49 CFR 552.15 - Processing of petition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal Motor Vehicle Safety Standard No. 208, Occupant Crash Protection § 552.15 Processing of petition. (a... will seek to notify the petitioner of any such deficiency within 30 days after receipt of the petition...
Stitzel, Joel D; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Doud, Andrea N; Martin, R Shayn; Meredith, J Wayne
2016-06-01
Advanced Automatic Crash Notification algorithms use vehicle telemetry measurements to predict risk of serious motor vehicle crash injury. The objective of the study was to develop an Advanced Automatic Crash Notification algorithm to reduce response time, increase triage efficiency, and improve patient outcomes by minimizing undertriage (<5%) and overtriage (<50%), as recommended by the American College of Surgeons. A list of injuries associated with a patient's need for Level I/II trauma center treatment known as the Target Injury List was determined using an approach based on 3 facets of injury: severity, time sensitivity, and predictability. Multivariable logistic regression was used to predict an occupant's risk of sustaining an injury on the Target Injury List based on crash severity and restraint factors for occupants in the National Automotive Sampling System - Crashworthiness Data System 2000-2011. The Advanced Automatic Crash Notification algorithm was optimized and evaluated to minimize triage rates, per American College of Surgeons recommendations. The following rates were achieved: <50% overtriage and <5% undertriage in side impacts and 6% to 16% undertriage in other crash modes. Nationwide implementation of our algorithm is estimated to improve triage decisions for 44% of undertriaged and 38% of overtriaged occupants. Annually, this translates to more appropriate care for >2,700 seriously injured occupants and reduces unnecessary use of trauma center resources for >162,000 minimally injured occupants. The algorithm could be incorporated into vehicles to inform emergency personnel of recommended motor vehicle crash triage decisions. Lower under- and overtriage was achieved, and nationwide implementation of the algorithm would yield improved triage decision making for an estimated 165,000 occupants annually. Copyright © 2016. Published by Elsevier Inc.
Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco
2017-11-17
Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be reutilized, thereby allowing rapid reanalysis when new crash data become available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.
How to determine an optimal threshold to classify real-time crash-prone traffic conditions?
Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang
2018-08-01
One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dummy Measurement of Chest Injuries Induced by Two-Point Shoulder Belts
Augenstein, J.; Perdeck, E.; Bowen, J.; Stratton, J.; Horton, T.; Singer, M.; Digges, K.; Malliaris, A.; Steps, J.
2000-01-01
The University of Miami’s William Lehman Injury Research Center at the Jackson Memorial Medical Center conducts interdisciplinary investigations to study seriously injured restrained occupants in frontal automobile collisions. Engineering analysis of these crashes is conducted in conjunction with the National Crash Analysis Center at the George Washington University. The multidisciplinary research team includes expertise in crash investigation, crash reconstruction, computer graphics, biomechanics of injuries, crash data analysis, trauma care, and all of the medical specialties associated with the Ryder Trauma Center at Jackson Memorial Hospital. More than 350 injured occupants and their crashes have been studied in depth. The purpose of this paper is to report on an observed pattern of liver lacerations suffered by drivers wearing shoulder belts, without the lap belt fastened and to assess the ability of existing crash test dummies to measure the potential for these injuries. During the initial years of the study, 48 cases of drivers protected by shoulder belts but without the lap belt fastened met the criteria for the study. Fifty percent of these drivers suffered liver lacerations. Further study showed that 22 of the crashes involved damage to the right front of the vehicle. Among the drivers in vehicles with right front damage, 92% sustained injuries to the liver. This observation indicated that 2-point belts were most likely to produce liver injuries in low severity frontal collisions when the crash direction is 1 to 2 o’clock. An analysis of the National Accident Sampling System for the years 1988-95 indicated that liver injuries constitute about 0.5% of the injuries suffered by drivers who are in tow-away crashes. NASS data showed that the risk of chest injury is more likely among drivers with automatic shoulder belts than drivers with 3-point manual belts. The crash test dummies showed no difference in chest injury measures. Finite element computer modeling demonstrated that the high deflection of the right lower rib on the Hybrid III dummy predicts the liver injuries in the 1 o’clock crashes. These higher deflections were less apparent at the location of the center chest deflection measurement device on the Hybrid III. PMID:11558077
Dummy measurement of chest injuries induced by two-point shoulder belts.
Augenstein, J; Perdeck, E; Bowen, J; Stratton, J; Horton, T; Singer, M; Digges, K; Malliaris, A; Steps, J
2000-01-01
The University of Miami's William Lehman Injury Research Center at the Jackson Memorial Medical Center conducts interdisciplinary investigations to study seriously injured restrained occupants in frontal automobile collisions. Engineering analysis of these crashes is conducted in conjunction with the National Crash Analysis Center at the George Washington University. The multidisciplinary research team includes expertise in crash investigation, crash reconstruction, computer graphics, biomechanics of injuries, crash data analysis, trauma care, and all of the medical specialties associated with the Ryder Trauma Center at Jackson Memorial Hospital. More than 350 injured occupants and their crashes have been studied in depth. The purpose of this paper is to report on an observed pattern of liver lacerations suffered by drivers wearing shoulder belts, without the lap belt fastened and to assess the ability of existing crash test dummies to measure the potential for these injuries. During the initial years of the study, 48 cases of drivers protected by shoulder belts but without the lap belt fastened met the criteria for the study. Fifty percent of these drivers suffered liver lacerations. Further study showed that 22 of the crashes involved damage to the right front of the vehicle. Among the drivers in vehicles with right front damage, 92% sustained injuries to the liver. This observation indicated that 2-point belts were most likely to produce liver injuries in low severity frontal collisions when the crash direction is 1 to 2 o'clock. An analysis of the National Accident Sampling System for the years 1988-95 indicated that liver injuries constitute about 0.5% of the injuries suffered by drivers who are in tow-away crashes. NASS data showed that the risk of chest injury is more likely among drivers with automatic shoulder belts than drivers with 3-point manual belts. The crash test dummies showed no difference in chest injury measures. Finite element computer modeling demonstrated that the high deflection of the right lower rib on the Hybrid III dummy predicts the liver injuries in the 1 o'clock crashes. These higher deflections were less apparent at the location of the center chest deflection measurement device on the Hybrid III.
Bahouth, George; Digges, Kennerly; Schulman, Carl
2012-01-01
This paper presents methods to estimate crash injury risk based on crash characteristics captured by some passenger vehicles equipped with Advanced Automatic Crash Notification technology. The resulting injury risk estimates could be used within an algorithm to optimize rescue care. Regression analysis was applied to the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) to determine how variations in a specific injury risk threshold would influence the accuracy of predicting crashes with serious injuries. The recommended thresholds for classifying crashes with severe injuries are 0.10 for frontal crashes and 0.05 for side crashes. The regression analysis of NASS/CDS indicates that these thresholds will provide sensitivity above 0.67 while maintaining a positive predictive value in the range of 0.20. PMID:23169132
Code of Federal Regulations, 2010 CFR
2010-10-01
... Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal Motor... subpart, the following definitions apply: (a) Dynamic automatic suppression system (DASS) means a portion of an air bag system that automatically controls whether or not the air bag deploys during a crash by...
Evaluating the Potential Benefits of Advanced Automatic Crash Notification.
Plevin, Rebecca E; Kaufman, Robert; Fraade-Blanar, Laura; Bulger, Eileen M
2017-04-01
Advanced Automatic Collision Notification (AACN) services in passenger vehicles capture crash data during collisions that could be transferred to Emergency Medical Services (EMS) providers. This study explored how EMS response times and other crash factors impacted the odds of fatality. The goal was to determine if information transmitted by AACN could help decrease mortality by allowing EMS providers to be better prepared upon arrival at the scene of a collision. The Crash Injury Research and Engineering Network (CIREN) database of the US Department of Transportation/National Highway Traffic Safety Administration (USDOT/NHTSA; Washington DC, USA) was searched for all fatal crashes between 1996 and 2012. The CIREN database also was searched for illustrative cases. The NHTSA's Fatal Analysis Reporting System (FARS) and National Automotive Sampling System Crashworthiness Data System (NASS CDS) databases were queried for all fatal crashes between 2000 and 2011 that involved a passenger vehicle. Detailed EMS time data were divided into prehospital time segments and analyzed descriptively as well as via multiple logistic regression models. The CIREN data showed that longer times from the collision to notification of EMS providers were associated with more frequent invasive interventions within the first three hours of hospital admission and more transfers from a regional hospital to a trauma center. The NASS CDS and FARS data showed that rural collisions with crash-notification times >30 minutes were more likely to be fatal than collisions with similar crash-notification times occurring in urban environments. The majority of a patient's prehospital time occurred between the arrival of EMS providers on-scene and arrival at a hospital. The need for extrication increased the on-scene time segment as well as total prehospital time. An AACN may help decrease mortality following a motor vehicle collision (MVC) by alerting EMS providers earlier and helping them discern when specialized equipment will be necessary in order to quickly extricate patients from the collision site and facilitate expeditious transfer to an appropriate hospital or trauma center. Plevin RE , Kaufman R , Fraade-Blanar L , Bulger EM . Evaluating the potential benefits of advanced automatic crash notification. Prehosp Disaster Med. 2017;32(2):156-164.
Left-turn phase: permissive, protected, or both? A quasi-experimental design in New York City.
Chen, Li; Chen, Cynthia; Ewing, Reid
2015-03-01
The practice of left-turn phasing selection (permissive, protected-only, or both) varies from one locality to another. The literature evidence on this issue is equally mixed and insufficient. In this study, we evaluate the safety impacts of changing left-turn signal phasing from permissive to protected/permissive or protected-only at 68 intersections in New York City using a rigorous quasi-experimental design accompanied with regression modeling. Changes in police reported crashes including total crashes, multiple-vehicle crashes, left-turn crashes, pedestrian crashes and bicyclist crashes were compared between before period and after period for the treatment group and comparison group by means of negative binomial regression using a Generalized Estimating Equations (GEE) technique. Confounding factors such as the built environment characteristics that were not controlled in comparison group selection are accounted for by this approach. The results show that the change of permissive left-turn signal phasing to protected/permissive or protected-only signal phasing does not result in a significant reduction in intersection crashes. Though the protected-only signal phasing does reduce the left-turn crashes and pedestrian crashes, this reduction was offset by a possible increase in over-taking crashes. These results suggest that left-turn phasing should not be treated as a universal solution that is always better than the permissive control for left-turn vehicles. The selection and implementation of left-turn signal phasing needs to be done carefully, considering potential trade-offs between safety and delay, and many other factors such as geometry, traffic flows and operations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Melvin, John W; Begeman, Paul C; Faller, Ronald K; Sicking, Dean L; McClellan, Scott B; Maynard, Edwin; Donegan, Michael W; Mallott, Annette M; Gideon, Thomas W
2006-11-01
Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control of the crash forces acting on a racing car. NASCAR (National Association for Stock Car Auto Racing, Inc) implemented crash recording in stock car racing in its three national series in 2002. Data from 2925 crashes from 2002 through the 2005 season are summarized in terms of crash severity, crash direction, injury outcome, and protective system performance.
Crash protectiveness to occupant injury and vehicle damage: An investigation on major car brands.
Huang, Helai; Li, Chunyang; Zeng, Qiang
2016-01-01
This study sets out to investigate vehicles' crash protectiveness on occupant injury and vehicle damage, which can be deemed as an extension of the traditional crash worthiness. A Bayesian bivariate hierarchical ordered logistic (BVHOL) model is developed to estimate the occupant protectiveness (OP) and vehicle protectiveness (VP) of 23 major car brands in Florida, with considering vehicles' crash aggressivity and controlling external factors. The proposed model not only takes over the strength of the existing hierarchical ordered logistic (HOL) model, i.e. specifying the order characteristics of crash outcomes and cross-crash heterogeneities, but also accounts for the correlation between the two crash responses, driver injury and vehicle damage. A total of 7335 two-vehicle-crash records with 14,670 cars involved in Florida are used for the investigation. From the estimation results, it's found that most of the luxury cars such as Cadillac, Volvo and Lexus possess excellent OP and VP while some brands such as KIA and Saturn perform very badly in both aspects. The ranks of the estimated safety performance indices are even compared to the counterparts in Huang et al. study [Huang, H., Hu, S., Abdel-Aty, M., 2014. Indexing crash worthiness and crash aggressivity by major car brands. Safety Science 62, 339-347]. The results show that the rank of occupant protectiveness index (OPI) is relatively coherent with that of crash worthiness index, but the ranks of crash aggressivity index in both studies is more different from each other. Meanwhile, a great discrepancy between the OPI rank and that of vehicle protectiveness index is found. What's more, the results of control variables and hyper-parameters estimation as well as comparison to HOL models with separate or identical threshold errors, demonstrate the validity and advancement of the proposed model and the robustness of the estimated OP and VP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ponte, G; Ryan, G A; Anderson, R W G
2016-01-01
The aim of this study was to estimate the potential effectiveness of an in-vehicle automatic collision notification (ACN) system in reducing all road crash fatalities in South Australia (SA). For the years 2008 to 2009, traffic accident reporting system (TARS) data, emergency medical services (EMS) road crash dispatch data, and coroner's reports were matched and examined. This was done to initially determine the extent to which there were differences between the reported time of a fatal road crash in the mass crash data and the time EMS were notified and dispatched. In the subset of fatal crashes where there was a delay, injuries detailed by a forensic pathologist in individual coroner's reports were examined to determine the likelihood of survival had there not been a delay in emergency medical assistance. In 25% (N = 53) of fatalities in SA in the period 2008 to 2009, there was a delay in the notification of the crash event, and hence dispatch of EMS, that exceeded 10 min. In the 2-year crash period, 5 people were likely to have survived through more prompt crash notification enabling quicker emergency medical assistance. Additionally, 3 people potentially would have survived if surgical intervention (or emergency medical assistance to sustain life until surgery) occurred more promptly. The minimum effectiveness rate of an ACN system in SA with full deployment is likely to be in the range of 2.4 to 3.8% of all road crash fatalities involving all vehicle types and all vulnerable road users (pedestrians, cyclists, and motorcyclists) from 2008 to 2009. Considering only passenger vehicle occupants, the benefit is likely to be 2.6 to 4.6%. These fatality reductions could only have been achieved through earlier notification of each crash and their location to enable a quicker medical response. This might be achievable through a fully deployed in-vehicle ACN system.
49 CFR 552.14 - Content of petition.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal... petitioner shall provide the following information: (a) A set of proposed test procedures for S28.1, S28.2... unbelted occupant positions that are likely to occur during a frontal crash where pre-crash braking occurs...
49 CFR 552.14 - Content of petition.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal... petitioner shall provide the following information: (a) A set of proposed test procedures for S28.1, S28.2... unbelted occupant positions that are likely to occur during a frontal crash where pre-crash braking occurs...
