with the advent of digital radiology, the digital medical image processing techniques for digital chest radiographs have attracted considerable attention, and several studies on the computer-aided diagnosis (CADx) as well as on the conventional image processing techniques for chest radiographs have been reported. In the automatic diagnostic process for chest radiographs, it is important to outline the areas of the lungs, the heart, and the diaphragm. This is because the original chest radiograph is composed of important anatomic structures and, without knowing exact positions of the organs, the automatic diagnosis may result in unexpected detections. The automatic extraction of an anatomical structure from digital chest radiographs can be a useful tool for (1) the evaluation of heart size, (2) automatic detection of interstitial lung diseases, (3) automatic detection of lung nodules, and (4) data compression, etc. Based on the clearly defined boundaries of heart area, rib spaces, rib positions, and rib cage extracted, one should be able to use this information to facilitate the tasks of the CADx on chest radiographs. In this paper, we present an automatic scheme for the detection of lung field from chest radiographs by using a shift-invariant convolution neural network. A novel algorithm for smoothing boundaries of lungs is also presented.
Wu, Miao; Yan, Chuanbo; Liu, Huiqiang; Liu, Qian
2018-06-29
Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images. © 2018 The Author(s).
Machine Learning and Radiology
Wang, Shijun; Summers, Ronald M.
2012-01-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077
Computer-aided diagnosis system: a Bayesian hybrid classification method.
Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J
2013-10-01
A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
[Medical computer-aided detection method based on deep learning].
Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili
2018-03-01
This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.
NASA Astrophysics Data System (ADS)
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-15
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-01-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features. PMID:27079888
A Computer-Aided Diagnosis System for Breast Cancer Combining Digital Mammography and Genomics
2006-05-01
Huang, "Breast cancer diagnosis using self-organizing map for sonography." Ultrasound Med. Biol. 26, 405 (2000). 20 K. Horsch, M.L. Giger, L.A. Venta ...L.A. Venta , "Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography." Acad Radiol 11, 272 (2004). 22 W. Chen...418. 27. Horsch K, Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography
Semantic Pattern Analysis for Verbal Fluency Based Assessment of Neurological Disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Ainsworth, Keela C; Brown, Tyler C
In this paper, we present preliminary results of semantic pattern analysis of verbal fluency tests used for assessing cognitive psychological and neuropsychological disorders. We posit that recent advances in semantic reasoning and artificial intelligence can be combined to create a standardized computer-aided diagnosis tool to automatically evaluate and interpret verbal fluency tests. Towards that goal, we derive novel semantic similarity (phonetic, phonemic and conceptual) metrics and present the predictive capability of these metrics on a de-identified dataset of participants with and without neurological disorders.
[The automatic iris map overlap technology in computer-aided iridiagnosis].
He, Jia-feng; Ye, Hu-nian; Ye, Miao-yuan
2002-11-01
In the paper, iridology and computer-aided iridiagnosis technologies are briefly introduced and the extraction method of the collarette contour is then investigated. The iris map can be overlapped on the original iris image based on collarette contour extraction. The research on collarette contour extraction and iris map overlap is of great importance to computer-aided iridiagnosis technologies.
Computer-aided diagnosis for osteoporosis using chest 3D CT images
NASA Astrophysics Data System (ADS)
Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2016-03-01
The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.
Superpixel-based segmentation of glottal area from videolaryngoscopy images
NASA Astrophysics Data System (ADS)
Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail
2017-11-01
Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.
Miyazaki, Yoshiaki; Tabata, Nobuyuki; Taroura, Tomomi; Shinozaki, Kenji; Kubo, Yuichiro; Tokunaga, Eriko; Taguchi, Kenichi
We propose a computer-aided diagnostic (CAD) system that uses time-intensity curves to distinguish between benign and malignant mammary tumors. Many malignant tumors show a washout pattern in time-intensity curves. Therefore, we designed a program that automatically detects the position with the strongest washout effect using the technique, such as the subtraction technique, which extracts only the washout area in the tumor, and by scanning data in 2×2 pixel region of interest (ROI). Operation of this independently developed program was verified using a phantom system that simulated tumors. In three cases of malignant tumors, the washout pattern detection rate in images with manually set ROI was ≤6%, whereas the detection rate with our novel method was 100%. In one case of a benign tumor, when the same method was used, we checked that there was no washout effect and detected the persistent pattern. Thus, the distinction between benign and malignant tumors using our method was completely consistent with the pathological diagnoses made. Our novel method is therefore effective for differentiating between benign and malignant mammary tumors in dynamic magnetic resonance images.
Mammogram segmentation using maximal cell strength updation in cellular automata.
Anitha, J; Peter, J Dinesh
2015-08-01
Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.
Computer aided diagnosis of diabetic peripheral neuropathy
NASA Astrophysics Data System (ADS)
Chekh, Viktor; Soliz, Peter; McGrew, Elizabeth; Barriga, Simon; Burge, Mark; Luan, Shuang
2014-03-01
Diabetic peripheral neuropathy (DPN) refers to the nerve damage that can occur in diabetes patients. It most often affects the extremities, such as the feet, and can lead to peripheral vascular disease, deformity, infection, ulceration, and even amputation. The key to managing diabetic foot is prevention and early detection. Unfortunately, current existing diagnostic techniques are mostly based on patient sensations and exhibit significant inter- and intra-observer differences. We have developed a computer aided diagnostic (CAD) system for diabetic peripheral neuropathy. The thermal response of the feet of diabetic patients following cold stimulus is captured using an infrared camera. The plantar foot in the images from a thermal video are segmented and registered for tracking points or specific regions. The temperature recovery of each point on the plantar foot is extracted using our bio-thermal model and analyzed. The regions that exhibit abnormal ability to recover are automatically identified to aid the physicians to recognize problematic areas. The key to our CAD system is the segmentation of infrared video. The main challenges for segmenting infrared video compared to normal digital video are (1) as the foot warms up, it also warms up the surrounding, creating an ever changing contrast; and (2) there may be significant motion during imaging. To overcome this, a hybrid segmentation algorithm was developed based on a number of techniques such as continuous max-flow, model based segmentation, shape preservation, convex hull, and temperature normalization. Verifications of the automatic segmentation and registration using manual segmentation and markers show good agreement.
Automatic system for computer program documentation
NASA Technical Reports Server (NTRS)
Simmons, D. B.; Elliott, R. W.; Arseven, S.; Colunga, D.
1972-01-01
Work done on a project to design an automatic system for computer program documentation aids was made to determine what existing programs could be used effectively to document computer programs. Results of the study are included in the form of an extensive bibliography and working papers on appropriate operating systems, text editors, program editors, data structures, standards, decision tables, flowchart systems, and proprietary documentation aids. The preliminary design for an automated documentation system is also included. An actual program has been documented in detail to demonstrate the types of output that can be produced by the proposed system.
Sun, Wenqing; Zheng, Bin; Qian, Wei
2017-10-01
This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.
Machine learning and radiology.
Wang, Shijun; Summers, Ronald M
2012-07-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Penn-Edwards, Sorrel
2010-01-01
The qualitative research methodology of phenomenography has traditionally required a manual sorting and analysis of interview data. In this paper I explore a potential means of streamlining this procedure by considering a computer aided process not previously reported upon. Two methods of lexicological analysis, manual and automatic, were examined…
Bayır, Şafak
2016-01-01
With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272
Computer-aided classification of breast masses using contrast-enhanced digital mammograms
NASA Astrophysics Data System (ADS)
Danala, Gopichandh; Aghaei, Faranak; Heidari, Morteza; Wu, Teresa; Patel, Bhavika; Zheng, Bin
2018-02-01
By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585+/-0.0526 and 0.7534+/-0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477+/-0.0376 (p<0.01). Since DES images eliminate overlapping effect of dense breast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.
Automatic grade classification of Barretts Esophagus through feature enhancement
NASA Astrophysics Data System (ADS)
Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid
2017-03-01
Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.
A Review of Developments in Computer-Based Systems to Image Teeth and Produce Dental Restorations
Rekow, E. Dianne; Erdman, Arthur G.; Speidel, T. Michael
1987-01-01
Computer-aided design and manufacturing (CAD/CAM) make it possible to automate the creation of dental restorations. Currently practiced techniques are described. Three automated systems currently under development are described and compared. Advances in computer-aided design and computer-aided manufacturing (CAD/CAM) provide a new option for dentistry, creating an alternative technique for producing dental restorations. It is possible to create dental restorations that are automatically produced and meet or exceed current requirements for fit and occlusion.
NASA Astrophysics Data System (ADS)
Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María
2009-02-01
Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.
Xu, Xiayu; Ding, Wenxiang; Abràmoff, Michael D; Cao, Ruofan
2017-04-01
Retinal artery and vein classification is an important task for the automatic computer-aided diagnosis of various eye diseases and systemic diseases. This paper presents an improved supervised artery and vein classification method in retinal image. Intra-image regularization and inter-subject normalization is applied to reduce the differences in feature space. Novel features, including first-order and second-order texture features, are utilized to capture the discriminating characteristics of arteries and veins. The proposed method was tested on the DRIVE dataset and achieved an overall accuracy of 0.923. This retinal artery and vein classification algorithm serves as a potentially important tool for the early diagnosis of various diseases, including diabetic retinopathy and cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Aviation Careers Series: Airline Non-Flying Careers
DOT National Transportation Integrated Search
1996-01-01
TRAVLINK demonstrated the use of Automatic Vehicle Location (AVL), ComputerAided dispatch (CAD), and Automatic Vehicle Identification (AVI) systems on Metropolitan Council Transit Operations (MCTO) buses in Minneapolis, Minnesota and western suburbs,...
Su, Hai; Xing, Fuyong; Yang, Lin
2016-01-01
Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706
NASA Astrophysics Data System (ADS)
Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra
2017-03-01
Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.
Use of an Automatic Problem Generator to Teach Basic Skills in a First Course in Assembly Language.
ERIC Educational Resources Information Center
Benander, Alan; And Others
1989-01-01
Discussion of the use of computer aided instruction (CAI) and instructional software in college level courses highlights an automatic problem generator, AUTOGEN, that was written for computer science students learning assembly language. Design of the software is explained, and student responses are reported. (nine references) (LRW)
NASA Astrophysics Data System (ADS)
Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.
2010-03-01
The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.
A Fast Approach to Automatic Detection of Brain Lesions
Koley, Subhranil; Chakraborty, Chandan; Mainero, Caterina; Fischl, Bruce; Aganj, Iman
2017-01-01
Template matching is a popular approach to computer-aided detection of brain lesions from magnetic resonance (MR) images. The outcomes are often sufficient for localizing lesions and assisting clinicians in diagnosis. However, processing large MR volumes with three-dimensional (3D) templates is demanding in terms of computational resources, hence the importance of the reduction of computational complexity of template matching, particularly in situations in which time is crucial (e.g. emergent stroke). In view of this, we make use of 3D Gaussian templates with varying radii and propose a new method to compute the normalized cross-correlation coefficient as a similarity metric between the MR volume and the template to detect brain lesions. Contrary to the conventional fast Fourier transform (FFT) based approach, whose runtime grows as O(N logN) with the number of voxels, the proposed method computes the cross-correlation in O(N). We show through our experiments that the proposed method outperforms the FFT approach in terms of computational time, and retains comparable accuracy. PMID:29082383
NASA Astrophysics Data System (ADS)
Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won
In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.
Lung sound analysis for wheeze episode detection.
Jain, Abhishek; Vepa, Jithendra
2008-01-01
Listening and interpreting lung sounds by a stethoscope had been an important component of screening and diagnosing lung diseases. However this practice has always been vulnerable to poor audibility, inter-observer variations (between different physicians) and poor reproducibility. Thus computerized analysis of lung sounds for objective diagnosis of lung diseases is seen as a probable aid. In this paper we aim at automatic analysis of lung sounds for wheeze episode detection and quantification. The proposed algorithm integrates and analyses the set of parameters based on ATS (American Thoracic Society) definition of wheezes. It is very robust, computationally simple and yielded sensitivity of 84% and specificity of 86%.
Automatic lung nodule graph cuts segmentation with deep learning false positive reduction
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Huang, Xia; Tseng, Tzu-Liang Bill; Qian, Wei
2017-03-01
To automatic detect lung nodules from CT images, we designed a two stage computer aided detection (CAD) system. The first stage is graph cuts segmentation to identify and segment the nodule candidates, and the second stage is convolutional neural network for false positive reduction. The dataset contains 595 CT cases randomly selected from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) and the 305 pulmonary nodules achieved diagnosis consensus by all four experienced radiologists were our detection targets. Consider each slice as an individual sample, 2844 nodules were included in our database. The graph cuts segmentation was conducted in a two-dimension manner, 2733 lung nodule ROIs are successfully identified and segmented. With a false positive reduction by a seven-layer convolutional neural network, 2535 nodules remain detected while the false positive dropped to 31.6%. The average F-measure of segmented lung nodule tissue is 0.8501.
An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.
Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei
2013-06-01
Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.
Clustering microcalcifications techniques in digital mammograms
NASA Astrophysics Data System (ADS)
Díaz, Claudia. C.; Bosco, Paolo; Cerello, Piergiorgio
2008-11-01
Breast cancer has become a serious public health problem around the world. However, this pathology can be treated if it is detected in early stages. This task is achieved by a radiologist, who should read a large amount of mammograms per day, either for a screening or diagnostic purpose in mammography. However human factors could affect the diagnosis. Computer Aided Detection is an automatic system, which can help to specialists in the detection of possible signs of malignancy in mammograms. Microcalcifications play an important role in early detection, so we focused on their study. The two mammographic features that indicate the microcalcifications could be probably malignant are small size and clustered distribution. We worked with density techniques for automatic clustering, and we applied them on a mammography CAD prototype developed at INFN-Turin, Italy. An improvement of performance is achieved analyzing images from a Perugia-Assisi Hospital, in Italy.
Innovative telecommunications for law enforcement
NASA Technical Reports Server (NTRS)
Sohn, R. L.
1976-01-01
The operation of computer-aided dispatch, mobile digital communications, and automatic vehicle location systems used in law enforcement is discussed, and characteristics of systems used by different agencies are compared. With reference to computer-aided dispatch systems, the data base components, dispatcher work load, extent of usage, and design trends are surveyed. The capabilities, levels of communication, and traffic load of mobile digital communications systems are examined. Different automatic vehicle location systems are distinguished, and two systems are evaluated. Other aspects of the application of innovative technology to operational command, control, and communications systems for law enforcement agencies are described.
Computer Aided Instruction and Problem Solving in the Teaching of Oral Diagnosis.
ERIC Educational Resources Information Center
Spencer, Judson; Gobetti, John P.
A computer-assisted instructional (CAI) program is being used at the University of Michigan School of Dentistry to aid in the teaching of oral diagnosis to dental students. The program is designed to simulate a real life situation--i.e., the diagnosis of patient illness-which would not be otherwise available to the student and to demonstrate to…
NASA Astrophysics Data System (ADS)
Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng
2007-06-01
Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.
An interactive system for computer-aided diagnosis of breast masses.
Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin
2012-10-01
Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2018-04-30
Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.
Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images
NASA Astrophysics Data System (ADS)
Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.
2018-02-01
Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.
Manufacturing Methods and Technology Project Summary Reports
1985-06-01
Computer -Aided Design (CAD)/ Computer -Aided Manufacturing (CAM) Process for the Production of Cold Forged Gears Project 483 6121 - Robotic Welding and...Caliber Projectile Bodies Project 682 8370 - Automatic Inspection and 1-I1 Process Control of Weapons Parts Manufacturing METALS Project 181 7285 - Cast...designed for use on each project. Experience suggested that a general purpose computer interface might be designed that could be used on any project
Kazakis, Georgios; Kanellopoulos, Ioannis; Sotiropoulos, Stefanos; Lagaros, Nikos D
2017-10-01
Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as "optimal design" their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer's intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.
On the convergence of nanotechnology and Big Data analysis for computer-aided diagnosis.
Rodrigues, Jose F; Paulovich, Fernando V; de Oliveira, Maria Cf; de Oliveira, Osvaldo N
2016-04-01
An overview is provided of the challenges involved in building computer-aided diagnosis systems capable of precise medical diagnostics based on integration and interpretation of data from different sources and formats. The availability of massive amounts of data and computational methods associated with the Big Data paradigm has brought hope that such systems may soon be available in routine clinical practices, which is not the case today. We focus on visual and machine learning analysis of medical data acquired with varied nanotech-based techniques and on methods for Big Data infrastructure. Because diagnosis is essentially a classification task, we address the machine learning techniques with supervised and unsupervised classification, making a critical assessment of the progress already made in the medical field and the prospects for the near future. We also advocate that successful computer-aided diagnosis requires a merge of methods and concepts from nanotechnology and Big Data analysis.
Saturn S-2 Automatic Software System /SASS/
NASA Technical Reports Server (NTRS)
Parker, P. E.
1967-01-01
SATURN S-2 Automatic Software System /SASS/ was designed and implemented to aid SATURN S-2 program development and to increase the overall operating efficiency within the S-2 data laboratory. This program is written in FORTRAN 2 for SDS 920 computers.
Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines.
Jaworek-Korjakowska, Joanna
2016-01-01
Background. One of the fatal disorders causing death is malignant melanoma, the deadliest form of skin cancer. The aim of the modern dermatology is the early detection of skin cancer, which usually results in reducing the mortality rate and less extensive treatment. This paper presents a study on classification of melanoma in the early stage of development using SVMs as a useful technique for data classification. Method. In this paper an automatic algorithm for the classification of melanomas in their early stage, with a diameter under 5 mm, has been presented. The system contains the following steps: image enhancement, lesion segmentation, feature calculation and selection, and classification stage using SVMs. Results. The algorithm has been tested on 200 images including 70 melanomas and 130 benign lesions. The SVM classifier achieved sensitivity of 90% and specificity of 96%. The results indicate that the proposed approach captured most of the malignant cases and could provide reliable information for effective skin mole examination. Conclusions. Micro-melanomas due to the small size and low advancement of development create enormous difficulties during the diagnosis even for experts. The use of advanced equipment and sophisticated computer systems can help in the early diagnosis of skin lesions.
Li, Zhixun; Zhang, Yingtao; Gong, Huiling; Li, Weimin; Tang, Xianglong
2016-12-01
Coronary artery disease has become the most dangerous diseases to human life. And coronary artery segmentation is the basis of computer aided diagnosis and analysis. Existing segmentation methods are difficult to handle the complex vascular texture due to the projective nature in conventional coronary angiography. Due to large amount of data and complex vascular shapes, any manual annotation has become increasingly unrealistic. A fully automatic segmentation method is necessary in clinic practice. In this work, we study a method based on reliable boundaries via multi-domains remapping and robust discrepancy correction via distance balance and quantile regression for automatic coronary artery segmentation of angiography images. The proposed method can not only segment overlapping vascular structures robustly, but also achieve good performance in low contrast regions. The effectiveness of our approach is demonstrated on a variety of coronary blood vessels compared with the existing methods. The overall segmentation performances si, fnvf, fvpf and tpvf were 95.135%, 3.733%, 6.113%, 96.268%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pancreas and cyst segmentation
NASA Astrophysics Data System (ADS)
Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie
2016-03-01
Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.
Han, Guanghui; Liu, Xiabi; Zheng, Guangyuan; Wang, Murong; Huang, Shan
2018-06-06
Ground-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images.
Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia
2018-01-01
Leukaemia is a form of blood cancer which affects the white blood cells and damages the bone marrow. Usually complete blood count (CBC) and bone marrow aspiration are used to diagnose the acute lymphoblastic leukaemia. It can be a fatal disease if not diagnosed at the earlier stage. In practice, manual microscopic evaluation of stained sample slide is used for diagnosis of leukaemia. But manual diagnostic methods are time-consuming, less accurate, and prone to errors due to various human factors like stress, fatigue, and so forth. Therefore, different automated systems have been proposed to wrestle the glitches in the manual diagnostic methods. In recent past, some computer-aided leukaemia diagnosis methods are presented. These automated systems are fast, reliable, and accurate as compared to manual diagnosis methods. This paper presents review of computer-aided diagnosis systems regarding their methodologies that include enhancement, segmentation, feature extraction, classification, and accuracy. PMID:29681996
Automatic detection of apical roots in oral radiographs
NASA Astrophysics Data System (ADS)
Wu, Yi; Xie, Fangfang; Yang, Jie; Cheng, Erkang; Megalooikonomou, Vasileios; Ling, Haibin
2012-03-01
The apical root regions play an important role in analysis and diagnosis of many oral diseases. Automatic detection of such regions is consequently the first step toward computer-aided diagnosis of these diseases. In this paper we propose an automatic method for periapical root region detection by using the state-of-theart machine learning approaches. Specifically, we have adapted the AdaBoost classifier for apical root detection. One challenge in the task is the lack of training cases especially for diseased ones. To handle this problem, we boost the training set by including more root regions that are close to the annotated ones and decompose the original images to randomly generate negative samples. Based on these training samples, the Adaboost algorithm in combination with Haar wavelets is utilized in this task to train an apical root detector. The learned detector usually generates a large amount of true and false positives. In order to reduce the number of false positives, a confidence score for each candidate detection result is calculated for further purification. We first merge the detected regions by combining tightly overlapped detected candidate regions and then we use the confidence scores from the Adaboost detector to eliminate the false positives. The proposed method is evaluated on a dataset containing 39 annotated digitized oral X-Ray images from 21 patients. The experimental results show that our approach can achieve promising detection accuracy.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
NASA Astrophysics Data System (ADS)
Vandenberghe, Michel E.; Scott, Marietta L. J.; Scorer, Paul W.; Söderberg, Magnus; Balcerzak, Denis; Barker, Craig
2017-04-01
Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis.
Computer-Aided Methodology for Syndromic Strabismus Diagnosis.
Sousa de Almeida, João Dallyson; Silva, Aristófanes Corrêa; Teixeira, Jorge Antonio Meireles; Paiva, Anselmo Cardoso; Gattass, Marcelo
2015-08-01
Strabismus is a pathology that affects approximately 4 % of the population, causing aesthetic problems reversible at any age and irreversible sensory alterations that modify the vision mechanism. The Hirschberg test is one type of examination for detecting this pathology. Computer-aided detection/diagnosis is being used with relative success to aid health professionals. Nevertheless, the routine use of high-tech devices for aiding ophthalmological diagnosis and therapy is not a reality within the subspecialty of strabismus. Thus, this work presents a methodology to aid in diagnosis of syndromic strabismus through digital imaging. Two hundred images belonging to 40 patients previously diagnosed by an specialist were tested. The method was demonstrated to be 88 % accurate in esotropias identification (ET), 100 % for exotropias (XT), 80.33 % for hypertropias (HT), and 83.33 % for hypotropias (HoT). The overall average error was 5.6Δ and 3.83Δ for horizontal and vertical deviations, respectively, against the measures presented by the specialist.
Giger, Maryellen L.; Chan, Heang-Ping; Boone, John
2008-01-01
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giger, Maryellen L.; Chan, Heang-Ping; Boone, John
2008-12-15
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less
Bharti, Puja; Mittal, Deepti; Ananthasivan, Rupa
2016-04-19
Diffuse liver diseases, such as hepatitis, fatty liver, and cirrhosis, are becoming a leading cause of fatality and disability all over the world. Early detection and diagnosis of these diseases is extremely important to save lives and improve effectiveness of treatment. Ultrasound imaging, a noninvasive diagnostic technique, is the most commonly used modality for examining liver abnormalities. However, the accuracy of ultrasound-based diagnosis depends highly on expertise of radiologists. Computer-aided diagnosis systems based on ultrasound imaging assist in fast diagnosis, provide a reliable "second opinion" for experts, and act as an effective tool to measure response of treatment on patients undergoing clinical trials. In this review, we first describe appearance of liver abnormalities in ultrasound images and state the practical issues encountered in characterization of diffuse liver diseases that can be addressed by software algorithms. We then discuss computer-aided diagnosis in general with features and classifiers relevant to diffuse liver diseases. In later sections of this paper, we review the published studies and describe the key findings of those studies. A concise tabular summary comparing image database, features extraction, feature selection, and classification algorithms presented in the published studies is also exhibited. Finally, we conclude with a summary of key findings and directions for further improvements in the areas of accuracy and objectiveness of computer-aided diagnosis. © The Author(s) 2016.
Kavitha, Muthu Subash; Asano, Akira; Taguchi, Akira; Heo, Min-Suk
2013-09-01
To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.
Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Hall, Christopher S.
2014-03-01
Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.
Semi-automatic registration of 3D orthodontics models from photographs
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Treuillet, Sylvie; Lucas, Yves; Albouy-Kissi, Benjamin
2013-03-01
In orthodontics, a common practice used to diagnose and plan the treatment is the dental cast. After digitization by a CT-scan or a laser scanner, the obtained 3D surface models can feed orthodontics numerical tools for computer-aided diagnosis and treatment planning. One of the pre-processing critical steps is the 3D registration of dental arches to obtain the occlusion of these numerical models. For this task, we propose a vision based method to automatically compute the registration based on photos of patient mouth. From a set of matched singular points between two photos and the dental 3D models, the rigid transformation to apply to the mandible to be in contact with the maxillary may be computed by minimizing the reprojection errors. During a precedent study, we established the feasibility of this visual registration approach with a manual selection of singular points. This paper addresses the issue of automatic point detection. Based on a priori knowledge, histogram thresholding and edge detection are used to extract specific points in 2D images. Concurrently, curvatures information detects 3D corresponding points. To improve the quality of the final registration, we also introduce a combined optimization of the projection matrix with the 2D/3D point positions. These new developments are evaluated on real data by considering the reprojection errors and the deviation angles after registration in respect to the manual reference occlusion realized by a specialist.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.
2006-03-01
Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.
A strategy planner for NASA robotics applications
NASA Technical Reports Server (NTRS)
Brodd, S. S.
1985-01-01
Automatic strategy or task planning is an important element of robotics systems. A strategy planner under development at Goddard Space Flight Center automatically produces robot plans for assembly, disassembly, or repair of NASA spacecraft from computer aided design descriptions of the individual parts of the spacecraft.
Mitrea, Delia; Mitrea, Paulina; Nedevschi, Sergiu; Badea, Radu; Lupsor, Monica; Socaciu, Mihai; Golea, Adela; Hagiu, Claudia; Ciobanu, Lidia
2012-01-01
The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue. PMID:22312411
System integration of pattern recognition, adaptive aided, upper limb prostheses
NASA Technical Reports Server (NTRS)
Lyman, J.; Freedy, A.; Solomonow, M.
1975-01-01
The requirements for successful integration of a computer aided control system for multi degree of freedom artificial arms are discussed. Specifications are established for a system which shares control between a human amputee and an automatic control subsystem. The approach integrates the following subsystems: (1) myoelectric pattern recognition, (2) adaptive computer aiding; (3) local reflex control; (4) prosthetic sensory feedback; and (5) externally energized arm with the functions of prehension, wrist rotation, elbow extension and flexion and humeral rotation.
Computer Instructional Aids for Undergraduate Control Education. 1978 Edition.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
This work represents the development of computer tools for undergraduate students. Emphasis is on automatic control theory using hybrid and digital computation. The routine calculations of control system analysis are presented as students would use them on the University of Michigan's central digital computer and the time-shared graphic terminals…
Assessing Mathematics Automatically Using Computer Algebra and the Internet
ERIC Educational Resources Information Center
Sangwin, Chris
2004-01-01
This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…
Automatic breast tissue density estimation scheme in digital mammography images
NASA Astrophysics Data System (ADS)
Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero
2017-03-01
Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.
Computer-Aided Medical Diagnosis. Literature Review
1978-12-15
Croft found a 13% difference in diagnostic accuracy. He considered this difference insignificant in relation to the diagnostic differences caused ...type of diseases diagnosed probably are the major cause of cross-study variability in diagnostic accuracy. The consistency of diagnostic accuracy...REFERENCES ALPEROVITCH, A. and FRAGU, P., A suggestion for an effective use of a computer-aided diagnosis system in screening for hyperthyroidism , Method
Analytical Procedures for Testability.
1983-01-01
Beat Internal Classifications", AD: A018516. "A System of Computer Aided Diagnosis with Blood Serum Chemistry Tests and Bayesian Statistics", AD: 786284...6 LIST OF TALS .. 1. Truth Table ......................................... 49 2. Covering Problem .............................. 93 3. Primary and...quential classification procedure in a coronary care ward is evaluated. In the toxicology field "A System of Computer Aided Diagnosis with Blood Serum
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence
Jaworek-Korjakowska, Joanna; Kłeczek, Paweł
2016-01-01
Background. Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. Method. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. Results. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. Conclusions. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision. PMID:26885520
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.
Jaworek-Korjakowska, Joanna; Kłeczek, Paweł
2016-01-01
Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.
Machine-Aided Translation: From Terminology Banks to Interactive Translation Systems.
ERIC Educational Resources Information Center
Greenfield, Concetta C.; Serain, Daniel
The rapid growth of the need for technical translations in recent years has led specialists to utilize computer technology to improve the efficiency and quality of translation. The two approaches considered were automatic translation and terminology banks. Since the results of fully automatic translation were considered unsatisfactory by various…
Unsupervised MDP Value Selection for Automating ITS Capabilities
ERIC Educational Resources Information Center
Stamper, John; Barnes, Tiffany
2009-01-01
We seek to simplify the creation of intelligent tutors by using student data acquired from standard computer aided instruction (CAI) in conjunction with educational data mining methods to automatically generate adaptive hints. In our previous work, we have automatically generated hints for logic tutoring by constructing a Markov Decision Process…
Automatic localization of the nipple in mammograms using Gabor filters and the Radon transform
NASA Astrophysics Data System (ADS)
Chakraborty, Jayasree; Mukhopadhyay, Sudipta; Rangayyan, Rangaraj M.; Sadhu, Anup; Azevedo-Marques, P. M.
2013-02-01
The nipple is an important landmark in mammograms. Detection of the nipple is useful for alignment and registration of mammograms in computer-aided diagnosis of breast cancer. In this paper, a novel approach is proposed for automatic detection of the nipple based on the oriented patterns of the breast tissues present in mammograms. The Radon transform is applied to the oriented patterns obtained by a bank of Gabor filters to detect the linear structures related to the tissue patterns. The detected linear structures are then used to locate the nipple position using the characteristics of convergence of the tissue patterns towards the nipple. The performance of the method was evaluated with 200 scanned-film images from the mini-MIAS database and 150 digital radiography (DR) images from a local database. Average errors of 5:84 mm and 6:36 mm were obtained with respect to the reference nipple location marked by a radiologist for the mini-MIAS and the DR images, respectively.
A content-based retrieval of mammographic masses using the curvelet descriptor
NASA Astrophysics Data System (ADS)
Narváez, Fabian; Díaz, Gloria; Gómez, Francisco; Romero, Eduardo
2012-03-01
Computer-aided diagnosis (CAD) that uses content based image retrieval (CBIR) strategies has became an important research area. This paper presents a retrieval strategy that automatically recovers mammography masses from a virtual repository of mammographies. Unlike other approaches, we do not attempt to segment masses but instead we characterize the regions previously selected by an expert. These regions are firstly curvelet transformed and further characterized by approximating the marginal curvelet subband distribution with a generalized gaussian density (GGD). The content based retrieval strategy searches similar regions in a database using the Kullback-Leibler divergence as the similarity measure between distributions. The effectiveness of the proposed descriptor was assessed by comparing the automatically assigned label with a ground truth available in the DDSM database.1 A total of 380 masses with different shapes, sizes and margins were used for evaluation, resulting in a mean average precision rate of 89.3% and recall rate of 75.2% for the retrieval task.
1978-08-01
21- accepts piping geometry as one of its basic inputs; whether this geometry comes from arrangement drawings or models is of no real consequence. c ... computer . Geometric data is taken from the catalogue and automatically merged with the piping geometry data. Also, fitting orientation is automatically...systems require a number of data manipulation routines to convert raw digitized data into logical pipe geometry acceptable to a computer -aided piping design
Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation
Chauhan, Arun; Chauhan, Devesh; Rout, Chittaranjan
2014-01-01
Purpose Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are prone to errors and cannot be implemented in X-ray machines for automated classification. Methods Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as frequency range, blocks and region of interest. The performance of these features was evaluated against textural features. Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features. Results Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated training and prediction modules and does not require expertise in image processing for operation. Conclusion Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved efficiency. PMID:25390291
[A computer-aided image diagnosis and study system].