49 CFR 552.14 - Content of petition.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal... petitioner shall provide the following information: (a) A set of proposed test procedures for S28.1, S28.2... unbelted occupant positions that are likely to occur during a frontal crash where pre-crash braking occurs...
Savino, Giovanni; Rizzi, Matteo; Brown, Julie; Piantini, Simone; Meredith, Lauren; Albanese, Bianca; Pierini, Marco; Fitzharris, Michael
2014-01-01
In 2006, Motorcycle Autonomous Emergency Braking (MAEB) was developed by a European Consortium (Powered Two Wheeler Integrated Safety, PISa) as a crash severity countermeasure for riders. This system can detect an obstacle through sensors in the front of the motorcycle and brakes automatically to achieve a 0.3 g deceleration if the collision is inevitable and the rider does not react. However, if the rider does brake, full braking force is applied automatically. Previous research into the potential benefits of MAEB has shown encouraging results. However, this was based on MAEB triggering algorithms designed for motorcycle crashes involving impacts with fixed objects and rear-end crashes. To estimate the full potential benefit of MAEB, there is a need to understand the full spectrum of motorcycle crashes and further develop triggering algorithms that apply to a wider spectrum of crash scenarios. In-depth crash data from 3 different countries were used: 80 hospital admittance cases collected during 2012-2013 within a 3-h driving range of Sydney, Australia, 40 crashes with Injury Severity Score (ISS)>15 collected in the metropolitan area of Florence, Italy, during 2009-2012, and 92 fatal crashes that occurred in Sweden during 2008-2009. In the first step, the potential applicability of MAEB among the crashes was assessed using a decision tree method. To achieve this, a new triggering algorithm for MAEB was developed to address crossing scenarios as well as crashes involving stationary objects. In the second step, the potential benefit of MAEB across the applicable crashes was examined by using numerical computer simulations. Each crash was reconstructed twice-once with and once without MAEB deployed. The principal finding is that using the new triggering algorithm, MAEB is seen to apply to a broad range of multivehicle motorcycle crashes. Crash mitigation was achieved through reductions in impact speed of up to approximately 10 percent, depending on the crash scenario and the initial vehicle pre-impact speeds. This research is the first attempt to evaluate MAEB with simulations on a broad range of crash scenarios using in-depth data. The results give further insights into the feasibility of MAEB in different speed ranges. It is clear then that MAEB is a promising technology that warrants further attention by researchers, manufacturers, and regulators.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine
NASA Technical Reports Server (NTRS)
Campbell, John A.; Busch, Arthur M.
1959-01-01
A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Intelligent geocoding system to locate traffic crashes.
Qin, Xiao; Parker, Steven; Liu, Yi; Graettinger, Andrew J; Forde, Susie
2013-01-01
State agencies continue to face many challenges associated with new federal crash safety and highway performance monitoring requirements that use data from multiple and disparate systems across different platforms and locations. On a national level, the federal government has a long-term vision for State Departments of Transportation (DOTs) to report state route and off-state route crash data in a single network. In general, crashes occurring on state-owned or state maintained highways are a priority at the Federal and State level; therefore, state-route crashes are being geocoded by state DOTs. On the other hand, crashes occurring on off-state highway system do not always get geocoded due to limited resources and techniques. Creating and maintaining a statewide crash geographic information systems (GIS) map with state route and non-state route crashes is a complicated and expensive task. This study introduces an automatic crash mapping process, Crash-Mapping Automation Tool (C-MAT), where an algorithm translates location information from a police report crash record to a geospatial map and creates a pinpoint map for all crashes. The algorithm has approximate 83 percent mapping rate. An important application of this work is the ability to associate the mapped crash records to underlying business data, such as roadway inventory and traffic volumes. The integrated crash map is the foundation for effective and efficient crash analyzes to prevent highway crashes. Published by Elsevier Ltd.
Potential crashworthiness benefits to general aviation from Indianapolis Motor Speedway technology.
Jennings, R T; Mohler, S R
1988-01-01
General aviation crashworthiness can potentially benefit from certain advances being accomplished by the automobile industry. Progressive improvements in crash protection technology, as documented by a dramatic reduction in crash injuries and fatalities at the Indianapolis Motor Speedway, reflect improved crashworthiness. The speeds of survivable general aviation aircraft impacts are in the range of the Indianapolis Motor Speedway crashes (200-220 mph). This paper relates the declining crash death rates at Indy by decade versus the increase in speeds. The continuous rise in speeds has prompted the development of new crashworthy designs and driver protection equipment. Crashworthiness improvements include crushable surrounding structures, high-grade restraint systems, protective head gear, fire resistant clothing, break-away structural components, and a "protective cocoon" concept. Adaptation of selected advances in crashworthiness design and operations accomplished at the Indianapolis Motor Speedway to the next generation of general aviation aircraft should provide significant dividends in survival of air crashes.
NASA Technical Reports Server (NTRS)
Busch, Arthur M.; Campbell, John A.
1959-01-01
A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.
Factors Related to Serious Injury In Post-NCAP European Cars Involved in Frontal Crashes
Frampton, Richard; Williams, Owen; Thomas, Pete
2004-01-01
This study examined the relationship between EuroNCAP ratings for body region protection and real world injury risk for 653 belted drivers in frontal crashes. It was also able to comment on further improvements in crash protection for post-EuroNCAP cars. Protection for the head and lower leg appeared good. In terms of life threatening injury, results showed a need to prioritise chest protection, whilst for impairment, protection for the upper leg and ankle/foot should be considered. The EuroNCAP body region scoring system reflects trends in real crash injury risks to all body regions, except for the chest, where there is no clear trend. More generally, further development in the testing regime could usefully concentrate on a restraint system test and the use of smaller dummies seated appropriately, rather than an increase of the test speed. PMID:15319115
Factors related to serious injury in post-NCAP European cars involved in frontal crashes.
Frampton, Richard; Williams, Owen; Thomas, Pete
2004-01-01
ABSTRACT This study examined the relationship between EuroNCAP ratings for body region protection and real world injury risk for 653 belted drivers in frontal crashes. It was also able to comment on further improvements in crash protection for post-EuroNCAP cars. Protection for the head and lower leg appeared good. In terms of life threatening injury, results showed a need to prioritise chest protection, whilst for impairment, protection for the upper leg and ankle/foot should be considered. The EuroNCAP body region scoring system reflects trends in real crash injury risks to all body regions, except for the chest, where there is no clear trend. More generally, further development in the testing regime could usefully concentrate on a restraint system test and the use of smaller dummies seated appropriately, rather than an increase of the test speed.
Extracting the exponential behaviors in the market data
NASA Astrophysics Data System (ADS)
Watanabe, Kota; Takayasu, Hideki; Takayasu, Misako
2007-08-01
We introduce a mathematical criterion defining the bubbles or the crashes in financial market price fluctuations by considering exponential fitting of the given data. By applying this criterion we can automatically extract the periods in which bubbles and crashes are identified. From stock market data of so-called the Internet bubbles it is found that the characteristic length of bubble period is about 100 days.
Helicopter crashes related to oil and gas operations in the Gulf of Mexico.
Baker, Susan P; Shanahan, Dennis F; Haaland, Wren; Brady, Joanne E; Li, Guohua
2011-09-01
The hazards inherent in flight operations in the Gulf of Mexico prompted investigation of the number and circumstances of crashes related to oil and gas operations in the region. The National Transportation Safety Board (NTSB) database was queried for helicopter crashes during 1983 through 2009 related to Gulf of Mexico oil or gas production. The crashes were identified based on word searches confirmed by a narrative statement indicating that the flight was related to oil or gas operations. During 1983-2009, the NTSB recorded a total of 178 helicopter crashes related to oil and gas operations in the Gulf of Mexico, with an average of 6.6 crashes per year (5.6 annually during 1983-1999 vs. 8.2 during 2000-2009). The crashes resulted in a total of 139 fatalities, including 41 pilots. Mechanical failure was the most common precipitating factor, accounting for 68 crashes (38%). Bad weather led to 29 crashes (16%), in which 40% of the 139 deaths occurred. Pilot error was cited by the NTSB in 83 crashes (47%). After crashes or emergency landings on water, 15 helicopters sank when flotation devices were not activated automatically or by pilots. Mechanical failure, non-activation of flotation, and pilot error are major problems to be addressed if crashes and deaths in this lethal environment are to be reduced.
Construct exploit constraint in crash analysis by bypassing canary
NASA Astrophysics Data System (ADS)
Huang, Ning; Huang, Shuguang; Huang, Hui; Chang, Chao
2017-08-01
Selective symbolic execution is a common program testing technology. Developed on the basis of it, some crash analysis systems are often used to test the fragility of the program by constructing exploit constraints, such as CRAX. From the study of crash analysis based on symbolic execution, this paper find that this technology cannot bypass the canary stack protection mechanisms. This paper makes the improvement uses the API hook in Linux. Experimental results show that the use of API hook can effectively solve the problem that crash analysis cannot bypass the canary protection.
Investigation of the Performance of Safety Systems for Protection of the Elderly
Augenstein, J.; Digges, K; Bahouth, G.; Dalmotas, D.; Perdeck, E.; Stratton, J.
2005-01-01
This study investigates injury occurrence for belted occupants as a function of age. An analysis of NASS/CDS 1997–2003 data was conducted to determine crash involvement rates and injury rates for front seat occupants versus mean occupant age. In frontal and near-side crashes, the average age of MAIS 3+ belted front seat occupants injured in crashes less severe than 15 mph is of the order of 50 years. The average age of the population exposed to crashes less severe than 15 mph is under 40 years old. The crash exposure and frequency if injuries to the elderly were both found to be the highest in low severity crashes. The chest is the most frequent body region injured for the elderly. These findings suggest the need for more benign safety systems to protect the elderly in low severity crashes. Design of safety systems for the elderly should give priority to reducing the chest loading in low severity frontal and near-side crashes. PMID:16179159
Bahouth, George; Graygo, Jill; Digges, Kennerly; Schulman, Carl; Baur, Peter
2014-01-01
The objectives of this study are to (1) characterize the population of crashes meeting the Centers for Disease Control and Prevention (CDC)-recommended 20% risk of Injury Severity Score (ISS)>15 injury and (2) explore the positive and negative effects of an advanced automatic crash notification (AACN) system whose threshold for high-risk indications is 10% versus 20%. Binary logistic regression analysis was performed to predict the occurrence of motor vehicle crash injuries at both the ISS>15 and Maximum Abbreviated Injury Scale (MAIS) 3+ level. Models were trained using crash characteristics recommended by the CDC Committee on Advanced Automatic Collision Notification and Triage of the Injured Patient. Each model was used to assign the probability of severe injury (defined as MAIS 3+ or ISS>15 injury) to a subset of NASS-CDS cases based on crash attributes. Subsequently, actual AIS and ISS levels were compared with the predicted probability of injury to determine the extent to which the seriously injured had corresponding probabilities exceeding the 10% and 20% risk thresholds. Models were developed using an 80% sample of NASS-CDS data from 2002 to 2012 and evaluations were performed using the remaining 20% of cases from the same period. Within the population of seriously injured (i.e., those having one or more AIS 3 or higher injuries), the number of occupants whose injury risk did not exceed the 10% and 20% thresholds were estimated to be 11,700 and 18,600, respectively, each year using the MAIS 3+ injury model. For the ISS>15 model, 8,100 and 11,000 occupants sustained ISS>15 injuries yet their injury probability did not reach the 10% and 20% probability for severe injury respectively. Conversely, model predictions suggested that, at the 10% and 20% thresholds, 207,700 and 55,400 drivers respectively would be incorrectly flagged as injured when their injuries had not reached the AIS 3 level. For the ISS>15 model, 87,300 and 41,900 drivers would be incorrectly flagged as injured when injury severity had not reached the ISS>15 injury level. This article provides important information comparing the expected positive and negative effects of an AACN system with thresholds at the 10% and 20% levels using 2 outcome metrics. Overall, results suggest that the 20% risk threshold would not provide a useful notification to improve the quality of care for a large number of seriously injured crash victims. Alternately, a lower threshold may increase the over triage rate. Based on the vehicle damage observed for crashes reaching and exceeding the 10% risk threshold, we anticipate that rescue services would have been deployed based on current Public Safety Answering Point (PSAP) practices.
Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid
2010-10-01
More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P < .001). For rear passengers, the added protection from side-curtain air bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.
Roles of Motorcycle Type and Protective Clothing in Motorcycle Crash Injuries
Erdogan, Mehmet Ozgür; Sogut, Ozgur; Colak, Sahin; Ayhan, Harun; Afacan, Mustafa Ahmet; Satilmis, Dilay
2013-01-01
Background. The aims of this study were to identify subgroups of motorcyclists with a higher accident risk and evaluate the efficiency of protective clothing for preventing injuries. Methods. A 1-year prospective study of motorcycle crashes was conducted beginning in June 2012. Participants were patients involved in motorcycle crashes and admitted to our emergency department. Results. A total of 226 patients were included in the study. In total, 174 patients were involved in crashes with light motorcycles. Patients involved in a motorcycle accident without a helmet had a higher incidence of head and maxillofacial trauma. Motorcycle jackets were not protective for systemic injuries (P > 0.05) or upper extremity fractures (P > 0.05). Motorcycle pants (P > 0.05) and motorcycle shoes (P > 0.05) were not protective against leg and foot fractures. However, motorcycle protective clothes were protective against soft-tissue injuries (P = 0.001). Conclusion. Riders of heavy motorcycles rode more safely than riders of light motorcycles. Light motorcycle riders were the most vulnerable and comprised the largest percentage of motorcyclists. Helmets may be effective for preventing head and facial injuries. Other protective clothes were not effective against fractures or systemic injuries. PMID:24349787
Motorcycle protective clothing: protection from injury or just the weather?
de Rome, Liz; Ivers, Rebecca; Fitzharris, Michael; Du, Wei; Haworth, Narelle; Heritier, Stephane; Richardson, Drew
2011-11-01
Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Cross-sectional analytic study. Crashed motorcyclists (n=212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR=0.79, 95% CI: 0.69-0.91), pants (RR=0.49, 95% CI: 0.25-0.94), or gloves (RR=0.41, 95% CI: 0.26-0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR=0.77, 95% CI: 0.66-0.89), hands and wrists (RR=0.55, 95% CI: 0.38-0.81), legs (RR=0.60, 95% CI: 0.40-0.90), feet and ankles (RR=0.54, 95% CI: 0.35-0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR=0.46, 95% CI: 0.28-0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates. Copyright © 2011 Elsevier Ltd. All rights reserved.
Driver air bag effectiveness by severity of the crash.
Segui-Gomez, M
2000-01-01
OBJECTIVES: This analysis provided effectiveness estimates of the driver-side air bag while controlling for severity of the crash and other potential confounders. METHODS: Data were from the National Automotive Sampling System (1993-1996). Injury severity was described on the basis of the Abbreviated Injury Scale, Injury Severity Score, Functional Capacity Index, and survival. Ordinal, linear, and logistic multivariate regression methods were used. RESULTS: Air bag deployment in frontal or near-frontal crashes decreases the probability of having severe and fatal injuries (e.g., Abbreviated Injury Scale score of 4-6), including those causing a long-lasting high degree of functional limitation. However, air bag deployment in low-severity crashes increases the probability that a driver (particularly a woman) will sustain injuries of Abbreviated Injury Scale level 1 to 3. Air bag deployment exerts a net injurious effect in low-severity crashes and a net protective effect in high-severity crashes. The level of crash severity at which air bags are protective is higher for female than for male drivers. CONCLUSIONS: Air bag improvement should minimize the injuries induced by their deployment. One possibility is to raise their deployment level so that they deploy only in more severe crashes. PMID:11029991
DOT National Transportation Integrated Search
1973-05-01
Considerable effort has been expended in recent years to develop anticipatory crash sensors-effective means of detecting motor vehicle collisions immediately prior to occurrence. If the potential crash is sensed early enough, evasive action may be in...
Naimi, Timothy S; Xuan, Ziming; Sarda, Vishnudas; Hadland, Scott E; Lira, Marlene C; Swahn, Monica H; Voas, Robert B; Heeren, Timothy C
2018-05-29
Motor vehicle crashes are a leading cause of mortality. However, the association between the restrictiveness of the alcohol policy environment (ie, based on multiple existing policies) and alcohol-related crash fatalities has not been characterized previously to date. To examine the association between the restrictiveness of state alcohol policy environments and the likelihood of alcohol involvement among those dying in motor vehicle crashes in the United States. This investigation was a repeated cross-sectional study in which state alcohol policies (operationalized by the Alcohol Policy Scale [APS]) from 1999 to 2014 were related to motor vehicle crash fatalities from 2000 to 2015 using data from the Fatality Analysis Reporting System (1-year lag). Alternating logistic regression models and generalized estimating equations were used to account for clustering of multiple deaths within a crash and of multiple crashes occurring within states. The study also examined independent associations of mutually exclusive subgroups of policies, including consumption-oriented policies vs driving-oriented policies. The study setting was the 50 US states. Participants were 505 614 decedents aged at least 21 years from motor vehicle crashes from 2000 to 2015. Odds that a crash fatality was alcohol related (fatality stemmed from a crash in which ≥1 driver had a blood alcohol concentration [BAC] ≥0.08%). From 2000 to 2015, there were 505 614 adult motor vehicle crash fatalities in the United States, of which 178 795 (35.4%) were alcohol related. Each 10-percentage point increase in the APS score (corresponding to more restrictive state policies) was associated with reduced individual-level odds of alcohol involvement in a crash fatality (adjusted odds ratio [aOR], 0.90; 95% CI, 0.89-0.91); results were consistent among most demographic and crash-type strata. More restrictive policies also had protective associations with alcohol involvement among crash fatalities associated with BACs from greater than 0.00% to less than 0.08%. After accounting for driving-oriented policies, consumption-oriented policies were independently protective for alcohol-related crash fatalities (aOR, 0.97; 95% CI, 0.96-0.98 based on a 10-percentage point increased APS score). Strengthening alcohol policies, including those that do not specifically target impaired driving, could reduce alcohol-related crash fatalities. Policies may also protect against crash fatalities involving BAC levels below the current legal limit for driving in the United States.
Validation of the principles of injury risk zones for motorcycle protective clothing.
de Rome, Liz; Meredith, Lauren; Ivers, Rebecca; Brown, Julie
2014-09-01
The distributions of motorcycle crash impacts and injuries were compared to the four impact risk zones and protective performance specified in the European Standard for motorcycle clothing (EN 13595). Crashed motorcyclists' (n=117) injuries and clothing damage were categorized by body area into the four risk zones. Three levels of protection were defined: protective clothing with impact protection, protective clothing only and non-protective clothing. The distribution of impact/injury sites corresponded to the predictions of EN 13595, with the proportion of all injuries decreasing from 43.9% in Zone 1, to 18.0%, 16.7%, and 11.5% in Zones 2 to 4, respectively. Protective clothing modified the distribution of injuries with substantially more injuries (OR=2.69, 95% CL: 20.1-3.59) at unprotected impact sites. These findings support an appropriate framework for determining performance specifications for the manufacture of motorcycle clothing that will effectively reduce the risk of injury in crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Updated review of potential test procedures for FMVSS no.208
DOT National Transportation Integrated Search
1999-10-01
The objective of a crash test for Federal Motor Vehicle Safety Standard (FMVSS) No. 208 is to measure how well a passenger vehicle would protect its occupants in the event of a serious real world frontal crash. The ideal frontal crash procedure will ...
Aircraft-mounted crash-activated transmitter device
NASA Technical Reports Server (NTRS)
Manoli, R.; Ulrich, B. R. (Inventor)
1976-01-01
An aircraft crash location transmitter tuned to transmit on standard emergency frequencies is reported that is shock mounted in a sealed circular case atop the tail of an aircraft by means of a shear pin designed to fail under a G loading associated with a crash situation. The antenna for the transmitter is a metallic spring blade coiled like a spiral spring around the outside of the circular case. A battery within the case for powering the transmitter is kept trickle charged from the electrical system of the aircraft through a break away connector on the case. When a crash occurs, the resultant ejection of the case from the tail due to a failure of the shear pin releases the free end of the antenna which automatically uncoils. The accompanying separation of the connector effects closing of the transmitter key and results in commencement of transmission.
IIHS side crash test ratings and occupant death risk in real-world crashes.
Teoh, Eric R; Lund, Adrian K
2011-10-01
To evaluate how well the Insurance Institute for Highway Safety (IIHS) side crash test ratings predict real-world occupant death risk in side-impact crashes. The IIHS has been evaluating passenger vehicle side crashworthiness since 2003. In the IIHS side crash test, a vehicle is impacted perpendicularly on the driver's side by a moving deformable barrier simulating a typical sport utility vehicle (SUV) or pickup. Injury ratings are computed for the head/neck, torso, and pelvis/leg, and vehicles are rated based on their ability to protect occupants' heads and resist occupant compartment intrusion. Component ratings are combined into an overall rating of good, acceptable, marginal, or poor. A driver-only rating was recalculated by omitting rear passenger dummy data. Data were extracted from the Fatality Analysis Reporting System (FARS) and National Automotive Sampling System/General Estimates System (NASS/GES) for the years 2000-2009. Analyses were restricted to vehicles with driver side air bags with head and torso protection as standard features. The risk of driver death was computed as the number of drivers killed (FARS) divided by the number involved (NASS/GES) in left-side impacts and was modeled using logistic regression to control for the effects of driver age and gender and vehicle type and curb weight. Death rates per million registered vehicle years were computed for all outboard occupants and compared by overall rating. Based on the driver-only rating, drivers of vehicles rated good were 70 percent less likely to die when involved in left-side crashes than drivers of vehicles rated poor, after controlling for driver and vehicle factors. Compared with vehicles rated poor, driver death risk was 64 percent lower for vehicles rated acceptable and 49 percent lower for vehicles rated marginal. All 3 results were statistically significant. Among components, vehicle structure rating exhibited the strongest relationship with driver death risk. The vehicle registration-based results for drivers were similar, suggesting that the benefit was not due to differences in crash risk. The same pattern of results held for outboard occupants in nearside crashes per million registered vehicle years and, with the exception of marginally rated vehicles, also held for other crash types. Results show that IIHS side crash test ratings encourage designs that improve crash protection in meaningful ways beyond encouraging head protection side air bags, particularly by promoting vehicle structures that limit occupant compartment intrusion. Results further highlight the need for a strong occupant compartment and its influence in all types of crashes.
Crash Position Indicator/Crash Survivable Flight Data Recorder Ejectable versus Nonejectable
1983-07-27
for environmental protection. The radio beacon transmitter, antenna, and manual shutoff switch are molded into the airfoil foam. The battery and CSFDR...FWD BATERY LRADIO) BEACON ANTENNA TRANSMITTER SOLID-STATE FLIGHT INCIDENT RECORDER Figure 2 DEPLOYABLE FLIGHT INCIDENT RECORDER/CRASH POSITION LOCATOR...mechanical and thermal environment than do ejectable systems that depart the aircraft and clear the crash and fire. As a result of the more stringent
49 CFR 571.208 - Standard No. 208; Occupant crash protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and buses. In addition, S9, Pressure vessels and explosive devices, applies to vessels designed to... as part of a system designed to provide protection to occupants in the event of a crash. (b... seat and the near side of the vehicle and is designed to allow access to more rearward seating...
49 CFR 571.208 - Standard No. 208; Occupant crash protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and buses. In addition, S9, Pressure vessels and explosive devices, applies to vessels designed to... as part of a system designed to provide protection to occupants in the event of a crash. (b... seat and the near side of the vehicle and is designed to allow access to more rearward seating...
Simons-Morton, Bruce; Hartos, Jessica L; Leaf, William A; Preusser, David F
2006-09-01
Motor vehicle crashes are highly elevated among newly licensed teenage drivers. Limits on high-risk driving conditions by driver licensing policies and parents can protect novice teens from negative driving outcomes, while they experience and driving proficiency. The purpose of this research was to evaluate the effects of strict parent-imposed driving limits on driving outcomes during the first year of licensure. A sample of 3,743 Connecticut teens was recruited and randomized to the Checkpoints Program or comparison condition. Assessments conducted at baseline, licensure, 3-, 6-, and 12-months postlicensure included parent-imposed driving limits, traffic violations, and crashes. Bivariate and multivariate analyses were conducted to assess the effects of strict parent limits on traffic violations and crashes during the first year of licensure. Thirty percent of teens reported at least one traffic violation and 40% reported at least one crash. More strict parent-imposed limits at licensure, 3-, 6-, and 12-months postlicensure, were associated with fewer violations and crashes in multivariate analyses. Notably, adherence to recommended night curfew was consistently associated with fewer violations and crashes. The findings indicate that strict parent-imposed limits may protect novice teen drivers from negative driving outcomes.
Thoracic injuries to contained and restrained occupants in single-vehicle pure rollover crashes.
Bambach, M R; Grzebieta, R H; McIntosh, A S
2013-01-01
Around one in three contained and restrained seriously injured occupants in single-vehicle pure rollover crashes receive a serious injury to the thorax. With dynamic rollover test protocols currently under development, there is a need to understand the nature and cause of serious thoracic injuries incurred in rollover events. This will allow decisions to be made with regards to adoption of a suitable crash test dummy and appropriate thoracic injury criteria in such protocols. Valid rollover occupant protection test protocols will lead to vehicle improvements that will reduce the high trauma burden of vehicle rollover crashes. This paper presents an analysis of contained and restrained occupants involved in single-vehicle pure rollover crashes that occurred in the United States between 2000 and 2009 (inclusive). Serious thoracic injury typology and causality are determined. A logistic regression model is developed to determine associations between the incidence of serious thoracic injury and the human, vehicle and environmental characteristics of the crashes. Recommendations are made with regards to the appropriate assessment of potential thoracic injury in dynamic rollover occupant protection crash test protocols. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evaluation of auto incident recording system (AIRS).
DOT National Transportation Integrated Search
2005-05-01
The Auto Incident Recording System (AIRS) is a sound-actuated video recording system. It automatically records potential incidents when activated by sound (horns, clashing metal, squealing tires, etc.). The purpose is to detect patterns of crashes at...
75 FR 6123 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... motor vehicle safety standard is in effect under this chapter, a State or a political subdivision of a... [Docket No. NHTSA-2009-0156] RIN 2127-AK57 Federal Motor Vehicle Safety Standards; Occupant Crash...'s response to petitions for reconsideration of a November 12, 2008 final rule that amended the child...
A test-based method for the assessment of pre-crash warning and braking systems.
Bálint, András; Fagerlind, Helen; Kullgren, Anders
2013-10-01
In this paper, a test-based assessment method for pre-crash warning and braking systems is presented where the effectiveness of a system is measured by its ability to reduce the number of injuries of a given type or severity in car-to-car rear-end collisions. Injuries with whiplash symptoms lasting longer than 1 month and MAIS2+ injuries in both vehicles involved in the crash are considered in the assessment. The injury reduction resulting from the impact speed reduction due to a pre-crash system is estimated using a method which has its roots in the dose-response model. Human-machine interaction is also taken into account in the assessment. The results reflect the self-protection as well as the partner-protection performance of a pre-crash system in the striking vehicle in rear-end collisions and enable a comparison between two or more systems. It is also shown how the method may be used to assess the importance of warning as part of a pre-crash system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Child Passengers Killed in Reckless and Alcohol-Related Motor Vehicle Crashes
Kelley-Baker, Tara; Romano, Eduardo
2014-01-01
Introduction About 20 years ago, concern was raised about the dangers children face when driven by drinking drivers in the United States. During the last decade, the pace of research on this topic subsided. Yet in 2010, every day three children younger than age 15 were killed, and 469 were injured in motor-vehicle crashes. Method The aim of this effort is to describe the status of the problem in the United States and suggest lines of research. From the Fatality Analysis Reporting System (FARS), we selected crashes in which a driver aged 21 or older was driving at least one child younger than age 15. We identified crashes that occurred at different times of the day in which the driver was speeding, ran a red light, or was alcohol positive. We described the drivers’ demographics and examined how they relate to the different crash types. Results We found that, although driving a child seems to protect against the studied forms of risky driving, such protection varies sharply depending upon the drivers’ and children’s demographics and the crash type. There is no clear reason to explain the drivers’ decision to endanger the children they drive. The percent of children killed in speeding-related and red-light running motor-vehicle crashes has remained relatively stable during the last decade. Future research must (a) examine the effectiveness of current child endangerment laws; (b) examine crashes other than fatal; and (c) be more targeted, looking at specific drivers’ age and gender, specific children’s ages, the time of the crash, and the type of crash. PMID:24529098
Pelvic ring fractures: implications of vehicle design, crash type, and occupant characteristics.
Rowe, Stephen A; Sochor, Mark S; Staples, Kurtis S; Wahl, Wendy L; Wang, Stewart C
2004-10-01
Pelvic ring fractures (PRFs) are a major cause of morbidity and mortality in motor vehicle collisions (MVCs). Understanding the factors leading to PRFs may help improve vehicle design and safety. This study sought to determine the vehicular, crash, and occupant characteristics that contribute to PRFs. From 1997 to 2003, 240 adult patients involved in lateral or frontal crashes were prospectively studied. Comprehensive crash reconstructions, vehicle analysis, and occupant data were compiled and analyzed as part of the national Crash Injury Research Engineering Network project. Of 240 study patients, 38 had PRFs. The incidence of PRFs was significantly associated with female gender, lateral impact crashes, vehicle incompatibility, and severity of crash. Seat belts and airbags were not protective against PRFs in either lateral or frontal crashes. All vehicles in the current study were less than 6 years old at the time of the MVC and thus reflect newer safety designs. Compared with studies of PRFs in MVCs before the widespread adoption of modern safety standards, our series suggests there has been a modest decrease in the incidence of PRFs in newer vehicles. Current safety standards do not adequately protect against PRFs, especially in lateral MVCs involving incompatibility and female occupants. New technology needs to be developed and implemented. Our data suggest that side impact airbags, alteration of vehicle geometry, and increased reinforcement of side panels and doors may result in fewer PRFs.