Li, Zhangyong; Xie, Zhengxiang
2004-08-01
The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.
NASA Astrophysics Data System (ADS)
Abdi, Amir H.; Luong, Christina; Tsang, Teresa; Allan, Gregory; Nouranian, Saman; Jue, John; Hawley, Dale; Fleming, Sarah; Gin, Ken; Swift, Jody; Rohling, Robert; Abolmaesumi, Purang
2017-02-01
Echocardiography (echo) is the most common test for diagnosis and management of patients with cardiac condi- tions. While most medical imaging modalities benefit from a relatively automated procedure, this is not the case for echo and the quality of the final echo view depends on the competency and experience of the sonographer. It is not uncommon that the sonographer does not have adequate experience to adjust the transducer and acquire a high quality echo, which may further affect the clinical diagnosis. In this work, we aim to aid the operator during image acquisition by automatically assessing the quality of the echo and generating the Automatic Echo Score (AES). This quality assessment method is based on a deep convolutional neural network, trained in an end-to-end fashion on a large dataset of apical four-chamber (A4C) echo images. For this project, an expert car- diologist went through 2,904 A4C images obtained from independent studies and assessed their condition based on a 6-scale grading system. The scores assigned by the expert ranged from 0 to 5. The distribution of scores among the 6 levels were almost uniform. The network was then trained on 80% of the data (2,345 samples). The average absolute error of the trained model in calculating the AES was 0.8 +/- 0:72. The computation time of the GPU implementation of the neural network was estimated at 5 ms per frame, which is sufficient for real-time deployment.
BASIC Language Flow Charting Program (BASCHART). Technical Note 3-82.
ERIC Educational Resources Information Center
Johnson, Charles C.; And Others
This document describes BASCHART, a computer aid designed to decipher and automatically flow chart computer program logic; it also provides the computer code necessary for this process. Developed to reduce the labor intensive manual process of producing a flow chart for an undocumented or inadequately documented program, BASCHART will…
Intelligent Computer-Aided Instruction for Medical Diagnosis
Clancey, William J.; Shortliffe, Edward H.; Buchanan, Bruce G.
1979-01-01
An intelligent computer-aided instruction (ICAI) program, named GUIDON, has been developed for teaching infectious disease diagnosis.* ICAI programs use artificial intelligence techniques for representing both subject material and teaching strategies. This paper briefly outlines the difference between traditional instructional programs and ICAI. We then illustrate how GUIDON makes contributions in areas important to medical CAI: interacting with the student in a mixed-initiative dialogue (including the problems of feedback and realism), teaching problem-solving strategies, and assembling a computer-based curriculum.
Run-Time Support for Rapid Prototyping
1988-12-01
prototyping. One such system is the Computer-Aided Proto- typing System (CAPS). It combines rapid prototypng with automatic program generation. Some of the...a design database, and a design management system [Ref. 3:p. 66. By using both rapid prototyping and automatic program genera- tion. CAPS will be...Most proto- typing systems perform these functions. CAPS is different in that it combines rapid prototyping with a variant of automatic program
Very Large Scale Integrated Circuits for Military Systems.
1981-01-01
ABBREVIATIONS A/D Analog-to-digital C AGC Automatic Gain Control A A/J Anti-jam ASP Advanced Signal Processor AU Arithmetic Units C.AD Computer-Aided...ESM) equipments (Ref. 23); in lieu of an adequate automatic proces- sing capability, the function is now performed manually (Ref. 24), which involves...a human operator, displays, etc., and a sacrifice in performance (acquisition speed, saturation signal density). Various automatic processing
Deguchi, Shinji; Kawashima, Kazutaka; Washio, Seiichi
2008-12-01
The effect of artificially altered transglottal pressures on the voice fundamental frequency (F0) is known to be associated with vocal fold stiffness. Its measurement, though useful as a potential diagnostic tool for noncontact assessment of vocal fold stiffness, often requires manual and painstaking determination of an unstable F0 of voice. Here, we provide a computer-aided technique that enables one to carry out the determination easily and accurately. Human subjects vocalized in accordance with a series of reference sounds from a speaker controlled by a computer. Transglottal pressures were altered by means of a valve embedded in a mouthpiece. Time-varying vocal F0 was extracted, without manual procedures, from a specific range of the voice spectrum determined on the basis of the controlled reference sounds. The validity of the proposed technique was assessed for 11 healthy subjects. Fluctuating voice F0 was tracked automatically during experiments, providing the relationship between transglottal pressure change and F0 on the computer. The proposed technique overcomes the difficulty in automatic determination of the voice F0, which tends to be transient both in normal voice and in some types of pathological voice.
Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.
Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting
2014-01-01
This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.
The Abnormal vs. Normal ECG Classification Based on Key Features and Statistical Learning
NASA Astrophysics Data System (ADS)
Dong, Jun; Tong, Jia-Fei; Liu, Xia
As cardiovascular diseases appear frequently in modern society, the medicine and health system should be adjusted to meet the new requirements. Chinese government has planned to establish basic community medical insurance system (BCMIS) before 2020, where remote medical service is one of core issues. Therefore, we have developed the "remote network hospital system" which includes data server and diagnosis terminal by the aid of wireless detector to sample ECG. To improve the efficiency of ECG processing, in this paper, abnormal vs. normal ECG classification approach based on key features and statistical learning is presented, and the results are analyzed. Large amount of normal ECG could be filtered by computer automatically and abnormal ECG is left to be diagnosed specially by physicians.
Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images
NASA Astrophysics Data System (ADS)
Wang, Liming; Zhang, Kai; Liu, Xiyang; Long, Erping; Jiang, Jiewei; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Li, Wangting; Lin, Haotian
2017-01-01
There are many image classification methods, but it remains unclear which methods are most helpful for analyzing and intelligently identifying ophthalmic images. We select representative slit-lamp images which show the complexity of ocular images as research material to compare image classification algorithms for diagnosing ophthalmic diseases. To facilitate this study, some feature extraction algorithms and classifiers are combined to automatic diagnose pediatric cataract with same dataset and then their performance are compared using multiple criteria. This comparative study reveals the general characteristics of the existing methods for automatic identification of ophthalmic images and provides new insights into the strengths and shortcomings of these methods. The relevant methods (local binary pattern +SVMs, wavelet transformation +SVMs) which achieve an average accuracy of 87% and can be adopted in specific situations to aid doctors in preliminarily disease screening. Furthermore, some methods requiring fewer computational resources and less time could be applied in remote places or mobile devices to assist individuals in understanding the condition of their body. In addition, it would be helpful to accelerate the development of innovative approaches and to apply these methods to assist doctors in diagnosing ophthalmic disease.
A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI
NASA Astrophysics Data System (ADS)
Yu, Ning; Wu, Jia; Weinstein, Susan P.; Gaonkar, Bilwaj; Keller, Brad M.; Ashraf, Ahmed B.; Jiang, YunQing; Davatzikos, Christos; Conant, Emily F.; Kontos, Despina
2015-03-01
Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential applications of our segmentation framework in assisting analysis of breast carcinomas.
Gap-free segmentation of vascular networks with automatic image processing pipeline.
Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas
2017-03-01
Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computer-Aided Authoring System (AUTHOR) User's Guide. Volume I. Final Report.
ERIC Educational Resources Information Center
Guitard, Charles R.
This user's guide for AUTHOR, an automatic authoring system which produces programmed texts for teaching symbol recognition, provides detailed instructions to help the user construct and enter the information needed to create the programmed text, run the AUTHOR program, and edit the automatically composed paper. Major sections describe steps in…
Computer-Aided Diagnosis of Breast Cancer: A Multi-Center Demonstrator
1998-10-01
Artificial Neural Network (ANN) approach to computer aided diagnosis of breast cancer from mammographic findings. An ANN has been developed to provide support for the clinical decision to perform breast biopsy. The system is designed to aid in the decision to biopsy those patients who have suspicious mammographic findings. The decision to biopsy can be viewed as a two stage process: 1)the mammographer views the mammogram and determines the presence or absence of image features such as calcifications and masses, 2) the presence and description of these features
Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir
2015-06-01
The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.
Predicate Abstraction of ANSI-C Programs using SAT
2003-09-23
compositionally and automatically. In Alan J. Hu and Moshe Y. Vardi, editors, Computer-Aided Verification, CAV ’98, volume 1427, pages 319–331, Vancouver...Languages, POPL ’77, pages 238–252, 1977. [14] David W. Currie, Alan J. Hu, Sreeranga Rajan, and Masahira Fujita. Automatic formal verification of dsp...Languages and Systems (TOPLAS), 2(4):564–79, 1980. [19] A. Gupta, Z. Yang, P. Ashar , and A. Gupta. SAT-based image computation with application in
Enhancements in medicine by integrating content based image retrieval in computer-aided diagnosis
NASA Astrophysics Data System (ADS)
Aggarwal, Preeti; Sardana, H. K.
2010-02-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. With cad, radiologists use the computer output as a "second opinion" and make the final decisions. Retrieving images is a useful tool to help radiologist to check medical image and diagnosis. The impact of contentbased access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. The challenge in medical informatics is to develop tools for analyzing the content of medical images and to represent them in a way that can be efficiently searched and compared by the physicians. CAD is a concept established by taking into account equally the roles of physicians and computers. To build a successful computer aided diagnostic system, all the relevant technologies, especially retrieval need to be integrated in such a manner that should provide effective and efficient pre-diagnosed cases with proven pathology for the current case at the right time. In this paper, it is suggested that integration of content-based image retrieval (CBIR) in cad can bring enormous results in medicine especially in diagnosis. This approach is also compared with other approaches by highlighting its advantages over those approaches.
Abbas, Qaisar; Fondon, Irene; Sarmiento, Auxiliadora; Jiménez, Soledad; Alemany, Pedro
2017-11-01
Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.
Skin image illumination modeling and chromophore identification for melanoma diagnosis
NASA Astrophysics Data System (ADS)
Liu, Zhao; Zerubia, Josiane
2015-05-01
The presence of illumination variation in dermatological images has a negative impact on the automatic detection and analysis of cutaneous lesions. This paper proposes a new illumination modeling and chromophore identification method to correct lighting variation in skin lesion images, as well as to extract melanin and hemoglobin concentrations of human skin, based on an adaptive bilateral decomposition and a weighted polynomial curve fitting, with the knowledge of a multi-layered skin model. Different from state-of-the-art approaches based on the Lambert law, the proposed method, considering both specular reflection and diffuse reflection of the skin, enables us to address highlight and strong shading effects usually existing in skin color images captured in an uncontrolled environment. The derived melanin and hemoglobin indices, directly relating to the pathological tissue conditions, tend to be less influenced by external imaging factors and are more efficient in describing pigmentation distributions. Experiments show that the proposed method gave better visual results and superior lesion segmentation, when compared to two other illumination correction algorithms, both designed specifically for dermatological images. For computer-aided diagnosis of melanoma, sensitivity achieves 85.52% when using our chromophore descriptors, which is 8~20% higher than those derived from other color descriptors. This demonstrates the benefit of the proposed method for automatic skin disease analysis.
NASA Astrophysics Data System (ADS)
Kavitha, M. S.; Asano, Akira; Taguchi, Akira
2011-03-01
The aim of this study is to develop a computer-aided osteoporosis diagnosis system that automatically determines the inferior cortical width of the mandible continuously on dental panoramic radiographs to realize statistically more robust measurements than the conventional one-point measurements. The cortical width was continuously measured on dental panoramic radiographs by enhancing the original image, determining cortical boundaries, and finally evaluating the distance between boundaries continuously throughout the region of interest. The diagnostic performance using the average width calculated from the continuous measurement was compared with BMD at lumbar spine and femoral neck in 100 postmenopausal women of whom 50 to the development of the tool and 50 to its validation with no history of osteoporosis was evaluated. We experimentally showed the superiority of our method with improved sensitivity and specificity of identifying the development subjects were 90.0% and 75.0% in women with low spinal BMD and 81.8% and 69.2% in those with low femoral BMD, respectively. The corresponding values in the validation subjects were 93.3% and 82.9% at the lumbar spine and 92.3% and 75.7% at the femoral neck, respectively in terms of efficacy for diagnosing osteoporosis. We also assessed the diagnosis and classification of women with osteoporosis using support vector machine employing the average and variance of the continuous measurements gave excellent discrimination ability. It yields sensitivity and specificity of 90.9% and 83.8%, respectively with lumbar spine and 90.0% and 69.1%, respectively with femoral neck BMD. Performance comparison and simplicity of this method indicate that our computeraided system is readily applicable to clinical practice.
Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
Vandenberghe, Michel E.; Scott, Marietta L. J.; Scorer, Paul W.; Söderberg, Magnus; Balcerzak, Denis; Barker, Craig
2017-01-01
Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis. PMID:28378829
Artwork Interactive Design System (AIDS) program description
NASA Technical Reports Server (NTRS)
Johnson, B. T.; Taylor, J. F.
1976-01-01
An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.
Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.
NASA Astrophysics Data System (ADS)
Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong
2013-02-01
Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.
NASA Astrophysics Data System (ADS)
Mazzetti, S.; Giannini, V.; Russo, F.; Regge, D.
2018-05-01
Computer-aided diagnosis (CAD) systems are increasingly being used in clinical settings to report multi-parametric magnetic resonance imaging (mp-MRI) of the prostate. Usually, CAD systems automatically highlight cancer-suspicious regions to the radiologist, reducing reader variability and interpretation errors. Nevertheless, implementing this software requires the selection of which mp-MRI parameters can best discriminate between malignant and non-malignant regions. To exploit functional information, some parameters are derived from dynamic contrast-enhanced (DCE) acquisitions. In particular, much CAD software employs pharmacokinetic features, such as K trans and k ep, derived from the Tofts model, to estimate a likelihood map of malignancy. However, non-pharmacokinetic models can be also used to describe DCE-MRI curves, without any requirement for prior knowledge or measurement of the arterial input function, which could potentially lead to large errors in parameter estimation. In this work, we implemented an empirical function derived from the phenomenological universalities (PUN) class to fit DCE-MRI. The parameters of the PUN model are used in combination with T2-weighted and diffusion-weighted acquisitions to feed a support vector machine classifier to produce a voxel-wise malignancy likelihood map of the prostate. The results were all compared to those for a CAD system based on Tofts pharmacokinetic features to describe DCE-MRI curves, using different quality aspects of image segmentation, while also evaluating the number and size of false positive (FP) candidate regions. This study included 61 patients with 70 biopsy-proven prostate cancers (PCa). The metrics used to evaluate segmentation quality between the two CAD systems were not statistically different, although the PUN-based CAD reported a lower number of FP, with reduced size compared to the Tofts-based CAD. In conclusion, the CAD software based on PUN parameters is a feasible means with which to detect PCa, without affecting segmentation quality, and hence it could be successfully applied in clinical settings, improving the automated diagnosis process and reducing computational complexity.
A specialized plug-in software module for computer-aided quantitative measurement of medical images.
Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H
2003-12-01
This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.
Computer-aided programming for message-passing system; Problems and a solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.Y.; Gajski, D.D.
1989-12-01
As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.
Ferreira Junior, José Raniery; Oliveira, Marcelo Costa; de Azevedo-Marques, Paulo Mazzoncini
2016-12-01
Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.
[Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].
Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei
2017-08-01
The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Giffin, W. C.; Romer, D. J.
1984-01-01
Rockwell and Giffin (1982) and Giffin and Rockwell (1983) have discussed the use of computer aided testing (CAT) in the study of pilot response to critical in-flight events. The present investigation represents an extension of these earlier studies. In testing pilot responses to critical in-flight events, use is made of a Plato-touch CRT system operating on a menu based format. In connection with the typical diagnostic problem, the pilot was presented with symptoms within a flight scenario. In one problem, the pilot has four minutes for obtaining the information which is needed to make a diagnosis of the problem. In the reported research, the attempt has been made to combine both diagnosis and diversion scenario into a single computer aided test. Tests with nine subjects were conducted. The obtained results and their significance are discussed.
Model-based position correlation between breast images
NASA Astrophysics Data System (ADS)
Georgii, J.; Zöhrer, F.; Hahn, H. K.
2013-02-01
Nowadays, breast diagnosis is based on images of different projections and modalities, such that sensitivity and specificity of the diagnosis can be improved. However, this emburdens radiologists to find corresponding locations in these data sets, which is a time consuming task, especially since the resolution of the images increases and thus more and more data have to be considered in the diagnosis. Therefore, we aim at support radiologist by automatically synchronizing cursor positions between different views of the breast. Specifically, we present an automatic approach to compute the spatial correlation between MLO and CC mammogram or tomosynthesis projections of the breast. It is based on pre-computed finite element simulations of generic breast models, which are adapted to the patient-specific breast using a contour mapping approach. Our approach is designed to be fully automatic and efficient, such that it can be implemented directly into existing multimodal breast workstations. Additionally, it is extendable to support other breast modalities in future, too.
Qiu, Yuchen; Yan, Shiju; Gundreddy, Rohith Reddy; Wang, Yunzhi; Cheng, Samuel; Liu, Hong; Zheng, Bin
2017-01-01
PURPOSE To develop and test a deep learning based computer-aided diagnosis (CAD) scheme of mammograms for classifying between malignant and benign masses. METHODS An image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is composed of one hidden layer and one logistic regression layer. The network then generates a classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross validation method was applied to train and test this deep learning network. RESULTS The results revealed that this CAD scheme yields an area under the receiver operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019. CONCLUSIONS This study demonstrates the feasibility of applying a deep learning based CAD scheme to classify between malignant and benign breast masses without a lesion segmentation, image feature computation and selection process. PMID:28436410
Qiu, Yuchen; Yan, Shiju; Gundreddy, Rohith Reddy; Wang, Yunzhi; Cheng, Samuel; Liu, Hong; Zheng, Bin
2017-01-01
To develop and test a deep learning based computer-aided diagnosis (CAD) scheme of mammograms for classifying between malignant and benign masses. An image dataset involving 560 regions of interest (ROIs) extracted from digital mammograms was used. After down-sampling each ROI from 512×512 to 64×64 pixel size, we applied an 8 layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The 3 pairs of convolution layers contain 20, 10, and 5 feature maps, respectively. Each convolution layer is connected with a max-pooling layer to improve the feature robustness. The output of the sixth layer is fully connected with a MLP classifier, which is composed of one hidden layer and one logistic regression layer. The network then generates a classification score to predict the likelihood of ROI depicting a malignant mass. A four-fold cross validation method was applied to train and test this deep learning network. The results revealed that this CAD scheme yields an area under the receiver operation characteristic curve (AUC) of 0.696±0.044, 0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to 4 testing datasets, respectively. The overall AUC of the entire dataset is 0.790±0.019. This study demonstrates the feasibility of applying a deep learning based CAD scheme to classify between malignant and benign breast masses without a lesion segmentation, image feature computation and selection process.
Akram, Usman M; Khan, Shoab A
2012-10-01
There is an ever-increasing interest in the development of automatic medical diagnosis systems due to the advancement in computing technology and also to improve the service by medical community. The knowledge about health and disease is required for reliable and accurate medical diagnosis. Diabetic Retinopathy (DR) is one of the most common causes of blindness and it can be prevented if detected and treated early. DR has different signs and the most distinctive are microaneurysm and haemorrhage which are dark lesions and hard exudates and cotton wool spots which are bright lesions. Location and structure of blood vessels and optic disk play important role in accurate detection and classification of dark and bright lesions for early detection of DR. In this article, we propose a computer aided system for the early detection of DR. The article presents algorithms for retinal image preprocessing, blood vessel enhancement and segmentation and optic disk localization and detection which eventually lead to detection of different DR lesions using proposed hybrid fuzzy classifier. The developed methods are tested on four different publicly available databases. The presented methods are compared with recently published methods and the results show that presented methods outperform all others.
Truck circuits diagnosis for railway lines equipped with an automatic block signalling system
NASA Astrophysics Data System (ADS)
Spunei, E.; Piroi, I.; Muscai, C.; Răduca, E.; Piroi, F.
2018-01-01
This work presents a diagnosis method for detecting track circuits failures on a railway traffic line equipped with an Automatic Block Signalling installation. The diagnosis method uses the installation’s electrical schemas, based on which a series of diagnosis charts have been created. Further, the diagnosis charts were used to develop a software package, CDCBla, which substantially contributes to reducing the diagnosis time and human error during failure remedies. The proposed method can also be used as a training package for the maintenance staff. Since the diagnosis method here does not need signal or measurement inputs, using it does not necessitate additional IT knowledge and can be deployed on a mobile computing device (tablet, smart phone).
Barbosa, Daniel C; Roupar, Dalila B; Ramos, Jaime C; Tavares, Adriano C; Lima, Carlos S
2012-01-11
Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Graph representation of hepatic vessel based on centerline extraction and junction detection
NASA Astrophysics Data System (ADS)
Zhang, Xing; Tian, Jie; Deng, Kexin; Li, Xiuli; Yang, Fei
2012-02-01
In the area of computer-aided diagnosis (CAD), segmentation and analysis of hepatic vessel is a prerequisite for hepatic diseases diagnosis and surgery planning. For liver surgery planning, it is crucial to provide the surgeon with a patient-individual three-dimensional representation of the liver along with its vasculature and lesions. The representation allows an exploration of the vascular anatomy and the measurement of vessel diameters, following by intra-patient registration, as well as the analysis of the shape and volume of vascular territories. In this paper, we present an approach for generation of hepatic vessel graph based on centerline extraction and junction detection. The proposed approach involves the following concepts and methods: 1) Flux driven automatic centerline extraction; 2) Junction detection on the centerline using hollow sphere filtering; 3) Graph representation of hepatic vessel based on the centerline and junction. The approach is evaluated on contrast-enhanced liver CT datasets to demonstrate its availability and effectiveness.
Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan
A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.
Report: Unsupervised identification of malaria parasites using computer vision.
Khan, Najeed Ahmed; Pervaz, Hassan; Latif, Arsalan; Musharaff, Ayesha
2017-01-01
Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.
Sinus barotrauma--late diagnosis and treatment with computer-aided endoscopic surgery.
Larsen, Anders Schermacher; Buchwald, Christian; Vesterhauge, Søren
2003-02-01
Sinus barotrauma is usually easy to diagnose, and treatment achieves good results. We present two severe cases where delayed diagnosis caused significant morbidity. The signs and symptoms were atypical and neither the patients themselves, nor the initial examiners recognized that the onset of symptoms coincided with descent in a commercial airliner. CT and MRI scans of the brain were normal, but in both cases showed opafication of the sphenoid sinuses, which lead to the correct diagnosis. Subsequent surgical intervention consisting of endoscopic computer-aided surgery showed blood and petechia in the affected sinuses. This procedure provided immediate relief.
Information fusion for diabetic retinopathy CAD in digital color fundus photographs.
Niemeijer, Meindert; Abramoff, Michael D; van Ginneken, Bram
2009-05-01
The purpose of computer-aided detection or diagnosis (CAD) technology has so far been to serve as a second reader. If, however, all relevant lesions in an image can be detected by CAD algorithms, use of CAD for automatic reading or prescreening may become feasible. This work addresses the question how to fuse information from multiple CAD algorithms, operating on multiple images that comprise an exam, to determine a likelihood that the exam is normal and would not require further inspection by human operators. We focus on retinal image screening for diabetic retinopathy, a common complication of diabetes. Current CAD systems are not designed to automatically evaluate complete exams consisting of multiple images for which several detection algorithm output sets are available. Information fusion will potentially play a crucial role in enabling the application of CAD technology to the automatic screening problem. Several different fusion methods are proposed and their effect on the performance of a complete comprehensive automatic diabetic retinopathy screening system is evaluated. Experiments show that the choice of fusion method can have a large impact on system performance. The complete system was evaluated on a set of 15,000 exams (60,000 images). The best performing fusion method obtained an area under the receiver operator characteristic curve of 0.881. This indicates that automated prescreening could be applied in diabetic retinopathy screening programs.
Computer-assisted initial diagnosis of rare diseases
Piñol, Marc; Vilaplana, Jordi; Teixidó, Ivan; Cruz, Joaquim; Comas, Jorge; Vilaprinyo, Ester; Sorribas, Albert
2016-01-01
Introduction. Most documented rare diseases have genetic origin. Because of their low individual frequency, an initial diagnosis based on phenotypic symptoms is not always easy, as practitioners might never have been exposed to patients suffering from the relevant disease. It is thus important to develop tools that facilitate symptom-based initial diagnosis of rare diseases by clinicians. In this work we aimed at developing a computational approach to aid in that initial diagnosis. We also aimed at implementing this approach in a user friendly web prototype. We call this tool Rare Disease Discovery. Finally, we also aimed at testing the performance of the prototype. Methods. Rare Disease Discovery uses the publicly available ORPHANET data set of association between rare diseases and their symptoms to automatically predict the most likely rare diseases based on a patient’s symptoms. We apply the method to retrospectively diagnose a cohort of 187 rare disease patients with confirmed diagnosis. Subsequently we test the precision, sensitivity, and global performance of the system under different scenarios by running large scale Monte Carlo simulations. All settings account for situations where absent and/or unrelated symptoms are considered in the diagnosis. Results. We find that this expert system has high diagnostic precision (≥80%) and sensitivity (≥99%), and is robust to both absent and unrelated symptoms. Discussion. The Rare Disease Discovery prediction engine appears to provide a fast and robust method for initial assisted differential diagnosis of rare diseases. We coupled this engine with a user-friendly web interface and it can be freely accessed at http://disease-discovery.udl.cat/. The code and most current database for the whole project can be downloaded from https://github.com/Wrrzag/DiseaseDiscovery/tree/no_classifiers. PMID:27547534
Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara
2017-01-01
Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.
2006-06-01
Hadjiiski, and N. Petrick, "Computerized nipple identification for multiple image analysis in computer-aided diagnosis," Medical Physics 31, 2871...candidates, 3 identification of suspicious objects, 4 feature extraction and analysis, and 5 FP reduc- tion by classification of normal tissue...detection of microcalcifi- cations on digitized mammograms.41 An illustration of a La- placian decomposition tree is shown on the left-hand side of Fig. 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, B.K.; Chinn, V.K.
1981-01-01
The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)
Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
Becker, K W; Scheffer, C; Blanckenberg, M M; Diacon, A H
2013-01-01
Tuberculosis is a common and potentially deadly infectious disease, usually affecting the respiratory system and causing the sound properties of symptomatic infected lungs to differ from non-infected lungs. Auscultation is often ruled out as a reliable diagnostic technique for TB due to the random distribution of the infection and the varying severity of damage to the lungs. However, advancements in signal processing techniques for respiratory sounds can improve the potential of auscultation far beyond the capabilities of the conventional mechanical stethoscope. Though computer-based signal analysis of respiratory sounds has produced a significant body of research, there have not been any recent investigations into the computer-aided analysis of lung sounds associated with pulmonary Tuberculosis (TB), despite the severity of the disease in many countries. In this paper, respiratory sounds were recorded from 14 locations around the posterior and anterior chest walls of healthy volunteers and patients infected with pulmonary TB. The most significant signal features in both the time and frequency domains associated with the presence of TB, were identified by using the statistical overlap factor (SOF). These features were then employed to train a neural network to automatically classify the auscultation recordings into their respective healthy or TB-origin categories. The neural network yielded a diagnostic accuracy of 73%, but it is believed that automated filtering of the noise in the clinics, more training samples and perhaps other signal processing methods can improve the results of future studies. This work demonstrates the potential of computer-aided auscultation as an aid for the diagnosis and treatment of TB.
Space Derived Health Aids (AID, Heart Monitor)
NASA Technical Reports Server (NTRS)
1981-01-01
CPI's spinoff from miniaturized pace circuitry is the new heart-assist device, the AID implantable automatic pulse generator. AID pulse generator monitors the heart continuously, recognizes onset of fibrillation, then administers a corrective electrical shock. A mini- computer, a power source, and two electrodes which sense heart activity are included in the unit. An associated system was also developed. It includes an external recorder to be worn by AID patients and a physician's console to display the data stored by the recorder. System provides a record of fibrillation occurrences and the ensuing defibrillation.
Yu, Q
2018-04-09
Computer aided design and computer aided manufacture (CAD/CAM) technology is a kind of oral digital system which is applied to clinical diagnosis and treatment. It overturns the traditional pattern, and provides a solution to restore defect tooth quickly and efficiently. In this paper we mainly discuss the clinical skills of chair-side CAD/CAM system, including tooth preparation, digital impression, the three-dimensional design of prosthesis, numerical control machining, clinical bonding and so on, and review the outcomes of several common kinds of materials at the same time.
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
Data mining for average images in a digital hand atlas
NASA Astrophysics Data System (ADS)
Zhang, Aifeng; Cao, Fei; Pietka, Ewa; Liu, Brent J.; Huang, H. K.
2004-04-01
Bone age assessment is a procedure performed in pediatric patients to quickly evaluate parameters of maturation and growth from a left hand and wrist radiograph. Pietka and Cao have developed a Computer-aided diagnosis (CAD) method of bone age assessment based on a digital hand atlas. The aim of this paper is to extend their work by automatically select the best representative image from a group of normal children based on specific bony features that reflect skeletal maturity. The group can be of any ethnic origin and gender from one year to 18 year old in the digital atlas. This best representative image is defined as the "average" image of the group that can be augmented to Piekta and Cao's method to facilitate in the bone age assessment process.
Getting Mental Models and Computer Models to Cooperate
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Roseborough, J.; Charney, L.; Mendel, M.
1984-01-01
A qualitative theory of supervisory control is outlined wherein the mental models of one or more human operators are related to the knowledge representations within automatic controllers (observers, estimators) and operator decision aids (expert systems, advice-givers). Methods of quantifying knowledge and the calibration of one knowledge representation to another (human, computer, or objective truth) are discussed. Ongoing experiments in the use of decision aids for exploring one's own objective function or exploring system constraints and control strategies are described.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
NASA Astrophysics Data System (ADS)
Chaisaowong, Kraisorn; Kraus, Thomas
2014-03-01
Pleural thickenings can be caused by asbestos exposure and may evolve into malignant pleural mesothelioma. While an early diagnosis plays the key role to an early treatment, and therefore helping to reduce morbidity, the growth rate of a pleural thickening can be in turn essential evidence to an early diagnosis of the pleural mesothelioma. The detection of pleural thickenings is today done by a visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. Computer-assisted diagnosis systems to automatically assess pleural mesothelioma have been reported worldwide. But in this paper, an image analysis pipeline to automatically detect pleural thickenings and measure their volume is described. We first delineate automatically the pleural contour in the CT images. An adaptive surface-base smoothing technique is then applied to the pleural contours to identify all potential thickenings. A following tissue-specific topology-oriented detection based on a probabilistic Hounsfield Unit model of pleural plaques specify then the genuine pleural thickenings among them. The assessment of the detected pleural thickenings is based on the volumetry of the 3D model, created by mesh construction algorithm followed by Laplace-Beltrami eigenfunction expansion surface smoothing technique. Finally, the spatiotemporal matching of pleural thickenings from consecutive CT data is carried out based on the semi-automatic lung registration towards the assessment of its growth rate. With these methods, a new computer-assisted diagnosis system is presented in order to assure a precise and reproducible assessment of pleural thickenings towards the diagnosis of the pleural mesothelioma in its early stage.
Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing
2017-03-01
Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
Angular relational signature-based chest radiograph image view classification.
Santosh, K C; Wendling, Laurent
2018-01-22
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
NASA Astrophysics Data System (ADS)
Sánchez, Clara I.; Niemeijer, Meindert; Kockelkorn, Thessa; Abràmoff, Michael D.; van Ginneken, Bram
2009-02-01
Computer-aided Diagnosis (CAD) systems for the automatic identification of abnormalities in retinal images are gaining importance in diabetic retinopathy screening programs. A huge amount of retinal images are collected during these programs and they provide a starting point for the design of machine learning algorithms. However, manual annotations of retinal images are scarce and expensive to obtain. This paper proposes a dynamic CAD system based on active learning for the automatic identification of hard exudates, cotton wool spots and drusen in retinal images. An uncertainty sampling method is applied to select samples that need to be labeled by an expert from an unlabeled set of 4000 retinal images. It reduces the number of training samples needed to obtain an optimum accuracy by dynamically selecting the most informative samples. Results show that the proposed method increases the classification accuracy compared to alternative techniques, achieving an area under the ROC curve of 0.87, 0.82 and 0.78 for the detection of hard exudates, cotton wool spots and drusen, respectively.