Vanlaar, Ward; Robertson, Robyn; Marcoux, Kyla
2014-01-01
The objective of this study was to evaluate the impact of Winnipeg's photo enforcement safety program on speeding, i.e., "speed on green", and red-light running behavior at intersections as well as on crashes resulting from these behaviors. ARIMA time series analyses regarding crashes related to red-light running (right-angle crashes and rear-end crashes) and crashes related to speeding (injury crashes and property damage only crashes) occurring at intersections were conducted using monthly crash counts from 1994 to 2008. A quasi-experimental intersection camera experiment was also conducted using roadside data on speeding and red-light running behavior at intersections. These data were analyzed using logistic regression analysis. The time series analyses showed that for crashes related to red-light running, there had been a 46% decrease in right-angle crashes at camera intersections, but that there had also been an initial 42% increase in rear-end crashes. For crashes related to speeding, analyses revealed that the installation of cameras was not associated with increases or decreases in crashes. Results of the intersection camera experiment show that there were significantly fewer red light running violations at intersections after installation of cameras and that photo enforcement had a protective effect on speeding behavior at intersections. However, the data also suggest photo enforcement may be less effective in preventing serious speeding violations at intersections. Overall, Winnipeg's photo enforcement safety program had a positive net effect on traffic safety. Results from both the ARIMA time series and the quasi-experimental design corroborate one another. However, the protective effect of photo enforcement is not equally pronounced across different conditions so further monitoring is required to improve the delivery of this measure. Results from this study as well as limitations are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Automatic intersection map generation task 10 report.
DOT National Transportation Integrated Search
2016-02-29
This report describes the work conducted in Task 10 of the V2I Safety Applications Development Project. The work was performed by the University of Michigan Transportation Research Institute (UMTRI) under contract to the Crash Avoidance Metrics Partn...
The potential for further development of passive safety.
Frampton, Richard; Lenard, James
2009-10-01
In Europe, emphasis is being transferred from injury prevention to accident prevention to reduce road casualties. This study attempted to identify the current potential for serious casualty reduction using passive safety by examining the crash performance of new cars with seriously injured occupants. The Co-operative Crash Injury Study conducts in-depth investigations of around 1200 vehicles per year from seven sample regions around England. Attention was focussed on passenger cars manufactured from 2004 to 2008 with at least one occupant injured to AIS level 3 or more. 28% of MAIS 3+ occupants were unbelted and 40% were belted but involved in crashes with limited potential for passive protection. A further 32% of occupants were belted and involved in crashes with potential for improved crashworthiness design. For these occupants, five major functional requirements were identified for crashworthiness improvement: a reduction of seatbelt loads on the chest and abdomen in frontal crashes, particularly for seniors; reduction in femur and tibia loads in frontal crashes; provision of head and chest protection in near-side crashes; and reduction of occupant lateral excursion in far-side impacts. Together these functions accounted for 70% of the identified requirements. Other smaller requirements were identified, each contributing up to 5% of total. Overall, the case supporting further developments in passive safety still appears significant.
The Potential for Further Development of Passive Safety
Frampton, Richard; Lenard, James
2009-01-01
In Europe, emphasis is being transferred from injury prevention to accident prevention to reduce road casualties. This study attempted to identify the current potential for serious casualty reduction using passive safety by examining the crash performance of new cars with seriously injured occupants. The Co-operative Crash Injury Study conducts in-depth investigations of around 1200 vehicles per year from seven sample regions around England. Attention was focussed on passenger cars manufactured from 2004 to 2008 with at least one occupant injured to AIS level 3 or more. 28% of MAIS 3+ occupants were unbelted and 40% were belted but involved in crashes with limited potential for passive protection. A further 32% of occupants were belted and involved in crashes with potential for improved crashworthiness design. For these occupants, five major functional requirements were identified for crashworthiness improvement: a reduction of seatbelt loads on the chest and abdomen in frontal crashes, particularly for seniors; reduction in femur and tibia loads in frontal crashes; provision of head and chest protection in near-side crashes; and reduction of occupant lateral excursion in far-side impacts. Together these functions accounted for 70% of the identified requirements. Other smaller requirements were identified, each contributing up to 5% of total. Overall, the case supporting further developments in passive safety still appears significant. PMID:20184832
Crash fatality and vehicle incompatibility in collisions between cars and light trucks or vans.
Ossiander, Eric M; Koepsell, Thomas D; McKnight, Barbara
2014-12-01
In crashes between a car and a light truck or van (LTV), car occupants are more likely to be killed than LTV occupants. The extent this is due to the greater harm imposed by LTVs on cars or the greater protection they offer their own occupants is not known. We conducted a case-control study of collisions between two passenger vehicles in the USA during 1990-2008. Cases were all decedents in fatal crashes (N=157,684); one control was selected from each crash in a national probability sample of crashes (N=379,458). Adjusted for the type of vehicle they were riding in and other confounders, occupants of vehicles colliding with any type of LTVs (categorised as compact sport utility vehicles (SUV), full-size SUVs, minivans, full-size vans, compact pickups and full-size pickups) were at higher risk of death compared with occupants colliding with cars. Adjusted for the type of vehicle they crashed with and other confounders, occupants of LTVs in a collision with any vehicle were at lower risk of death compared with car occupants. Compared with a crash between two cars, the overall RR of death in a crash between any of the other 27 different combinations of vehicle types was 1.0 or greater, except for crashes between two full-size pickups, where the RR of death was 0.9. Although LTVs protect their own occupants better than cars do, LTVs are associated with an excess total risk of death in crashes with cars or other LTVs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Composite Material Hazard Assessment at Crash Sites
2015-01-01
advanced composite materials. All personnel involved in rescue in close crash-site proximity are required to wear self -contained breathing apparatus...close crash-site proximity are required to wear self -contained breathing apparatus, chemical protective clothing, leather gloves, and neoprene...Take extra precaution when handling these materials. Nitrile rubber gloves can be worn underneath the leather gloves to provide chemical hazard
Storvik, Steven G; Campbell, Julius Q; Wheeler, Jeffrey B
2017-06-01
Rates of death because of asphyxia in motor vehicle crashes have been previously estimated using county and statewide data sets, but national estimates have not been reported. The literature regarding asphyxia in motor vehicle crashes primarily involves discussions about clinical findings, and crash-related variables have been sparsely reported. The current study calculated a nationwide fatality rate for asphyxia in motor vehicle crashes of 1.4%. Seventeen case studies of asphyxia were also reported providing crash-, vehicle-, and occupant-related variables. These included type of accident, crash severity, seat belt use, containment status, extent of occupant compartment intrusion, height, weight, and injury pattern. The data presented can be used to better understand the injury mechanism, identify risk factors, develop possible protective countermeasures, and create situational awareness for emergency responders and investigators.
Nigatu, W; Fabiola, N S; Flora, I J; Mukahirwa, M A; Omar, M; Nsengimana, J; Nsabimana, A
2014-12-01
The environments can be contaminated by infectious agents that constitute a major health hazards as sources of community and hospital-acquired infections due to various activities. A comparative study on the level of bacteriological contamination of automatic teller machines (ATMs), public toilets and commercial motorcycle crash helmets were conducted in Kigali city during the period of January to March, 2013. Samples were collected from selected ATMs, public toilets and commercial motorcycle crash helmets surfaces. Micro-organisms identified from these samples were associated to infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital. Samples from each device and subject were transported to the laboratory where they were analysed for the presence of coliforms and other airborne, human skin and intestinal disease causing microorganisms. Microbiological methods including spread plate techniques and some biochemical tests were used to partially identify the microorganisms. Subjects involved in this study were consented students from University of Rwanda and Kigali motorcyclists for collections of samples from hands and crash helmets respectively. The following pathogenic bacteria have been found on the devices, Staphylococcus aureus, Staphylococcus epidermis, Streptococcus species, Escherichia coli, Salmonella, Klebsiella, Enterobacter aerogenes, Pseudomonas. The commercial motorcycle crash helmets had the highest level of bacteriological contamination compared to ATMs and public toilets. There was no growth observed on samples collected after treatment from ATMs, public toilets, and commercial motorcycle crash helmets. Attempt to correlate this finding with infecting organisms recovered from unwashed hands surfaces and recorded results in the nearby hospital show that the presences of some of these infectious pathogens. This study has revealed the ability of these public devices to serve as vehicle of transmission of microorganisms with serious health implications. To improve and ensure the safety of these public devices the use of disinfectants is of high importance on reducing bacteriological load on those public devices. Proper cleaning regimen to sanitise these facilities regularly and public education on their hygienic usage are recommended to reduce the associated risks.
Cervical and thoracic spine injury from interactions with vehicle roofs in pure rollover crashes.
Bambach, M R; Grzebieta, R H; McIntosh, A S; Mattos, G A
2013-01-01
Around one third of serious injuries sustained by belted, non-ejected occupants in pure rollover crashes occur to the spine. Dynamic rollover crash test methodologies have been established in Australia and the United States, with the aims of understanding injury potential in rollovers and establishing the basis of an occupant rollover protection crashworthiness test protocol that could be adopted by consumer new car assessment programmes and government regulators internationally. However, for any proposed test protocol to be effective in reducing the high trauma burden resulting from rollover crashes, appropriate anthropomorphic devices that replicate real-world injury mechanisms and biomechanical loads are required. To date, consensus regarding the combination of anthropomorphic device and neck injury criteria for rollover crash tests has not been reached. The aim of the present study is to provide new information pertaining to the nature and mechanisms of spine injury in pure rollover crashes, and to assist in the assessment of spine injury potential in rollover crash tests. Real-world spine injury cases that resulted from pure rollover crashes in the United States between 2000 and 2009 are identified, and compared with cadaver experiments under vertical load by other authors. The analysis is restricted to contained, restrained occupants that were injured from contact with the vehicle roof structure during a pure rollover, and the role of roof intrusion in creating potential for spine injury is assessed. Recommendations for assessing the potential for spine injury in rollover occupant protection crash test protocols are made. Copyright © 2012 Elsevier Ltd. All rights reserved.
Opportunities for reduction of fatalities in vehicle-guardrail collisions.
Gabler, Hampton C; Gabauer, Douglas J
2007-01-01
In the United States in 2005, there were 1,189 fatal crashes and 35,000 injurious crashes into guardrails. Current efforts to reduce fatalities occurring in guardrail collisions have focused on frontal oblique collisions of cars and light trucks into guardrail. These crashes however represent a diminishing target population for fatality reduction. This paper examines the current opportunities for reducing fatalities in guardrail collisions in the United States. The analysis was based upon crash data from the Fatality Analysis Reporting System (FARS) and the National Automotive Sampling System General Estimates System (GES) for the years 2000-2005. The greatest opportunity for fatality reduction is the protection of motorcyclists, who now account for 32% of guardrail fatalities, and car and light truck occupants in side impact, who now comprise 14% of all guardrail fatalities. Together, protection of motorcycle riders and protection of car and light truck occupants in side impacts account for nearly half of all fatalities (46%) which occur in vehicle-guardrail collisions. Additional targets for fatality reduction include light truck rollover and collisions with guardrail ends.
An Index For Rating the Total Secondary Safety of Vehicles from Real World Crash Data
Newstead, S.; Watson, L.; Cameron, M.
2007-01-01
This study proposes a total secondary safety index for light passenger vehicles that rates the relative performance of vehicles in protecting both their own occupants and other road users in the full range of real world crash circumstances. The index estimates the risk of death or serious injury to key road users in crashes involving light passenger vehicles across the full range of crash types. The proposed index has been estimated from real world crash data from Australasia and was able to identify vehicles that have superior or inferior total secondary safety characteristics compared with the average vehicle. PMID:18184497
Exciting New Take on a Classic: Crash Testing Activity Puts the Egg in the Driver's Seat
ERIC Educational Resources Information Center
Board, Keith
2011-01-01
An excellent common activity in technology and engineering classes involves dropping an egg from a significant height in a protective device designed and built by students. This article describes how the author uses the classic "egg drop" as an inspiration to have students modify a small crash test vehicle that speeds down a track and crashes into…
Exciting New Take on a Classic: Crash Test Activity Puts the Egg in the Driver's Seat
ERIC Educational Resources Information Center
Board, Keith
2011-01-01
An excellent common activity in technology and engineering classes involves dropping an egg from a significant height in a protective device designed and built by students. This article describes how the author uses the classic "egg drop" as an inspiration to have students modify a small crash test vehicle that speeds down a track and crashes into…
Design Of An ITS-Level Advanced Traffic Management System, A Human Factors Perspective
DOT National Transportation Integrated Search
1999-09-01
The incidence of motorists violating the red phase of a traffic signal has been on the rise and is a contributing factor to intersection crashes. Technology has become available that automatically detects a motorist running the red light and records ...
Professional drivers: protection needed for a high-risk occupation.
Baker, S P; Wong, J; Baron, R D
1976-01-01
"On the job" motor vehicle deaths number more than 4,000 annually in the U.S. and comprise nearly one-third of all work-related deaths. Yet the Department of Labor has set no standards relating to on-the-road safety of the millions of workers whose jobs entail large amounts of driving, and Department of Transportation standards affecting occupational safety cover only drivers in interstate commerce. Drivers of some commercial vehicles, such as heavy trucks, are at special risk of injury because trucks have usually been exempted for many years from federal motor vehicle safety standards--such as standards for brakes and seatbelts--designed to prevent crashes or protect occupants in crashes. Observations based on a series of 150 fatal crashes involving tractor trailers illustrate the need for better protection of this large population of high-risk workers. Clarification of responsibility within the various federal agencies and application of available knowledge and technology are essential. PMID:937611
The Influence of Manufacturing Variations on a Crash Energy Management System
DOT National Transportation Integrated Search
2008-09-24
Crash Energy Management (CEM) systems protect passengers in the event of a train collision. A CEM system distributes crush throughout designated unoccupied crush zones of a passenger rail consist. This paper examines the influence of manufacturing va...