Beheshti, Iman; Olya, Hossain G T; Demirel, Hasan
2016-04-05
Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
Bayesian networks and statistical analysis application to analyze the diagnostic test accuracy
NASA Astrophysics Data System (ADS)
Orzechowski, P.; Makal, Jaroslaw; Onisko, A.
2005-02-01
The computer aided BPH diagnosis system based on Bayesian network is described in the paper. First result are compared to a given statistical method. Different statistical methods are used successfully in medicine for years. However, the undoubted advantages of probabilistic methods make them useful in application in newly created systems which are frequent in medicine, but do not have full and competent knowledge. The article presents advantages of the computer aided BPH diagnosis system in clinical practice for urologists.
Computer-aided testing of pilot response to critical in-flight events
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.
1984-01-01
This research on pilot response to critical in-flight events employs a unique methodology including an interactive computer-aided scenario-testing system. Navigation displays, instrument-panel displays, and assorted textual material are presented on a touch-sensitive CRT screen. Problem diagnosis scenarios, destination-diversion scenarios and combined destination/diagnostic tests are available. A complete time history of all data inquiries and responses is maintained. Sample results of diagnosis scenarios obtained from testing 38 licensed pilots are presented and discussed.
Ultrasound based computer-aided-diagnosis of kidneys for pediatric hydronephrosis
NASA Astrophysics Data System (ADS)
Cerrolaza, Juan J.; Peters, Craig A.; Martin, Aaron D.; Myers, Emmarie; Safdar, Nabile; Linguraru, Marius G.
2014-03-01
Ultrasound is the mainstay of imaging for pediatric hydronephrosis, though its potential as diagnostic tool is limited by its subjective assessment, and lack of correlation with renal function. Therefore, all cases showing signs of hydronephrosis undergo further invasive studies, like diuretic renogram, in order to assess the actual renal function. Under the hypothesis that renal morphology is correlated with renal function, a new ultrasound based computer-aided diagnosis (CAD) tool for pediatric hydronephrosis is presented. From 2D ultrasound, a novel set of morphological features of the renal collecting systems and the parenchyma, is automatically extracted using image analysis techniques. From the original set of features, including size, geometric and curvature descriptors, a subset of ten features are selected as predictive variables, combining a feature selection technique and area under the curve filtering. Using the washout half time (T1/2) as indicative of renal obstruction, two groups are defined. Those cases whose T1/2 is above 30 minutes are considered to be severe, while the rest would be in the safety zone, where diuretic renography could be avoided. Two different classification techniques are evaluated (logistic regression, and support vector machines). Adjusting the probability decision thresholds to operate at the point of maximum sensitivity, i.e., preventing any severe case be misclassified, specificities of 53%, and 75% are achieved, for the logistic regression and the support vector machine classifier, respectively. The proposed CAD system allows to establish a link between non-invasive non-ionizing imaging techniques and renal function, limiting the need for invasive and ionizing diuretic renography.
Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C
2016-03-01
Classify chronic liver disease (CLD) from ultrasound shear-wave elastography (SWE) imaging by means of a computer aided diagnosis (CAD) system. The proposed algorithm employs an inverse mapping technique (red-green-blue to stiffness) to quantify 85 SWE images (54 healthy and 31 with CLD). Texture analysis is then applied involving the automatic calculation of 330 first and second order textural features from every transformed stiffness value map to determine functional features that characterize liver elasticity and describe liver condition for all available stages. Consequently, a stepwise regression analysis feature selection procedure is utilized toward a reduced feature subset that is fed into the support vector machines (SVMs) classification algorithm in the design of the CAD system. With regard to the mapping procedure accuracy, the stiffness map values had an average difference of 0.01 ± 0.001 kPa compared to the quantification results derived from the color-box provided by the built-in software of the ultrasound system. Highest classification accuracy from the SVM model was 87.0% with sensitivity and specificity values of 83.3% and 89.1%, respectively. Receiver operating characteristic curves analysis gave an area under the curve value of 0.85 with [0.77-0.89] confidence interval. The proposed CAD system employing color to stiffness mapping and classification algorithms offered superior results, comparing the already published clinical studies. It could prove to be of value to physicians improving the diagnostic accuracy of CLD and can be employed as a second opinion tool for avoiding unnecessary invasive procedures.
Retinal status analysis method based on feature extraction and quantitative grading in OCT images.
Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri
2016-07-22
Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
Automatic seed selection for segmentation of liver cirrhosis in laparoscopic sequences
NASA Astrophysics Data System (ADS)
Sinha, Rahul; Marcinczak, Jan Marek; Grigat, Rolf-Rainer
2014-03-01
For computer aided diagnosis based on laparoscopic sequences, image segmentation is one of the basic steps which define the success of all further processing. However, many image segmentation algorithms require prior knowledge which is given by interaction with the clinician. We propose an automatic seed selection algorithm for segmentation of liver cirrhosis in laparoscopic sequences which assigns each pixel a probability of being cirrhotic liver tissue or background tissue. Our approach is based on a trained classifier using SIFT and RGB features with PCA. Due to the unique illumination conditions in laparoscopic sequences of the liver, a very low dimensional feature space can be used for classification via logistic regression. The methodology is evaluated on 718 cirrhotic liver and background patches that are taken from laparoscopic sequences of 7 patients. Using a linear classifier we achieve a precision of 91% in a leave-one-patient-out cross-validation. Furthermore, we demonstrate that with logistic probability estimates, seeds with high certainty of being cirrhotic liver tissue can be obtained. For example, our precision of liver seeds increases to 98.5% if only seeds with more than 95% probability of being liver are used. Finally, these automatically selected seeds can be used as priors in Graph Cuts which is demonstrated in this paper.
Advanced Computational Techniques for Power Tube Design.
1986-07-01
fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design
Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei
2015-09-01
Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can accurately measure infarct size. On the basis of the results, we believe the CAD method can quickly and automatically measure myocardial perfusion and infarct size and will, it is hoped, be very helpful in clinical therapeutics. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Mazurowski, Maciej A; Zurada, Jacek M; Tourassi, Georgia D
2009-07-01
Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC = 0.905 +/- 0.024) in performance as compared to the original IT-CAD system (AUC = 0.865 +/- 0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters.
The NASA computer aided design and test system
NASA Technical Reports Server (NTRS)
Gould, J. M.; Juergensen, K.
1973-01-01
A family of computer programs facilitating the design, layout, evaluation, and testing of digital electronic circuitry is described. CADAT (computer aided design and test system) is intended for use by NASA and its contractors and is aimed predominantly at providing cost effective microelectronic subsystems based on custom designed metal oxide semiconductor (MOS) large scale integrated circuits (LSIC's). CADAT software can be easily adopted by installations with a wide variety of computer hardware configurations. Its structure permits ease of update to more powerful component programs and to newly emerging LSIC technologies. The components of the CADAT system are described stressing the interaction of programs rather than detail of coding or algorithms. The CADAT system provides computer aids to derive and document the design intent, includes powerful automatic layout software, permits detailed geometry checks and performance simulation based on mask data, and furnishes test pattern sequences for hardware testing.
Cupek, Rafal; Ziębiński, Adam
2016-01-01
Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. This paper focus on a computer aided diagnostic system that was developed within joint Polish-Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner's experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner's experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity.
Review of AIDS development. [airborne computers for reliability engineering
NASA Technical Reports Server (NTRS)
Vermeulen, H. C.; Danielsson, S. G.
1981-01-01
The operation and implementation of the aircraft integrated data system AIDS are described. The system is described as an engineering tool with strong emphasis on analysis of recorded information. The AIDS is primarily directed to the monitoring of parameters related to: the safety of the flight; the performance of the aircraft; the performance of the flight guidance system; and the performance and condition of the engines. The system provide short term trend analysis on a trend chart that is updated by the flight engineer on every flight that lasts more than 4 flight hours. Engine data prints are automatically presented during take-off and in the case of limit excedance, e.g., the print shows an automatically reported impending hotstarts on engine nr. 1. Other significant features are reported.
Evaluation of computer-aided detection and diagnosis systems.
Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping
2013-08-01
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and "best practices" for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice.
Evaluation of computer-aided detection and diagnosis systemsa)
Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G.; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T.; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M.; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping
2013-01-01
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and “best practices” for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice. PMID:23927365
Lesion classification using clinical and visual data fusion by multiple kernel learning
NASA Astrophysics Data System (ADS)
Kisilev, Pavel; Hashoul, Sharbell; Walach, Eugene; Tzadok, Asaf
2014-03-01
To overcome operator dependency and to increase diagnosis accuracy in breast ultrasound (US), a lot of effort has been devoted to developing computer-aided diagnosis (CAD) systems for breast cancer detection and classification. Unfortunately, the efficacy of such CAD systems is limited since they rely on correct automatic lesions detection and localization, and on robustness of features computed based on the detected areas. In this paper we propose a new approach to boost the performance of a Machine Learning based CAD system, by combining visual and clinical data from patient files. We compute a set of visual features from breast ultrasound images, and construct the textual descriptor of patients by extracting relevant keywords from patients' clinical data files. We then use the Multiple Kernel Learning (MKL) framework to train SVM based classifier to discriminate between benign and malignant cases. We investigate different types of data fusion methods, namely, early, late, and intermediate (MKL-based) fusion. Our database consists of 408 patient cases, each containing US images, textual description of complaints and symptoms filled by physicians, and confirmed diagnoses. We show experimentally that the proposed MKL-based approach is superior to other classification methods. Even though the clinical data is very sparse and noisy, its MKL-based fusion with visual features yields significant improvement of the classification accuracy, as compared to the image features only based classifier.
Using Software Tools to Automate the Assessment of Student Programs.
ERIC Educational Resources Information Center
Jackson, David
1991-01-01
Argues that advent of computer-aided instruction (CAI) systems for teaching introductory computer programing makes it imperative that software be developed to automate assessment and grading of student programs. Examples of typical student programing problems are given, and application of the Unix tools Lex and Yacc to the automatic assessment of…
Alternative Delivery Systems for the Computer-Aided Instruction Study Management System (CAISMS).
ERIC Educational Resources Information Center
Nievergelt, Jurg; And Others
The Computer-Assisted Instruction Study Management System (CAISMS) was developed and implemented on the PLATO system to monitor and guide student study of text materials. It administers assignments, gives quizzes, and automatically keeps track of a student's progress. This report describes CAISMS and several hypothetical implementations of CAISMS…
Liu, Z; Sun, J; Smith, M; Smith, L; Warr, R
2013-11-01
Computer-assisted diagnosis (CAD) of malignant melanoma (MM) has been advocated to help clinicians to achieve a more objective and reliable assessment. However, conventional CAD systems examine only the features extracted from digital photographs of lesions. Failure to incorporate patients' personal information constrains the applicability in clinical settings. To develop a new CAD system to improve the performance of automatic diagnosis of melanoma, which, for the first time, incorporates digital features of lesions with important patient metadata into a learning process. Thirty-two features were extracted from digital photographs to characterize skin lesions. Patients' personal information, such as age, gender and, lesion site, and their combinations, was quantified as metadata. The integration of digital features and metadata was realized through an extended Laplacian eigenmap, a dimensionality-reduction method grouping lesions with similar digital features and metadata into the same classes. The diagnosis reached 82.1% sensitivity and 86.1% specificity when only multidimensional digital features were used, but improved to 95.2% sensitivity and 91.0% specificity after metadata were incorporated appropriately. The proposed system achieves a level of sensitivity comparable with experienced dermatologists aided by conventional dermoscopes. This demonstrates the potential of our method for assisting clinicians in diagnosing melanoma, and the benefit it could provide to patients and hospitals by greatly reducing unnecessary excisions of benign naevi. This paper proposes an enhanced CAD system incorporating clinical metadata into the learning process for automatic classification of melanoma. Results demonstrate that the additional metadata and the mechanism to incorporate them are useful for improving CAD of melanoma. © 2013 British Association of Dermatologists.
Wavelet-based characterization of gait signal for neurological abnormalities.
Baratin, E; Sugavaneswaran, L; Umapathy, K; Ioana, C; Krishnan, S
2015-02-01
Studies conducted by the World Health Organization (WHO) indicate that over one billion suffer from neurological disorders worldwide, and lack of efficient diagnosis procedures affects their therapeutic interventions. Characterizing certain pathologies of motor control for facilitating their diagnosis can be useful in quantitatively monitoring disease progression and efficient treatment planning. As a suitable directive, we introduce a wavelet-based scheme for effective characterization of gait associated with certain neurological disorders. In addition, since the data were recorded from a dynamic process, this work also investigates the need for gait signal re-sampling prior to identification of signal markers in the presence of pathologies. To benefit automated discrimination of gait data, certain characteristic features are extracted from the wavelet-transformed signals. The performance of the proposed approach was evaluated using a database consisting of 15 Parkinson's disease (PD), 20 Huntington's disease (HD), 13 Amyotrophic lateral sclerosis (ALS) and 16 healthy control subjects, and an average classification accuracy of 85% is achieved using an unbiased cross-validation strategy. The obtained results demonstrate the potential of the proposed methodology for computer-aided diagnosis and automatic characterization of certain neurological disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear.
Zarandi, M H Fazel; Khadangi, A; Karimi, F; Turksen, I B
2016-12-01
Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of "η" value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.
Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.
Kemp, Pavlina S; VanderVeen, Deborah K
2016-01-01
The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.
Patient-Specific Simulation of Cardiac Blood Flow From High-Resolution Computed Tomography.
Lantz, Jonas; Henriksson, Lilian; Persson, Anders; Karlsson, Matts; Ebbers, Tino
2016-12-01
Cardiac hemodynamics can be computed from medical imaging data, and results could potentially aid in cardiac diagnosis and treatment optimization. However, simulations are often based on simplified geometries, ignoring features such as papillary muscles and trabeculae due to their complex shape, limitations in image acquisitions, and challenges in computational modeling. This severely hampers the use of computational fluid dynamics in clinical practice. The overall aim of this study was to develop a novel numerical framework that incorporated these geometrical features. The model included the left atrium, ventricle, ascending aorta, and heart valves. The framework used image registration to obtain patient-specific wall motion, automatic remeshing to handle topological changes due to the complex trabeculae motion, and a fast interpolation routine to obtain intermediate meshes during the simulations. Velocity fields and residence time were evaluated, and they indicated that papillary muscles and trabeculae strongly interacted with the blood, which could not be observed in a simplified model. The framework resulted in a model with outstanding geometrical detail, demonstrating the feasibility as well as the importance of a framework that is capable of simulating blood flow in physiologically realistic hearts.
Detection of benign prostatic hyperplasia nodules in T2W MR images using fuzzy decision forest
NASA Astrophysics Data System (ADS)
Lay, Nathan; Freeman, Sabrina; Turkbey, Baris; Summers, Ronald M.
2016-03-01
Prostate cancer is the second leading cause of cancer-related death in men MRI has proven useful for detecting prostate cancer, and CAD may further improve detection. One source of false positives in prostate computer-aided diagnosis (CAD) is the presence of benign prostatic hyperplasia (BPH) nodules. These nodules have a distinct appearance with a pseudo-capsule on T2 weighted MR images but can also resemble cancerous lesions in other sequences such as the ADC or high B-value images. Describing their appearance with hand-crafted heuristics (features) that also exclude the appearance of cancerous lesions is challenging. This work develops a method based on fuzzy decision forests to automatically learn discriminative features for the purpose of BPH nodule detection in T2 weighted images for the purpose of improving prostate CAD systems.
ΤND: a thyroid nodule detection system for analysis of ultrasound images and videos.
Keramidas, Eystratios G; Maroulis, Dimitris; Iakovidis, Dimitris K
2012-06-01
In this paper, we present a computer-aided-diagnosis (CAD) system prototype, named TND (Thyroid Nodule Detector), for the detection of nodular tissue in ultrasound (US) thyroid images and videos acquired during thyroid US examinations. The proposed system incorporates an original methodology that involves a novel algorithm for automatic definition of the boundaries of the thyroid gland, and a novel approach for the extraction of noise resilient image features effectively representing the textural and the echogenic properties of the thyroid tissue. Through extensive experimental evaluation on real thyroid US data, its accuracy in thyroid nodule detection has been estimated to exceed 95%. These results attest to the feasibility of the clinical application of TND, for the provision of a second more objective opinion to the radiologists by exploiting image evidences.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
Interactive computer programs for the graphic analysis of nucleotide sequence data.
Luckow, V A; Littlewood, R K; Rownd, R H
1984-01-01
A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437
Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei
2011-01-01
This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.
Zhang, Z L; Li, J P; Li, G; Ma, X C
2017-02-09
Objective: To establish and validate a computer program used to aid the detection of dental proximal caries in the images cone beam computed tomography (CBCT) images. Methods: According to the characteristics of caries lesions in X-ray images, a computer aided detection program for proximal caries was established with Matlab and Visual C++. The whole process for caries lesion detection included image import and preprocessing, measuring average gray value of air area, choosing region of interest and calculating gray value, defining the caries areas. The program was used to examine 90 proximal surfaces from 45 extracted human teeth collected from Peking University School and Hospital of Stomatology. The teeth were then scanned with a CBCT scanner (Promax 3D). The proximal surfaces of the teeth were respectively detected by caries detection program and scored by human observer for the extent of lesions with 6-level-scale. With histologic examination serving as the reference standard, the caries detection program and the human observer performances were assessed with receiver operating characteristic (ROC) curves. Student t -test was used to analyze the areas under the ROC curves (AUC) for the differences between caries detection program and human observer. Spearman correlation coefficient was used to analyze the detection accuracy of caries depth. Results: For the diagnosis of proximal caries in CBCT images, the AUC values of human observers and caries detection program were 0.632 and 0.703, respectively. There was a statistically significant difference between the AUC values ( P= 0.023). The correlation between program performance and gold standard (correlation coefficient r (s)=0.525) was higher than that of observer performance and gold standard ( r (s)=0.457) and there was a statistically significant difference between the correlation coefficients ( P= 0.000). Conclusions: The program that automatically detects dental proximal caries lesions could improve the diagnostic value of CBCT images.
2005-10-01
nearly setting-independent features and artificial neural networks. Radiology 2003; 226:504-514. 14. Horsch K, Giger ML, Venta LA, Vyborny CJ...Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad. Radiol. 2004; 11:272
Acharya, U Rajendra; Koh, Joel En Wei; Hagiwara, Yuki; Tan, Jen Hong; Gertych, Arkadiusz; Vijayananthan, Anushya; Yaakup, Nur Adura; Abdullah, Basri Johan Jeet; Bin Mohd Fabell, Mohd Kamil; Yeong, Chai Hong
2018-03-01
Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Segmentation of breast ultrasound images based on active contours using neutrosophic theory.
Lotfollahi, Mahsa; Gity, Masoumeh; Ye, Jing Yong; Mahlooji Far, A
2018-04-01
Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.
Automatic translation of digraph to fault-tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.
1992-01-01
The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.
PACS-Based Computer-Aided Detection and Diagnosis
NASA Astrophysics Data System (ADS)
Huang, H. K. (Bernie); Liu, Brent J.; Le, Anh HongTu; Documet, Jorge
The ultimate goal of Picture Archiving and Communication System (PACS)-based Computer-Aided Detection and Diagnosis (CAD) is to integrate CAD results into daily clinical practice so that it becomes a second reader to aid the radiologist's diagnosis. Integration of CAD and Hospital Information System (HIS), Radiology Information System (RIS) or PACS requires certain basic ingredients from Health Level 7 (HL7) standard for textual data, Digital Imaging and Communications in Medicine (DICOM) standard for images, and Integrating the Healthcare Enterprise (IHE) workflow profiles in order to comply with the Health Insurance Portability and Accountability Act (HIPAA) requirements to be a healthcare information system. Among the DICOM standards and IHE workflow profiles, DICOM Structured Reporting (DICOM-SR); and IHE Key Image Note (KIN), Simple Image and Numeric Report (SINR) and Post-processing Work Flow (PWF) are utilized in CAD-HIS/RIS/PACS integration. These topics with examples are presented in this chapter.
Automatic lung segmentation using control feedback system: morphology and texture paradigm.
Noor, Norliza M; Than, Joel C M; Rijal, Omar M; Kassim, Rosminah M; Yunus, Ashari; Zeki, Amir A; Anzidei, Michele; Saba, Luca; Suri, Jasjit S
2015-03-01
Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.
NASA Astrophysics Data System (ADS)
Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten
2010-02-01
With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.
ERIC Educational Resources Information Center
Franco, Horacio; Bratt, Harry; Rossier, Romain; Rao Gadde, Venkata; Shriberg, Elizabeth; Abrash, Victor; Precoda, Kristin
2010-01-01
SRI International's EduSpeak[R] system is a software development toolkit that enables developers of interactive language education software to use state-of-the-art speech recognition and pronunciation scoring technology. Automatic pronunciation scoring allows the computer to provide feedback on the overall quality of pronunciation and to point to…
A tool for computer-aided diagnosis of retinopathy of prematurity
NASA Astrophysics Data System (ADS)
Zhao, Zheen; Wallace, David K.; Freedman, Sharon F.; Aylward, Stephen R.
2008-03-01
In this paper we present improvements to a software application, named ROPtool, that aids in the timely and accurate detection and diagnosis of retinopathy of prematurity (ROP). ROP occurs in 68% of infants less than 1251 grams at birth, and it is a leading cause of blindness for prematurely born infants. The standard of care for its diagnosis is the subjective assessment of retinal vessel dilation and tortuosity. There is significant inter-observer variation in those assessments. ROPtool analyzes retinal images, extracts user-selected blood vessels from those images, and quantifies the tortuosity of those vessels. The presence of ROP is then gauged by comparing the tortuosity of an infant's retinal vessels with measures made from a clinical-standard image of severely tortuous retinal vessels. The presence of such tortuous retinal vessels is referred to as 'plus disease'. In this paper, a novel metric of tortuosity is proposed. From the ophthalmologist's point of view, the new metric is an improvement from our previously published algorithm, since it uses smooth curves instead of straight lines to simulate 'normal vessels'. Another advantage of the new ROPtool is that minimal user interactions are required. ROPtool utilizes a ridge traversal algorithm to extract retinal vessels. The algorithm reconstructs connectivity along a vessel automatically. This paper supports its claims by reporting ROC curves from a pilot study involving 20 retinal images. The areas under two ROC curves, from two experts in ROP, using the new metric to diagnose 'tortuosity sufficient for plus disease', varied from 0.86 to 0.91.
Strategies for the Segmentation of Subcutaneous Vascular Patterns in Thermographic Images
NASA Astrophysics Data System (ADS)
Chan, Eric K. Y.; Pearce, John A.
1989-05-01
Computer-assisted segmentation of vascular patterns in thermographic images provides the clinician with graphic outlines of thermally significant subcutaneous blood vessels. Segmentation strategies compared here consist of image smoothing protocols followed by thresholding and zero-crossing edge detectors. Median prefiltering followed by the Frei-Chen algorithm gave the most reproducible results, with an execution time of 143 seconds for 256 X 256 images. The Laplacian of Gaussian operator was not suitable due to streak artifacts in the thermographic imaging system. This computerized process may be adopted in a fast paced clinical environment to aid in the diagnosis and assessment of peripheral circulatory diseases, Raynaud's Disease3, phlebitis, varicose veins, as well as diseases of the autonomic nervous system. The same methodology may be applied to enhance the appearance of abnormal breast vascular patterns, and hence serve as an adjunct to mammography in the diagnosis of breast cancer. The automatically segmented vascular patterns, which have a hand drawn appearance, may also be used as a data reduction precursor to higher level pattern analysis and classification tasks.
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel
2016-03-01
Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.
Mostafavi, Kamal; Tutunea-Fatan, O Remus; Bordatchev, Evgueni V; Johnson, James A
2014-12-01
The strong advent of computer-assisted technologies experienced by the modern orthopedic surgery prompts for the expansion of computationally efficient techniques to be built on the broad base of computer-aided engineering tools that are readily available. However, one of the common challenges faced during the current developmental phase continues to remain the lack of reliable frameworks to allow a fast and precise conversion of the anatomical information acquired through computer tomography to a format that is acceptable to computer-aided engineering software. To address this, this study proposes an integrated and automatic framework capable to extract and then postprocess the original imaging data to a common planar and closed B-Spline representation. The core of the developed platform relies on the approximation of the discrete computer tomography data by means of an original two-step B-Spline fitting technique based on successive deformations of the control polygon. In addition to its rapidity and robustness, the developed fitting technique was validated to produce accurate representations that do not deviate by more than 0.2 mm with respect to alternate representations of the bone geometry that were obtained through different-contact-based-data acquisition or data processing methods. © IMechE 2014.
Popescu, M D; Draghici, L; Secheli, I; Secheli, M; Codrescu, M; Draghici, I
2015-01-01
Infantile Hemangiomas (IH) are the most frequent tumors of vascular origin, and the differential diagnosis from vascular malformations is difficult to establish. Specific types of IH due to the location, dimensions and fast evolution, can determine important functional and esthetic sequels. To avoid these unfortunate consequences it is necessary to establish the exact appropriate moment to begin the treatment and decide which the most adequate therapeutic procedure is. Based on clinical data collected by a serial clinical observations correlated with imaging data, and processed by a computer-aided diagnosis system (CAD), the study intended to develop a treatment algorithm to accurately predict the best final results, from the esthetical and functional point of view, for a certain type of lesion. The preliminary database was composed of 75 patients divided into 4 groups according to the treatment management they received: medical therapy, sclerotherapy, surgical excision and no treatment. The serial clinical observation was performed each month and all the data was processed by using CAD. The project goal was to create a software that incorporated advanced methods to accurately measure the specific IH lesions, integrated medical information, statistical methods and computational methods to correlate this information with that obtained from the processing of images. Based on these correlations, a prediction mechanism of the evolution of hemangioma, which helped determine the best method of therapeutic intervention to minimize further complications, was established.
Baltzer, Pascal Andreas Thomas; Renz, Diane M; Kullnig, Petra E; Gajda, Mieczyslaw; Camara, Oumar; Kaiser, Werner A
2009-04-01
The identification of the most suspect enhancing part of a lesion is regarded as a major diagnostic criterion in dynamic magnetic resonance mammography. Computer-aided diagnosis (CAD) software allows the semi-automatic analysis of the kinetic characteristics of complete enhancing lesions, providing additional information about lesion vasculature. The diagnostic value of this information has not yet been quantified. Consecutive patients from routine diagnostic studies (1.5 T, 0.1 mmol gadopentetate dimeglumine, dynamic gradient-echo sequences at 1-minute intervals) were analyzed prospectively using CAD. Dynamic sequences were processed and reduced to a parametric map. Curve types were classified by initial signal increase (not significant, intermediate, and strong) and the delayed time course of signal intensity (continuous, plateau, and washout). Lesion enhancement was measured using CAD. The most suspect curve, the curve-type distribution percentage, and combined dynamic data were compared. Statistical analysis included logistic regression analysis and receiver-operating characteristic analysis. Fifty-one patients with 46 malignant and 44 benign lesions were enrolled. On receiver-operating characteristic analysis, the most suspect curve showed diagnostic accuracy of 76.7 +/- 5%. In comparison, the curve-type distribution percentage demonstrated accuracy of 80.2 +/- 4.9%. Combined dynamic data had the highest diagnostic accuracy (84.3 +/- 4.2%). These differences did not achieve statistical significance. With appropriate cutoff values, sensitivity and specificity, respectively, were found to be 80.4% and 72.7% for the most suspect curve, 76.1% and 83.6% for the curve-type distribution percentage, and 78.3% and 84.5% for both parameters. The integration of whole-lesion dynamic data tends to improve specificity. However, no statistical significance backs up this finding.
Muyoyeta, Monde; Maduskar, Pragnya; Moyo, Maureen; Kasese, Nkatya; Milimo, Deborah; Spooner, Rosanna; Kapata, Nathan; Hogeweg, Laurens; van Ginneken, Bram; Ayles, Helen
2014-01-01
To determine the sensitivity and specificity of a Computer Aided Diagnosis (CAD) program for scoring chest x-rays (CXRs) of presumptive tuberculosis (TB) patients compared to Xpert MTB/RIF (Xpert). Consecutive presumptive TB patients with a cough of any duration were offered digital CXR, and opt out HIV testing. CXRs were electronically scored as normal (CAD score ≤ 60) or abnormal (CAD score > 60) using a CAD program. All patients regardless of CAD score were requested to submit a spot sputum sample for testing with Xpert and a spot and morning sample for testing with LED Fluorescence Microscopy-(FM). Of 350 patients with evaluable data, 291 (83.1%) had an abnormal CXR score by CAD. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CXR compared to Xpert were 100% (95%CI 96.2-100), 23.2% (95%CI 18.2-28.9), 33.0% (95%CI 27.6-38.7) and 100% (95% 93.9-100), respectively. The area under the receiver operator curve (AUC) for CAD was 0.71 (95%CI 0.66-0.77). CXR abnormality correlated with smear grade (r = 0.30, p<0.0001) and with Xpert CT(r = 0.37, p<0.0001). To our knowledge this is the first time that a CAD program for TB has been successfully tested in a real world setting. The study shows that the CAD program had high sensitivity but low specificity and PPV. The use of CAD with digital CXR has the potential to increase the use and availability of chest radiography in screening for TB where trained human resources are scarce.
ERIC Educational Resources Information Center
Perilli, Viviana; Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Cassano, Germana; Cordiano, Noemi; Pinto, Katia; Minervini, Mauro G.; Oliva, Doretta
2012-01-01
This study assessed whether four patients with a diagnosis of Alzheimer's disease could make independent phone calls via a computer-aided telephone system. The study was carried out according to a non-concurrent multiple baseline design across participants. All participants started with baseline during which the telephone system was not available,…
Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA
Gallas, Brandon D.; Chan, Heang-Ping; D’Orsi, Carl J.; Dodd, Lori E.; Giger, Maryellen L.; Gur, David; Krupinski, Elizabeth A.; Metz, Charles E.; Myers, Kyle J.; Obuchowski, Nancy A.; Sahiner, Berkman; Toledano, Alicia Y.; Zuley, Margarita L.
2017-01-01
This report summarizes the Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and Computer-Assist Devices. The purpose of the workshop was to gather information on the current state of the science and facilitate consensus development on statistical methods and study designs for the evaluation of imaging devices to support US Food and Drug Administration submissions. Additionally, participants expected to identify gaps in knowledge and unmet needs that should be addressed in future research. This summary is intended to document the topics that were discussed at the meeting and disseminate the lessons that have been learned through past studies of imaging and computer-aided detection and diagnosis device performance. PMID:22306064
Tartar, A; Akan, A; Kilic, N
2014-01-01
Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.
Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers.
Hakacova, Nina; Trägårdh-Johansson, Elin; Wagner, Galen S; Maynard, Charles; Pahlm, Olle
2012-01-01
Systems providing computer-based analysis of the resting electrocardiogram (ECG) seek to improve the quality of health care by providing accurate and timely automatic diagnosis of, for example, cardiac rhythm to clinicians. The accuracy of these diagnoses, however, remains questionable. We tested the hypothesis that (a) 2 independent automated ECG systems have better accuracy in rhythm diagnosis than nonexpert clinicians and (b) both systems provide correct diagnostic suggestions in a large percentage of cases where the diagnosis of nonexpert clinicians is incorrect. Five hundred ECGs were manually analyzed by 2 senior experts, 3 nonexpert clinicians, and automatically by 2 automated systems. The accuracy of the nonexpert rhythm statements was compared with the accuracy of each system statement. The proportion of rhythm statements when the clinician's diagnoses were incorrect and the systems instead provided correct diagnosis was assessed. A total of 420 sinus rhythms and 156 rhythm disturbances were recognized by expert reading. Significance of the difference in accuracy between nonexperts and systems was P = .45 for system A and P = .11 for system B. The percentage of correct automated diagnoses in cases when the clinician was incorrect was 28% ± 10% for system A and 25% ± 11% for system B (P = .09). The rhythm diagnoses of automated systems did not reach better average accuracy than those of nonexpert readings. The computer diagnosis of rhythm can be incorrect in cases where the clinicians fail in reaching the correct ECG diagnosis. Copyright © 2012. Published by Elsevier Inc.
Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal
2013-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102
Computer-aided diagnosis of splenic enlargement using wave pattern of spleen in abdominal CT images
NASA Astrophysics Data System (ADS)
Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong Won
2006-03-01
It is known that the spleen accompanied by liver cirrhosis is hypertrophied or enlarged. We have examined a wave pattern at the left boundary of spleen on the abdominal CT images having liver cirrhosis, and found that they are different from those on the images having a normal liver. It is noticed that the abdominal CT images of patient with liver cirrhosis shows strong bending in the wave pattern. In the case of normal liver, the images may also have a wave pattern, but its bends are not strong. Therefore, the total waving area of the spleen with liver cirrhosis is found to be greater than that of the spleen with a normal liver. Moreover, we found that the waves of the spleen from the image with liver cirrhosis have the higher degree of circularity compared to the normal liver case. Based on the two observations above, we propose an automatic method to diagnose splenic enlargement by using the wave pattern of the spleen in abdominal CT images. The proposed automatic method improves the diagnostic performance compared with the conventional process based on the size of spleen.
Study on computer-aided diagnosis of hepatic MR imaging and mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xuejun
2005-04-01
It is well known that the liver is an organ easily attacked by diseases. The purpose of this study is to develop a computer-aided diagnosis (CAD) scheme for helping radiologists to differentiate hepatic diseases more efficiently. Our software named LIVERANN integrated the magnetic resonance (MR) imaging findings with different pulse sequences to classify the five categories of hepatic diseases by using the artificial neural network (ANN) method. The intensity and homogeneity within the region of interest (ROI) delineated by a radiologist were automatically calculated to obtain numerical data by the program for input signals to the ANN. Outputs were themore » five pathological categories of hepatic diseases (hepatic cyst, hepatocellular carcinoma, dysplasia in cirrhosis, cavernous hemangioma, and metastasis). The experiment demonstrated a testing accuracy of 93% from 80 patients. In order to differentiate the cirrhosis from normal liver, the volume ratio of left to whole (LTW) was proposed to quantify the degree of cirrhosis by three-dimensional (3D) volume analysis. The liver region was firstly extracted from computed tomography (CT) or MR slices based on edge detection algorithms, and then separated into left lobe and right lobe by the hepatic umbilical fissure. The volume ratio of these two parts showed that the LTW ratio in the liver was significantly improved in the differentiation performance, with (25.6%{+-}4.3%) in cirrhosis versus the normal liver (16.4%{+-}5.4%). In addition, the application of the ANN method for detecting clustered microcalcifications in masses on mammograms was described here as well. A new structural ANN, so-called a shift-invariant artificial neural network (SIANN), was integrated with our triple-ring filter (TRF) method in our CAD system. As the result, the sensitivity of detecting clusters was improved from 90% by our previous TRF method to 95% by using both SIANN and TRF.« less
Mazurowski, Maciej A.; Zurada, Jacek M.; Tourassi, Georgia D.
2009-01-01
Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC=0.905±0.024) in performance as compared to the original IT-CAD system (AUC=0.865±0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters. PMID:19673196
Toward a standard reference database for computer-aided mammography
NASA Astrophysics Data System (ADS)
Oliveira, Júlia E. E.; Gueld, Mark O.; de A. Araújo, Arnaldo; Ott, Bastian; Deserno, Thomas M.
2008-03-01
Because of the lack of mammography databases with a large amount of codified images and identified characteristics like pathology, type of breast tissue, and abnormality, there is a problem for the development of robust systems for computer-aided diagnosis. Integrated to the Image Retrieval in Medical Applications (IRMA) project, we present an available mammography database developed from the union of: The Mammographic Image Analysis Society Digital Mammogram Database (MIAS), The Digital Database for Screening Mammography (DDSM), the Lawrence Livermore National Laboratory (LLNL), and routine images from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Using the IRMA code, standardized coding of tissue type, tumor staging, and lesion description was developed according to the American College of Radiology (ACR) tissue codes and the ACR breast imaging reporting and data system (BI-RADS). The import was done automatically using scripts for image download, file format conversion, file name, web page and information file browsing. Disregarding the resolution, this resulted in a total of 10,509 reference images, and 6,767 images are associated with an IRMA contour information feature file. In accordance to the respective license agreements, the database will be made freely available for research purposes, and may be used for image based evaluation campaigns such as the Cross Language Evaluation Forum (CLEF). We have also shown that it can be extended easily with further cases imported from a picture archiving and communication system (PACS).
R and D Productivity: New Challenges for the US Space Program
NASA Technical Reports Server (NTRS)
Baskin, O. W. (Editor); Sullivan, L. J. (Editor)
1985-01-01
Various topics related to research and development activities applicable to their U.S. space program are discussed. Project management, automatic control technology, human resources, management information systems, computer aided design, systems engineering, and personnel management were among the topics covered.
[Advances in automatic detection technology for images of thin blood film of malaria parasite].
Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang
2017-05-05
This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
Sihong Chen; Jing Qin; Xing Ji; Baiying Lei; Tianfu Wang; Dong Ni; Jie-Zhi Cheng
2017-03-01
The gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc., that can be explored with the MTL. The Lung Image Database Consortium (LIDC) data is adopted in this study for the rich annotation resources. The LIDC nodules were quantitatively scored w.r.t. 9 semantic features from 12 radiologists of several institutes in U.S.A. By treating each semantic feature as an individual task, the MTL schemes select and map the heterogeneous computational features toward the radiologists' ratings with cross validation evaluation schemes on the randomly selected 2400 nodules from the LIDC dataset. The experimental results suggest that the predicted semantic scores from the three MTL schemes are closer to the radiologists' ratings than the scores from single-task LASSO and elastic net regression methods. The proposed semantic attribute scoring scheme may provide richer quantitative assessments of nodules for better support of diagnostic decision and management. Meanwhile, the capability of the automatic association of medical image contents with the clinical semantic terms by our method may also assist the development of medical search engine.
[Computer-aided Diagnosis and New Electronic Stethoscope].
Huang, Mei; Liu, Hongying; Pi, Xitian; Ao, Yilu; Wang, Zi
2017-05-30
Auscultation is an important method in early-diagnosis of cardiovascular disease and respiratory system disease. This paper presents a computer-aided diagnosis of new electronic auscultation system. It has developed an electronic stethoscope based on condenser microphone and the relevant intelligent analysis software. It has implemented many functions that combined with Bluetooth, OLED, SD card storage technologies, such as real-time heart and lung sounds auscultation in three modes, recording and playback, auscultation volume control, wireless transmission. The intelligent analysis software based on PC computer utilizes C# programming language and adopts SQL Server as the background database. It has realized play and waveform display of the auscultation sound. By calculating the heart rate, extracting the characteristic parameters of T1, T2, T12, T11, it can analyze whether the heart sound is normal, and then generate diagnosis report. Finally the auscultation sound and diagnosis report can be sent to mailbox of other doctors, which can carry out remote diagnosis. The whole system has features of fully function, high portability, good user experience, and it is beneficial to promote the use of electronic stethoscope in the hospital, at the same time, the system can also be applied to auscultate teaching and other occasions.
ERIC Educational Resources Information Center
Perilli, Viviana; Lancioni, Giulio E.; Laporta, Dominga; Paparella, Adele; Caffo, Alessandro O.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Oliva, Doretta
2013-01-01
This study extended the assessment of a computer-aided telephone system to enable five patients with a diagnosis of Alzheimer's disease to make phone calls independently. The patients were divided into two groups and exposed to intervention according to a non-concurrent multiple baseline design across groups. All patients started with baseline in…
Ebrahimi, F; Mikaili, M; Estrada, E; Nazeran, H
2007-01-01
Staging and detection of various states of sleep derived from EEG and other biomedical signals have proven to be very helpful in diagnosis, prognosis and remedy of various sleep related disorders. The time consuming and costly process of visual scoring of sleep stages by a specialist has always motivated researchers to develop an automatic sleep scoring system and the first step toward achieving this task is finding discriminating characteristics (or features) for each stage. A vast variety of these features and methods have been investigated in the sleep literature with different degrees of success. In this study, we investigated the performance of a newly introduced measure: the Itakura Distance (ID), as a similarity measure between EEG and EOG signals. This work demonstrated and further confirmed the outcomes of our previous research that the Itakura Distance serves as a valuable similarity measure to differentiate between different sleep stages.
Pereira, Clayton R; Pereira, Danilo R; Rosa, Gustavo H; Albuquerque, Victor H C; Weber, Silke A T; Hook, Christian; Papa, João P
2018-05-01
Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features. Copyright © 2018 Elsevier B.V. All rights reserved.
Bayes' theorem application in the measure information diagnostic value assessment
NASA Astrophysics Data System (ADS)
Orzechowski, Piotr D.; Makal, Jaroslaw; Nazarkiewicz, Andrzej
2006-03-01
The paper presents Bayesian method application in the measure information diagnostic value assessment that is used in the computer-aided diagnosis system. The computer system described here has been created basing on the Bayesian Network and is used in Benign Prostatic Hyperplasia (BPH) diagnosis. The graphic diagnostic model enables to juxtapose experts' knowledge with data.
Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai
2015-01-01
Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis. © Wiley Periodicals, Inc.
Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching.
Liao, Miao; Zhao, Yu-Qian; Liu, Xi-Yao; Zeng, Ye-Zhan; Zou, Bei-Ji; Wang, Xiao-Fang; Shih, Frank Y
2017-05-01
Identifying liver regions from abdominal computed tomography (CT) volumes is an important task for computer-aided liver disease diagnosis and surgical planning. This paper presents a fully automatic method for liver segmentation from CT volumes based on graph cuts and border marching. An initial slice is segmented by density peak clustering. Based on pixel- and patch-wise features, an intensity model and a PCA-based regional appearance model are developed to enhance the contrast between liver and background. Then, these models as well as the location constraint estimated iteratively are integrated into graph cuts in order to segment the liver in each slice automatically. Finally, a vessel compensation method based on the border marching is used to increase the segmentation accuracy. Experiments are conducted on a clinical data set we created and also on the MICCAI2007 Grand Challenge liver data. The results show that the proposed intensity, appearance models, and the location constraint are significantly effective for liver recognition, and the undersegmented vessels can be compensated by the border marching based method. The segmentation performances in terms of VOE, RVD, ASD, RMSD, and MSD as well as the average running time achieved by our method on the SLIVER07 public database are 5.8 ± 3.2%, -0.1 ± 4.1%, 1.0 ± 0.5mm, 2.0 ± 1.2mm, 21.2 ± 9.3mm, and 4.7 minutes, respectively, which are superior to those of existing methods. The proposed method does not require time-consuming training process and statistical model construction, and is capable of dealing with complicated shapes and intensity variations successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning
NASA Astrophysics Data System (ADS)
Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Kajdacsy-Balla, Andre; Melamed, Jonathan; Do, Minh N.; Popescu, Gabriel
2017-03-01
We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illustrate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each pixel in the image into different classes. Automatic diagnosis results were computed from the segmented regions. By combining morphological features with quantitative information from the glands and stroma, logistic regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tissue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the range of human error when interobserver variability is considered. We anticipate that our approach will provide a clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instruments and laboratories and feed the computer algorithms for improved accuracy.
Automated Instructional Monitors for Complex Operational Tasks. Final Report.
ERIC Educational Resources Information Center
Feurzeig, Wallace
A computer-based instructional system is described which incorporates diagnosis of students difficulties in acquiring complex concepts and skills. A computer automatically generated a simulated display. It then monitored and analyzed a student's work in the performance of assigned training tasks. Two major tasks were studied. The first,…
Structural analysis of paintings based on brush strokes
NASA Astrophysics Data System (ADS)
Sablatnig, Robert; Kammerer, Paul; Zolda, Ernestine
1998-05-01
The origin of works of art can often not be attributed to a certain artist. Likewise it is difficult to say whether paintings or drawings are originals or forgeries. In various fields of art new technical methods are used to examine the age, the state of preservation and the origin of the materials used. For the examination of paintings, radiological methods like X-ray and infra-red diagnosis, digital radiography, computer-tomography, etc. and color analyzes are employed to authenticate art. But all these methods do not relate certain characteristics in art work to a specific artist -- the artist's personal style. In order to study this personal style of a painter, experts in art history and image processing try to examine the 'structural signature' based on brush strokes within paintings, in particular in portrait miniatures. A computer-aided classification and recognition system for portrait miniatures is developed, which enables a semi- automatic classification and forgery detection based on content, color, and brush strokes. A hierarchically structured classification scheme is introduced which separates the classification into three different levels of information: color, shape of region, and structure of brush strokes.
Development of a CAD Model Simplification Framework for Finite Element Analysis
2012-01-01
A. Senthil Kumar , and KH Lee. Automatic solid decomposition and reduction for non-manifold geometric model generation. Computer-Aided Design, 36(13...CAD/CAM: concepts, techniques, and applications. Wiley-interscience, 1995. [38] Avneesh Sud, Mark Foskey, and Dinesh Manocha. Homotopy-preserving
A Computer-Aided Distinction Method of Borderline Grades of Oral Cancer
NASA Astrophysics Data System (ADS)
Sami, Mustafa M.; Saito, Masahisa; Muramatsu, Shogo; Kikuchi, Hisakazu; Saku, Takashi
We have developed a new computer-aided diagnostic system for differentiating oral borderline malignancies in hematoxylin-eosin stained microscopic images. Epithelial dysplasia and carcinoma in-situ (CIS) of oral mucosa are two different borderline grades similar to each other, and it is difficult to distinguish between them. A new image processing and analysis method has been applied to a variety of histopathological features and shows the possibility for differentiating the oral cancer borderline grades automatically. The method is based on comparing the drop-shape similarity level in a particular manually selected pair of neighboring rete ridges. It was found that the considered similarity level in dysplasia was higher than those in epithelial CIS, of which pathological diagnoses were conventionally made by pathologists. The developed image processing method showed a good promise for the computer-aided pathological assessment of oral borderline malignancy differentiation in clinical practice.
Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions.
Loh, Brian C S; Then, Patrick H H
2017-01-01
Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications.
Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions
Then, Patrick H. H.
2017-01-01
Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications. PMID:29184897
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes
NASA Technical Reports Server (NTRS)
Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.
A case-oriented web-based training system for breast cancer diagnosis.
Huang, Qinghua; Huang, Xianhai; Liu, Longzhong; Lin, Yidi; Long, Xingzhang; Li, Xuelong
2018-03-01
Breast cancer is still considered as the most common form of cancer as well as the leading causes of cancer deaths among women all over the world. We aim to provide a web-based breast ultrasound database for online training inexperienced radiologists and giving computer-assisted diagnostic information for detection and classification of the breast tumor. We introduce a web database which stores breast ultrasound images from breast cancer patients as well as their diagnostic information. A web-based training system using a feature scoring scheme based on Breast Imaging Reporting and Data System (BI-RADS) US lexicon was designed. A computer-aided diagnosis (CAD) subsystem was developed to assist the radiologists to make scores on the BI-RADS features for an input case. The training system possesses 1669 scored cases, where 412 cases are benign and 1257 cases are malignant. It was tested by 31 users including 12 interns, 11 junior radiologists, and 8 experienced senior radiologists. This online training system automatically creates case-based exercises to train and guide the newly employed or resident radiologists for the diagnosis of breast cancer using breast ultrasound images based on the BI-RADS. After the trainings, the interns and junior radiologists show significant improvement in the diagnosis of the breast tumor with ultrasound imaging (p-value < .05); meanwhile the senior radiologists show little improvement (p-value > .05). The online training system can improve the capabilities of early-career radiologists in distinguishing between the benign and malignant lesions and reduce the misdiagnosis of breast cancer in a quick, convenient and effective manner. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Multiple neural network approaches to clinical expert systems
NASA Astrophysics Data System (ADS)
Stubbs, Derek F.
1990-08-01
We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results
ADMAP (automatic data manipulation program)
NASA Technical Reports Server (NTRS)
Mann, F. I.
1971-01-01
Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.
Computer-aided diagnosis of HIE based on segmentation of MRI
NASA Astrophysics Data System (ADS)
Sun, Ziguang; Li, Chungui; Wang, Qin
2009-10-01
Computer-aided diagnosis has become one of the major research subjects in medical imaging and diagnostic radiology. Hypoxic-ischemic encephalopathy (HIE), remains a serious condition that causes significant mortality and long-term morbidity to neonates. We adopt self-organizing feature maps to segment the tissues, such as white matter and grey matter in the magnetic resonance images. The borderline between white matter and grey matter can be found and the doubtful regions along with the borderline can be localized, then the feature in doubtful regions can be quantified. The method can assist doctors to easily diagnose whether a neonate is ill with mild HIE.
S V, Mahesh Kumar; R, Gunasundari
2018-06-02
Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.
1991-01-01
plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based Design Environment (FBDE) of the RDS. It...llll By using the user Interface, the final process plan can be modified in many different ways. The translation of a design feature to a more...for the review and modification of a process plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based
Computer-aided dermoscopy for diagnosis of melanoma
Barzegari, Masoomeh; Ghaninezhad, Haiedeh; Mansoori, Parisa; Taheri, Arash; Naraghi, Zahra S; Asgari, Masood
2005-01-01
Background Computer-aided dermoscopy using artificial neural networks has been reported to be an accurate tool for the evaluation of pigmented skin lesions. We set out to determine the sensitivity and specificity of a computer-aided dermoscopy system for diagnosis of melanoma in Iranian patients. Methods We studied 122 pigmented skin lesions which were referred for diagnostic evaluation or cosmetic reasons. Each lesion was examined by two clinicians with naked eyes and all of their clinical diagnostic considerations were recorded. The lesions were analyzed using a microDERM® dermoscopy unit. The output value of the software for each lesion was a score between 0 and 10. All of the lesions were excised and examined histologically. Results Histopathological examination revealed melanoma in six lesions. Considering only the most likely clinical diagnosis, sensitivity and specificity of clinical examination for diagnosis of melanoma were 83% and 96%, respectively. Considering all clinical diagnostic considerations, the sensitivity and specificity were 100% and 89%. Choosing a cut-off point of 7.88 for dermoscopy score, the sensitivity and specificity of the score for diagnosis of melanoma were 83% and 96%, respectively. Setting the cut-off point at 7.34, the sensitivity and specificity were 100% and 90%. Conclusion The diagnostic accuracy of the dermoscopy system was at the level of clinical examination by dermatologists with naked eyes. This system may represent a useful tool for screening of melanoma, particularly at centers not experienced in the field of pigmented skin lesions. PMID:16000171
DOT National Transportation Integrated Search
2000-03-01
The Denver Regional Transportation District (RTD) acquired a CAD/AVL system that became fully operational in 1996. The CAD/AVL system added radio channels and covert alarms in buses, located vehicles in real time, and monitored schedule adherence. Th...
DeepInfer: open-source deep learning deployment toolkit for image-guided therapy
NASA Astrophysics Data System (ADS)
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-03-01
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-02-11
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-01-01
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794
Semi-automatic assessment of pediatric hydronephrosis severity in 3D ultrasound
NASA Astrophysics Data System (ADS)
Cerrolaza, Juan J.; Otero, Hansel; Yao, Peter; Biggs, Elijah; Mansoor, Awais; Ardon, Roberto; Jago, James; Peters, Craig A.; Linguraru, Marius George
2016-03-01
Hydronephrosis is the most common abnormal finding in pediatric urology. Thanks to its non-ionizing nature, ultrasound (US) imaging is the preferred diagnostic modality for the evaluation of the kidney and the urinary track. However, due to the lack of correlation of US with renal function, further invasive and/or ionizing studies might be required (e.g., diuretic renograms). This paper presents a computer-aided diagnosis (CAD) tool for the accurate and objective assessment of pediatric hydronephrosis based on morphological analysis of kidney from 3DUS scans. The integration of specific segmentation tools in the system, allows to delineate the relevant renal structures from 3DUS scans of the patients with minimal user interaction, and the automatic computation of 90 anatomical features. Using the washout half time (T1/2) as indicative of renal obstruction, an optimal subset of predictive features is selected to differentiate, with maximum sensitivity, those severe cases where further attention is required (e.g., in the form of diuretic renograms), from the noncritical ones. The performance of this new 3DUS-based CAD system is studied for two clinically relevant T1/2 thresholds, 20 and 30 min. Using a dataset of 20 hydronephrotic cases, pilot experiments show how the system outperforms previous 2D implementations by successfully identifying all the critical cases (100% of sensitivity), and detecting up to 100% (T1/2 = 20 min) and 67% (T1/2 = 30 min) of non-critical ones for T1/2 thresholds of 20 and 30 min, respectively.
Content-based image retrieval applied to bone age assessment
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.
2010-03-01
Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.
A machine learning approach for classification of anatomical coverage in CT
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Lo, Pechin; Ramakrishna, Bharath; Goldin, Johnathan; Brown, Matthew
2016-03-01
Automatic classification of anatomical coverage of medical images is critical for big data mining and as a pre-processing step to automatically trigger specific computer aided diagnosis systems. The traditional way to identify scans through DICOM headers has various limitations due to manual entry of series descriptions and non-standardized naming conventions. In this study, we present a machine learning approach where multiple binary classifiers were used to classify different anatomical coverages of CT scans. A one-vs-rest strategy was applied. For a given training set, a template scan was selected from the positive samples and all other scans were registered to it. Each registered scan was then evenly split into k × k × k non-overlapping blocks and for each block the mean intensity was computed. This resulted in a 1 × k3 feature vector for each scan. The feature vectors were then used to train a SVM based classifier. In this feasibility study, four classifiers were built to identify anatomic coverages of brain, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans. Each classifier was trained and tested using a set of 300 scans from different subjects, composed of 150 positive samples and 150 negative samples. Area under the ROC curve (AUC) of the testing set was measured to evaluate the performance in a two-fold cross validation setting. Our results showed good classification performance with an average AUC of 0.96.
Can computer-aided diagnosis (CAD) help radiologists find mammographically missed screening cancers?
NASA Astrophysics Data System (ADS)
Nishikawa, Robert M.; Giger, Maryellen L.; Schmidt, Robert A.; Papaioannou, John
2001-06-01
We present data from a pilot observer study whose goal is design a study to test the hypothesis that computer-aided diagnosis (CAD) can improve radiologists' performance in reading screening mammograms. In a prospective evaluation of our computer detection schemes, we have analyzed over 12,000 clinical exams. Retrospective review of the negative screening mammograms for all cancer cases found an indication of the cancer in 23 of these negative cases. The computer found 54% of these in our prospective testing. We added to these cases normal exams to create a dataset of 75 cases. Four radiologists experienced in mammography read the cases and gave their BI-RADS assessment and their confidence that the patient should be called back for diagnostic mammography. They did so once reading the films only and a second time reading with the computer aid. Three radiologists had no change in area under the ROC curve (mean Az of 0.73) and one improved from 0.73 to 0.78, but this difference failed to reach statistical significance (p equals 0.23). These data are being used to plan a larger more powerful study.
Bakht, Mohamadreza K; Pouladian, Majid; Mofrad, Farshid B; Honarpisheh, Hamid
2014-02-01
Quantitative analysis based on digital skin image has been proven to be helpful in dermatology. Moreover, the borders of the basal cell carcinoma (BCC) lesions have been challenging borders for the automatic detection methods. In this work, a computer-aided dermatoscopy system was proposed to enhance the clinical detection of BCC lesion borders. Fifty cases of BCC were selected and 2000 pictures were taken. The lesion images data were obtained with eight colors of flashlights and in five different lighting source to skin distances (SSDs). Then, the image-processing techniques were used for automatic detection of lesion borders. Further, the dermatologists marked the lesions on the obtained photos. Considerable differences between the obtained values referring to the photographs that were taken at super blue and aqua green color lighting were observed for most of the BCC borders. It was observed that by changing the SSD, an optimum distance could be found where that the accuracy of the detection reaches to a maximum value. This study clearly indicates that by changing SSD and lighting color, manual and automatic detection of BCC lesions borders can be enhanced. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2012-03-01
Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints”. International Journal of Computer Vision, 2004. 13. Maybeck, Peter S...Fairfax Drive - 3rd Floor Arlington,VA 22203 Dr. Stefanie Tompkins ; (703)248–1540; Stefanie.Tompkins@darpa.mil DARPA Distribution A. Approved for Public
NASA Astrophysics Data System (ADS)
Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman
2013-10-01
Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.
EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN
AlSharabi, Khalil; Ibrahim, Sutrisno; Alsuwailem, Abdullah
2017-01-01
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia. PMID:28484720
Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J
2012-05-01
Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.
Moretti, Loris; Sartori, Luca
2016-09-01
In the field of Computer-Aided Drug Discovery and Development (CADDD) the proper software infrastructure is essential for everyday investigations. The creation of such an environment should be carefully planned and implemented with certain features in order to be productive and efficient. Here we describe a solution to integrate standard computational services into a functional unit that empowers modelling applications for drug discovery. This system allows users with various level of expertise to run in silico experiments automatically and without the burden of file formatting for different software, managing the actual computation, keeping track of the activities and graphical rendering of the structural outcomes. To showcase the potential of this approach, performances of five different docking programs on an Hiv-1 protease test set are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA automatic subject analysis technique for extracting retrievable multi-terms (NASA TERM) system
NASA Technical Reports Server (NTRS)
Kirschbaum, J.; Williamson, R. E.
1978-01-01
Current methods for information processing and retrieval used at the NASA Scientific and Technical Information Facility are reviewed. A more cost effective computer aided indexing system is proposed which automatically generates print terms (phrases) from the natural text. Satisfactory print terms can be generated in a primarily automatic manner to produce a thesaurus (NASA TERMS) which extends all the mappings presently applied by indexers, specifies the worth of each posting term in the thesaurus, and indicates the areas of use of the thesaurus entry phrase. These print terms enable the computer to determine which of several terms in a hierarchy is desirable and to differentiate ambiguous terms. Steps in the NASA TERMS algorithm are discussed and the processing of surrogate entry phrases is demonstrated using four previously manually indexed STAR abstracts for comparison. The simulation shows phrase isolation, text phrase reduction, NASA terms selection, and RECON display.
Automated kidney detection for 3D ultrasound using scan line searching
NASA Astrophysics Data System (ADS)
Noll, Matthias; Nadolny, Anne; Wesarg, Stefan
2016-04-01
Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.
2012-03-01
Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.
NASA Astrophysics Data System (ADS)
Giannini, Valentina; Vignati, Anna; Mazzetti, Simone; De Luca, Massimo; Bracco, Christian; Stasi, Michele; Russo, Filippo; Armando, Enrico; Regge, Daniele
2013-02-01
Prostate specific antigen (PSA)-based screening reduces the rate of death from prostate cancer (PCa) by 31%, but this benefit is associated with a high risk of overdiagnosis and overtreatment. As prostate transrectal ultrasound-guided biopsy, the standard procedure for prostate histological sampling, has a sensitivity of 77% with a considerable false-negative rate, more accurate methods need to be found to detect or rule out significant disease. Prostate magnetic resonance imaging has the potential to improve the specificity of PSA-based screening scenarios as a non-invasive detection tool, in particular exploiting the combination of anatomical and functional information in a multiparametric framework. The purpose of this study was to describe a computer aided diagnosis (CAD) method that automatically produces a malignancy likelihood map by combining information from dynamic contrast enhanced MR images and diffusion weighted images. The CAD system consists of multiple sequential stages, from a preliminary registration of images of different sequences, in order to correct for susceptibility deformation and/or movement artifacts, to a Bayesian classifier, which fused all the extracted features into a probability map. The promising results (AUROC=0.87) should be validated on a larger dataset, but they suggest that the discrimination on a voxel basis between benign and malignant tissues is feasible with good performances. This method can be of benefit to improve the diagnostic accuracy of the radiologist, reduce reader variability and speed up the reading time, automatically highlighting probably cancer suspicious regions.
Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs
NASA Astrophysics Data System (ADS)
Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio
2017-03-01
The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.
Application of Particle Swarm Optimization in Computer Aided Setup Planning
NASA Astrophysics Data System (ADS)
Kafashi, Sajad; Shakeri, Mohsen; Abedini, Vahid
2011-01-01
New researches are trying to integrate computer aided design (CAD) and computer aided manufacturing (CAM) environments. The role of process planning is to convert the design specification into manufacturing instructions. Setup planning has a basic role in computer aided process planning (CAPP) and significantly affects the overall cost and quality of machined part. This research focuses on the development for automatic generation of setups and finding the best setup plan in feasible condition. In order to computerize the setup planning process, three major steps are performed in the proposed system: a) Extraction of machining data of the part. b) Analyzing and generation of all possible setups c) Optimization to reach the best setup plan based on cost functions. Considering workshop resources such as machine tool, cutter and fixture, all feasible setups could be generated. Then the problem is adopted with technological constraints such as TAD (tool approach direction), tolerance relationship and feature precedence relationship to have a completely real and practical approach. The optimal setup plan is the result of applying the PSO (particle swarm optimization) algorithm into the system using cost functions. A real sample part is illustrated to demonstrate the performance and productivity of the system.
Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar
2018-01-01
To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.
Computer-Aided Detection of Mammographic Masses in Dense Breast Images
2005-06-01
Kinnard, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC 20059 REPORT DATE: June 2005 TYPE OF REPORT: Annual Summary PREPARED FOR: U.S...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Howard University Washington, DC 20059 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...34, Preparing for the Postdoctoral Institute, August, 2004, Howard University and The University of Texas at El Paso. 2. "Computer-Aided Diagnosis and Image
Interactive computer aided technology, evolution in the design/manufacturing process
NASA Technical Reports Server (NTRS)
English, C. H.
1975-01-01
A powerful computer-operated three dimensional graphic system and associated auxiliary computer equipment used in advanced design, production design, and manufacturing was described. This system has made these activities more productive than when using older and more conventional methods to design and build aerospace vehicles. With the use of this graphic system, designers are now able to define parts using a wide variety of geometric entities, define parts as fully surface 3-dimensional models as well as "wire-frame" models. Once geometrically defined, the designer is able to take section cuts of the surfaced model and automatically determine all of the section properties of the planar cut, lightpen detect all of the surface patches and automatically determine the volume and weight of the part. Further, his designs are defined mathematically at a degree of accuracy never before achievable.
An Expert Assistant for Computer Aided Parallelization
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.
Computer-Aided Diagnostic System For Mass Survey Chest Images
NASA Astrophysics Data System (ADS)
Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi
1988-06-01
In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
NASA Astrophysics Data System (ADS)
Ramakrishna, Bharath; Saiprasad, Ganesh; Safdar, Nabile; Siddiqui, Khan; Chang, Chein-I.; Siegel, Eliot
2008-03-01
Osteoarthritis (OA) is the most common form of arthritis and a major cause of morbidity affecting millions of adults in the US and world wide. In the knee, OA begins with the degeneration of joint articular cartilage, eventually resulting in the femur and tibia coming in contact, and leading to severe pain and stiffness. There has been extensive research examining 3D MR imaging sequences and automatic/semi-automatic techniques for 2D/3D articular cartilage extraction. However, in routine clinical practice the most popular technique still remain radiographic examination and qualitative assessment of the joint space. This may be in large part because of a lack of tools that can provide clinically relevant diagnosis in adjunct (in near real time fashion) with the radiologist and which can serve the needs of the radiologists and reduce inter-observer variation. Our work aims to fill this void by developing a CAD application that can generate clinically relevant diagnosis of the articular cartilage damage in near real time fashion. The algorithm features a 2D Active Shape Model (ASM) for modeling the bone-cartilage interface on all the slices of a Double Echo Steady State (DESS) MR sequence, followed by measurement of the cartilage thickness from the surface of the bone, and finally by the identification of regions of abnormal thinness and focal/degenerative lesions. A preliminary evaluation of CAD tool was carried out on 10 cases taken from the Osteoarthritis Initiative (OAI) database. When compared with 2 board-certified musculoskeletal radiologists, the automatic CAD application was able to get segmentation/thickness maps in little over 60 seconds for all of the cases. This observation poses interesting possibilities for increasing radiologist productivity and confidence, improving patient outcomes, and applying more sophisticated CAD algorithms to routine orthopedic imaging tasks.
AbuHassan, Kamal J; Bakhori, Noremylia M; Kusnin, Norzila; Azmi, Umi Z M; Tania, Marzia H; Evans, Benjamin A; Yusof, Nor A; Hossain, M A
2017-07-01
Tuberculosis (TB) remains one of the most devastating infectious diseases and its treatment efficiency is majorly influenced by the stage at which infection with the TB bacterium is diagnosed. The available methods for TB diagnosis are either time consuming, costly or not efficient. This study employs a signal generation mechanism for biosensing, known as Plasmonic ELISA, and computational intelligence to facilitate automatic diagnosis of TB. Plasmonic ELISA enables the detection of a few molecules of analyte by the incorporation of smart nanomaterials for better sensitivity of the developed detection system. The computational system uses k-means clustering and thresholding for image segmentation. This paper presents the results of the classification performance of the Plasmonic ELISA imaging data by using various types of classifiers. The five-fold cross-validation results show high accuracy rate (>97%) in classifying TB images using the entire data set. Future work will focus on developing an intelligent mobile-enabled expert system to diagnose TB in real-time. The intelligent system will be clinically validated and tested in collaboration with healthcare providers in Malaysia.
Computer-Aided Diagnosis Systems for Lung Cancer: Challenges and Methodologies
El-Baz, Ayman; Beache, Garth M.; Gimel'farb, Georgy; Suzuki, Kenji; Okada, Kazunori; Elnakib, Ahmed; Soliman, Ahmed; Abdollahi, Behnoush
2013-01-01
This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can increase the patient's chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems. PMID:23431282
CT Imaging of Hardwood Logs for Lumber Production
Daniel L. Schmoldt; Pei Li; A. Lynn Abbott
1996-01-01
Hardwood sawmill operators need to improve the conversion of raw material (logs) into lumber. Internal log scanning provides detailed information that can aid log processors in improving lumber recovery. However, scanner data (i.e. tomographic images) need to be analyzed prior to presentation to saw operators. Automatic labeling of computer tomography (CT) images is...
A Thesaurus for Use in a Computer-Aided Abstracting Tool Kit.
ERIC Educational Resources Information Center
Craven, Timothy C.
1993-01-01
Discusses the use of thesauri in automatic indexing and describes the development of a prototype computerized abstractor's assistant. Topics addressed include TEXNET, a text network management system; the use of TEXNET for abstracting; the structure and use of a thesaurus for abstracting in TEXNET; and weighted terms. (Contains 26 references.)…
Impact of CALS on Electronic Publishing Systems and Users.
ERIC Educational Resources Information Center
Beazley, William G.
1990-01-01
The U.S. Department of Defense has begun using its buying power to enforce standards on the vendors and contractors of automatic data processing hardware and software. An example of this, the Computer-Aided Acquisition and Logistic Support (CALS) program, is described, and how it will affect electronic publishing systems is discussed. (five…
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
NASA Technical Reports Server (NTRS)
Hess, J. L.; Mack, D. P.; Stockman, N. O.
1979-01-01
A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented.
Han, Guanghui; Liu, Xiabi; Han, Feifei; Santika, I Nyoman Tenaya; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu
2015-02-01
Lung computed tomography (CT) imaging signs play important roles in the diagnosis of lung diseases. In this paper, we review the significance of CT imaging signs in disease diagnosis and determine the inclusion criterion of CT scans and CT imaging signs of our database. We develop the software of abnormal regions annotation and design the storage scheme of CT images and annotation data. Then, we present a publicly available database of lung CT imaging signs, called LISS for short, which contains 271 CT scans and 677 abnormal regions in them. The 677 abnormal regions are divided into nine categories of common CT imaging signs of lung disease (CISLs). The ground truth of these CISLs regions and the corresponding categories are provided. Furthermore, to make the database publicly available, all private data in CT scans are eliminated or replaced with provisioned values. The main characteristic of our LISS database is that it is developed from a new perspective of CT imaging signs of lung diseases instead of commonly considered lung nodules. Thus, it is promising to apply to computer-aided detection and diagnosis research and medical education.
Machine-aided indexing at NASA
NASA Technical Reports Server (NTRS)
Silvester, June P.; Genuardi, Michael T.; Klingbiel, Paul H.
1994-01-01
This report describes the NASA Lexical Dictionary (NLD), a machine-aided indexing system used online at the National Aeronautics and Space Administration's Center for AeroSpace Information (CASI). This system automatically suggests a set of candidate terms from NASA's controlled vocabulary for any designated natural language text input. The system is comprised of a text processor that is based on the computational, nonsyntactic analysis of input text and an extensive knowledge base that serves to recognize and translate text-extracted concepts. The functions of the various NLD system components are described in detail, and production and quality benefits resulting from the implementation of machine-aided indexing at CASI are discussed.
NASA Technical Reports Server (NTRS)
Walker, Carrie K.
1991-01-01
A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.
Research on computer aided testing of pilot response to critical in-flight events
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. J.
1984-01-01
Experiments on pilot decision making are described. The development of models of pilot decision making in critical in flight events (CIFE) are emphasized. The following tests are reported on the development of: (1) a frame system representation describing how pilots use their knowledge in a fault diagnosis task; (2) assessment of script norms, distance measures, and Markov models developed from computer aided testing (CAT) data; and (3) performance ranking of subject data. It is demonstrated that interactive computer aided testing either by touch CRT's or personal computers is a useful research and training device for measuring pilot information management in diagnosing system failures in simulated flight situations. Performance is dictated by knowledge of aircraft sybsystems, initial pilot structuring of the failure symptoms and efficient testing of plausible causal hypotheses.
1983-09-01
AD-Ali33 592 ARTIFICIAL INTELLIGENCE: AN ANALYSIS OF POTENTIAL 1/1 APPLICATIONS TO TRAININ..(U) DENVER RESEARCH INST CO JRICHARDSON SEP 83 AFHRL-TP...83-28 b ’ 3 - 4. TITLE (aied Suhkie) 5. TYPE OF REPORT & PERIOD COVERED ARTIFICIAL INTEL11GENCE: AN ANALYSIS OF Interim POTENTIAL APPLICATIONS TO...8217 sde if neceseamy end ides*f by black naumber) artificial intelligence military research * computer-aided diagnosis performance tests computer
Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T
2016-07-01
The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Raphael, B.; Fikes, R.; Waldinger, R.
1973-01-01
The results are summarised of a project aimed at the design and implementation of computer languages to aid in expressing problem solving procedures in several areas of artificial intelligence including automatic programming, theorem proving, and robot planning. The principal results of the project were the design and implementation of two complete systems, QA4 and QLISP, and their preliminary experimental use. The various applications of both QA4 and QLISP are given.
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
Computer Aided Reading Diagnosis.
ERIC Educational Resources Information Center
McEneaney, John E.
Computer technologies are having an ever-increasing influence on educational research and practice in Russia and the United States. In Russia, a number of recent papers have focused on the application of the computer as a teaching tool and on its influence in instructional organization and planning. In the United States, there is a great deal of…
NASA Astrophysics Data System (ADS)
Wiemker, Rafael; Bülow, Thomas; Blaffert, Thomas; Dharaiya, Ekta
2009-02-01
Presence of emphysema is recognized to be one of the single most significant risk factors in risk models for the prediction of lung cancer. Therefore, an automatically computed emphysema score would be a prime candidate as an additional numerical feature for computer aided diagnosis (CADx) for indeterminate pulmonary nodules. We have applied several histogram-based emphysema scores to 460 thoracic CT scans from the IDRI CT lung image database, and analyzed the emphysema scores in conjunction with 3000 nodule malignancy ratings of 1232 pulmonary nodules made by expert observers. Despite the emphysema being a known risk factor, we have not found any impact on the readers' malignancy rating of nodules found in a patient with higher emphysema score. We have also not found any correlation between the number of expert-detected nodules in a patient and his emphysema score, or the relative craniocaudal location of the nodules and their malignancy rating. The inter-observer agreement of the expert ratings was excellent on nodule diameter (as derived from manual delineations), good for calcification, and only modest for malignancy and shape descriptions such as spiculation, lobulation, margin, etc.
Towards Automatic Image Segmentation Using Optimised Region Growing Technique
NASA Astrophysics Data System (ADS)
Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi
Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.
Automated recognition of the pericardium contour on processed CT images using genetic algorithms.
Rodrigues, É O; Rodrigues, L O; Oliveira, L S N; Conci, A; Liatsis, P
2017-08-01
This work proposes the use of Genetic Algorithms (GA) in tracing and recognizing the pericardium contour of the human heart using Computed Tomography (CT) images. We assume that each slice of the pericardium can be modelled by an ellipse, the parameters of which need to be optimally determined. An optimal ellipse would be one that closely follows the pericardium contour and, consequently, separates appropriately the epicardial and mediastinal fats of the human heart. Tracing and automatically identifying the pericardium contour aids in medical diagnosis. Usually, this process is done manually or not done at all due to the effort required. Besides, detecting the pericardium may improve previously proposed automated methodologies that separate the two types of fat associated to the human heart. Quantification of these fats provides important health risk marker information, as they are associated with the development of certain cardiovascular pathologies. Finally, we conclude that GA offers satisfiable solutions in a feasible amount of processing time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sopharak, Akara; Uyyanonvara, Bunyarit; Barman, Sarah
2013-01-01
Microaneurysms detection is an important task in computer aided diagnosis of diabetic retinopathy. Microaneurysms are the first clinical sign of diabetic retinopathy, a major cause of vision loss in diabetic patients. Early microaneurysm detection can help reduce the incidence of blindness. Automatic detection of microaneurysms is still an open problem due to their tiny sizes, low contrast and also similarity with blood vessels. It is particularly very difficult to detect fine microaneurysms, especially from non-dilated pupils and that is the goal of this paper. Simple yet effective methods are used. They are coarse segmentation using mathematic morphology and fine segmentation using naive Bayes classifier. A total of 18 microaneurysms features are proposed in this paper and they are extracted for naive Bayes classifier. The detected microaneurysms are validated by comparing at pixel level with ophthalmologists' hand-drawn ground-truth. The sensitivity, specificity, precision and accuracy are 85.68, 99.99, 83.34 and 99.99%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of a computer-aided detection system for lung cancer diagnosis
NASA Astrophysics Data System (ADS)
Suzuki, Hideo; Inaoka, Noriko; Takabatake, Hirotsugu; Mori, Masaki; Sasaoka, Soichi; Natori, Hiroshi; Suzuki, Akira
1992-06-01
This paper describes a modified system for automatic detection of lung nodules by means of chest x ray image processing techniques. The objective of the system is to help radiologists to improve their accuracy in cancer detection. It is known from retrospective studies of chest x- ray images that radiologists fail to detect about 30 percent of lung cancer cases. A computerized method for detecting lung nodules would be very useful for decreasing the proportion of such oversights. Our proposed system consists of five sub-systems, for image input, lung region determination, nodule detection, rule-based false-positive elimination, and statistical false-positive elimination. In an experiment with the modified system, using 30 lung cancer cases and 78 normal control cases, we obtained figures of 73.3 percent and 89.7 percent for the sensitivity and specificity of the system, respectively. The system has been developed to run on the IBM* PS/55* and IBM RISC System/6000* (RS/6000), and we give the processing time for each platform.
Pathological brain detection based on wavelet entropy and Hu moment invariants.
Zhang, Yudong; Wang, Shuihua; Sun, Ping; Phillips, Preetha
2015-01-01
With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed "WE + HMI + GEPSVM + RBF" method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use.
ERIC Educational Resources Information Center
Clancey, William J.
GUIDON is an intelligent computer-aided instruction (ICAI) program for teaching diagnosis, which has been tested using the infectious disease diagnosis rules of the MYCIN consultation system developed at the Stanford University School of Medicine. GUIDON engages a student in a dialogue about a patient suspected of having an infection and thus…
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
NASA Astrophysics Data System (ADS)
Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.
2014-03-01
Benign radiation-induced lung injury is a common finding following stereotactic ablative radiotherapy (SABR) for lung cancer, and is often difficult to differentiate from a recurring tumour due to the ablative doses and highly conformal treatment with SABR. Current approaches to treatment response assessment have shown limited ability to predict recurrence within 6 months of treatment. The purpose of our study was to evaluate the accuracy of second order texture statistics for prediction of eventual recurrence based on computed tomography (CT) images acquired within 6 months of treatment, and compare with the performance of first order appearance and lesion size measures. Consolidative and ground-glass opacity (GGO) regions were manually delineated on post-SABR CT images. Automatic consolidation expansion was also investigated to act as a surrogate for GGO position. The top features for prediction of recurrence were all texture features within the GGO and included energy, entropy, correlation, inertia, and first order texture (standard deviation of density). These predicted recurrence with 2-fold cross validation (CV) accuracies of 70-77% at 2- 5 months post-SABR, with energy, entropy, and first order texture having leave-one-out CV accuracies greater than 80%. Our results also suggest that automatic expansion of the consolidation region could eliminate the need for manual delineation, and produced reproducible results when compared to manually delineated GGO. If validated on a larger data set, this could lead to a clinically useful computer-aided diagnosis system for prediction of recurrence within 6 months of SABR and allow for early salvage therapy for patients with recurrence.
An automatically generated texture-based atlas of the lungs
NASA Astrophysics Data System (ADS)
Dicente Cid, Yashin; Puonti, Oula; Platon, Alexandra; Van Leemput, Koen; Müller, Henning; Poletti, Pierre-Alexandre
2018-02-01
Many pulmonary diseases can be characterized by visual abnormalities on lung CT scans. Some diseases manifest similar defects but require completely different treatments, as is the case for Pulmonary Hypertension (PH) and Pulmonary Embolism (PE): both present hypo- and hyper-perfused regions but with different distribution across the lung and require different treatment protocols. Finding these distributions by visual inspection is not trivial even for trained radiologists who currently use invasive catheterism to diagnose PH. A Computer-Aided Diagnosis (CAD) tool that could facilitate the non-invasive diagnosis of these diseases can benefit both the radiologists and the patients. Most of the visual differences in the parenchyma can be characterized using texture descriptors. Current CAD systems often use texture information but the texture is either computed in a patch-based fashion, or based on an anatomical division of the lung. The difficulty of precisely finding these divisions in abnormal lungs calls for new tools for obtaining new meaningful divisions of the lungs. In this paper we present a method for unsupervised segmentation of lung CT scans into subregions that are similar in terms of texture and spatial proximity. To this extent, we combine a previously validated Riesz-wavelet texture descriptor with a well-known superpixel segmentation approach that we extend to 3D. We demonstrate the feasibility and accuracy of our approach on a simulated texture dataset, and show preliminary results for CT scans of the lung comparing subjects suffering either from PH or PE. The resulting texture-based atlas of individual lungs can potentially help physicians in diagnosis or be used for studying common texture distributions related to other diseases.
Celaya-Padilla, José; Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Galvan-Tejada, Jorge; Treviño, Victor; Tamez-Peña, José
2015-01-01
Mammography is the most common and effective breast cancer screening test. However, the rate of positive findings is very low, making the radiologic interpretation monotonous and biased toward errors. This work presents a computer-aided diagnosis (CADx) method aimed to automatically triage mammogram sets. The method coregisters the left and right mammograms, extracts image features, and classifies the subjects into risk of having malignant calcifications (CS), malignant masses (MS), and healthy subject (HS). In this study, 449 subjects (197 CS, 207 MS, and 45 HS) from a public database were used to train and evaluate the CADx. Percentile-rank (p-rank) and z-normalizations were used. For the p-rank, the CS versus HS model achieved a cross-validation accuracy of 0.797 with an area under the receiver operating characteristic curve (AUC) of 0.882; the MS versus HS model obtained an accuracy of 0.772 and an AUC of 0.842. For the z-normalization, the CS versus HS model achieved an accuracy of 0.825 with an AUC of 0.882 and the MS versus HS model obtained an accuracy of 0.698 and an AUC of 0.807. The proposed method has the potential to rank cases with high probability of malignant findings aiding in the prioritization of radiologists work list. PMID:26240818
Computer-Assisted Diagnosis of the Sleep Apnea-Hypopnea Syndrome: A Review
Alvarez-Estevez, Diego; Moret-Bonillo, Vicente
2015-01-01
Automatic diagnosis of the Sleep Apnea-Hypopnea Syndrome (SAHS) has become an important area of research due to the growing interest in the field of sleep medicine and the costs associated with its manual diagnosis. The increment and heterogeneity of the different techniques, however, make it somewhat difficult to adequately follow the recent developments. A literature review within the area of computer-assisted diagnosis of SAHS has been performed comprising the last 15 years of research in the field. Screening approaches, methods for the detection and classification of respiratory events, comprehensive diagnostic systems, and an outline of current commercial approaches are reviewed. An overview of the different methods is presented together with validation analysis and critical discussion of the current state of the art. PMID:26266052
Vairavan, S; Ulusar, U D; Eswaran, H; Preissl, H; Wilson, J D; Mckelvey, S S; Lowery, C L; Govindan, R B
2016-02-01
We propose a novel computational approach to automatically identify the fetal heart rate patterns (fHRPs), which are reflective of sleep/awake states. By combining these patterns with presence or absence of movements, a fetal behavioral state (fBS) was determined. The expert scores were used as the gold standard and objective thresholds for the detection procedure were obtained using Receiver Operating Characteristics (ROC) analysis. To assess the performance, intraclass correlation was computed between the proposed approach and the mutually agreed expert scores. The detected fHRPs were then associated to their corresponding fBS based on the fetal movement obtained from fetal magnetocardiogaphic (fMCG) signals. This approach may aid clinicians in objectively assessing the fBS and monitoring fetal wellbeing. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2002-01-01
Integration of a supersonic inlet simulation with a computer aided design (CAD) system is demonstrated. The integration is performed using the Project Integration Architecture (PIA). PIA provides a common environment for wrapping many types of applications. Accessing geometry data from CAD files is accomplished by incorporating appropriate function calls from the Computational Analysis Programming Interface (CAPRI). CAPRI is a CAD vendor neutral programming interface that aids in acquiring geometry data directly from CAD files. The benefits of wrapping a supersonic inlet simulation into PIA using CAPRI are; direct access of geometry data, accurate capture of geometry data, automatic conversion of data units, CAD vendor neutral operation, and on-line interactive history capture. This paper describes the PIA and the CAPRI wrapper and details the supersonic inlet simulation demonstration.
NASA Technical Reports Server (NTRS)
Ierotheou, C.; Johnson, S.; Leggett, P.; Cross, M.; Evans, E.; Jin, Hao-Qiang; Frumkin, M.; Yan, J.; Biegel, Bryan (Technical Monitor)
2001-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. Historically, the lack of a programming standard for using directives and the rather limited performance due to scalability have affected the take-up of this programming model approach. Significant progress has been made in hardware and software technologies, as a result the performance of parallel programs with compiler directives has also made improvements. The introduction of an industrial standard for shared-memory programming with directives, OpenMP, has also addressed the issue of portability. In this study, we have extended the computer aided parallelization toolkit (developed at the University of Greenwich), to automatically generate OpenMP based parallel programs with nominal user assistance. We outline the way in which loop types are categorized and how efficient OpenMP directives can be defined and placed using the in-depth interprocedural analysis that is carried out by the toolkit. We also discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of real-world application codes. This work not only demonstrates the great potential of using the toolkit to quickly parallelize serial programs but also the good performance achievable on up to 300 processors for hybrid message passing and directive-based parallelizations.
ERIC Educational Resources Information Center
Fasoula, S.; Nikitas, P.; Pappa-Louisi, A.
2017-01-01
A series of Microsoft Excel spreadsheets were developed to simulate the process of separation optimization under isocratic and simple gradient conditions. The optimization procedure is performed in a stepwise fashion using simple macros for an automatic application of this approach. The proposed optimization approach involves modeling of the peak…
Computer-Aided Software Engineering - An approach to real-time software development
NASA Technical Reports Server (NTRS)
Walker, Carrie K.; Turkovich, John J.
1989-01-01
A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.
Medical imaging and computers in the diagnosis of breast cancer
NASA Astrophysics Data System (ADS)
Giger, Maryellen L.
2014-09-01
Computer-aided diagnosis (CAD) and quantitative image analysis (QIA) methods (i.e., computerized methods of analyzing digital breast images: mammograms, ultrasound, and magnetic resonance images) can yield novel image-based tumor and parenchyma characteristics (i.e., signatures that may ultimately contribute to the design of patient-specific breast cancer management plans). The role of QIA/CAD has been expanding beyond screening programs towards applications in risk assessment, diagnosis, prognosis, and response to therapy as well as in data mining to discover relationships of image-based lesion characteristics with genomics and other phenotypes; thus, as they apply to disease states. These various computer-based applications are demonstrated through research examples from the Giger Lab.
NASA Technical Reports Server (NTRS)
Johnson, Charles S.
1986-01-01
Physical quantities using various units of measurement can be well represented in Ada by the use of abstract types. Computation involving these quantities (electric potential, mass, volume) can also automatically invoke the computation and checking of some of the implicitly associable attributes of measurements. Quantities can be held internally in SI units, transparently to the user, with automatic conversion. Through dimensional analysis, the type of the derived quantity resulting from a computation is known, thereby allowing dynamic checks of the equations used. The impact of the possible implementation of these techniques in integration and test applications is discussed. The overhead of computing and transporting measurement attributes is weighed against the advantages gained by their use. The construction of a run time interpreter using physical quantities in equations can be aided by the dynamic equation checks provided by dimensional analysis. The effects of high levels of abstraction on the generation and maintenance of software used in integration and test applications are also discussed.
NASA Technical Reports Server (NTRS)
Hofmann, L. G.; Hoh, R. H.; Jewell, W. F.; Teper, G. L.; Patel, P. D.
1978-01-01
The objective of this effort is to determine IFR approach path and touchdown dispersions for manual and automatic XV-15 tilt rotor landings, and to develop missed approach criteria. Only helicopter mode XV-15 operation is considered. The analysis and design sections develop the automatic and flight director guidance equations for decelerating curved and straight-in approaches into a typical VTOL landing site equipped with an MLS navigation aid. These system designs satisfy all known pilot-centered, guidance and control requirements for this flying task. Performance data, obtained from nonstationary covariance propagation dispersion analysis for the system, are used to develop the approach monitoring criteria. The autoland and flight director guidance equations are programmed for the VSTOLAND 1819B digital computer. The system design dispersion data developed through analysis and the 1819B digital computer program are verified and refined using the fixed-base, man-in-the-loop XV-15 VSTOLAND simulation.
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Krauze, L. D.
1983-01-01
The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.
Computer-aided diagnosis in radiological imaging: current status and future challenges
NASA Astrophysics Data System (ADS)
Doi, Kunio
2009-10-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.
Pereira, Danilo Cesar; Ramos, Rodrigo Pereira; do Nascimento, Marcelo Zanchetta
2014-04-01
In Brazil, the National Cancer Institute (INCA) reports more than 50,000 new cases of the disease, with risk of 51 cases per 100,000 women. Radiographic images obtained from mammography equipments are one of the most frequently used techniques for helping in early diagnosis. Due to factors related to cost and professional experience, in the last two decades computer systems to support detection (Computer-Aided Detection - CADe) and diagnosis (Computer-Aided Diagnosis - CADx) have been developed in order to assist experts in detection of abnormalities in their initial stages. Despite the large number of researches on CADe and CADx systems, there is still a need for improved computerized methods. Nowadays, there is a growing concern with the sensitivity and reliability of abnormalities diagnosis in both views of breast mammographic images, namely cranio-caudal (CC) and medio-lateral oblique (MLO). This paper presents a set of computational tools to aid segmentation and detection of mammograms that contained mass or masses in CC and MLO views. An artifact removal algorithm is first implemented followed by an image denoising and gray-level enhancement method based on wavelet transform and Wiener filter. Finally, a method for detection and segmentation of masses using multiple thresholding, wavelet transform and genetic algorithm is employed in mammograms which were randomly selected from the Digital Database for Screening Mammography (DDSM). The developed computer method was quantitatively evaluated using the area overlap metric (AOM). The mean ± standard deviation value of AOM for the proposed method was 79.2 ± 8%. The experiments demonstrate that the proposed method has a strong potential to be used as the basis for mammogram mass segmentation in CC and MLO views. Another important aspect is that the method overcomes the limitation of analyzing only CC and MLO views. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Unusual Radiographic Presentation of Pneumocystis Pneumonia in a Patient with AIDS.
Block, Brian L; Mehta, Tejas; Ortiz, Gabriel M; Ferris, Sean P; Vu, Thienkhai H; Huang, Laurence; Cattamanchi, Adithya
2017-01-01
Pneumocystis jirovecii pneumonia (PCP) typically presents as an interstitial and alveolar process with ground glass opacities on chest computed tomography (CT). The absence of ground glass opacities on chest CT is thought to have a high negative predictive value for PCP in individuals with AIDS. Here, we report a case of PCP in a man with AIDS who presented to our hospital with subacute shortness of breath and a nonproductive cough. While his chest CT revealed diffuse nodular rather than ground glass opacities, bronchoscopy with bronchoalveolar lavage and transbronchial biopsies confirmed the diagnosis of PCP and did not identify additional pathogens. PCP was not the expected diagnosis based on chest CT, but it otherwise fit well with the patient's clinical and laboratory presentation. In the era of combination antiretroviral therapy, routine prophylaxis for PCP, and increased use of computed tomography, it may be that PCP will increasingly present with nonclassical chest radiographic patterns. Clinicians should be aware of this presentation when selecting diagnostic and management strategies.
Unusual Radiographic Presentation of Pneumocystis Pneumonia in a Patient with AIDS
Mehta, Tejas; Ortiz, Gabriel M.; Ferris, Sean P.; Vu, Thienkhai H.; Huang, Laurence; Cattamanchi, Adithya
2017-01-01
Pneumocystis jirovecii pneumonia (PCP) typically presents as an interstitial and alveolar process with ground glass opacities on chest computed tomography (CT). The absence of ground glass opacities on chest CT is thought to have a high negative predictive value for PCP in individuals with AIDS. Here, we report a case of PCP in a man with AIDS who presented to our hospital with subacute shortness of breath and a nonproductive cough. While his chest CT revealed diffuse nodular rather than ground glass opacities, bronchoscopy with bronchoalveolar lavage and transbronchial biopsies confirmed the diagnosis of PCP and did not identify additional pathogens. PCP was not the expected diagnosis based on chest CT, but it otherwise fit well with the patient's clinical and laboratory presentation. In the era of combination antiretroviral therapy, routine prophylaxis for PCP, and increased use of computed tomography, it may be that PCP will increasingly present with nonclassical chest radiographic patterns. Clinicians should be aware of this presentation when selecting diagnostic and management strategies. PMID:29362681
Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel
2012-01-01
By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M
2016-05-01
The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.
Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin
2016-12-01
To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis
Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana
2012-01-01
Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153
Sukhareva, L M; Pavlovich, K E; Druzhinin, P V; Sakharova, V G; Kvasov, G I
2000-01-01
Prospects for equipment of present-day school with computing machinery allow fresh approaches to be applied to the improvement of means for diagnosis and health prophylaxis in children and to professional orientation. Automatic systems have been developed for diagnosing diseases and monitoring the sociomental health of children and the adaptation of junior and middle schoolchildren to school activities. The systems provide a real way of successfully following the development of major mental functions for prenosological diagnosis of detected abnormalities and their subsequent correction. An automatic system for professional orientation of middle- and senior-form pupils has been devised on the basis of mental diagnostic testing of the schoolchildren's professional orientation, interests, inclinations, psychophysiological and personality traits.
Computer aided lung cancer diagnosis with deep learning algorithms
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Zheng, Bin; Qian, Wei
2016-03-01
Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.
Computer-aided diagnostic approach of dermoscopy images acquiring relevant features
NASA Astrophysics Data System (ADS)
Castillejos-Fernández, H.; Franco-Arcega, A.; López-Ortega, O.
2016-09-01
In skin cancer detection, automated analysis of borders, colors, and structures of a lesion relies upon an accurate segmentation process and it is an important first step in any Computer-Aided Diagnosis (CAD) system. However, irregular and disperse lesion borders, low contrast, artifacts in images and variety of colors within the interest region make the problem difficult. In this paper, we propose an efficient approach of automatic classification which considers specific lesion features. First, for the selection of lesion skin we employ the segmentation algorithm W-FCM.1 Then, in the feature extraction stage we consider several aspects: the area of the lesion, which is calculated by correlating axes and we calculate the specific the value of asymmetry in both axes. For color analysis we employ an ensemble of clusterers including K-Means, Fuzzy K-Means and Kohonep maps, all of which estimate the presence of one or more colors defined in ABCD rule and the values for each of the segmented colors. Another aspect to consider is the type of structures that appear in the lesion Those are defined by using the ell-known GLCM method. During the classification stage we compare several methods in order to define if the lesion is benign or malignant. An important contribution of the current approach in segmentation-classification problem resides in the use of information from all color channels together, as well as the measure of each color in the lesion and the axes correlation. The segmentation and classification measures have been performed using sensibility, specificity, accuracy and AUC metric over a set of dermoscopy images from ISDIS data set
Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P
2015-01-01
As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.
Three-dimensional surgical simulation.
Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2010-09-01
In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Leng, Shuang; Tan, Ru San; Chai, Kevin Tshun Chuan; Wang, Chao; Ghista, Dhanjoo; Zhong, Liang
2015-07-10
Most heart diseases are associated with and reflected by the sounds that the heart produces. Heart auscultation, defined as listening to the heart sound, has been a very important method for the early diagnosis of cardiac dysfunction. Traditional auscultation requires substantial clinical experience and good listening skills. The emergence of the electronic stethoscope has paved the way for a new field of computer-aided auscultation. This article provides an in-depth study of (1) the electronic stethoscope technology, and (2) the methodology for diagnosis of cardiac disorders based on computer-aided auscultation. The paper is based on a comprehensive review of (1) literature articles, (2) market (state-of-the-art) products, and (3) smartphone stethoscope apps. It covers in depth every key component of the computer-aided system with electronic stethoscope, from sensor design, front-end circuitry, denoising algorithm, heart sound segmentation, to the final machine learning techniques. Our intent is to provide an informative and illustrative presentation of the electronic stethoscope, which is valuable and beneficial to academics, researchers and engineers in the technical field, as well as to medical professionals to facilitate its use clinically. The paper provides the technological and medical basis for the development and commercialization of a real-time integrated heart sound detection, acquisition and quantification system.
The Classification and Evaluation of Computer-Aided Software Engineering Tools
1990-09-01
International Business Machines Corporation Customizer is a Registered Trademark of Index Technology Corporation Data Analyst is a Registered Trademark of...years, a rapid series of new approaches have been adopted including: information engineering, entity- relationship modeling, automatic code generation...support true information sharing among tools and automated consistency checking. Moreover, the repository must record and manage the relationships and
Computer-Aided Teaching Using MATLAB/Simulink for Enhancing an IM Course With Laboratory Tests
ERIC Educational Resources Information Center
Bentounsi, A.; Djeghloud, H.; Benalla, H.; Birem, T.; Amiar, H.
2011-01-01
This paper describes an automatic procedure using MATLAB software to plot the circle diagram for two induction motors (IMs), with wound and squirrel-cage rotors, from no-load and blocked-rotor tests. The advantage of this approach is that it avoids the need for a direct load test in predetermining the IM characteristics under reduced power.…
Computer-Aided Discovery Tools for Volcano Deformation Studies with InSAR and GPS
NASA Astrophysics Data System (ADS)
Pankratius, V.; Pilewskie, J.; Rude, C. M.; Li, J. D.; Gowanlock, M.; Bechor, N.; Herring, T.; Wauthier, C.