Goldenbeld, Charles; Reurings, Martine; Van Norden, Yvette; Stipdonk, Henk
2013-01-01
To establish the statistical relationship between offenses and crashes when the unit of analysis is the vehicle instead of the driver, to show the influence of the severity (e.g., minor speed offenses) on this relationship, and to research whether the form of this relationship is similar in different enforcement contexts. An exploratory analysis was conducted using Dutch traffic offense and crash data. Crash data included all police-registered crashes involving motorized and registered vehicles in 2009; offense data included all non-criminal traffic offenses registered during 2005-2009 (mostly camera detected). Together these comprise an estimated 97 percent of all traffic offenses registered in this period. The analysis was done on a level of identified vehicles rather than persons. Vehicles involved in crashes were matched to vehicles involved in traffic offenses. The offense frequency distributions of registered crash involved vehicles and a random selection of vehicles was analyzed. Two comparisons were made: (1) privately owned vehicles versus company-owned vehicles and (2) vehicles for which only minor speed offenses were registered versus vehicles for which at least one major speed offense was registered. An increase in traffic offense frequency coincides with a stronger increase in relative crash involvement. This relationship was adequately described by a power function. The slightly more than linear increase in the crash risk for vehicles with only minor speed offenses suggests that minor speed offenses (<10 km/h over the limit) contributed slightly to crashes. This relationship was unlikely to be caused by increased distance traveled only. For vehicles with at least one or more major speed violation an approximately quadratic increase of crash risk with increasing speed offense frequency was found. A comparison of Dutch and Canadian data showed a much more progressive offense-crash relationship in the Dutch data. The crash involvement of vehicles increased more than linearly with the number of minor traffic violations. Thus, automatic detection of minor offenses bears relevance to safety. The substantial increase in crash rates with speed offense frequency for vehicles with at least one major speed violation suggests that these vehicles represent a specific group with a significantly increased crash risk, especially in the case of many minor offenses. The more progressive relationship between offenses and crashes in The Netherlands when compared to Canada was hypothesized to result from the higher intensity camera enforcement levels and less severe consequences in the Dutch enforcement and adjudication system.
Chu, Hsing-Chung
2014-01-01
High-deck buses that have a higher center of gravity traveling at an excessive speed have a higher likelihood of causing serious and fatal accidents when drivers lose control of the vehicle. In addition, drivers who suffer from fatigue in long-distance driving increase the likelihood of serious accident. This paper examines the effects of risk factors contributing to severe crashes associated with high-deck buses used for long-distance driving on freeways. An ordered logit and latent class models are used to examine significant factors on the severity of injuries in crashes related to high-deck buses. Driver fatigue, drivers or passengers not wearing a seat belt, reckless driving, drunk driving, crashes occurred between midnight and dawn, and crashes occurred at interchange ramps were found to significantly affect the severity of injuries in crashes involving high-deck buses. Safety policies to prevent severe injuries in crashes involving high deck buses used for long-distance runs on freeways include: (1) restricting drivers from exceeding the limit of daily driving hours and mandating sufficient rest breaks; (2) installing an automatic sleep-warning device in the vehicle; (3) drivers with obstructive sleep apnea syndrome or sleep disorders should be tested and treated before they are allowed to perform long hours of driving tasks; (4) educating the public or even amending the seatbelt legislation to require all passengers to wear a seat belt and thus reduce the chance of ejection from a high-deck bus and prevent serious injuries in a crash while traveling at a higher speed on freeways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Predicting significant torso trauma.
Nirula, Ram; Talmor, Daniel; Brasel, Karen
2005-07-01
Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.
Efficacy of side airbags in reducing driver deaths in driver-side car and SUV collisions.
McCartt, Anne T; Kyrychenko, Sergey Y
2007-06-01
To estimate the efficacy of side airbags in preventing driver deaths in passenger vehicles struck on the driver side. Risk ratios for driver deaths per driver-side collision were computed for side airbag-equipped cars and SUVs, relative to vehicles without side airbags. Driver fatality ratios also were calculated for the same vehicles in front and rear impacts, and these were used to adjust the side crash risk ratios for differences in fatality risk unrelated to side airbags. Risk ratios were calculated separately for side airbags providing torso-only protection and side airbags with head protection; almost all head protecting airbags also had airbags protecting the torso. Car driver death risk in driver-side crashes was reduced by 37 percent for head protecting airbags and 26 percent for torso-only side airbags. Car driver death risk was reduced for older and younger drivers, males and females, and drivers of small and midsize cars, and when the striking vehicle was an SUV/pickup or a car/minivan. Death risk for drivers of SUVs was reduced by 52 percent with head protecting side airbags and by 30 percent with torso-only airbags. The effectiveness of side airbags could not be assessed for pickups and minivans due to the small number of these vehicles with airbags involved in crashes. Side airbags substantially reduce the risk of car and SUV driver death in driver-side collisions. Making side airbags with head protection available to drivers and right front passengers in all passenger vehicles could reduce the number of fatalities in motor vehicle crashes in the United States by about 2,000 each year.
Assessing the risk of crash for trucks on onset yellow.
DOT National Transportation Integrated Search
2012-06-01
Each day, millions of signal changes to the yellow phase occur at isolated high speed intersections, when erroneous : driver decisions to stop or go may often lead to a crash. Dilemma zone protection systems are typically used to control : these inte...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of an air bag system that automatically controls whether or not the air bag deploys during a crash by: (1) Sensing the location of an occupant, moving or still, in relation to the air bag; (2) Interpreting the occupant characteristics and location information to determine whether or not the air bag...
Code of Federal Regulations, 2013 CFR
2013-10-01
... of an air bag system that automatically controls whether or not the air bag deploys during a crash by: (1) Sensing the location of an occupant, moving or still, in relation to the air bag; (2) Interpreting the occupant characteristics and location information to determine whether or not the air bag...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of an air bag system that automatically controls whether or not the air bag deploys during a crash by: (1) Sensing the location of an occupant, moving or still, in relation to the air bag; (2) Interpreting the occupant characteristics and location information to determine whether or not the air bag...
Code of Federal Regulations, 2014 CFR
2014-10-01
... of an air bag system that automatically controls whether or not the air bag deploys during a crash by: (1) Sensing the location of an occupant, moving or still, in relation to the air bag; (2) Interpreting the occupant characteristics and location information to determine whether or not the air bag...
Coimbra, Raul; Conroy, Carol; Hoyt, David B; Pacyna, Sharon; May, MarSue; Erwin, Steve; Tominaga, Gail; Kennedy, Frank; Sise, Michael; Velky, Tom
2008-07-01
In spite of improvements in motor vehicle safety systems and crashworthiness, motor vehicle crashes remain one of the leading causes of brain injury. The purpose of this study was to determine if the damage distribution across the frontal plane affected brain injury severity of occupants in frontal impacts. Occupants in "head on" frontal impacts with a Principal Direction of Force (PDOF) equal to 11, 12, or 1o'clock who sustained serious brain injury were identified using the Crash Injury Research Engineering Network (CIREN) database. Impacts were further classified based on the damage distribution across the frontal plane as distributed, offset, and extreme offset (corner). Overall, there was no significant difference for brain injury severity (based on Glasgow Coma Scale<9, or brain injury AIS>2) comparing occupants in the different impact categories. For occupants in distributed frontal impacts, safety belt use was protective (odds ratio (OR)=0.61) and intrusion at the occupant's seat position was four times more likely to result in severe (Glasgow Coma Scale (GCS)<9) brain injury (OR=4.35). For occupants in offset frontal impacts, again safety belt use was protective against severe brain injury (OR=0.25). Possibly due to the small number of brain-injured occupants in corner impacts, safety belts did not significantly protect against increased brain injury severity during corner impacts. This study supports the importance of safety belt use to decrease brain injury severity for occupants in distributed and offset frontal crashes. It also illustrates how studying "real world" crashes may provide useful information on occupant injuries under impact circumstances not currently covered by crash testing.
Evolution of the crashworthiness and aggressivity of the Spanish car fleet.
Gómez Méndez, Alvaro; Aparicio Izquierdo, Francisco; Arenas Ramírez, Blanca
2010-11-01
This paper investigates the relationship between a passenger car's year of registration and its crashworthiness and aggressivity in real-world crashes. Crashworthiness is defined as the ability of a car to protect its own occupants, and has been evaluated in single and two-car crashes. Aggressivity is defined as the ability to protect users travelling in other vehicles, and has been evaluated only in two-car crashes. The dependent variable is defined as the proportion of injured drivers who are killed or seriously injured; following previous research, we refer to this magnitude as injury severity. A decrease in the injury severity of a driver is interpreted as an improvement in the crashworthiness of their car; similarly, a decrease in the injury severity of the opponent driver is regarded as an improvement in aggressivity. Data have been extracted from the Spanish Road Accident Database, which contains information on every accident registered by the police in which at least one person was injured. Two types of regression models have been used: logistic regression models in single-car crashes, and generalised estimating equations (GEE) models in two-car crashes. GEE allow to take account of the correlation between the injury severities of drivers involved in the same crash. The independent variables considered have been: year of registration of the subject car (crashworthiness component), year of registration of the opponent car (aggressivity component), and several factors related to road, driver and environment. Our models confirm that crashworthiness has largely improved in two-car crashes: when crashing into the average opponent car, drivers of cars registered before 1985 have a significantly higher probability of being killed or seriously injured than drivers of cars registered in 2000-2005 (odds ratio: 1.80; 95% confidence interval: 1.61; 2.01). In single-car crashes, the improvement in crashworthiness is very slight (odds ratio: 1.04; 95% confidence interval: 0.93; 1.16). On the other hand, we have also found a significant worsening in aggressivity in two-car crashes: the driver of the average car has a significantly lower probability of being killed or seriously injured when crashing into a car registered before 1985, than when crashing into a car registered in 2000-2005 (odds ratio: 0.52; 95% confidence interval: 0.45; 0.60). Our results are consistent with a large amount of previous research that has reported significant improvements in the protection of car occupants. They also add to some recent studies that have found a worsening in the aggressivity of modern cars. This trend may be reflecting the impact of differences in masses and travel speeds, as well as the influence of consumer choices. The precise reasons have to be investigated. Also, the causes have to be found for so large a discrepancy between crashworthiness in single and two-car crashes. 2010 Elsevier Ltd. All rights reserved.
The effectiveness of air bags.
Barry, S; Ginpil, S; O'Neill, T J
1999-11-01
Previous research has shown that the installation of air bags in vehicles significantly reduces crash related deaths, but these analyses have used statistical techniques which have not been capable of controlling for other major determinants of crash survival. This study analysed data from the US FARS database of fatal crashes using conditional logistic regression which is simultaneously able to estimate occupant protection effects for a range of variables. Results of the analysis provided a comparative quantification of both the effect of the air bag as well as other well known determinants of occupant crash survival (age, seat belt use, and gender). When potentially confounding variables were controlled, both the driver and passenger side air bag devices were shown to significantly reduce the probability of death in direct frontal collisions, but the effect size calculated was small compared to the effect of the seat belt. The effect size may also be very small in absolute terms depending on the severity of the crash involved. Given the limited benefit of the air bag, efforts to promote air bags seem particularly difficult to justify in countries such as the United States where the vastly superior occupant protection of the seat belt is under-utilised.
Vachal, Kimberly; Tumuhairwe, Esther K; Berwick, Mark
2009-04-01
The North Dakota Legislature recently passed a law exempting the state's agricultural truck fleet from a federal safety program requirement for rear-guard equipment on large trucks. This equipment has been shown to reduce crash severity when a passenger vehicle collides with the rear of the truck. This study uses truck fleet, truck crash, and injury severity data to estimate the public safety benefit derived from passenger-vehicle underride protection during rear-end crashes involving large agricultural trucks in North Dakota. A benefit-cost analysis of crash injury avoidance is developed based on the frequency and severity of rear-end truck collisions in North Dakota between 2001 and 2007. The injury avoidance benefits and commercial vehicle safety grant benefits are estimated to be $11.4 to $20.2 million during the seven-year depreciable truck life. The public safety benefits for rear-impact guards are higher than the estimated lifetime cost for the equipment and maintenance of $8.1 million.
Advances in crash dynamics for aircraft safety
NASA Astrophysics Data System (ADS)
Guida, M.; Marulo, F.; Abrate, S.
2018-04-01
This paper studies the ability of the fuselage's lower lobe to absorb the energy during a crash landing, where the introduction of the composite materials can improve the crash survivability thanks to the crushing capability of structural parts to limit the effects of deceleration on the occupants. Providing a protective shell around the occupants and minimizing the risks of injuries during and immediately after the crash in the post-crash regime is a safety requirement. This study consists of: (1) numerical and experimental investigations on small components to verify design concepts using high performance composite materials; (2) analyses of full scale crashes of fuselage lower lobes. This paper outlines an approach for demonstrating the crashworthiness characteristics of the airframe performing a drop test at low velocity impact to validate a numerical model obtained by assembling structural components and materials' properties previously obtained by testing coupons and sub-elements.
DOT National Transportation Integrated Search
2009-07-31
The Federal Railroad Administration sponsored a full-scale train-to-train crash energy management (CEM) technology test that was conducted on March 23, 2006, at the Transportation Technology Center in Pueblo, Colorado. The Volpe National Transportati...
NASA Technical Reports Server (NTRS)
Wilson, A. H.
1983-01-01
Crash barrier composed largely of used aluminum beverage cans protects occupants of cars in collisions with poles or trees. Lightweight, can-filled barrier very effective in softening impact of an automobile in head-on and off-angle collisions. Preliminary results indicate barrier is effective in collisions up to 40 mi/h (64 km/h).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... electrical isolation requirements, the test specifications and requirements for electrical isolation monitoring, the state-of-charge of electric energy storage devices prior to the crash tests, a proposed protective barrier compliance option for electrical safety, the use of alternative gas to crash test hydrogen...
At the intersection of automation and culture
NASA Technical Reports Server (NTRS)
Sherman, P. J.; Wiener, E. L.
1995-01-01
The crash of an automated passenger jet at Nagoya, Japan, in 1995, is used as an example of crew error in using automatic systems. Automation provides pilots with the ability to perform tasks in various ways. National culture is cited as a factor that affects how a pilot and crew interact with each other and equipment.
76 FR 55829 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
.... Benefits of ESC Electronic stability control (ESC) systems use automatic computer- controlled braking of... demonstrated that these systems reduce fatal single-vehicle crashes of passenger cars by 55 percent and fatal... potential to prevent 56 percent of the fatal passenger car rollovers and 74 percent of the fatal LTV first...
Patalak, John P; Stitzel, Joel D
2018-02-17
Since 2000, numerous improvements have been made to the National Association for Stock Car Auto Racing, Incorporated (NASCAR®) driver restraint system, resulting in improved crash protection for motorsports drivers. Advancements have included seats, head and neck restraints (HNRs), seat belt restraint systems, driver helmets, and others. These enhancements have increased protection for drivers from severe crash loading. Extending protection to the driver's extremities remains challenging. Though the drivers' legs are well contained for lateral and vertical crashes, they remain largely unrestrained in frontal and frontal oblique crashes. Sled testing was conducted for the evaluation of an energy-absorbing (EA) toe board material to be used as a countermeasure for leg and foot injuries. Testing included baseline rigid toe boards, tests with EA material-covered toe boards, and pretest positioning of the 50th percentile male frontal Hybrid III anthropomorphic test device (ATD) lower extremities. ATD leg and foot instrumentation included foot acceleration and tibia forces and moments. The sled test data were evaluated using established injury criteria for tibial plateau fractures, leg shaft fractures, and calcaneus, talus, ankle, and midfoot fractures. A polyurethane EA foam was found to be effective in limiting axial tibia force and foot accelerations when subjected to frontal impacts using the NASCAR motorsport restraint system.