2016-12-01
We present a Computer-Aided Discovery approach that facilitates the cloud-scalable fusion of different data sources, such as GPS time series and Interferometric Synthetic Aperture Radar (InSAR), for the purpose of identifying the expansion centers and deformation styles of volcanoes. The tools currently developed at MIT allow the definition of alternatives for data processing pipelines that use various analysis algorithms. The Computer-Aided Discovery system automatically generates algorithmic and parameter variants to help researchers explore multidimensional data processing search spaces efficiently. We present first application examples of this technique using GPS data on volcanoes on the Aleutian Islands and work in progress on combined GPS and InSAR data in Hawaii. In the model search context, we also illustrate work in progress combining time series Principal Component Analysis with InSAR augmentation to constrain the space of possible model explanations on current empirical data sets and achieve a better identification of deformation patterns. This work is supported by NASA AIST-NNX15AG84G and NSF ACI-1442997 (PI: V. Pankratius).
Computer-Aided Parallelizer and Optimizer
NASA Technical Reports Server (NTRS)
Jin, Haoqiang
2011-01-01
The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.
Quantitative diagnosis of tongue cancer from histological images in an animal model
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo G.; Fei, Baowei
2016-03-01
We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.
Automatic detection and severity measurement of eczema using image processing.
Alam, Md Nafiul; Munia, Tamanna Tabassum Khan; Tavakolian, Kouhyar; Vasefi, Fartash; MacKinnon, Nick; Fazel-Rezai, Reza
2016-08-01
Chronic skin diseases like eczema may lead to severe health and financial consequences for patients if not detected and controlled early. Early measurement of disease severity, combined with a recommendation for skin protection and use of appropriate medication can prevent the disease from worsening. Current diagnosis can be costly and time-consuming. In this paper, an automatic eczema detection and severity measurement model are presented using modern image processing and computer algorithm. The system can successfully detect regions of eczema and classify the identified region as mild or severe based on image color and texture feature. Then the model automatically measures skin parameters used in the most common assessment tool called "Eczema Area and Severity Index (EASI)," by computing eczema affected area score, eczema intensity score, and body region score of eczema allowing both patients and physicians to accurately assess the affected skin.
Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.
Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O
2014-12-01
Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Automated image analysis of uterine cervical images
NASA Astrophysics Data System (ADS)
Li, Wenjing; Gu, Jia; Ferris, Daron; Poirson, Allen
2007-03-01
Cervical Cancer is the second most common cancer among women worldwide and the leading cause of cancer mortality of women in developing countries. If detected early and treated adequately, cervical cancer can be virtually prevented. Cervical precursor lesions and invasive cancer exhibit certain morphologic features that can be identified during a visual inspection exam. Digital imaging technologies allow us to assist the physician with a Computer-Aided Diagnosis (CAD) system. In colposcopy, epithelium that turns white after application of acetic acid is called acetowhite epithelium. Acetowhite epithelium is one of the major diagnostic features observed in detecting cancer and pre-cancerous regions. Automatic extraction of acetowhite regions from cervical images has been a challenging task due to specular reflection, various illumination conditions, and most importantly, large intra-patient variation. This paper presents a multi-step acetowhite region detection system to analyze the acetowhite lesions in cervical images automatically. First, the system calibrates the color of the cervical images to be independent of screening devices. Second, the anatomy of the uterine cervix is analyzed in terms of cervix region, external os region, columnar region, and squamous region. Third, the squamous region is further analyzed and subregions based on three levels of acetowhite are identified. The extracted acetowhite regions are accompanied by color scores to indicate the different levels of acetowhite. The system has been evaluated by 40 human subjects' data and demonstrates high correlation with experts' annotations.
Fuzzy pulmonary vessel segmentation in contrast enhanced CT data
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til
2008-03-01
Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.
Jiang, Yang; Gong, Yuanzheng; Rubenstein, Joel H; Wang, Thomas D; Seibel, Eric J
2017-04-01
Multimodal endoscopy using fluorescence molecular probes is a promising method of surveying the entire esophagus to detect cancer progression. Using the fluorescence ratio of a target compared to a surrounding background, a quantitative value is diagnostic for progression from Barrett's esophagus to high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC). However, current quantification of fluorescent images is done only after the endoscopic procedure. We developed a Chan-Vese-based algorithm to segment fluorescence targets, and subsequent morphological operations to generate background, thus calculating target/background (T/B) ratios, potentially to provide real-time guidance for biopsy and endoscopic therapy. With an initial processing speed of 2 fps and by calculating the T/B ratio for each frame, our method provides quasireal-time quantification of the molecular probe labeling to the endoscopist. Furthermore, an automatic computer-aided diagnosis algorithm can be applied to the recorded endoscopic video, and the overall T/B ratio is calculated for each patient. The receiver operating characteristic curve was employed to determine the threshold for classification of HGD/EAC using leave-one-out cross-validation. With 92% sensitivity and 75% specificity to classify HGD/EAC, our automatic algorithm shows promising results for a surveillance procedure to help manage esophageal cancer and other cancers inspected by endoscopy.
Computer aided diagnosis based on medical image processing and artificial intelligence methods
NASA Astrophysics Data System (ADS)
Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.
2006-12-01
Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Terrestrial implications of mathematical modeling developed for space biomedical research
NASA Technical Reports Server (NTRS)
Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.
C-MOS bulk metal design handbook. [LSI standard cell (circuits)
NASA Technical Reports Server (NTRS)
Edge, T. M.
1977-01-01
The LSI standard cell array technique was used in the fabrication of more than 20 CMOS custom arrays. This technique consists of a series of computer programs and design automation techniques referred to as the Computer Aided Design And Test (CADAT) system that automatically translate a partitioned logic diagram into a set of instructions for driving an automatic plotter which generates precision mask artwork for complex LSI arrays of CMOS standard cells. The standard cell concept for producing LSI arrays begins with the design, layout, and validation of a group of custom circuits called standard cells. Once validated, these cells are given identification or pattern numbers and are permanently stored. To use one of these cells in a logic design, the user calls for the desired cell by pattern number. The Place, Route in Two Dimension (PR2D) computer program is then used to automatically generate the metalization and/or tunnels to interconnect the standard cells into the required function. Data sheets that describe the function, artwork, and performance of each of the standard cells, the general procedure for implementation of logic in CMOS standard cells, and additional detailed design information are presented.
Pollettini, Juliana T; Panico, Sylvia R G; Daneluzzi, Julio C; Tinós, Renato; Baranauskas, José A; Macedo, Alessandra A
2012-12-01
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
Computer aided control of a mechanical arm
NASA Technical Reports Server (NTRS)
Derocher, W. L., Jr.; Zermuehlen, r. O.
1979-01-01
A method for computer-aided remote control of a six-degree-of-freedom manipulator arm involved in the on-orbit servicing of a spacecraft is presented. The control configuration features a supervisory type of control in which each of the segments of a module exchange trajectory is controlled automatically under human supervision, with manual commands to proceed to the next step and in the event of a failure or undesirable outcome. The implementation of the supervisory system is discussed in terms of necessary onboard and ground- or Orbiter-based hardware and software, and a one-g demonstration system built to allow further investigation of system operation is described. Possible applications of the system include the construction of satellite solar power systems, environmental testing and the control of heliostat solar power stations.
Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis
NASA Technical Reports Server (NTRS)
Kopp, H.; Trettau, R.; Zolotar, B.
1984-01-01
The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.
Operator vision aids for space teleoperation assembly and servicing
NASA Technical Reports Server (NTRS)
Brooks, Thurston L.; Ince, Ilhan; Lee, Greg
1992-01-01
This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.
Computer aided diagnosis and treatment planning for developmental dysplasia of the hip
NASA Astrophysics Data System (ADS)
Li, Bin; Lu, Hongbing; Cai, Wenli; Li, Xiang; Meng, Jie; Liang, Zhengrong
2005-04-01
The developmental dysplasia of the hip (DDH) is a congenital malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Early diagnosis and treatment is important because failure to diagnose and improper treatment can result in significant morbidity. In this paper, we designed and implemented a computer aided system for the diagnosis and treatment planning of this disease. With the design, the patient received CT (computed tomography) or MRI (magnetic resonance imaging) scan first. A mixture-based PV partial-volume algorithm was applied to perform bone segmentation on CT image, followed by three-dimensional (3D) reconstruction and display of the segmented image, demonstrating the special relationship between the acetabulum and femurs for visual judgment. Several standard procedures, such as Salter procedure, Pemberton procedure and Femoral Shortening osteotomy, were simulated on the screen to rehearse a virtual treatment plan. Quantitative measurement of Acetabular Index (AI) and Femoral Neck Anteversion (FNA) were performed on the 3D image for evaluation of DDH and treatment plans. PC graphics-card GPU architecture was exploited to accelerate the 3D rendering and geometric manipulation. The prototype system was implemented on PC/Windows environment and is currently under clinical trial on patient datasets.
Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.
Garnavi, Rahil; Aldeen, Mohammad; Bailey, James
2012-11-01
This paper presents a novel computer-aided diagnosis system for melanoma. The novelty lies in the optimised selection and integration of features derived from textural, borderbased and geometrical properties of the melanoma lesion. The texture features are derived from using wavelet-decomposition, the border features are derived from constructing a boundaryseries model of the lesion border and analysing it in spatial and frequency domains, and the geometry features are derived from shape indexes. The optimised selection of features is achieved by using the Gain-Ratio method, which is shown to be computationally efficient for melanoma diagnosis application. Classification is done through the use of four classifiers; namely, Support Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes. The proposed diagnostic system is applied on a set of 289 dermoscopy images (114 malignant, 175 benign) partitioned into train, validation and test image sets. The system achieves and accuracy of 91.26% and AUC value of 0.937, when 23 features are used. Other important findings include (i) the clear advantage gained in complementing texture with border and geometry features, compared to using texture information only, and (ii) higher contribution of texture features than border-based features in the optimised feature set.
Human problem solving performance in a fault diagnosis task
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1978-01-01
It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.
Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms
Masood, Ammara; Al-Jumaily, Adel Ali
2013-01-01
Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126
Computer-assisted education and interdisciplinary breast cancer diagnosis
NASA Astrophysics Data System (ADS)
Whatmough, Pamela; Gale, Alastair G.; Wilson, A. R. M.
1996-04-01
The diagnosis of breast disease for screening or symptomatic women is largely arrived at by a multi-disciplinary team. We report work on the development and assessment of an inter- disciplinary computer based learning system to support the diagnosis of this disease. The diagnostic process is first modelled from different viewpoints and then appropriate knowledge structures pertinent to the domains of radiologist, pathologist and surgeon are depicted. Initially the underlying inter-relationships of the mammographic diagnostic approach were detailed which is largely considered here. Ultimately a system is envisaged which will link these specialties and act as a diagnostic aid as well as a multi-media educational system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.S.; Seong, P.H.
1995-08-01
In this paper, an improved algorithm for automatic test pattern generation (ATG) for nuclear power plant digital electronic circuits--the combinational type of logic circuits is presented. For accelerating and improving the ATG process for combinational circuits the presented ATG algorithm has the new concept--the degree of freedom (DF). The DF, directly computed from the system descriptions such as types of gates and their interconnections, is the criterion to decide which among several alternate lines` logic values required along each path promises to be the most effective in order to accelerate and improve the ATG process. Based on the DF themore » proposed ATG algorithm is implemented in the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, it is shown that the AFDS using the ATG algorithm makes Universal Card (UV Card) testing much faster than the present testing practice or by using exhaustive testing sets.« less
Letter to the Editor: Use of Publicly Available Image Resources
Armato, Samuel G.; Drukker, Karen; Li, Feng; ...
2017-05-11
Here we write with regard to the Academic Radiology article entitled, “Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity” by Drs. Nishio and Nagashima (1). The authors also report on a computerized method to classify as benign or malignant lung nodules present in computed tomography (CT) scans.
Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku
2017-02-01
Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung
2017-03-01
The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.
Fault management for data systems
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann
1993-01-01
Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
ADP of multispectral scanner data for land use mapping
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1971-01-01
The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.
Program Synthesizes UML Sequence Diagrams
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2006-01-01
A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.
Mok, Gary Tsz Kin; Chung, Brian Hon-Yin
2017-01-01
Background 22q11.2 deletion syndrome (22q11.2DS) is a common genetic disorder with an estimated frequency of 1/4,000. It is a multi-systemic disorder with high phenotypic variability. Our previous work showed substantial under-diagnosis of 22q11.2DS as 1 in 10 adult patients with conotruncal defects were found to have 22q11.2DS. The National Institute of Health (NIH) has created an atlas of human malformation syndrome from diverse populations to provide an easy tool to assist clinician in diagnosing the syndromic across various populations. In this study, we seek to determine whether training the computer-aided facial recognition technology using images from ethnicity-matched patients from the NIH Atlas can improve the detection performance of this technology. Methods Clinical photographs of 16 Chinese subjects with molecularly confirmed 22q11.2DS, from the NIH atlas and its related publication were used for training the facial recognition technology. The system automatically localizes hundreds of facial fiducial points and takes measurements. The final classification is based on these measurements, as well as an estimated probability of subjects having 22q11.2DS based on the entire facial image. Clinical photographs of 7 patients with molecularly confirmed 22q11.2DS were obtained with informed consent and used for testing the performance in recognizing facial profiles of the Chinese subjects before and after training. Results All 7 test cases were improved in ranking and scoring after the software training. In 4 cases, 22q11.2DS did not appear as one possible syndrome match before the training; however, it appeared within the first 10 syndrome matches after training. Conclusions The present pilot data shows that this technology can be trained to recognize patients with 22q11.2DS. It also highlights the need to collect clinical photographs of patients from diverse populations to be used as resources for training the software which can lead to improvement of the performance of computer-aided facial recognition technology.
Garrett, Daniel S; Gronenborn, Angela M; Clore, G Marius
2011-12-01
The Contour Approach to Peak Picking was developed to aid in the analysis and interpretation and of multidimensional NMR spectra of large biomolecules. In essence, it comprises an interactive graphics software tool to computationally select resonance positions in heteronuclear, 3- and 4D spectra. Copyright © 2011. Published by Elsevier Inc.
Computer-aided diagnosis of leukoencephalopathy in children treated for acute lymphoblastic leukemia
NASA Astrophysics Data System (ADS)
Glass, John O.; Li, Chin-Shang; Helton, Kathleen J.; Reddick, Wilburn E.
2005-04-01
The purpose of this study was to use objective quantitative MR imaging methods to develop a computer-aided diagnosis tool to differentiate white matter (WM) hyperintensities as either leukoencephalopathy (LE) or normal maturational processes in children treated for acute lymphoblastic leukemia with intravenous high dose methotrexate. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and WM, gray matter, and cerebrospinal fluid a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map. Segmented regions were manually classified to identify the most hyperintense WM region and the normal appearing genu region. Signal intensity differences normalized to the genu within each examination were generated for two time points in 203 children. An unsupervised hierarchical clustering algorithm with the agglomeration method of McQuitty was used to divide data from the first examination into normal appearing or LE groups. A C-support vector machine (C-SVM) was then trained on the first examination data and used to classify the data from the second examination. The overall accuracy of the computer-aided detection tool was 83.5% (299/358) with sensitivity to normal WM of 86.9% (199/229) and specificity to LE of 77.5% (100/129) when compared to the readings of two expert observers. These results suggest that subtle therapy-induced leukoencephalopathy can be objectively and reproducibly detected in children treated for cancer using this computer-aided detection approach based on relative differences in quantitative signal intensity measures normalized within each examination.
Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.
2016-01-01
In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663
Suzuki, Y; Israelski, D M; Dannemann, B R; Stepick-Biek, P; Thulliez, P; Remington, J S
1988-01-01
The present study was performed to develop a serological method for diagnosing toxoplasmic encephalitis in patients with acquired immunodeficiency syndrome (AIDS). The trophozoite form of Toxoplasma gondii, fixed with either Formalin or acetone, was used in a modification of an agglutination method previously shown to differentiate between the acute and the chronic (latent) stages of infection with toxoplasma in immunologically normal persons. By using these antigens in separate tests and evaluating the data for statistical significance, 70% of patients with AIDS with biopsy-proven toxoplasmic encephalitis were distinguished from control, ambulatory patients with AIDS with toxoplasma antibodies but without signs or symptoms of central nervous system involvement. In a separate study, the agglutination tests identified from controls 84% of patients with AIDS with two or more brain lesions detected by computed-tomographic or magnetic-resonance-imaging scans and suspected of having toxoplasmic encephalitis. Thus, these agglutination tests should prove valuable for the noninvasive diagnosis of toxoplasmic encephalitis in patients with AIDS. PMID:3230132
Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis
Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German
2016-01-01
Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392
NASA Astrophysics Data System (ADS)
Jenuwine, Natalia M.; Mahesh, Sunny N.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Early detection of lung nodules from CT scans is key to improving lung cancer treatment, but poses a significant challenge for radiologists due to the high throughput required of them. Computer-Aided Detection (CADe) systems aim to automatically detect these nodules with computer algorithms, thus improving diagnosis. These systems typically use a candidate selection step, which identifies all objects that resemble nodules, followed by a machine learning classifier which separates true nodules from false positives. We create a CADe system that uses a 3D convolutional neural network (CNN) to detect nodules in CT scans without a candidate selection step. Using data from the LIDC database, we train a 3D CNN to analyze subvolumes from anywhere within a CT scan and output the probability that each subvolume contains a nodule. Once trained, we apply our CNN to detect nodules from entire scans, by systematically dividing the scan into overlapping subvolumes which we input into the CNN to obtain the corresponding probabilities. By enabling our network to process an entire scan, we expect to streamline the detection process while maintaining its effectiveness. Our results imply that with continued training using an iterative training scheme, the one-step approach has the potential to be highly effective.
NASA Astrophysics Data System (ADS)
Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.
2012-03-01
Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.
Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal
2018-01-17
The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.
Automated localization and segmentation techniques for B-mode ultrasound images: A review.
Meiburger, Kristen M; Acharya, U Rajendra; Molinari, Filippo
2018-01-01
B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi
2016-12-01
This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[The Application of Magnetic Resonance Imaging in Alzheimer's Disease].
Matsuda, Hiroshi
2017-07-01
In Alzheimer's disease (AD), magnetic resonance imaging (MRI) is essential for early diagnosis, differential diagnosis, and evaluation of disease progression. In structural MRI, the automatic diagnosis of atrophy by computers, even when it is not visually noticeable, is possible in daily clinical practice. Furthermore, subfield volumetric measurements of the medial temporal structures, as well as longitudinal volume measurements with high accuracy, have been developed and are useful for calculating the needed sample size in clinical trials. In addition to detecting local atrophy, graph theory has been applied to structural MRI for evaluation of alterations of the brain networks potentially affected in AD.
Automatic rectum limit detection by anatomical markers correlation.
Namías, R; D'Amato, J P; del Fresno, M; Vénere, M
2014-06-01
Several diseases take place at the end of the digestive system. Many of them can be diagnosed by means of different medical imaging modalities together with computer aided detection (CAD) systems. These CAD systems mainly focus on the complete segmentation of the digestive tube. However, the detection of limits between different sections could provide important information to these systems. In this paper we present an automatic method for detecting the rectum and sigmoid colon limit using a novel global curvature analysis over the centerline of the segmented digestive tube in different imaging modalities. The results are compared with the gold standard rectum upper limit through a validation scheme comprising two different anatomical markers: the third sacral vertebra and the average rectum length. Experimental results in both magnetic resonance imaging (MRI) and computed tomography colonography (CTC) acquisitions show the efficacy of the proposed strategy in automatic detection of rectum limits. The method is intended for application to the rectum segmentation in MRI for geometrical modeling and as contextual information source in virtual colonoscopies and CAD systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom
2016-03-01
Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
Defining the Optimal Region of Interest for Hyperemia Grading in the Bulbar Conjunctiva
Sánchez Brea, María Luisa; Mosquera González, Antonio; Evans, Katharine; Pena-Verdeal, Hugo
2016-01-01
Conjunctival hyperemia or conjunctival redness is a symptom that can be associated with a broad group of ocular diseases. Its levels of severity are represented by standard photographic charts that are visually compared with the patient's eye. This way, the hyperemia diagnosis becomes a nonrepeatable task that depends on the experience of the grader. To solve this problem, we have proposed a computer-aided methodology that comprises three main stages: the segmentation of the conjunctiva, the extraction of features in this region based on colour and the presence of blood vessels, and, finally, the transformation of these features into grading scale values by means of regression techniques. However, the conjunctival segmentation can be slightly inaccurate mainly due to illumination issues. In this work, we analyse the relevance of different features with respect to their location within the conjunctiva in order to delimit a reliable region of interest for the grading. The results show that the automatic procedure behaves like an expert using only a limited region of interest within the conjunctiva. PMID:28096890
Image segmentation and 3D visualization for MRI mammography
NASA Astrophysics Data System (ADS)
Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.
2002-05-01
MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.
Drew, Mark S.
2016-01-01
Cutaneous melanoma is the most life-threatening form of skin cancer. Although advanced melanoma is often considered as incurable, if detected and excised early, the prognosis is promising. Today, clinicians use computer vision in an increasing number of applications to aid early detection of melanoma through dermatological image analysis (dermoscopy images, in particular). Colour assessment is essential for the clinical diagnosis of skin cancers. Due to this diagnostic importance, many studies have either focused on or employed colour features as a constituent part of their skin lesion analysis systems. These studies range from using low-level colour features, such as simple statistical measures of colours occurring in the lesion, to availing themselves of high-level semantic features such as the presence of blue-white veil, globules, or colour variegation in the lesion. This paper provides a retrospective survey and critical analysis of contributions in this research direction. PMID:28096807
Welter, Petra; Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process.
Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno (né Lehmann), Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process. PMID:21672913
NASA Astrophysics Data System (ADS)
Chen, Dongyue; Lin, Jianhui; Li, Yanping
2018-06-01
Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.
Automatic Multilevel Parallelization Using OpenMP
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)
2002-01-01
In this paper we describe the extension of the CAPO (CAPtools (Computer Aided Parallelization Toolkit) OpenMP) parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application that have been parallelized using our system.
Influence of Computer-Aided Detection on Performance of Screening Mammography
Fenton, Joshua J.; Taplin, Stephen H.; Carney, Patricia A.; Abraham, Linn; Sickles, Edward A.; D'Orsi, Carl; Berns, Eric A.; Cutter, Gary; Hendrick, R. Edward; Barlow, William E.; Elmore, Joann G.
2011-01-01
Background Computer-aided detection identifies suspicious findings on mammograms to assist radiologists. Since the Food and Drug Administration approved the technology in 1998, it has been disseminated into practice, but its effect on the accuracy of interpretation is unclear. Methods We determined the association between the use of computer-aided detection at mammography facilities and the performance of screening mammography from 1998 through 2002 at 43 facilities in three states. We had complete data for 222,135 women (a total of 429,345 mammograms), including 2351 women who received a diagnosis of breast cancer within 1 year after screening. We calculated the specificity, sensitivity, and positive predictive value of screening mammography with and without computer-aided detection, as well as the rates of biopsy and breast-cancer detection and the overall accuracy, measured as the area under the receiver-operating-characteristic (ROC) curve. Results Seven facilities (16%) implemented computer-aided detection during the study period. Diagnostic specificity decreased from 90.2% before implementation to 87.2% after implementation (P<0.001), the positive predictive value decreased from 4.1% to 3.2% (P = 0.01), and the rate of biopsy increased by 19.7% (P<0.001). The increase in sensitivity from 80.4% before implementation of computer-aided detection to 84.0% after implementation was not significant (P = 0.32). The change in the cancer-detection rate (including invasive breast cancers and ductal carcinomas in situ) was not significant (4.15 cases per 1000 screening mammograms before implementation and 4.20 cases after implementation, P = 0.90). Analyses of data from all 43 facilities showed that the use of computer-aided detection was associated with significantly lower overall accuracy than was nonuse (area under the ROC curve, 0.871 vs. 0.919; P = 0.005). Conclusions The use of computer-aided detection is associated with reduced accuracy of interpretation of screening mammograms. The increased rate of biopsy with the use of computer-aided detection is not clearly associated with improved detection of invasive breast cancer. PMID:17409321
NASA Astrophysics Data System (ADS)
Kim, Namkug; Seo, Joon Beom; Park, Sang Ok; Lee, Youngjoo; Lee, Jeongjin
2009-02-01
To evaluate the accuracy of computer aided differential diagnosis (CADD) between usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) at HRCT in comparison with that of a radiologist's decision. A computerized classification for six local disease patterns (normal, NL; ground-glass opacity, GGO; reticular opacity, RO; honeycombing, HC; emphysema, EM; and consolidation, CON) using texture/shape analyses and a SVM classifier at HRCT was used for pixel-by-pixel labeling on the whole lung area. The mode filter was applied on the results to reduce noise. Area fraction (AF) of each pattern, directional probabilistic density function (pdf) (dPDF: mean, SD, skewness of pdf /3 directions: superior-inferior, anterior-posterior, central-peripheral), regional cluster distribution pattern (RCDP: number, mean, SD of clusters, mean, SD of centroid of clusters) were automatically evaluated. Spatially normalized left and right lungs were evaluated separately. Disease division index (DDI) on every combination of AFs and asymmetric index (AI) between left and right lung ((left-right)/left) were also evaluated. To assess the accuracy of the system, fifty-four HRCT data sets in patients with pathologically diagnosed UIP (n=26) and NSIP (n=28) were used. For a classification procedure, a CADD-SVM classifier with internal parameter optimization, and sequential forward floating feature selection (SFFS) were employed. The accuracy was assessed by a 5-folding cross validation with 20- times repetition. For comparison, two thoracic radiologists reviewed the whole HRCT images without clinical information and diagnose each case either as UIP or NSIP. The accuracies of radiologists' decision were 0.75 and 0.87, respectively. The accuracies of the CADD system using the features of AF, dPDF, AI of dPDF, RDP, AI of RDP, DDI were 0.70, 0.79, 0.77, 0.80, 0.78, 0.81, respectively. The accuracy of optimized CADD using all features after SFFS was 0.91. We developed the CADD system to differentiate between UIP and NSIP using automated assessment of the extent and distribution of regional disease patterns at HRCT.
Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential
Doi, Kunio
2007-01-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. In this article, the motivation and philosophy for early development of CAD schemes are presented together with the current status and future potential of CAD in a PACS environment. With CAD, radiologists use the computer output as a “second opinion” and make the final decisions. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral chest images has the potential to improve the overall performance in the detection of lung nodules when combined with another CAD scheme for PA chest images. Because vertebral fractures can be detected reliably by computer on lateral chest radiographs, radiologists’ accuracy in the detection of vertebral fractures would be improved by the use of CAD, and thus early diagnosis of osteoporosis would become possible. In MRA, a CAD system has been developed for assisting radiologists in the detection of intracranial aneurysms. On successive bone scan images, a CAD scheme for detection of interval changes has been developed by use of temporal subtraction images. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for chest CAD may include the computerized detection of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes in chest radiographs as well as the computerized classification of benign and malignant nodules and the differential diagnosis of interstitial lung diseases. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with known pathology, which would be very similar to a new unknown case, from PACS when a reliable and useful method has been developed for quantifying the similarity of a pair of images for visual comparison by radiologists. PMID:17349778
Ultrasound introscopic image quantitative characteristics for medical diagnosis
NASA Astrophysics Data System (ADS)
Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.
1993-09-01
The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.
Groth, M; Forkert, N D; Buhk, J H; Schoenfeld, M; Goebell, E; Fiehler, J
2013-02-01
To compare intra- and inter-observer reliability of aneurysm measurements obtained by a 3D computer-aided technique with standard manual aneurysm measurements in different imaging modalities. A total of 21 patients with 29 cerebral aneurysms were studied. All patients underwent digital subtraction angiography (DSA), contrast-enhanced (CE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA). Aneurysm neck and depth diameters were manually measured by two observers in each modality. Additionally, semi-automatic computer-aided diameter measurements were performed using 3D vessel surface models derived from CE- (CE-com) and TOF-MRA (TOF-com) datasets. Bland-Altman analysis (BA) and intra-class correlation coefficient (ICC) were used to evaluate intra- and inter-observer agreement. BA revealed the narrowest relative limits of intra- and inter-observer agreement for aneurysm neck and depth diameters obtained by TOF-com (ranging between ±5.3 % and ±28.3 %) and CE-com (ranging between ±23.3 % and ±38.1 %). Direct measurements in DSA, TOF-MRA and CE-MRA showed considerably wider limits of agreement. The highest ICCs were observed for TOF-com and CE-com (ICC values, 0.92 or higher for intra- as well as inter-observer reliability). Computer-aided aneurysm measurement in 3D offers improved intra- and inter-observer reliability and a reproducible parameter extraction, which may be used in clinical routine and as objective surrogate end-points in clinical trials.
A deep learning framework for supporting the classification of breast lesions in ultrasound images.
Han, Seokmin; Kang, Ho-Kyung; Jeong, Ja-Yeon; Park, Moon-Ho; Kim, Wonsik; Bang, Won-Chul; Seong, Yeong-Kyeong
2017-09-15
In this research, we exploited the deep learning framework to differentiate the distinctive types of lesions and nodules in breast acquired with ultrasound imaging. A biopsy-proven benchmarking dataset was built from 5151 patients cases containing a total of 7408 ultrasound breast images, representative of semi-automatically segmented lesions associated with masses. The dataset comprised 4254 benign and 3154 malignant lesions. The developed method includes histogram equalization, image cropping and margin augmentation. The GoogLeNet convolutionary neural network was trained to the database to differentiate benign and malignant tumors. The networks were trained on the data with augmentation and the data without augmentation. Both of them showed an area under the curve of over 0.9. The networks showed an accuracy of about 0.9 (90%), a sensitivity of 0.86 and a specificity of 0.96. Although target regions of interest (ROIs) were selected by radiologists, meaning that radiologists still have to point out the location of the ROI, the classification of malignant lesions showed promising results. If this method is used by radiologists in clinical situations it can classify malignant lesions in a short time and support the diagnosis of radiologists in discriminating malignant lesions. Therefore, the proposed method can work in tandem with human radiologists to improve performance, which is a fundamental purpose of computer-aided diagnosis.
A deep learning framework for supporting the classification of breast lesions in ultrasound images
NASA Astrophysics Data System (ADS)
Han, Seokmin; Kang, Ho-Kyung; Jeong, Ja-Yeon; Park, Moon-Ho; Kim, Wonsik; Bang, Won-Chul; Seong, Yeong-Kyeong
2017-10-01
In this research, we exploited the deep learning framework to differentiate the distinctive types of lesions and nodules in breast acquired with ultrasound imaging. A biopsy-proven benchmarking dataset was built from 5151 patients cases containing a total of 7408 ultrasound breast images, representative of semi-automatically segmented lesions associated with masses. The dataset comprised 4254 benign and 3154 malignant lesions. The developed method includes histogram equalization, image cropping and margin augmentation. The GoogLeNet convolutionary neural network was trained to the database to differentiate benign and malignant tumors. The networks were trained on the data with augmentation and the data without augmentation. Both of them showed an area under the curve of over 0.9. The networks showed an accuracy of about 0.9 (90%), a sensitivity of 0.86 and a specificity of 0.96. Although target regions of interest (ROIs) were selected by radiologists, meaning that radiologists still have to point out the location of the ROI, the classification of malignant lesions showed promising results. If this method is used by radiologists in clinical situations it can classify malignant lesions in a short time and support the diagnosis of radiologists in discriminating malignant lesions. Therefore, the proposed method can work in tandem with human radiologists to improve performance, which is a fundamental purpose of computer-aided diagnosis.
Dr. Lindberg's Legacy : Charting A New Course | NIH MedlinePlus the Magazine
... technology, artificial intelligence, computer-aided medical diagnosis, and electronic health records. As the first President of the ... about it—when Don began, NLM had no electronic journals in its collection, few people owned personal ...
Automating software design system DESTA
NASA Technical Reports Server (NTRS)
Lovitsky, Vladimir A.; Pearce, Patricia D.
1992-01-01
'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.
AIDS: The Role of Imaging Modalities and Infection Control Policies
Moore-Stovall, Joyce
1988-01-01
The availability of imaging modalities, such as the chest radiograph, gallium scan, double-contrast barium enema, computed tomography, and nuclear magnetic resonance, are very helpful in the diagnosis, treatment, and follow-up evaluation of patients with acquired immunodeficiency syndrome (AIDS). Because this syndrome causes irreversible destruction of the immune system, patients are susceptible to a multitude of opportunistic infections and malignancies. Health care professionals and the general public would be less fearful and apprehensive of AIDS victims if properly informed about the communicability of this syndrome. PMID:3047412
Using CASE tools to write engineering specifications
NASA Astrophysics Data System (ADS)
Henry, James E.; Howard, Robert W.; Iveland, Scott T.
1993-08-01
There are always a wide variety of obstacles to writing and maintaining engineering documentation. To combat these problems, documentation generation can be linked to the process of engineering development. The same graphics and communication tools used for structured system analysis and design (SSA/SSD) also form the basis for the documentation. The goal is to build a living document, such that as an engineering design changes, the documentation will `automatically' revise. `Automatic' is qualified by the need to maintain textual descriptions associated with the SSA/SSD graphics, and the need to generate new documents. This paper describes a methodology and a computer aided system engineering toolset that enables a relatively seamless transition into document generation for the development engineering team.
Computer-aided diagnosis and artificial intelligence in clinical imaging.
Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio
2011-11-01
Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and communication systems and will become a standard of care for diagnostic examinations in daily clinical work. Copyright © 2011 Elsevier Inc. All rights reserved.
Learning-based image preprocessing for robust computer-aided detection
NASA Astrophysics Data System (ADS)
Raghupathi, Laks; Devarakota, Pandu R.; Wolf, Matthias
2013-03-01
Recent studies have shown that low dose computed tomography (LDCT) can be an effective screening tool to reduce lung cancer mortality. Computer-aided detection (CAD) would be a beneficial second reader for radiologists in such cases. Studies demonstrate that while iterative reconstructions (IR) improve LDCT diagnostic quality, it however degrades CAD performance significantly (increased false positives) when applied directly. For improving CAD performance, solutions such as retraining with newer data or applying a standard preprocessing technique may not be suffice due to high prevalence of CT scanners and non-uniform acquisition protocols. Here, we present a learning-based framework that can adaptively transform a wide variety of input data to boost an existing CAD performance. This not only enhances their robustness but also their applicability in clinical workflows. Our solution consists of applying a suitable pre-processing filter automatically on the given image based on its characteristics. This requires the preparation of ground truth (GT) of choosing an appropriate filter resulting in improved CAD performance. Accordingly, we propose an efficient consolidation process with a novel metric. Using key anatomical landmarks, we then derive consistent feature descriptors for the classification scheme that then uses a priority mechanism to automatically choose an optimal preprocessing filter. We demonstrate CAD prototype∗ performance improvement using hospital-scale datasets acquired from North America, Europe and Asia. Though we demonstrated our results for a lung nodule CAD, this scheme is straightforward to extend to other post-processing tools dedicated to other organs and modalities.
Deep-reasoning fault diagnosis - An aid and a model
NASA Technical Reports Server (NTRS)
Yoon, Wan Chul; Hammer, John M.
1988-01-01
The design and evaluation are presented for the knowledge-based assistance of a human operator who must diagnose a novel fault in a dynamic, physical system. A computer aid based on a qualitative model of the system was built to help the operators overcome some of their cognitive limitations. This aid differs from most expert systems in that it operates at several levels of interaction that are believed to be more suitable for deep reasoning. Four aiding approaches, each of which provided unique information to the operator, were evaluated. The aiding features were designed to help the human's casual reasoning about the system in predicting normal system behavior (N aiding), integrating observations into actual system behavior (O aiding), finding discrepancies between the two (O-N aiding), or finding discrepancies between observed behavior and hypothetical behavior (O-HN aiding). Human diagnostic performance was found to improve by almost a factor of two with O aiding and O-N aiding.
[Status of cardiorespiratory polysomnographic diagnosis in the sleep laboratory].
Penzel, T
1995-03-01
The different types of sleep related breathing and cardiovascular disorders are well known and defined nowadays. Thereby it is possible to present a configuration by which a cardiorespiratory sleep laboratory is enabled to perform a complete differential diagnosis. This configuration consists of the function sleep with EEG, EOG and EMG, the function respiration with respiratory effort, respiratory flow and oxygen saturation, and the cardiovascular function with ECG and blood pressure if indicated. Continuous monitoring by videocamera and a patient call system with a technician present during the entire recording time must be assured. Recording and evaluation of all signals can be done with chart polygraphs or with computer systems if they provide a high-resolution graphic monitor. Automatic sleep analysis systems support evaluation of polysomnograms. But automatic analysis of sleep stages as well as automatic analysis of respiratory disorders needs visual counterchecking before results can be accepted. On the basis of today's knowledge recommendation for the setting of a sleep laboratory were set and new sleep labs are controlled on a voluntary basis by a commission of the German society for sleep research and sleep medicine. This first step of quality control is introduced to establish a procedure to keep quality of diagnosis and treatment on a high level in this medical specialty.
Electroencephalographic profiles for differentiation of disorders of consciousness
2013-01-01
Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin
2016-03-01
Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin
2017-03-01
Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.
Applicability of mathematical modeling to problems of environmental physiology
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
The paper traces the evolution of mathematical modeling and systems analysis from terrestrial research to research related to space biomedicine and back again to terrestrial research. Topics covered include: power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and, computer-aided diagnosis programs used in conjunction with a special on-line biomedical computer library.
Operational Assessment of Color Vision
2016-06-20
evaluated in this study. 15. SUBJECT TERMS Color vision, aviation, cone contrast test, Colour Assessment & Diagnosis , color Dx, OBVA 16. SECURITY...symbologies are frequently used to aid or direct critical activities such as aircraft landing approaches or railroad right-of-way designations...computer-generated display systems have facilitated the development of computer-based, automated tests of color vision [14,15]. The United Kingdom’s
Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis
NASA Astrophysics Data System (ADS)
Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur
2018-02-01
Diabetic retinopathy (DR) leads to irreversible vision loss. Diagnosis and staging of DR is usually based on the presence, number, location and type of retinal lesions. Ultra-wide field (UWF) digital scanning laser technology provides an opportunity for computer-aided DR lesion detection. High-resolution UWF images (3078×2702 pixels) may allow detection of more clinically relevant retinopathy in comparison with conventional retinal images as UWF imaging covers a 200° retinal area, versus 45° by conventional cameras. Current approaches to DR diagnosis that analyze 7-field Early Treatment Diabetic Retinopathy Study (ETDRS) retinal images provide similar results to UWF imaging. However, in 40% of cases, more retinopathy was found outside the 7- field ETDRS fields by UWF and in 10% of cases, retinopathy was reclassified as more severe. The reason is that UWF images examine both the central retina and more peripheral regions. We propose an algorithm for automatic detection and classification of DR lesions such as cotton wool spots, exudates, microaneurysms and haemorrhages in UWF images. The algorithm uses convolutional neural network (CNN) as a feature extractor and classifies the feature vectors extracted from colour-composite UWF images using a support vector machine (SVM). The main contribution includes detection of four types of DR lesions in the peripheral retina for diagnostic purposes. The evaluation dataset contains 146 UWF images. The proposed method for detection of DR lesion subtypes in UWF images using two scenarios for transfer learning achieved AUC ≈ 80%. Data was split at the patient level to validate the proposed algorithm.
Shan, Juan; Alam, S Kaisar; Garra, Brian; Zhang, Yingtao; Ahmed, Tahira
2016-04-01
This work identifies effective computable features from the Breast Imaging Reporting and Data System (BI-RADS), to develop a computer-aided diagnosis (CAD) system for breast ultrasound. Computerized features corresponding to ultrasound BI-RADs categories were designed and tested using a database of 283 pathology-proven benign and malignant lesions. Features were selected based on classification performance using a "bottom-up" approach for different machine learning methods, including decision tree, artificial neural network, random forest and support vector machine. Using 10-fold cross-validation on the database of 283 cases, the highest area under the receiver operating characteristic (ROC) curve (AUC) was 0.84 from a support vector machine with 77.7% overall accuracy; the highest overall accuracy, 78.5%, was from a random forest with the AUC 0.83. Lesion margin and orientation were optimum features common to all of the different machine learning methods. These features can be used in CAD systems to help distinguish benign from worrisome lesions. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
[An integrated segmentation method for 3D ultrasound carotid artery].
Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie
2013-07-01
An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention.
A handheld computer-aided diagnosis system and simulated analysis
NASA Astrophysics Data System (ADS)
Su, Mingjian; Zhang, Xuejun; Liu, Brent; Su, Kening; Louie, Ryan
2016-03-01
This paper describes a Computer Aided Diagnosis (CAD) system based on cellphone and distributed cluster. One of the bottlenecks in building a CAD system for clinical practice is the storage and process of mass pathology samples freely among different devices, and normal pattern matching algorithm on large scale image set is very time consuming. Distributed computation on cluster has demonstrated the ability to relieve this bottleneck. We develop a system enabling the user to compare the mass image to a dataset with feature table by sending datasets to Generic Data Handler Module in Hadoop, where the pattern recognition is undertaken for the detection of skin diseases. A single and combination retrieval algorithm to data pipeline base on Map Reduce framework is used in our system in order to make optimal choice between recognition accuracy and system cost. The profile of lesion area is drawn by doctors manually on the screen, and then uploads this pattern to the server. In our evaluation experiment, an accuracy of 75% diagnosis hit rate is obtained by testing 100 patients with skin illness. Our system has the potential help in building a novel medical image dataset by collecting large amounts of gold standard during medical diagnosis. Once the project is online, the participants are free to join and eventually an abundant sample dataset will soon be gathered enough for learning. These results demonstrate our technology is very promising and expected to be used in clinical practice.
Cartwheel projections of segmented pulmonary vasculature for the detection of pulmonary embolism
NASA Astrophysics Data System (ADS)
Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.
2005-04-01
Pulmonary embolism (PE) detection via contrast-enhanced computed tomography (CT) images is an increasingly important topic of research. Accurate identification of PE is of critical importance in determining the need for further treatment. However, current multi-slice CT scanners provide datasets typically containing 600 or more images per patient, making it desirable to have a visualization method to help radiologists focus directly on potential candidates that might otherwise have been overlooked. This is especially important when assessing the ability of CT to identify smaller, sub-segmental emboli. We propose a cartwheel projection approach to PE visualization that computes slab projections of the original data aided by vessel segmentation. Previous research on slab visualization for PE has utilized the entire volumetric dataset, requiring thin slabs and necessitating the use of maximum intensity projection (MIP). Our use of segmentation within the projection computation allows the use of thicker slabs than previous methods, as well as the ability to employ visualization variations that are only possible with segmentation. Following automatic segmentation of the pulmonary vessels, slabs may be rotated around the X-, Y- or Z-axis. These slabs are rendered by preferentially using voxels within the lung vessels. This effectively eliminates distracting information not relevant to diagnosis, lessening both the chance of overlooking a subtle embolus and minimizing time on spent evaluating false positives. The ability to employ thicker slabs means fewer images need to be evaluated, yielding a more efficient workflow.
Wang, Qingle; Zhang, Zhiyong; Shan, Fei; Shi, Yuxin; Xing, Wei; Shi, Liangrong; Zhang, Xingwei
2017-09-01
This study was conducted to assess intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion (DCTP) in patients with lung cancer. A total of 88 patients who had undergone DCTP, which had proved a diagnosis of primary lung cancer, were divided into two groups: (i) nodules (diameter ≤3 cm) and masses (diameter >3 cm) by size, and (ii) tumors with and without air density. Pulmonary flow, bronchial flow, and pulmonary index were measured in each group. Intra-observer and inter-observer agreements for measurement were assessed using intraclass correlation coefficient, within-subject coefficient of variation, and Bland-Altman analysis. In all lung cancers, the reproducibility coefficient for intra-observer agreement (range 26.1-38.3%) was superior to inter-observer agreement (range 38.1-81.2%). Further analysis revealed lower agreements for nodules compared to masses. Additionally, inner-air density reduced both agreements for lung cancer. The intra-observer agreement for measuring lung cancer DCTP was satisfied, while the inter-observer agreement was limited. The effects of tumoral size and inner-air density to agreements, especially between two observers, should be emphasized. In future, an automatic computer-aided segment of perfusion value of the tumor should be developed. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Progressive data transmission for anatomical landmark detection in a cloud.
Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D
2012-01-01
In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.
Application of infrared thermography in computer aided diagnosis
NASA Astrophysics Data System (ADS)
Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei
2014-09-01
The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.
NASA Astrophysics Data System (ADS)
Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.
2018-05-01
The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.
ICADx: interpretable computer aided diagnosis of breast masses
NASA Astrophysics Data System (ADS)
Kim, Seong Tae; Lee, Hakmin; Kim, Hak Gu; Ro, Yong Man
2018-02-01
In this study, a novel computer aided diagnosis (CADx) framework is devised to investigate interpretability for classifying breast masses. Recently, a deep learning technology has been successfully applied to medical image analysis including CADx. Existing deep learning based CADx approaches, however, have a limitation in explaining the diagnostic decision. In real clinical practice, clinical decisions could be made with reasonable explanation. So current deep learning approaches in CADx are limited in real world deployment. In this paper, we investigate interpretability in CADx with the proposed interpretable CADx (ICADx) framework. The proposed framework is devised with a generative adversarial network, which consists of interpretable diagnosis network and synthetic lesion generative network to learn the relationship between malignancy and a standardized description (BI-RADS). The lesion generative network and the interpretable diagnosis network compete in an adversarial learning so that the two networks are improved. The effectiveness of the proposed method was validated on public mammogram database. Experimental results showed that the proposed ICADx framework could provide the interpretability of mass as well as mass classification. It was mainly attributed to the fact that the proposed method was effectively trained to find the relationship between malignancy and interpretations via the adversarial learning. These results imply that the proposed ICADx framework could be a promising approach to develop the CADx system.
Scalable gastroscopic video summarization via similar-inhibition dictionary selection.
Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin
2016-01-01
This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.
Towards Automatic Processing of Virtual City Models for Simulations
NASA Astrophysics Data System (ADS)
Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2016-10-01
Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.
[Application of computer-assisted 3D imaging simulation for surgery].
Matsushita, S; Suzuki, N
1994-03-01
This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.
Use of symbolic computation in robotics education
NASA Technical Reports Server (NTRS)
Vira, Naren; Tunstel, Edward
1992-01-01
An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.
NASA Astrophysics Data System (ADS)
Horsch, Alexander
The chapter deals with the diagnosis of the malignant melanoma of the skin. This aggressive type of cancer with steadily growing incidence in white populations can hundred percent be cured if it is detected in an early stage. Imaging techniques, in particular dermoscopy, have contributed significantly to improvement of diagnostic accuracy in clinical settings, achieving sensitivities for melanoma experts of beyond 95% at specificities of 90% and more. Automatic computer analysis of dermoscopy images has, in preliminary studies, achieved classification rates comparable to those of experts. However, the diagnosis of melanoma requires a lot of training and experience, and at the time being, average numbers of lesions excised per histology-proven melanoma are around 30, a number which clearly is too high. Further improvements in computer dermoscopy systems and their competent use in clinical settings certainly have the potential to support efforts of improving this situation. In the chapter, medical basics, current state of melanoma diagnosis, image analysis methods, commercial dermoscopy systems, evaluation of systems, and methods and future directions are presented.
Enormous knowledge base of disease diagnosis criteria.
Xiao, Z H; Xiao, Y H; Pei, J H
1995-01-01
One of the problems in the development of the medical knowledge systems is the limitations of the system's knowledge. It is a common expectation to increase the number of diseases contained in a system. Using a high density knowledge representation method designed by us, we have developed the Enormous Knowledge Base of Disease Diagnosis Criteria (EKBDDC). It contains diagnostic criteria of 1,001 diagnostic entities and describes nearly 4,000 items of diagnostic indicators. It is the core of a huge medical project--the Electronic-Brain Medical Erudite (EBME). This enormous knowledge base was implemented initially on a low-cost popular microcomputer, which can aid in the prompting of typical disease and in teaching of diagnosis. The knowledge base is easy to expand. One of the main goals of EKBDDC is to increase the number of diseases included in it as far as possible using a low-cost computer with a comparatively small storage capacity. For this, we have designed a high density knowledge representation method. Criteria of various diagnostic entities are respectively stored in different records of the knowledge base. Each diagnostic entity corresponds to a diagnostic criterion data set; each data set consists of some diagnostic criterion data values (Table 1); each data is composed of two parts: integer and decimal; the integral part is the coding number of the given diagnostic information, and the decimal part is the diagnostic value of this information to the disease indicated by corresponding record number. For example, 75.02: the integer 75 is the coding number of "hemorrhagic skin rash"; the decimal 0.02 is the diagnostic value of this manifestation for diagnosing allergic purpura. TABULAR DATA, SEE PUBLISHED ABSTRACT. The algebraic sum method, a special form of the weighted summation, is adopted as mathematical model. In EKBDDC, the diagnostic values, which represent the significance of the disease manifestations for diagnosing corresponding diseases, were determined empirically. It is of a great economical, practical, and technical significance to realize enormous knowledge bases of disease diagnosis criteria on a low-cost popular microcomputer. This is beneficial for the developing countries to popularize medical informatics. To create the enormous international computer-aided diagnosis system, one may jointly develop the unified modules of disease diagnosis criteria used to "inlay" relevant computer-aided diagnosis systems. It is just like assembling a house using prefabricated panels.
A review of critical in-flight events research methodology
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. E.
1985-01-01
Pilot's cognitive responses to critical in-flight events (CIFE's) were investigated, using pilots, who had on the average about 2540 flight hours each, in four experiments: (1) full-mission simulation in a general aviation trainer, (2) paper and pencil CIFE tests, (3) interactive computer-aided scenario testing, and (4) verbal protocols in fault diagnosis tasks. The results of both computer and paper and pencil tests showed only 50 percent efficiency in correct diagnosis of critical events. The efficiency in arriving at a diagnosis was also low: over 20 inquiries were made for 21 percent of the scenarios diagnosed. The information-seeking pattern was random, with frequent retracing over old inquiries. The measures for developing improved cognitive skills for CIFE's are discussed.
The microcomputer in the dental office: a new diagnostic aid.
van der Stelt, P F
1985-06-01
The first computer applications in the dental office were based upon standard accountancy procedures. Recently, more and more computer applications have become available to meet the specific requirements of dental practice. This implies not only business procedures, but also facilities to store patient records in the system and retrieve them easily. Another development concerns the automatic calculation of diagnostic data such as those provided in cephalometric analysis. Furthermore, growth and surgical results in the craniofacial area can be predicted by computerized extrapolation. Computers have been useful in obtaining the patient's anamnestic data objectively and for the making of decisions based on such data. Computer-aided instruction systems have been developed for undergraduate students to bridge the gap between textbook and patient interaction without the risks inherent in the latter. Radiology will undergo substantial changes as a result of the application of electronic imaging devices instead of the conventional radiographic films. Computer-assisted electronic imaging will enable image processing, image enhancement, pattern recognition and data transmission for consultation and storage purposes. Image processing techniques will increase image quality whilst still allowing low-dose systems. Standardization of software and system configuration and the development of 'user friendly' programs is the major concern for the near future.
NASA Astrophysics Data System (ADS)
Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora
2014-03-01
Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.
Balmforth, Damian; Chacko, Jacob; Uppal, Rakesh
2016-10-01
A best evidence topic was constructed according to a structured protocol. The question addressed was whether (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) aids the diagnosis of prosthetic valve endocarditis (PVE)? A total of 107 publications were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. The reported outcome of all studies was a final diagnosis of confirmed endocarditis on follow-up. All the six studies were non-randomized, single-centre, observational studies and thus represented level 3 evidence. The diagnostic capability of PET/CT for PVE was compared with that of the modified Duke Criteria and echocardiography, and reported in terms of sensitivity, specificity and positive and negative predictive values. All studies demonstrated an increased sensitivity for the diagnosis of PVE when PET/CT was combined with the modified Duke Criteria on admission. A higher SUVmax on PET was found to be significantly associated with a confirmed diagnosis of endocarditis and an additional diagnostic benefit of PET/CT angiography over conventional PET/non-enhanced CT is reported due to improved anatomical resolution. However, PET/CT was found to be unreliable in the early postoperative period due to its inability to distinguish between infection and residual postoperative inflammatory changes. PET/CT was also found to be poor at diagnosing cases of native valve endocarditis. We conclude that PET/CT aids in the diagnosis of PVE when combined with the modified Duke Criteria on admission by increasing the diagnostic sensitivity. The diagnostic ability of PET/CT can be potentiated by the use of PET/CTA; however, its use may be unreliable in the early postoperative period or in native valve endocarditis. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
"Tennis elbow". A challenging call for computation and medicine
NASA Astrophysics Data System (ADS)
Sfetsioris, D.; Bontioti, E. N.
2014-10-01
An attempt to give an insight on the features composing this musculotendinous disorder. We address the issues of definition, pathophysiology and the mechanism underlying the onset and the occurrence of the disease, diagnosis and diagnostic tools as well as the methods of treatment. We focus mostly on conservative treatment protocols and we recognize the need for a more thorough investigation with the aid of computation.
Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun
2013-08-01
Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.
Computer-aided diagnosis of alcoholism-related EEG signals.
Acharya, U Rajendra; S, Vidya; Bhat, Shreya; Adeli, Hojjat; Adeli, Amir
2014-12-01
Alcoholism is a severe disorder that affects the functionality of neurons in the central nervous system (CNS) and alters the behavior of the affected person. Electroencephalogram (EEG) signals can be used as a diagnostic tool in the evaluation of subjects with alcoholism. The neurophysiological interpretation of EEG signals in persons with alcoholism (PWA) is based on observation and interpretation of the frequency and power in their EEGs compared to EEG signals from persons without alcoholism. This paper presents a review of the known features of EEGs obtained from PWA and proposes that the impact of alcoholism on the brain can be determined by computer-aided analysis of EEGs through extracting the minute variations in the EEG signals that can differentiate the EEGs of PWA from those of nonaffected persons. The authors advance the idea of automated computer-aided diagnosis (CAD) of alcoholism by employing the EEG signals. This is achieved through judicious combination of signal processing techniques such as wavelet, nonlinear dynamics, and chaos theory and pattern recognition and classification techniques. A CAD system is cost-effective and efficient and can be used as a decision support system by physicians in the diagnosis and treatment of alcoholism especially those who do not specialize in alcoholism or neurophysiology. It can also be of great value to rehabilitation centers to assess PWA over time and to monitor the impact of treatment aimed at minimizing or reversing the effects of the disease on the brain. A CAD system can be used to determine the extent of alcoholism-related changes in EEG signals (low, medium, high) and the effectiveness of therapeutic plans. Copyright © 2014 Elsevier Inc. All rights reserved.
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
Post-traumatic Stress Disorder Symptoms Among People Living with HIV/AIDS in Rural China.
Luo, Sitong; Lin, Chunqing; Ji, Guoping; Li, Li
2017-11-01
Among people living with HIV/AIDS (PLHA), the occurrence of post-traumatic stress disorder (PTSD) symptoms associated with HIV diagnosis is a common problem. This study examined HIV diagnosis-related PTSD symptoms and its associated factors among PLHA in rural China. We used baseline data from a randomized controlled trial conducted in Anhui Province, China. Surveys of 522 PLHA were conducted via computer-assisted personal interview method. PTSD symptoms were measured based on re-experiencing, avoidance and arousal of the day of HIV diagnosis. Association between PTSD symptoms and demographic characteristics, physical and social functioning were assessed by multiple regression analysis and structural equation modeling. Social functioning exhibited a direct association with HIV diagnosis-related PTSD symptoms, and also mediated the association between PTSD symptoms and age, family income, and physical functioning. The study findings underscore the importance of developing interventions that alleviate PTSD symptoms and improve social functioning among PLHA in rural China.
NASA Astrophysics Data System (ADS)
Chaisaowong, Kraisorn; Jiang, Mingze; Faltin, Peter; Merhof, Dorit; Eisenhawer, Christian; Gube, Monika; Kraus, Thomas
2016-03-01
Pleural thickenings are caused by asbestos exposure and may evolve into malignant pleural mesothelioma. An early diagnosis plays a key role towards an early treatment and an increased survival rate. Today, pleural thickenings are detected by visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. A computer-assisted diagnosis system to automatically assess pleural thickenings has been developed, which includes not only a quantitative assessment with respect to size and location, but also enhances this information with an anatomical description, i.e. lung side (left, right), part of pleura (pars costalis, mediastinalis, diaphragmatica, spinalis), as well as vertical (upper, middle, lower) and horizontal (ventral, dorsal) position. For this purpose, a 3D anatomical model of the lung surface has been manually constructed as a 3D atlas. Three registration sub-steps including rigid, affine, and nonrigid registration align the input patient lung to the 3D anatomical atlas model of the lung surface. Finally, each detected pleural thickening is assigned a set of labels describing its anatomical properties. Through this added information, an enhancement to the existing computer-assisted diagnosis system is presented in order to assure a higher precision and reproducible assessment of pleural thickenings, aiming at the diagnosis of the pleural mesothelioma in its early stage.
Computer-aided diagnosis (CAD) for colonoscopy
NASA Astrophysics Data System (ADS)
Gu, Jia; Poirson, Allen
2007-03-01
Colorectal cancer is the second leading cause of cancer deaths, and ranks third for new cancer cases and cancer mortality for both men and women. However, its death rate can be dramatically reduced by appropriate treatment when early detection is available. The purpose of colonoscopy is to identify and assess the severity of lesions, which may be flat or protruding. Due to the subjective nature of the examination, colonoscopic proficiency is highly variable and dependent upon the colonoscopist's knowledge and experience. An automated image processing system providing an objective, rapid, and inexpensive analysis of video from a standard colonoscope could provide a valuable tool for screening and diagnosis. In this paper, we present the design, functionality and preliminary results of its Computer-Aided-Diagnosis (CAD) system for colonoscopy - ColonoCAD TM. ColonoCAD is a complex multi-sensor, multi-data and multi-algorithm image processing system, incorporating data management and visualization, video quality assessment and enhancement, calibration, multiple view based reconstruction, feature extraction and classification. As this is a new field in medical image processing, our hope is that this paper will provide the framework to encourage and facilitate collaboration and discussion between industry, academia, and medical practitioners.
Computer-aided diagnosis of cavernous malformations in brain MR images.
Wang, Huiquan; Ahmed, S Nizam; Mandal, Mrinal
2018-06-01
Cavernous malformation or cavernoma is one of the most common epileptogenic lesions. It is a type of brain vessel abnormality that can cause serious symptoms such as seizures, intracerebral hemorrhage, and various neurological disorders. Manual detection of cavernomas by physicians in a large set of brain MRI slices is a time-consuming and labor-intensive task and often delays diagnosis. In this paper, we propose a computer-aided diagnosis (CAD) system for cavernomas based on T2-weighted axial plane MRI image analysis. The proposed technique first extracts the brain area based on atlas registration and active contour model, and then performs template matching to obtain candidate cavernoma regions. Texture, the histogram of oriented gradients and local binary pattern features of each candidate region are calculated, and principal component analysis is applied to reduce the feature dimensionality. Support vector machines (SVMs) are finally used to classify each region into cavernoma or non-cavernoma so that most of the false positives (obtained by template matching) are eliminated. The performance of the proposed CAD system is evaluated and experimental results show that it provides superior performance in cavernoma detection compared to existing techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kashefpur, Masoud; Kafieh, Rahele; Jorjandi, Sahar; Golmohammadi, Hadis; Khodabande, Zahra; Abbasi, Mohammadreza; Teifuri, Nilufar; Fakharzadeh, Ali Akbar; Kashefpoor, Maryam; Rabbani, Hossein
2017-01-01
An online depository was introduced to share clinical ground truth with the public and provide open access for researchers to evaluate their computer-aided algorithms. PHP was used for web programming and MySQL for database managing. The website was entitled "biosigdata.com." It was a fast, secure, and easy-to-use online database for medical signals and images. Freely registered users could download the datasets and could also share their own supplementary materials while maintaining their privacies (citation and fee). Commenting was also available for all datasets, and automatic sitemap and semi-automatic SEO indexing have been set for the site. A comprehensive list of available websites for medical datasets is also presented as a Supplementary (http://journalonweb.com/tempaccess/4800.584.JMSS_55_16I3253.pdf).
Broadening the Scope of Dental Education.
ERIC Educational Resources Information Center
Loe, Harald
1992-01-01
Scientific and technological advances affecting dental education in the near future are examined, including the growing role of saliva in diagnosis, direct imaging methods, biomaterials research, computer-aided design and manufacturing, molecular biology, and new restorative dentistry. It is argued that dentistry should be a fully recognized…
Data and knowledge in medical distributed applications.
Serban, Alexandru; Crişan-Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara
2014-01-01
Building a clinical decision support system (CDSS) capable to collect process and diagnose data from the patients automatically, based on information, symptoms and investigations is one of the current challenges for researchers and medical science. The purpose of the current study is to design a cloud-based CDSS to improve patient safety, quality of care and organizational efficiency. It presents the design of a cloud-based application system using a medical based approach, which covers different diseases to diagnosis, differentiated on most important pathologies. Using online questionnaires, traditional and new data will be collected from patients. After data input, the application will formulate a presumptive diagnosis and will direct patients to the correspondent department. A questionnaire will dynamically ask questions about the interface, and functionality improvements. Based on the answers, the functionality of the system and the user interface will be improved considering the real needs expressed by the end-users. The cloud-based CDSS, as a useful tool for patients, physicians and healthcare providers involves the computer support in the diagnosis of different pathologies and an accurate automatic differential diagnostic system.
Li, Feng
2015-07-01
This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.
Bi-model processing for early detection of breast tumor in CAD system
NASA Astrophysics Data System (ADS)
Mughal, Bushra; Sharif, Muhammad; Muhammad, Nazeer
2017-06-01
Early screening of skeptical masses in mammograms may reduce mortality rate among women. This rate can be further reduced upon developing the computer-aided diagnosis system with decrease in false assumptions in medical informatics. This method highlights the early tumor detection in digitized mammograms. For improving the performance of this system, a novel bi-model processing algorithm is introduced. It divides the region of interest into two parts, the first one is called pre-segmented region (breast parenchyma) and other is the post-segmented region (suspicious region). This system follows the scheme of the preprocessing technique of contrast enhancement that can be utilized to segment and extract the desired feature of the given mammogram. In the next phase, a hybrid feature block is presented to show the effective performance of computer-aided diagnosis. In order to assess the effectiveness of the proposed method, a database provided by the society of mammographic images is tested. Our experimental outcomes on this database exhibit the usefulness and robustness of the proposed method.
NASA Astrophysics Data System (ADS)
Hu, Yifan; Han, Hao; Zhu, Wei; Li, Lihong; Pickhardt, Perry J.; Liang, Zhengrong
2016-03-01
Feature classification plays an important role in differentiation or computer-aided diagnosis (CADx) of suspicious lesions. As a widely used ensemble learning algorithm for classification, random forest (RF) has a distinguished performance for CADx. Our recent study has shown that the location index (LI), which is derived from the well-known kNN (k nearest neighbor) and wkNN (weighted k nearest neighbor) classifier [1], has also a distinguished role in the classification for CADx. Therefore, in this paper, based on the property that the LI will achieve a very high accuracy, we design an algorithm to integrate the LI into RF for improved or higher value of AUC (area under the curve of receiver operating characteristics -- ROC). Experiments were performed by the use of a database of 153 lesions (polyps), including 116 neoplastic lesions and 37 hyperplastic lesions, with comparison to the existing classifiers of RF and wkNN, respectively. A noticeable gain by the proposed integrated classifier was quantified by the AUC measure.
Chest wall segmentation in automated 3D breast ultrasound scans.
Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico
2013-12-01
In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.
Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation
2008-09-01
297, 2007. 4.10.1 196 [48] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzen, Alberto Grig- gio, Ziyad Hanna, Alexander Nadel, Amit Palti, and...using SAT based conflict analysis. In Formal Methods in Computer Aided Design, pages 33–51, 2002. 1.1, 7 [54] Alessandro Cimatti, Alberto Griggio, and...and D. Vroon. Automatic memory reductions for RTL-level verification. In ICCAD, 2006. 1.2.4, 6.2, 7 [108] Joao P. Marques-Silva and Karem A. Sakallah
Program Aids Creation Of X-Y Plots
NASA Technical Reports Server (NTRS)
Jeletic, James F.