Child passengers killed in reckless and alcohol-related motor vehicle crashes.
Kelley-Baker, Tara; Romano, Eduardo
2014-02-01
About 20years ago, concern was raised about the dangers that children face when driven by drinking drivers in the United States. During the last decade, the pace of research on this topic subsided. Yet in 2010, every day three children younger than age 15 were killed, and 469 were injured in motor-vehicle crashes. The aim of this effort is to describe the status of the problem in the United States and suggest lines of research. From the Fatality Analysis Reporting System (FARS), we selected crashes in which a driver aged 21 or older was driving at least one child younger than age 15. We identified crashes that occurred at different times of the day in which the driver was speeding, ran a red light, or was alcohol positive. We described the drivers' demographics and examined how they relate to the different crash types. We found that, although driving a child seems to protect against the studied forms of risky driving, such protection varies sharply depending upon the drivers' and children's demographics and the crash type. There is no clear reason to explain the drivers' decision to endanger the children that they drive. The percent of children killed in speeding-related and red-light running motor-vehicle crashes has remained relatively stable during the last decade. Future research must (a) examine the effectiveness of current child endangerment laws; (b) examine crashes other than fatal; and (c) be more targeted, looking at specific drivers' age and gender, specific children's ages, the time of the crash, and the type of crash. Significant attention needs to be given towards improving state laws on child endangerment. Policymakers' reaction to this problem is tentative because of our limited understanding of the problem; therefore, further research is needed. With unfocused countermeasures and prevention efforts, we have been restricted in our ability to evaluate these responses. The findings of this report should be informative to policy makers. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Sunnevång, Cecilia; Rosén, Erik; Boström, Ola; Lechelt, Ulf
2010-01-01
Side airbags reduce the risk of fatal injury by approximately 30%. Due to limited real-life data the risk reducing effect for serious injury has not yet been established. Since side airbags are mainly designed and validated for crash severities used in available test procedures little is known regarding the protective effect when severity increases. The objective of this study was to understand for which crash severities AIS3+ thorax occupant protection in car-to-car nearside collisions need to and can be improved. The aim was fulfilled by means of real life data, for older cars without side airbag, and a series of car-to-car tests performed with the WorldSID 50%-ile in modern and older cars at different impact speeds. The real life data showed that the risk of AIS3+ injury was highest for the thorax followed by the pelvis and head. For both non-senior and senior occupants, most thorax injuries were sustained at lateral delta-v from 20 km/h to 40 km/h. In this severity range, senior occupants were found to have approximately four times higher risk of thoracic injury than non-senior occupants. The crash tests at lateral impact speed 55 km/h (delta-v 32 km/h) confirmed the improved performance at severities represented in current legal and rating tests. The structural integrity of the modern car impacted at 70 km/h showed a potential for improved side impact protection by interior countermeasures. PMID:21050600
Sunnevång, Cecilia; Rosén, Erik; Boström, Ola; Lechelt, Ulf
2010-01-01
Side airbags reduce the risk of fatal injury by approximately 30%. Due to limited real-life data the risk reducing effect for serious injury has not yet been established. Since side airbags are mainly designed and validated for crash severities used in available test procedures little is known regarding the protective effect when severity increases.The objective of this study was to understand for which crash severities AIS3+ thorax occupant protection in car-to-car nearside collisions need to and can be improved. The aim was fulfilled by means of real life data, for older cars without side airbag, and a series of car-to-car tests performed with the WorldSID 50%-ile in modern and older cars at different impact speeds.The real life data showed that the risk of AIS3+ injury was highest for the thorax followed by the pelvis and head. For both non-senior and senior occupants, most thorax injuries were sustained at lateral delta-v from 20 km/h to 40 km/h. In this severity range, senior occupants were found to have approximately four times higher risk of thoracic injury than non-senior occupants. The crash tests at lateral impact speed 55 km/h (delta-v 32 km/h) confirmed the improved performance at severities represented in current legal and rating tests. The structural integrity of the modern car impacted at 70 km/h showed a potential for improved side impact protection by interior countermeasures.
Lyons, Terence J; Ercoline, William; O'Toole, Kevin; Grayson, Kevin
2006-07-01
Previous studies have determined that spatial disorientation (SD) causes 0.5-23% of aircraft crashes, but SD-related crash and fatality rates in different aircraft types have not been systematically studied. SD crashes for the fiscal years 1990 to 2004 and aircraft sortie numbers for all U.S. Air Force (USAF) aircraft were obtained from the USAF Safety Center. Contingency table analysis and Chi-squared tests were used to evaluate differences in SD rates. SD accounted for 11% of USAF crashes with an overall rate of 2.9 per million sorties and a crash fatality rate of 69%. The SD rate was higher in fighter/attack aircraft and helicopters than in training and transport aircraft. The risk of SD was increased at night with 23% of night crashes being caused by SD. But the SD rate and crash fatality rate were not higher in single-crewmember aircraft. SD risk is significantly increased in helicopters and fighter/attack aircraft and at night. The data suggest that a second crewmember does not protect against SD. Further study of specific SD scenarios could lead to focused interventions for SD prevention.
Bao, Jie; Liu, Pan; Yu, Hao; Xu, Chengcheng
2017-09-01
The primary objective of this study was to investigate how to incorporate human activity information in spatial analysis of crashes in urban areas using Twitter check-in data. This study used the data collected from the City of Los Angeles in the United States to illustrate the procedure. The following five types of data were collected: crash data, human activity data, traditional traffic exposure variables, road network attributes and social-demographic data. A web crawler by Python was developed to collect the venue type information from the Twitter check-in data automatically. The human activities were classified into seven categories by the obtained venue types. The collected data were aggregated into 896 Traffic Analysis Zones (TAZ). Geographically weighted regression (GWR) models were developed to establish a relationship between the crash counts reported in a TAZ and various contributing factors. Comparative analyses were conducted to compare the performance of GWR models which considered traditional traffic exposure variables only, Twitter-based human activity variables only, and both traditional traffic exposure and Twitter-based human activity variables. The model specification results suggested that human activity variables significantly affected the crash counts in a TAZ. The results of comparative analyses suggested that the models which considered both traditional traffic exposure and human activity variables had the best goodness-of-fit in terms of the highest R 2 and lowest AICc values. The finding seems to confirm the benefits of incorporating human activity information in spatial analysis of crashes using Twitter check-in data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Ye; Xing, Lu; Wang, Wei; Wang, Hao; Dong, Changyin; Liu, Shanwen
2017-10-01
Multi-vehicle rear-end (MVRE) crashes during small-scale inclement (SSI) weather cause high fatality rates on freeways, which cannot be solved by traditional speed limit strategies. This study aimed to reduce MVRE crash risks during SSI weather using different longitudinal driver assistance systems (LDAS). The impact factors on MVRE crashes during SSI weather were firstly analyzed. Then, four LDAS, including Forward collision warning (FCW), Autonomous emergency braking (AEB), Adaptive cruise control (ACC) and Cooperative ACC (CACC), were modeled based on a unified platform, the Intelligent Driver Model (IDM). Simulation experiments were designed and a large number of simulations were then conducted to evaluate safety effects of different LDAS. Results indicate that the FCW and ACC system have poor performance on reducing MVRE crashes during SSI weather. The slight improvement of sight distance of FCW and the limitation of perception-reaction time of ACC lead the failure of avoiding MVRE crashes in most scenarios. The AEB system has the better effect due to automatic perception and reaction, as well as performing the full brake when encountering SSI weather. The CACC system has the best performance because wireless communication provides a larger sight distance and a shorter time delay at the sub-second level. Sensitivity analyses also indicated that the larger number of vehicles and speed changes after encountering SSI weather have negative impacts on safety performances. Results of this study provide useful information for accident prevention during SSI weather. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vehicle mass and injury risk in two-car crashes: A novel methodology.
Tolouei, Reza; Maher, Mike; Titheridge, Helena
2013-01-01
This paper introduces a novel methodology based on disaggregate analysis of two-car crash data to estimate the partial effects of mass, through the velocity change, on absolute driver injury risk in each of the vehicles involved in the crash when absolute injury risk is defined as the probability of injury when the vehicle is involved in a two-car crash. The novel aspect of the introduced methodology is in providing a solution to the issue of lack of data on the speed of vehicles prior to the crash, which is required to calculate the velocity change, as well as a solution to the issue of lack of information on non-injury two-car crashes in national accident data. These issues have often led to focussing on relative measures of injury risk that are not independent of risk in the colliding cars. Furthermore, the introduced methodology is used to investigate whether there is any effect of vehicle size above and beyond that of mass ratio, and whether there are any effects associated with the gender and age of the drivers. The methodology was used to analyse two-car crashes to investigate the partial effects of vehicle mass and size on absolute driver injury risk. The results confirmed that in a two-car collision, vehicle mass has a protective effect on its own driver injury risk and an aggressive effect on the driver injury risk of the colliding vehicle. The results also confirmed that there is a protective effect of vehicle size above and beyond that of vehicle mass for frontal and front to side collisions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Side impact crashes--factors affecting incidence and severity: review of the literature.
Chipman, Mary L
2004-03-01
Many traffic crashes are side impact collisions resulting in significant death and injury. A review was conducted of the evidence of driver, road, and vehicle characteristics affecting either the risk of occurrence or the severity of injury in such crashes for papers published from 1996 to early 2003. For drivers, evidence was found of increased crash risk or injury severity only for age and age-related medical conditions (e.g., dementia). Traffic roundabouts and other traffic control devices--stop signs, traffic lights, and so on--had mixed results; traffic controls were better than no controls, but their effectiveness varied with circumstance. Most vehicle characteristics have had little or no effect on crash occurrence. Antilock braking systems (ABS) in the striking vehicle had been anticipated to reduce the risk of crashes, but so far have demonstrated little effect. The primary emphasis in vehicle design has been on protective devices to reduce the severity of injury. Disparity in the size of the two vehicles, especially when the struck vehicle is smaller and lighter, is almost a consistent risk factor for occupant injury. The occupants of light trucks, however, when struck by passengers cars on the opposite side, were at higher risk of injury. Wearing seat belts had a consistently protective effect; airbags did not, but there were few studies, and no field studies, of lateral airbags found. Of all the characteristics examined, vehicle design, including occupant restraints, is the most easily modified in the short term, although road design, traffic control, and the monitoring of older drivers may also prove effective in reducing side impact crashes in the longer term.
A new generation of U.S. Army flight helmets.
Carter, R M
1992-07-01
Head injuries are the most common cause of fatal injury in helicopter crashes. For over 80 years, the U.S. Army has used crash investigation studies to redesign flight helmets. This paper describes the evolution of the new fielded U.S. Army helmet, the Sound Protection Helmet No. 4B (SPH-4B), and compares its protective features to its predecessors, especially the SPH-4. A major contribution to the helmet design process was made by the Aviation Life Support Equipment Retrieval Program (ALSERP), a functional program at the U.S. Army Aeromedical Research Laboratory (USAARL). ALSERP has analyzed more than 500 helmets involved in crash events since 1972. Based on these studies of critical safety factors, the Army has developed and deployed the SPH-4B, a new helmet with improved energy absorption, retention, and stability.
Occupant seating anthropometry: body ellipses and contact zones for side-impact protection research
NASA Astrophysics Data System (ADS)
Culver, Clyde C.; Viano, David C.
The study has developed an anthropometric description of seated occupants and determined body regions representing major paths in side-impact crashes. The study has identified five major body ellipses defining the head, shoulder, chest, abdomen and pelvis of seated occupants of various sizes, including the six-year-old child. Body contact zones have been determined for front-seated occupants. These templates provide information for the design of side interiors to improve occupant protection in side-impact crashes by load-transfer and energy-absorption characteristics of biocompatible interiors.
Stein, Deborah M; Kufera, Joseph A; Ho, Shiu M; Ryb, Gabriel E; Dischinger, Patricia C; O'Connor, James V; Scalea, Thomas M
2011-02-01
Motor vehicle collisions (MVCs) are the leading cause of spine and spinal cord injuries in the United States. Traumatic cervical spine injuries (CSIs) result in significant morbidity and mortality. This study was designed to evaluate both the epidemiologic and biomechanical risk factors associated with CSI in MVCs by using a population-based database and to describe occupant and crashes characteristics for a subset of severe crashes in which a CSI was sustained as represented by the Crash Injury Research Engineering Network (CIREN) database. Prospectively collected CIREN data from the eight centers were used to identify all case occupants between 1996 and November 2009. Case occupants older than 14 years and case vehicles of the four most common vehicle types were included. The National Automotive Sampling System's Crashworthiness Data System, a probability sample of all police-reported MVCs in the United States, was queried using the same inclusion criteria between 1997 and 2008. Cervical spinal cord and spinal column injuries were identified using Abbreviated Injury Scale (AIS) score codes. Data were abstracted on all case occupants, biomechanical crash characteristics, and injuries sustained. Univariate analysis was performed using a χ analysis. Logistic regression was used to identify significant risk factors in a multivariate analysis to control for confounding associations. CSIs were identified in 11.5% of CIREN case occupants. Case occupants aged 65 years or older and those occupants involved in rollover crashes were more likely to sustain a CSI. In univariate analysis of the subset of severe crashes represented by CIREN, the use of airbag and seat belt together (reference) were more protective than seat belt alone (odds ratio [OR]=1.73, 95% confidence interval [CI]=1.32-2.27) or the use of neither restraint system (OR=1.45, 95% CI=1.02-2.07). The most frequent injury sources in CIREN crashes were roof and its components (24.8%) and noncontact sources (15.5%). In multivariate analysis, age, rollover impact, and airbag-only restraint systems were associated with an increased odds of CSI. Using the population-based National Automotive Sampling System's Crashworthiness Data System data, 0.35% of occupants sustained a CSI. In univariate analysis, older age was noted to be a significant risk factor for CSI. Airbag-only restraint systems and both rollover and lateral crashes were also identified as risk factors for CSI. In addition, increasing delta v was highly associated with CSIs. In multivariate analysis, similar risk factors were noted. Of all the restraint systems, seat belt use without airbag deployment was found to be the most protective restraint system (OR=0.29, 95% CI=0.16-0.50), whereas airbag-only restraint was associated with the highest risk of CSI (OR=3.54, 95% CI=2.29-5.46). Despite advances in automotive safety, CSIs sustained in MVC continue to occur too often. Older case occupants are at an increased risk of CSI. Rollover crashes and severe crashes led to a much higher risk of CSI than other types and severity of MVCs. Seat belt use is very effective in preventing CSI, whereas airbag deployment may increase the risk of occupants sustaining a CSI. More protection for older occupants is needed and protection in both rollover and lateral crashes should remain a focus of the automotive industry. The design of airbag restraint systems should be evaluated so that they are not causative of serious injury. In addition, engineers should continue to focus on improving automotive design to minimize the risk of spinal injury to occupants in high severity crashes.
Seatbelt and seatback control for occupant protection in frontal automotive collisions
NASA Astrophysics Data System (ADS)
Mott, Michael; Sun, Zhen; Rajamani, Rajesh
2013-10-01
This paper investigates the potential benefits of an imminent collision prediction system for improving occupant protection in a frontal automotive crash. Knowledge of an impending unavoidable crash is assumed to be known 100 ms before the crash occurs. A three dof human occupant model is developed using a Lagrangian approach to represent occupant translation with respect to seat, torso rotation and neck rotation. The performance of traditional elastic seat belts is compared with that of an analytically calculated seat belt law in which the force values are calculated in real-time so as to just prevent collision with car interior. Simulations verify that the analytical seat belt force calculation results in less force on occupant for the same level of safety. Furthermore, results show that knowledge of a future collision can be used to pre-tension seat belts but can provide no additional benefits, if seat belts are the only means for active occupant protection. However, if seat tilt-back can be deployed using an on-off mechanism, such predictive knowledge of a future collision can provide significantly improved occupant protection in terms of preventing occupant collision with car interior.
Modeling left-turn crash occurrence at signalized intersections by conflicting patterns.
Wang, Xuesong; Abdel-Aty, Mohamed
2008-01-01
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.
The effects of roadway characteristics on farm equipment crashes: A GIS approach
NASA Astrophysics Data System (ADS)
Greenan, Mitchell Joseph
Tractors and other self-propelled farm equipment, such as combines, sprayers, and towed grain carts, are often used on public roadways as the primary means for traveling from homestead to homestead or from homestead to a distributer. Increased roadway exposure has led to a growing concern for crashes involving farm equipment on the public roadway. A handful of studies exist examining public roadway crashes involving farm equipment using crash data, but none thus far have evaluated road segment data to identify road-specific risk factors. The objective of this study is to identify if roadway characteristics (traffic density, speed limit, road type, surface type, road width, and shoulder width) affect the risk of a crash involving farm equipment on Iowa public roadways. A retrospective cohort study of Iowa roads was conducted to identify the types of roads that are at an increased risk of having a farm-equipment crash on them. Crash data from the Iowa Department of Transportation (to identify crashes) were spatial linked to Iowa roadway data using Geographic Information Systems (GIS). Logistic regression was used to calculate ORs and 95% CL. Out of 319,705 road segments in Iowa, 0.4% segments (n=1,337) had a farm equipment crash from 2005-2011. The odds of having a farm equipment crash were significantly higher for road segments with increased traffic density and speed limit. Roads with an average daily traffic volume of at least 1,251 vehicles were at a 5.53 times greater odds of having a crash than roads with a daily traffic volume between 0-30 vehicles. (CI: 3.90-7.83). Roads with a posted speed limit between 50mph and 60mph were at a 4.88 times greater odds of having a crash than roads with a posted speed limit of 30mph or less. (CI: 3.85-6.20). Specific roadway characteristics such as roadway and shoulder width were also associated with the risk of a crash. For every 5 foot increase in road width, the odds for a crash decreased by 6 percent (CI: 0.89-0.99) and for every 5 foot increase in shoulder width, the odds of a crash decreased by 8 percent. (CI: 0.86-0.98). Although not statically significant, unpaved roads increased the odds of a crash by 17 percent. (CI: 0.91-1.50) Lastly, it was found that Farm to Market routes increased the odds of a crash by two fold compared to local roads (which make up roughly 67 percent of Iowa public roads). (CI: 1.72-2.43) When the same model was stratified by rurality (urban/rural), it was found that high traffic density leads to a higher risk of a crash in rural areas. Iowa routes and Farm to Market routes had a greater odds of a crash in urban than rural areas, and road and shoulder width were more protective in rural than urban areas. When only using roads with a crash involving an injury versus all other roads as the outcome, Iowa routes and roads with increased speed limits had higher odds for an injury-involved crash, while increased road width were more protective against crashes involving injuries. Findings from the study suggest that several roadway characteristics were associated with farm-equipment crashes. Through administrative and engineering controls, the six static explanatory variables used in this study may be modified to decrease the risk of a farm equipment crash. Speed limit can be modified through administrative controls while traffic density, road and shoulder width, road type, and surface type can be modified through engineering controls. Results from this study provide information that will aid policy-makers in developing safer roads for farm equipment.
Yunus, Siti Salmiah Mohd; Ngeow, Wei Cheong; Ramli, Roszalina
2015-09-01
A cross-sectional study to determine the pattern of craniomaxillofacial (CMF) injuries among children involved in road traffic crashes was performed. The association of protective equipment use with the CMF injuries was evaluated. Retrospective records of children treated in the University Malaya Medical Centre, Kuala Lumpur, Malaysia, after road traffic crashes between January 1, 2008 and December 31, 2012 were reviewed, and, after that, telephone interviews were made. Seventy-one children were included in this study. Fifty-two (73.6%) were involved in a motorcycle injury and 19 (23.4%) in a car crash. Their mean age was 6.02 years; SD, 3.46 (range between 0 to 13 years old). More male children were observed (52.1%) compared with females (47.9%). Thirty-nine point four percent of the children sustained CMF injuries, 33.8% body injuries, and 23.9% had both CMF and other body parts injuries. The highest injury severity score was 26, whereas the lowest was 0. Many children did not use protective equipment during traveling, 44.2% of children among motorcycle pillion riders, and 78.9% among car passengers. The association between helmet use and CMF injuries was shown to be statistically significant (P < .001). Craniomaxillofacial injuries could be prevented with the use of motorcycle helmet and seat belt. Copyright © 2015 Elsevier Inc. All rights reserved.
Work-related nonfatal injuries in Alaska’s aviation industry, 2000–2013
Case, Samantha L.; Moller, Kyle M.; Nix, Nancy A.; Lucas, Devin L.; Snyder, Elizabeth H.; O’Connor, Mary B.
2018-01-01
Aviation is a critical component of life in Alaska, connecting communities off the road system across the state. Crash-related fatalities in the state are well understood and many intervention efforts have been aimed at reducing aircraft crashes and resulting fatalities; however, nonfatal injuries among workers who perform aviation-related duties have not been studied in Alaska. This study aimed to characterize hospitalized nonfatal injuries among these workers using data from the Alaska Trauma Registry. During 2000–2013, 28 crash-related and 89 non-crash injuries were identified, spanning various occupational groups. Falls were a major cause of injuries, accounting for over half of non-crash injuries. Based on the study findings, aviation stakeholders should review existing policies and procedures regarding aircraft restraint systems, fall protection, and other injury prevention strategies. To supplement these findings, further study describing injuries that did not result in hospitalization is recommended. PMID:29606800
Factors Related to Fatal Injury in Frontal Crashes Involving European Cars
Frampton, Richard; Page, Marianne; Thomas, Pete
2006-01-01
Despite considerable improvements in frontal impact crashworthiness, frontal crashes still account for a major number of front seat occupant fatalities in Great Britain. This study attempted to determine the remaining potential for further fatality reduction with passive safety improvements in frontal crashes. No evidence was found to support an increase in crash test speeds. Instead, assessment of scope for survival showed that at least 27% of all fatal drivers and 39% of all fatal front seat passengers have survival potential given attention to older occupant’s chest injury tolerance and passenger compartment intrusion under 60 km/h. Considering only fatal frontal crashes that might be assessed with a barrier test, showed an estimated survival potential of at least 49% of belted drivers and 60% of belted front seat passengers. The high proportion of unbelted fatalities suggested that targeting unbelted occupant protection could have additional benefit. PMID:16968628
Work-related nonfatal injuries in Alaska's aviation industry, 2000-2013.
Case, Samantha L; Moller, Kyle M; Nix, Nancy A; Lucas, Devin L; Snyder, Elizabeth H; O'Connor, Mary B
2018-04-01
Aviation is a critical component of life in Alaska, connecting communities off the road system across the state. Crash-related fatalities in the state are well understood and many intervention efforts have been aimed at reducing aircraft crashes and resulting fatalities; however, nonfatal injuries among workers who perform aviation-related duties have not been studied in Alaska. This study aimed to characterize hospitalized nonfatal injuries among these workers using data from the Alaska Trauma Registry. During 2000-2013, 28 crash-related and 89 non-crash injuries were identified, spanning various occupational groups. Falls were a major cause of injuries, accounting for over half of non-crash injuries. Based on the study findings, aviation stakeholders should review existing policies and procedures regarding aircraft restraint systems, fall protection, and other injury prevention strategies. To supplement these findings, further study describing injuries that did not result in hospitalization is recommended.
NASA Astrophysics Data System (ADS)
Sornette, D.
2003-04-01
This review presents a general theory of financial crashes and of stock market instabilities that his co-workers and the author have developed over the past seven years. We start by discussing the limitation of standard analyses for characterizing how crashes are special. The study of the frequency distribution of drawdowns, or runs of successive losses shows that large financial crashes are “outliers”: they form a class of their own as can be seen from their statistical signatures. If large financial crashes are “outliers”, they are special and thus require a special explanation, a specific model, a theory of their own. In addition, their special properties may perhaps be used for their prediction. The main mechanisms leading to positive feedbacks, i.e., self-reinforcement, such as imitative behavior and herding between investors are reviewed with many references provided to the relevant literature outside the narrow confine of Physics. Positive feedbacks provide the fuel for the development of speculative bubbles, preparing the instability for a major crash. We demonstrate several detailed mathematical models of speculative bubbles and crashes. A first model posits that the crash hazard drives the market price. The crash hazard may sky-rocket at some times due to the collective behavior of “noise traders”, those who act on little information, even if they think they “know”. A second version inverses the logic and posits that prices drive the crash hazard. Prices may skyrocket at some times again due to the speculative or imitative behavior of investors. According the rational expectation model, this entails automatically a corresponding increase of the probability for a crash. We also review two other models including the competition between imitation and contrarian behavior and between value investors and technical analysts. The most important message is the discovery of robust and universal signatures of the approach to crashes. These precursory patterns have been documented for essentially all crashes on developed as well as emergent stock markets, on currency markets, on company stocks, and so on. We review this discovery at length and demonstrate how to use this insight and the detailed predictions obtained from these models to forecast crashes. For this, we review the major crashes of the past that occurred on the major stock markets of the planet and describe the empirical evidence of the universal nature of the critical log-periodic precursory signature of crashes. The concept of an “anti-bubble” is also summarized, with the Japanese collapse from the beginning of 1991 to present, taken as a prominent example. A prediction issued and advertised in January 1999 has been until recently born out with remarkable precision, predicting correctly several changes of trends, a feat notoriously difficult using standard techniques of economic forecasting. We also summarize a very recent analysis the behavior of the U.S. S&P500 index from 1996 to August 2002 and the forecast for the two following years. We conclude by presenting our view of the organization of financial markets.
Primary Enforcement of Mandatory Seat Belt Laws and Motor Vehicle Crash Deaths.
Harper, Sam; Strumpf, Erin C
2017-08-01
Policies that allow directly citing motorists for seat belt non-use (primary enforcement) have been shown to reduce motor vehicle crash deaths relative to secondary enforcement, but the evidence base is dated and does not account for recent improvements in vehicle designs and road safety. The purpose of this study was to test whether recent upgrades to primary enforcement still reduce motor vehicle crash deaths. In 2016, researchers used motor vehicle crash death data from the Fatal Analysis Reporting System for 2000-2014 and calculated rates using both person- and exposure-based denominators. Researchers used a difference-in-differences design to estimate the effect of primary enforcement on death rates, and estimated negative binomial regression models, controlling for age, substance use involvement, fixed state characteristics, secular trends, state median household income, and other state-level traffic safety policies. Models adjusted only for crash characteristics and state-level covariates models showed a protective effect of primary enforcement (rate ratio, 0.88, 95% CI=0.77, 0.98; rate difference, -1.47 deaths per 100,000 population, 95% CI= -2.75, -0.19). After adjustment for fixed state characteristics and secular trends, there was no evidence of an effect of upgrading from secondary to primary enforcement in the whole population (rate ratio, 0.98, 95% CI=0.92, 1.04; rate difference, -0.22, 95% CI= -0.90, 0.46) or for any age group. Upgrading to primary enforcement no longer appears protective for motor vehicle crash death rates. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
An Evaluation of the Euroncap Crash Test Safety Ratings in the Real World
Segui-Gomez, Maria; Lopez-Valdes, Francisco J.; Frampton, Richard
2007-01-01
We investigated whether the rating obtained in the EuroNCAP test procedures correlates with injury protection to vehicle occupants in real crashes using data in the UK Cooperative Crash Injury Study (CCIS) database from 1996 to 2005. Multivariate Poisson regression models were developed, using the Abbreviated Injury Scale (AIS) score by body region as the dependent variable and the EuroNCAP score for that particular body region, seat belt use, mass ratio and Equivalent Test Speed (ETS) as independent variables. Our models identified statistically significant relationships between injury severity and safety belt use, mass ratio and ETS. We could not identify any statistically significant relationships between the EuroNCAP body region scores and real injury outcome except for the protection to pelvis-femur-knee in frontal impacts where scoring “green” is significantly better than scoring “yellow” or “red”.
78 FR 70415 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
...Completing the first initiative of NHTSA's 2007 ``NHTSA's Approach to Motorcoach Safety'' plan and one of the principal undertakings of DOT's 2009 Motorcoach Safety Action Plan, and fulfilling a statutory mandate of the Motorcoach Enhanced Safety Act of 2012, incorporated into the Moving Ahead for Progress in the 21st Century Act, this final rule amends the Federal motor vehicle safety standard (FMVSS) on occupant crash protection to require lap/shoulder seat belts for each passenger seating position in all new over-the-road buses, and in new buses other than over-the-road buses with a gross vehicle weight rating (GVWR) greater than 11,793 kilograms (kg) (26,000 pounds (lb), with certain exclusions. By requiring the passenger lap/ shoulder seat belts, this final rule significantly reduces the risk of fatality and serious injury in frontal crashes and the risk of occupant ejection in rollovers, thus considerably enhancing the safety of these vehicles.