1993-01-01
VEGAS computer program enables application programmers to create X-Y plots in various modes through high-level subroutine calls. Modes consist of passive, autoupdate, and interactive modes. In passive mode, VEGAS takes input data, produces plot, and returns control to application program. In autoupdate mode, forms plots and automatically updates them as more information received. In interactive mode, displays plot and provides popup menus for user to alter appearance of plot or to modify data. Written in FORTRAN 77.
Computer-aided system for diabetes care in Berlin, G.D.R.
Thoelke, H; Meusel, K; Ratzmann, K P
1990-01-01
In the Centre of Diabetes and Metabolic Disorders of Berlin, G.D.R., a computer-aided care system has been used since 1974, aiming at relieving physicians and medical staff from routine tasks and rendering possible epidemiological research on an unselected diabetes population of a defined area. The basis of the system is the data bank on diabetics (DB), where at present data from approximately 55,000 patients are stored. DB is used as a diabetes register of Berlin. On the basis of standardised criteria of diagnosis and therapy of diabetes mellitus in our dispensary care system, DB facilitates representative epidemiological analyses of the diabetic population, e.g. prevalence, incidence, duration of diabetes, and modes of treatment. The availability of general data on the population or the selection of specified groups of patients serves the management of the care system. Also, it supports the computer-aided recall of type II diabetics, treated either with diet alone or with diet and oral drugs. In this way, the standardised evaluation of treatment strategies in large populations of diabetics is possible on the basis of uniform metabolic criteria (blood glucose plus urinary glucose). The system consists of a main computer in the data processing unit and of personal computers in the diabetes centre which can be used either individually or as terminals to the main computer. During 14 years of experience, the computer-aided out-patient care of type II diabetics has proved efficient in a big-city area with a large population.
A self-adapting heuristic for automatically constructing terrain appreciation exercises
NASA Astrophysics Data System (ADS)
Nanda, S.; Lickteig, C. L.; Schaefer, P. S.
2008-04-01
Appreciating terrain is a key to success in both symmetric and asymmetric forms of warfare. Training to enable Soldiers to master this vital skill has traditionally required their translocation to a selected number of areas, each affording a desired set of topographical features, albeit with limited breadth of variety. As a result, the use of such methods has proved to be costly and time consuming. To counter this, new computer-aided training applications permit users to rapidly generate and complete training exercises in geo-specific open and urban environments rendered by high-fidelity image generation engines. The latter method is not only cost-efficient, but allows any given exercise and its conditions to be duplicated or systematically varied over time. However, even such computer-aided applications have shortcomings. One of the principal ones is that they usually require all training exercises to be painstakingly constructed by a subject matter expert. Furthermore, exercise difficulty is usually subjectively assessed and frequently ignored thereafter. As a result, such applications lack the ability to grow and adapt to the skill level and learning curve of each trainee. In this paper, we present a heuristic that automatically constructs exercises for identifying key terrain. Each exercise is created and administered in a unique iteration, with its level of difficulty tailored to the trainee's ability based on the correctness of that trainee's responses in prior iterations.
Kuric, Katelyn M; Harris, Bryan T; Morton, Dean; Azevedo, Bruno; Lin, Wei-Shao
2017-09-29
This clinical report describes a digital workflow using extraoral digital photographs and volumetric datasets from cone beam computed tomography (CBCT) imaging to create a 3-dimensional (3D), virtual patient with photorealistic appearance. In a patient with microstomia, hinge axis approximation, diagnostic casts simulating postextraction alveolar ridge profile, and facial simulation of prosthetic treatment outcome were completed in a 3D, virtual environment. The approach facilitated the diagnosis, communication, and patient acceptance of the treatment of maxillary and mandibular computer-aided design and computer-aided manufacturing (CAD-CAM) of immediate dentures at increased occlusal vertical dimension. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Computer-assisted bladder cancer grading: α-shapes for color space decomposition
NASA Astrophysics Data System (ADS)
Niazi, M. K. K.; Parwani, Anil V.; Gurcan, Metin N.
2016-03-01
According to American Cancer Society, around 74,000 new cases of bladder cancer are expected during 2015 in the US. To facilitate the bladder cancer diagnosis, we present an automatic method to differentiate carcinoma in situ (CIS) from normal/reactive cases that will work on hematoxylin and eosin (H and E) stained images of bladder. The method automatically determines the color deconvolution matrix by utilizing the α-shapes of the color distribution in the RGB color space. Then, variations in the boundary of transitional epithelium are quantified, and sizes of nuclei in the transitional epithelium are measured. We also approximate the "nuclear to cytoplasmic ratio" by computing the ratio of the average shortest distance between transitional epithelium and nuclei to average nuclei size. Nuclei homogeneity is measured by computing the kurtosis of the nuclei size histogram. The results show that 30 out of 34 (88.2%) images were correctly classified by the proposed method, indicating that these novel features are viable markers to differentiate CIS from normal/reactive bladder.
Direct volume estimation without segmentation
NASA Astrophysics Data System (ADS)
Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.
2015-03-01
Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.
Evaluation of the efficiency and fault density of software generated by code generators
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1993-01-01
Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.
Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast
2007-03-01
TERMS breast imaging, breast CT, scatter compensation, denoising, CAD , Cone-beam CT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...clinical projection images. The CAD tool based on signal known exactly (SKE) scenario is under development. Task 6: Test and compare the...performances of the CAD developed in Task 5 applied to processed projection data from Task 1 with the CAD performance on the projection data without Bayesian
Okada, Tohru; Iwano, Shingo; Ishigaki, Takeo; Kitasaka, Takayuki; Hirano, Yasushi; Mori, Kensaku; Suenaga, Yasuhito; Naganawa, Shinji
2009-02-01
The ground-glass opacity (GGO) of lung cancer is identified only subjectively on computed tomography (CT) images as no quantitative characteristic has been defined for GGOs. We sought to define GGOs quantitatively and to differentiate between GGOs and solid-type lung cancers semiautomatically with a computer-aided diagnosis (CAD). High-resolution CT images of 100 pulmonary nodules (all peripheral lung cancers) were collected from our clinical records. Two radiologists traced the contours of nodules and distinguished GGOs from solid areas. The CT attenuation value of each area was measured. Differentiation between cancer types was assessed by a receiver-operating characteristic (ROC) analysis. The mean CT attenuation of the GGO areas was -618.4 +/- 212.2 HU, whereas that of solid areas was -68.1 +/- 230.3 HU. CAD differentiated between solidand GGO-type lung cancers with a sensitivity of 86.0% and specificity of 96.5% when the threshold value was -370 HU. Four nodules of mixed GGOs were incorrectly classified as the solid type. CAD detected 96.3% of GGO areas when the threshold between GGO and solid areas was 194 HU. Objective definition of GGO area by CT attenuation is feasible. This method is useful for semiautomatic differentiation between GGOs and solid types of lung cancer.
NASA Technical Reports Server (NTRS)
Saini, Subhash; Frumkin, Michael; Hribar, Michelle; Jin, Hao-Qiang; Waheed, Abdul; Yan, Jerry
1998-01-01
Porting applications to new high performance parallel and distributed computing platforms is a challenging task. Since writing parallel code by hand is extremely time consuming and costly, porting codes would ideally be automated by using some parallelization tools and compilers. In this paper, we compare the performance of the hand written NAB Parallel Benchmarks against three parallel versions generated with the help of tools and compilers: 1) CAPTools: an interactive computer aided parallelization too] that generates message passing code, 2) the Portland Group's HPF compiler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Origin2000.
Computer-aided injection molding system
NASA Astrophysics Data System (ADS)
Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.
1982-10-01
Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.
Memory interface simulator: A computer design aid
NASA Technical Reports Server (NTRS)
Taylor, D. S.; Williams, T.; Weatherbee, J. E.
1972-01-01
Results are presented of a study conducted with a digital simulation model being used in the design of the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. The model simulates the activity involved as instructions are fetched from random access memory for execution in one of the system central processing units. A series of model runs measured instruction execution time under various assumptions pertaining to the CPU's and the interface between the CPU's and RAM. Design tradeoffs are presented in the following areas: Bus widths, CPU microprogram read only memory cycle time, multiple instruction fetch, and instruction mix.
Open Source Live Distributions for Computer Forensics
NASA Astrophysics Data System (ADS)
Giustini, Giancarlo; Andreolini, Mauro; Colajanni, Michele
Current distributions of open source forensic software provide digital investigators with a large set of heterogeneous tools. Their use is not always focused on the target and requires high technical expertise. We present a new GNU/Linux live distribution, named CAINE (Computer Aided INvestigative Environment) that contains a collection of tools wrapped up into a user friendly environment. The CAINE forensic framework introduces novel important features, aimed at filling the interoperability gap across different forensic tools. Moreover, it provides a homogeneous graphical interface that drives digital investigators during the acquisition and analysis of electronic evidence, and it offers a semi-automatic mechanism for the creation of the final report.
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku
2011-03-01
The purpose of this paper is to present a new method to detect ulcers, which is one of the symptoms of Crohn's disease, from CT images. Crohn's disease is an inflammatory disease of the digestive tract. Crohn's disease commonly affects the small intestine. An optical or a capsule endoscope is used for small intestine examinations. However, these endoscopes cannot pass through intestinal stenosis parts in some cases. A CT image based diagnosis allows a physician to observe whole intestine even if intestinal stenosis exists. However, because of the complicated shape of the small and large intestines, understanding of shapes of the intestines and lesion positions are difficult in the CT image based diagnosis. Computer-aided diagnosis system for Crohn's disease having automated lesion detection is required for efficient diagnosis. We propose an automated method to detect ulcers from CT images. Longitudinal ulcers make rough surface of the small and large intestinal wall. The rough surface consists of combination of convex and concave parts on the intestinal wall. We detect convex and concave parts on the intestinal wall by a blob and an inverse-blob structure enhancement filters. A lot of convex and concave parts concentrate on roughed parts. We introduce a roughness value to differentiate convex and concave parts concentrated on the roughed parts from the other on the intestinal wall. The roughness value effectively reduces false positives of ulcer detection. Experimental results showed that the proposed method can detect convex and concave parts on the ulcers.
A computer-aided diagnostic system for kidney disease
Jahantigh, Farzad Firouzi; Malmir, Behnam; Avilaq, Behzad Aslani
2017-01-01
Background Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. Methods In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. Conclusion The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms. PMID:28392995
A computer-aided diagnostic system for kidney disease.
Jahantigh, Farzad Firouzi; Malmir, Behnam; Avilaq, Behzad Aslani
2017-03-01
Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms.
Automatic detection of Parkinson's disease in running speech spoken in three different languages.
Orozco-Arroyave, J R; Hönig, F; Arias-Londoño, J D; Vargas-Bonilla, J F; Daqrouq, K; Skodda, S; Rusz, J; Nöth, E
2016-01-01
The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.
Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations
Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W.
2016-01-01
Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures. PMID:26904094
Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations.
Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W
2016-01-01
Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures.
Deep learning aided decision support for pulmonary nodules diagnosing: a review.
Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping; He, Jianxing; Liu, Bo
2018-04-01
Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing.
NASA Astrophysics Data System (ADS)
García, Isaías; Benavides, Carmen; Alaiz, Héctor; Alonso, Angel
2013-08-01
This paper describes research on the use of knowledge models (ontologies) for building computer-aided educational software in the field of control engineering. Ontologies are able to represent in the computer a very rich conceptual model of a given domain. This model can be used later for a number of purposes in different software applications. In this study, domain ontology about the field of lead-lag compensator design has been built and used for automatic exercise generation, graphical user interface population and interaction with the user at any level of detail, including explanations about why things occur. An application called Onto-CELE (ontology-based control engineering learning environment) uses the ontology for implementing a learning environment that can be used for self and lifelong learning purposes. The experience has shown that the use of knowledge models as the basis for educational software applications is capable of showing students the whole complexity of the analysis and design processes at any level of detail. A practical experience with postgraduate students has shown the mentioned benefits and possibilities of the approach.
Web-based interactive drone control using hand gesture
NASA Astrophysics Data System (ADS)
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Web-based interactive drone control using hand gesture.
Zhao, Zhenfei; Luo, Hao; Song, Guang-Hua; Chen, Zhou; Lu, Zhe-Ming; Wu, Xiaofeng
2018-01-01
This paper develops a drone control prototype based on web technology with the aid of hand gesture. The uplink control command and downlink data (e.g., video) are transmitted by WiFi communication, and all the information exchange is realized on web. The control command is translated from various predetermined hand gestures. Specifically, the hardware of this friendly interactive control system is composed by a quadrotor drone, a computer vision-based hand gesture sensor, and a cost-effective computer. The software is simplified as a web-based user interface program. Aided by natural hand gestures, this system significantly reduces the complexity of traditional human-computer interaction, making remote drone operation more intuitive. Meanwhile, a web-based automatic control mode is provided in addition to the hand gesture control mode. For both operation modes, no extra application program is needed to be installed on the computer. Experimental results demonstrate the effectiveness and efficiency of the proposed system, including control accuracy, operation latency, etc. This system can be used in many applications such as controlling a drone in global positioning system denied environment or by handlers without professional drone control knowledge since it is easy to get started.
Geldermann, Ina; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M; Spreckelsen, Cord
2013-08-01
Usability aspects of different integration concepts for picture archiving and communication systems (PACS) and computer-aided diagnosis (CAD) were inquired on the example of BoneXpert, a program determining the skeletal age from a left hand's radiograph. CAD-PACS integration was assessed according to its levels: data, function, presentation, and context integration focusing on usability aspects. A user-based study design was selected. Statements of seven experienced radiologists using two alternative types of integration provided by BoneXpert were acquired and analyzed using a mixed-methods approach based on think-aloud records and a questionnaire. In both variants, the CAD module (BoneXpert) was easily integrated in the workflow, found comprehensible and fitting in the conceptual framework of the radiologists. Weak points of the software integration referred to data and context integration. Surprisingly, visualization of intermediate image processing states (presentation integration) was found less important as compared to efficient handling and fast computation. Seamlessly integrating CAD into the PACS without additional work steps or unnecessary interrupts and without visualizing intermediate images may considerably improve software performance and user acceptance with efforts in time.
Graña, M; Termenon, M; Savio, A; Gonzalez-Pinto, A; Echeveste, J; Pérez, J M; Besga, A
2011-09-20
The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu
2017-12-01
Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.
Evaluation of a New Ensemble Learning Framework for Mass Classification in Mammograms.
Rahmani Seryasat, Omid; Haddadnia, Javad
2018-06-01
Mammography is the most common screening method for diagnosis of breast cancer. In this study, a computer-aided system for diagnosis of benignity and malignity of the masses was implemented in mammogram images. In the computer aided diagnosis system, we first reduce the noise in the mammograms using an effective noise removal technique. After the noise removal, the mass in the region of interest must be segmented and this segmentation is done using a deformable model. After the mass segmentation, a number of features are extracted from it. These features include: features of the mass shape and border, tissue properties, and the fractal dimension. After extracting a large number of features, a proper subset must be chosen from among them. In this study, we make use of a new method on the basis of a genetic algorithm for selection of a proper set of features. After determining the proper features, a classifier is trained. To classify the samples, a new architecture for combination of the classifiers is proposed. In this architecture, easy and difficult samples are identified and trained using different classifiers. Finally, the proposed mass diagnosis system was also tested on mini-Mammographic Image Analysis Society and digital database for screening mammography databases. The obtained results indicate that the proposed system can compete with the state-of-the-art methods in terms of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Norton, Kerri-Ann; Iyatomi, Hitoshi; Celebi, M Emre; Ishizaki, Sumiko; Sawada, Mizuki; Suzaki, Reiko; Kobayashi, Ken; Tanaka, Masaru; Ogawa, Koichi
2012-08-01
Computer-aided diagnosis of dermoscopy images has shown great promise in developing a quantitative, objective way of classifying skin lesions. An important step in the classification process is lesion segmentation. Many studies have been successful in segmenting melanocytic skin lesions (MSLs), but few have focused on non-melanocytic skin lesions (NoMSLs), as the wide variety of lesions makes accurate segmentation difficult. We developed an automatic segmentation program for detecting borders of skin lesions in dermoscopy images. The method consists of a pre-processing phase, general lesion segmentation phase, including illumination correction, and bright region segmentation phase. We tested our method on a set of 107 NoMSLs and a set of 319 MSLs. Our method achieved precision/recall scores of 84.5% and 88.5% for NoMSLs, and 93.9% and 93.8% for MSLs, in comparison with manual extractions from four or five dermatologists. The accuracy of our method was competitive or better than five recently published methods. Our new method is the first method for detecting borders of both non-melanocytic and melanocytic skin lesions. © 2011 John Wiley & Sons A/S.
Prostate cancer: computer-aided diagnosis on multiparametric MRI
NASA Astrophysics Data System (ADS)
Marin, Laura; Racoceanu, Daniel; Renard Penna, Raphaele; Ezziane, Malek
2017-11-01
Prostate cancer (PCa) is one of the most common cancers in men, being also the second most deadly cancer after lung cancer. There is increasing interest in active surveillance and minimally invasive focal therapies in PCa to avoid morbidities associated with whole gland therapy. Tumor volume represents an essential prognostic factor of PCa and the definition of index lesion volume is critical for appropriate decision making, especially for image guide focal treatment or in case of active surveillance. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is the modality of choice for the detection and the localization of PCa foci. However, little has been published on mp-MRI accuracy in determining PCa volume, especially at 3T. There is insufficient evidence and no consensus to determine which of the methods for measuring volume is optimal. The objective of this study concerns the elaboration of an algorithm for automatic interpretation of mp-MRI. We determine the accuracy of the proposed method by comparing the prostate tumor volume issued from the automated volumetric mp-MRI measurements of the tumoral region, with manual and semi-automated volumetric measurements done by and respectively with radiologists. Information issued from whole mount histopathology is used to validate the whole approach.
Improvement of automatic hemorrhage detection methods using brightness correction on fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Nakagawa, Toshiaki; Hayashi, Yoshinori; Kakogawa, Masakatsu; Sawada, Akira; Kawase, Kazuhide; Hara, Takeshi; Fujita, Hiroshi
2008-03-01
We have been developing several automated methods for detecting abnormalities in fundus images. The purpose of this study is to improve our automated hemorrhage detection method to help diagnose diabetic retinopathy. We propose a new method for preprocessing and false positive elimination in the present study. The brightness of the fundus image was changed by the nonlinear curve with brightness values of the hue saturation value (HSV) space. In order to emphasize brown regions, gamma correction was performed on each red, green, and blue-bit image. Subsequently, the histograms of each red, blue, and blue-bit image were extended. After that, the hemorrhage candidates were detected. The brown regions indicated hemorrhages and blood vessels and their candidates were detected using density analysis. We removed the large candidates such as blood vessels. Finally, false positives were removed by using a 45-feature analysis. To evaluate the new method for the detection of hemorrhages, we examined 125 fundus images, including 35 images with hemorrhages and 90 normal images. The sensitivity and specificity for the detection of abnormal cases was were 80% and 88%, respectively. These results indicate that the new method may effectively improve the performance of our computer-aided diagnosis system for hemorrhages.
Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki
2004-05-01
We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.
Enhancing image classification models with multi-modal biomarkers
NASA Astrophysics Data System (ADS)
Caban, Jesus J.; Liao, David; Yao, Jianhua; Mollura, Daniel J.; Gochuico, Bernadette; Yoo, Terry
2011-03-01
Currently, most computer-aided diagnosis (CAD) systems rely on image analysis and statistical models to diagnose, quantify, and monitor the progression of a particular disease. In general, CAD systems have proven to be effective at providing quantitative measurements and assisting physicians during the decision-making process. As the need for more flexible and effective CADs continues to grow, questions about how to enhance their accuracy have surged. In this paper, we show how statistical image models can be augmented with multi-modal physiological values to create more robust, stable, and accurate CAD systems. In particular, this paper demonstrates how highly correlated blood and EKG features can be treated as biomarkers and used to enhance image classification models designed to automatically score subjects with pulmonary fibrosis. In our results, a 3-5% improvement was observed when comparing the accuracy of CADs that use multi-modal biomarkers with those that only used image features. Our results show that lab values such as Erythrocyte Sedimentation Rate and Fibrinogen, as well as EKG measurements such as QRS and I:40, are statistically significant and can provide valuable insights about the severity of the pulmonary fibrosis disease.
Al-Masni, Mohammed A; Al-Antari, Mugahed A; Park, Jeong-Min; Gi, Geon; Kim, Tae-Yeon; Rivera, Patricio; Valarezo, Edwin; Choi, Mun-Taek; Han, Seung-Moo; Kim, Tae-Seong
2018-04-01
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparing deep learning models for population screening using chest radiography
NASA Astrophysics Data System (ADS)
Sivaramakrishnan, R.; Antani, Sameer; Candemir, Sema; Xue, Zhiyun; Abuya, Joseph; Kohli, Marc; Alderson, Philip; Thoma, George
2018-02-01
According to the World Health Organization (WHO), tuberculosis (TB) remains the most deadly infectious disease in the world. In a 2015 global annual TB report, 1.5 million TB related deaths were reported. The conditions worsened in 2016 with 1.7 million reported deaths and more than 10 million people infected with the disease. Analysis of frontal chest X-rays (CXR) is one of the most popular methods for initial TB screening, however, the method is impacted by the lack of experts for screening chest radiographs. Computer-aided diagnosis (CADx) tools have gained significance because they reduce the human burden in screening and diagnosis, particularly in countries that lack substantial radiology services. State-of-the-art CADx software typically is based on machine learning (ML) approaches that use hand-engineered features, demanding expertise in analyzing the input variances and accounting for the changes in size, background, angle, and position of the region of interest (ROI) on the underlying medical imagery. More automatic Deep Learning (DL) tools have demonstrated promising results in a wide range of ML applications. Convolutional Neural Networks (CNN), a class of DL models, have gained research prominence in image classification, detection, and localization tasks because they are highly scalable and deliver superior results with end-to-end feature extraction and classification. In this study, we evaluated the performance of CNN based DL models for population screening using frontal CXRs. The results demonstrate that pre-trained CNNs are a promising feature extracting tool for medical imagery including the automated diagnosis of TB from chest radiographs but emphasize the importance of large data sets for the most accurate classification.
Koh, Joel E W; Acharya, U Rajendra; Hagiwara, Yuki; Raghavendra, U; Tan, Jen Hong; Sree, S Vinitha; Bhandary, Sulatha V; Rao, A Krishna; Sivaprasad, Sobha; Chua, Kuang Chua; Laude, Augustinus; Tong, Louis
2017-05-01
Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automatic classification of tissue malignancy for breast carcinoma diagnosis.
Fondón, Irene; Sarmiento, Auxiliadora; García, Ana Isabel; Silvestre, María; Eloy, Catarina; Polónia, António; Aguiar, Paulo
2018-05-01
Breast cancer is the second leading cause of cancer death among women. Its early diagnosis is extremely important to prevent avoidable deaths. However, malignancy assessment of tissue biopsies is complex and dependent on observer subjectivity. Moreover, hematoxylin and eosin (H&E)-stained histological images exhibit a highly variable appearance, even within the same malignancy level. In this paper, we propose a computer-aided diagnosis (CAD) tool for automated malignancy assessment of breast tissue samples based on the processing of histological images. We provide four malignancy levels as the output of the system: normal, benign, in situ and invasive. The method is based on the calculation of three sets of features related to nuclei, colour regions and textures considering local characteristics and global image properties. By taking advantage of well-established image processing techniques, we build a feature vector for each image that serves as an input to an SVM (Support Vector Machine) classifier with a quadratic kernel. The method has been rigorously evaluated, first with a 5-fold cross-validation within an initial set of 120 images, second with an external set of 30 different images and third with images with artefacts included. Accuracy levels range from 75.8% when the 5-fold cross-validation was performed to 75% with the external set of new images and 61.11% when the extremely difficult images were added to the classification experiment. The experimental results indicate that the proposed method is capable of distinguishing between four malignancy levels with high accuracy. Our results are close to those obtained with recent deep learning-based methods. Moreover, it performs better than other state-of-the-art methods based on feature extraction, and it can help improve the CAD of breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Feature-Based Morphometry: Discovering Group-related Anatomical Patterns
Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal
2015-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Lu, Xianglan; Tan, Maxine; Li, Shibo; Liu, Hong; Zheng, Bin
2015-03-01
The purpose of this study is to investigate the feasibility of applying automatic interphase FISH cells analysis method for detecting the residual malignancy of post chemotherapy leukemia patients. In the experiment, two clinical specimens with translocation between chromosome No. 9 and 22 or No. 11 and 14 were selected from the patients underwent leukemia diagnosis and treatment. The entire slide of each specimen was first digitalized by a commercial fluorescent microscope using a 40× objective lens. Then, the scanned images were processed by a computer-aided detecting (CAD) scheme to identify the analyzable FISH cells, which is accomplished by applying a series of features including the region size, Brenner gradient and maximum intensity. For each identified cell, the scheme detected and counted the number of the FISH signal dots inside the nucleus, using the adaptive threshold of the region size and distance of the labeled FISH dots. The results showed that the new CAD scheme detected 8093 and 6675 suspicious regions of interest (ROI) in two specimens, among which 4546 and 3807 ROI contain analyzable interphase FISH cell. In these analyzable ROIs, CAD selected 334 and 405 residual malignant cancer cells, which is substantially more than those visually detected in a cytogenetic laboratory of our medical center (334 vs. 122, 405 vs. 160). This investigation indicates that an automatic interphase FISH cell scanning and CAD method has the potential to improve the accuracy and efficiency of the prognostic assessment for leukemia and other genetic related cancer patients in the future.
Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.
Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C
2017-07-01
To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American Association of Physicists in Medicine.
Supervisory Control of Remote Manipulation with Compensation for Moving Target.
1980-07-21
Continue on reveree aide if neceeary and Identify by block number) ’The aim of this project is to evaluate automatic compensation for moving tar- gets ...slave control. Operating manipulators in this way is a tiring job and the operator gets exhausted after j a short time of work. The use of the computer...THE MANIPULATION OF MOVING OBJECTS Undersea tasks done by human divers are getting more and more costly and hazardous as they have to be done at
Investigation of air transportation technology at Princeton University, 1986
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1988-01-01
The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.
Automated real-time software development
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.
1993-01-01
A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.
Hybrid tracking and control system for computer-aided retinal surgery
NASA Astrophysics Data System (ADS)
Ferguson, R. D.; Wright, Cameron H. G.; Rylander, Henry G., III; Welch, Ashley J.; Barrett, Steven F.
1996-05-01
We describe initial experimental results of a new hybrid digital and analog design for retinal tracking and laser beam control. Initial results demonstrate tracking rates which exceed the equivalent of 50 degrees per second in the eye, with automatic lesion pattern creation and robust loss of lock detection. Robotically assisted laser surgery to treat conditions such as diabetic retinopathy, macular degeneration, and retinal tears can now be realized under clinical conditions with requisite safety using standard video hardware and inexpensive optical components.
Interactive display/graphics systems for remote sensor data analysis.
NASA Technical Reports Server (NTRS)
Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.
1971-01-01
Using a color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer, investigators at the Manned Spacecraft Center have developed a variety of interactive displays which aid in analyzing remote sensor data. This paper describes how such interactive displays are used to: (1) analyze data from a multispectral scanner, (2) develop automatic pattern recognition systems based on multispectral scanner measurements, and (3) analyze data from nonimaging sensors such as the infrared radiometer and microwave scatterometer.
1998-01-01
the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafetv in Microbiological and...Misinterpretation and misuse of the kappa statistic. American Journal of Epidemiology, 1987. 126: p. 161-169. 23. Soeken. K.L. and P.A. Prescott
Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme
NASA Astrophysics Data System (ADS)
Tan, Maxine; Pu, Jiantao; Zheng, Bin
2014-08-01
The high false-positive recall rate is one of the major dilemmas that significantly reduce the efficacy of screening mammography, which harms a large fraction of women and increases healthcare cost. This study aims to investigate the feasibility of helping reduce false-positive recalls by developing a new computer-aided diagnosis (CAD) scheme based on the analysis of global mammographic texture and density features computed from four-view images. Our database includes full-field digital mammography (FFDM) images acquired from 1052 recalled women (669 positive for cancer and 383 benign). Each case has four images: two craniocaudal (CC) and two mediolateral oblique (MLO) views. Our CAD scheme first computed global texture features related to the mammographic density distribution on the segmented breast regions of four images. Second, the computed features were given to two artificial neural network (ANN) classifiers that were separately trained and tested in a ten-fold cross-validation scheme on CC and MLO view images, respectively. Finally, two ANN classification scores were combined using a new adaptive scoring fusion method that automatically determined the optimal weights to assign to both views. CAD performance was tested using the area under a receiver operating characteristic curve (AUC). The AUC = 0.793 ± 0.026 was obtained for this four-view CAD scheme, which was significantly higher at the 5% significance level than the AUCs achieved when using only CC (p = 0.025) or MLO (p = 0.0004) view images, respectively. This study demonstrates that a quantitative assessment of global mammographic image texture and density features could provide useful and/or supplementary information to classify between malignant and benign cases among the recalled cases, which may eventually help reduce the false-positive recall rate in screening mammography.
Melles, Reinhilde J; ter Kuile, Moniek M; Dewitte, Marieke; van Lankveld, Jacques J D M; Brauer, Marieke; de Jong, Peter J
2014-03-01
The intense fear response to vaginal penetration in women with lifelong vaginismus, who have never been able to experience coitus, may reflect negative automatic and deliberate appraisals of vaginal penetration stimuli which might be modified by exposure treatment. The aim of this study is to examine whether (i) sexual stimuli elicit relatively strong automatic and deliberate threat associations in women with vaginismus, as well as relatively negative automatic and deliberate global affective associations, compared with symptom-free women; and (ii) these automatic and more deliberate attitudes can be modified by therapist-aided exposure treatment. A single target Implicit Association Test (st-IAT) was used to index automatic threat associations, and an Affective Simon Task (AST) to index global automatic affective associations. Participants were women with lifelong vaginismus (N = 68) and women without sexual problems (N = 70). The vaginismus group was randomly allocated to treatment (n = 34) and a waiting list control condition (n = 34). Indices of automatic threat were obtained by the st-IAT and automatic global affective associations by the AST, visual analogue scales (VAS) were used to assess deliberate appraisals of the sexual pictures (fear and global positive affect). More deliberate fear and less global positive affective associations with sexual stimuli were found in women with vaginismus. Following therapist-aided exposure treatment, the strength of fear was strongly reduced, whereas global positive affective associations were strengthened. Automatic associations did not differ between women with and without vaginismus and did not change following treatment. Relatively stronger negative (threat or global affect) associations with sexual stimuli in vaginismus appeared restricted to the deliberate level. Therapist-aided exposure treatment was effective in reducing subjective fear of sexual penetration stimuli and led to more global positive affective associations with sexual stimuli. The impact of exposure might be further improved by strengthening the association between vaginal penetration and positive affect (e.g., by using counter-conditioning techniques). © 2013 International Society for Sexual Medicine.
Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan
2016-10-01
Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.
Computer-aided personal interviewing. A new technique for data collection in epidemiologic surveys.
Birkett, N J
1988-03-01
Most epidemiologic studies involve the collection of data directly from selected respondents. Traditionally, interviewers are provided with the interview in booklet form on paper and answers are recorded therein. On receipt at the study office, the interview results are coded, transcribed, and keypunched for analysis. The author's team has developed a method of personal interviewing which uses a structured interview stored on a lap-sized computer. Responses are entered into the computer and are subject to immediate error-checking and correction. All skip-patterns are automatic. Data entry to the final data-base involves no manual data transcription. A pilot evaluation with a preliminary version of the system using tape-recorded interviews in a test/re-test methodology revealed a slightly higher error rate, probably related to weaknesses in the pilot system and the training process. Computer interviews tended to be longer but other features of the interview process were not affected by computer. The author's team has now completed 2,505 interviews using this system in a community-based blood pressure survey. It has been well accepted by both interviewers and respondents. Failure to complete an interview on the computer was uncommon (5 per cent) and well-handled by paper back-up questionnaires. The results show that computer-aided personal interviewing in the home is feasible but that further evaluation is needed to establish the impact of this methodology on overall data quality.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru
2007-03-01
Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.