Stigson, H
2009-06-01
The objective in this study, using data from crashed cars fitted with on-board crash pulse recorders, was to present differences in average crash severity, distribution of crash severity, and injury outcomes, based on an independent safety rating of roads, also taking road type and speed limit into consideration. Furthermore, the objective was to evaluate differences in injury risk, based on the distribution of crash severity. The investigation included both frontal two-vehicle crashes and single-vehicle crashes with known injury outcome. In total, 209 real-world crashes involving cars fitted with crash pulse recorders were included. For all crashes, average mean acceleration and change of velocity of the vehicle acceleration pulse were measured and calculated. All crash spots were classified according to an independent road safety rating program (European Road Assessment Programme Road Protection Score), where the safety quality of roads is rated in relation to posted speed limits. The crash severity and injury outcome in crashes that occurred on roads with good safety ratings were compared with crashes on roads with poor safety ratings. The data were also divided into subcategories according to posted speed limit and road type, to evaluate whether there was a difference in crash severity and injury outcome within the categories. In total, crash severity was statistically significantly lower in crashes occurring on roads with good safety ratings than in crashes occurring on roads with poor safety ratings. It was found that crash severity and injury risk were lower on roads with good safety ratings with a speed limit of above 90 km/h compared with roads with poor safety ratings, irrespective of speed limit. On the other hand, crash severity was higher on roads with good safety ratings with speed limit of 70 km/h than on roads with poor safety ratings with the same speed limit. Though it was found that a higher speed limit resulted in higher crash severity on roads with poor safety ratings, the opposite was found on roads with good safety ratings. The main reason for this was that lanes for traffic traveling in opposite directions were more often separated at higher speeds on roads with good safety ratings. On divided roads with good safety ratings, there were no crashes resulting in crash severity above the level corresponding to a 10 percent risk of sustaining serious or fatal injury. This indicates that one of the most important safety measures is divided roads.
Warner, Jennifer; Hurwitz, David S; Monsere, Christopher M; Fleskes, Kayla
2017-07-01
A right-hook crash is a crash between a right-turning motor vehicle and an adjacent through-moving bicycle. At signalized intersections, these crashes can occur during any portion of the green interval when conflicting bicycles and vehicles are moving concurrently. The objective of this research was to evaluate the effectiveness of four types of engineering countermeasures - regulatory signage, intersection pavement marking, smaller curb radius, and protected intersection design - at modifying driver behaviors that are known contributing factors in these crashes. This research focused on right-hook crashes that occur during the latter stage of the circular green indication at signalized intersections with a shared right-turn and through lane. Changes in driver performance in response to treatments were measured in a high-fidelity driving simulator. Twenty-eight participants each completed 22 right-turn maneuvers. A partially counterbalanced experimental design exposed drivers to critical scenarios, which had been determined in a previous experiment. For each turn, driver performance measures, including visual attention, crash avoidance, and potential crash severity, were collected. A total of 75 incidents (47 near-collisions and 28 collisions) were observed during the 616 right turns. All treatments had some positive effect on measured driver performance with respect to the right-turn vehicle conflicts. Further work is required to map the magnitude of these changes in driver performance to crash-based outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hot-air balloon tours: crash epidemiology in the United States, 2000-2011.
Ballard, Sarah-Blythe; Beaty, Leland P; Baker, Susan P
2013-11-01
Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces.
Crash fatality risk and unibody versus body-on-frame structure in SUVs.
Ossiander, Eric M; Koepsell, Thomas D; McKnight, Barbara
2014-09-01
In crashes between cars and SUVs, car occupants are more likely to be killed than if they crashed with another car. An increasing proportion of SUVs are built with unibody, rather than truck-like body-on-frame construction. Unibody SUVs are generally lighter, less stiff, and less likely to roll over than body-on-frame SUVs, but whether unibody structure affects risk of death in crashes is unknown. To determine whether unibody SUVs differ from body-on-frame SUVs in the danger they pose to occupants of other vehicles and in the self-protection they offer to their own occupants. Case-control study of crashes between one compact SUV and one other passenger vehicle in the US during 1995-2008, in which the SUV was model year 1996-2006. Cases were all decedents in fatal crashes, one control was selected from each non-fatal crash. Occupants of passenger vehicles that crashed with compact unibody SUVs were at 18% lower risk of death compared to those that crashed with compact body-on-frame SUVs (adjusted odds ratio 0.82 (95% confidence interval 0.73-0.94)). Occupants of compact unibody SUVs were also at lower risk of death compared to occupants of body-on-frame SUVs (0.86 (0.72-1.02)). In two-vehicle collisions involving compact SUVs, unibody structure was associated with lower risk of death both in occupants of other vehicles in the crash, and in SUVs' own occupants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Atahan, Ali O; Hiekmann, J Marten; Himpe, Jeffrey; Marra, Joseph
2018-07-01
Road restraint systems are designed to minimize the undesirable effects of roadside accidents and improve safety of road users. These systems are utilized at either side or median section of roads to contain and redirect errant vehicles. Although restraint systems are mainly designed against car, truck and bus impacts there is an increasing pressure by the motorcycle industry to incorporate motorcycle protection systems into these systems. In this paper development details of a new and versatile motorcycle barrier, CMPS, coupled with an existing vehicle barrier is presented. CMPS is intended to safely contain and redirect motorcyclists during a collision event. First, crash performance of CMPS design is evaluated by means of a three dimensional computer simulation program LS-DYNA. Then full-scale crash tests are used to verify the acceptability of CMPS design. Crash tests were performed at CSI proving ground facility using a motorcycle dummy in accordance with prEN 1317-8 specification. Full-scale crash test results show that CMPS is able to successfully contain and redirect dummy with minimal injury risk on the dummy. Damage on the barrier is also minimal proving the robustness of the CMPS design. Based on the test findings and further review by the authorities the implementation of CMPS was recommended at highway system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crash scene photography in motor vehicle crashes without air bag deployment.
Newgard, Craig D; Martens, Katherine A; Lyons, Evelyn M
2002-09-01
To determine whether vehicle characteristics, measured using crash scene photography, are associated with anatomic patterns of injury and severity of injury sustained in motor vehicle crashes (MVCs) without air bag deployment. A prospective observational study was conducted over 22 months, using 12 fire departments serving two hospitals. Two vehicle photographs (exterior and interior) were taken at each MVC. Vehicular variables were assigned by grading the photographs with a standardized scoring system, and outcome information on each patient was collected by chart review. Five hundred fifty-nine patients were entered into the study. Frontal crashes and increasing passenger space intrusion (PSI) were associated with head, facial, and lower-extremity injuries, while rear crashes were associated with spinal injuries. Restraint use had a protective effect in head, facial, and upper and lower extremity injuries, yet was associated with higher odds of spinal injury. Lack of restraint use, increasing PSI, and steering wheel deformity were associated with an increased hospital length of stay and hospital charges, yet only steering wheel deformity was associated with increasing injury severity when adjusting for other crash variables. Out-of-hospital variables, as obtained from crash vehicle photography, are associated with injury site, injury severity, hospital length of stay, and hospital charges in patients involved in MVCs without air bag deployment.
An examination of some safety issues among commercial motorcyclists in Nigeria: a case study.
Arosanyin, Godwin Tunde; Olowosulu, Adekunle Taiwo; Oyeyemi, Gafar Matanmi
2013-01-01
The reduction of road crashes and injuries among motorcyclists in Nigeria requires a system inquiry into some safety issues at pre-crash, crash and post-crash stages to guide action plans. This paper examines safety issues such as age restriction, motorcycle engine capacity, highway code awareness, licence holding, helmet usage, crash involvement, rescue and payment for treatment among commercial motorcyclists. The primary data derived from a structured questionnaire administered to 334 commercial motorcyclists in Samaru, Zaria were analysed using descriptive statistics and logistic regression technique. There was total compliance with age restriction and motorcycle engine capacity. About 41.8% of the operators were not aware of the existence of the highway code. The odds of licence holding increased with highway code awareness, education with above senior secondary as the reference category and earnings. The odds of crash involvement decreased with highway code awareness, earnings and mode of operation. About 84% of the motorcyclists did not use crash helmet, in spite of being aware of the benefit, and 65.4% of motorcycle crashes was found to be with other road users. The promotion of safety among motorcyclists therefore requires strict traffic law enforcement and modification of road design to segregate traffic and protect pedestrians.
Mahajan, Narinder; Aggarwal, Meenu; Raina, Sunil; Verma, Lekh Raj; Mazta, Salig Ram; Gupta, B P
2013-07-01
What are the various injuries in road traffic crash cases? To study various non-fatal injuries in road traffic crash cases. Hospital based Descriptive study. The study population comprised of 401 consecutive cases of non- fatal injuries involved in road traffic crashes and reported at Indira Gandhi Medical College hospital, Shimla. 1(st) June 2005 to 31(st) May 2006. Demographic characteristics of the victims, pattern of injuries and hospital stay of the victims. Types of crashes, time, day and month of crashes, vehicles involved in crashes, use of protective gear etc. Percentages, Proportions. 73% of the injured victims were young between 20-49yrs, male to female ratio being 5.3:1. Employees (34.7%) and occupants of transport vehicles (45.9%) constituted the maximum number of the victims. Major injuries (fractures and abd. injuries) were reported in 53.4% of the victims and fractures of lower limb were the commonest of the injuries (26.3%). Use of seat-belt was found to be alarmingly low (14.3%) amongst the four- wheeler users and its non-use was found to be significantly associated with the major injuries. Helmet was used by 36 cases (66.7%) out of total of 54 users of motorized two-wheelers at the time of crash. Human error was the most reported cause of crash (82%) and the most common mode of crash was skidding and/rolling down (55%).23.1% of the drivers were reported to have consumed alcohol at the time of crash.
Effects of Maine's 1981 and Massachusetts' 1982 driving-under-the-influence legislation.
Hingson, R; Heeren, T; Kovenock, D; Mangione, T; Meyers, A; Morelock, S; Lederman, R; Scotch, N A
1987-01-01
In 1981, Maine passed a drunk driving law with mandatory penalties and a new civil charge to increase the conviction rate. One year later, Massachusetts increased drunk driving penalties, particularly for repeat offenders and intoxicated drivers involved in fatal crashes. In Maine, single-vehicle nighttime fatal crashes declined 22 per cent the year before passage of the law, and 33 per cent the year after. Maine's rates returned to pre-law levels by the third post-law year. Prior to Massachusetts' new law, single-vehicle nighttime and overall fatal crashes there also declined 20% and 22%, whereas after this law fatal crash rates did not decline further compared with the pre-law year or other New England states. Pre- and post-law surveys indicate that both laws were followed by some increases in public perceptions that drunk drivers stopped by police would be arrested, convicted, and receive automatic penalties. But, few believed it was very likely that drunk drivers would be stopped. For only two of three years studied after Maine's law did more people there report decisions not to drive because they had drunk too much. In Massachusetts, reported driving after heavy drinking declined as much the year before as the three years after its law. PMID:3565654
To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?
Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane
2016-08-15
Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.
Rotational Collision Apparatus for Indoor Egg Drops
NASA Astrophysics Data System (ADS)
Halada, Richard
2003-05-01
Our units about momentum and energy are richly illustrated with applications to car crashes and explanations of such safety features as airbags and crumple zones. The main lab exercise, however, is an egg crash (car insurance rates being so much higher). Fairly standard rules apply: Students must devise an "egg-protection package" that will keep a teacher-supplied egg intact through two successive impacts. After the test, they must hand in a written analysis of the specific physics principles they employed, modifications they would make after seeing their project's actual performance, and suggestions for applying their protection system to auto safety.
Automatic Detection and Classification of Audio Events for Road Surveillance Applications.
Almaadeed, Noor; Asim, Muhammad; Al-Maadeed, Somaya; Bouridane, Ahmed; Beghdadi, Azeddine
2018-06-06
This work investigates the problem of detecting hazardous events on roads by designing an audio surveillance system that automatically detects perilous situations such as car crashes and tire skidding. In recent years, research has shown several visual surveillance systems that have been proposed for road monitoring to detect accidents with an aim to improve safety procedures in emergency cases. However, the visual information alone cannot detect certain events such as car crashes and tire skidding, especially under adverse and visually cluttered weather conditions such as snowfall, rain, and fog. Consequently, the incorporation of microphones and audio event detectors based on audio processing can significantly enhance the detection accuracy of such surveillance systems. This paper proposes to combine time-domain, frequency-domain, and joint time-frequency features extracted from a class of quadratic time-frequency distributions (QTFDs) to detect events on roads through audio analysis and processing. Experiments were carried out using a publicly available dataset. The experimental results conform the effectiveness of the proposed approach for detecting hazardous events on roads as demonstrated by 7% improvement of accuracy rate when compared against methods that use individual temporal and spectral features.
Ehrlich, Peter F; Brown, J Kristine; Sochor, Mark R; Wang, Stewart C; Eichelberger, Martin E
2006-11-01
Motor vehicle crashes account for more than 50% of pediatric injuries. Triage of pediatric patients to appropriate centers can be based on the crash/injury characteristics. Pediatric motor vehicle crash/injury characteristics can be determined from an in vitro laboratory using child crash dummies. However, to date, no detailed data with respect to outcomes and crash mechanism have been presented with a pediatric in vivo model. The Crash Injury Research Engineering Network is comprised of 10 level 1 trauma centers. Crashes were examined with regard to age, crash severity (DeltaV), crash direction, restraint use, and airbag deployment. Multiple logistic regression analysis was performed with Injury Severity Score (ISS) and Glasgow Coma Scale (GCS) as outcomes. Standard age groupings (0-4, 5-9, 10-14, and 15-18) were used. The database is biases toward a survivor population with few fatalities. Four hundred sixty-one motor vehicle crashes with 2500 injuries were analyzed (242 boys, 219 girls). Irrespective of age, DeltaV > 30 mph resulted in increased ISS and decreased GCS (eg, for 0-4 years, DeltaV < 30: ISS = 10, GCS = 13.5 vs DeltaV > 30: ISS = 19.5, GCS = 10.6; P < .007, < .002, respectively). Controlling for DeltaV, children in lateral crashes had increased ISS and decreased GCS versus those in frontal crashes. Airbag deployment was protective for children 15 to 18 years old and resulted in a lower ISS and higher GCS (odds ratio, 2.1; 95% confidence interval, 0.9-4.6). Front-seat passengers suffered more severe (ISS > 15) injuries than did backseat passengers (odds ratio, 1.7; 95% confidence interval, 0.7-3.4). A trend was noted for children younger than 12 years sitting in the front seat to have increased ISS and decreased GCS with airbag deployment but was limited by case number. A reproducible pattern of increased ISS and lower GCS characterized by high severity, lateral crashes in children was noted. Further analysis of the specific injuries as a function and the crash characteristic can help guide management and prevention strategies.
Strandroth, Johan; Sternlund, Simon; Lie, Anders; Tingvall, Claes; Rizzi, Matteo; Kullgren, Anders; Ohlin, Maria; Fredriksson, Rikard
2014-11-01
Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-tobicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars. For pedestrians, the reduction of MAIS2+, MAIS3+, RPMI1+ and RPMI10+ ranged from 20-56% and was significant on all levels except for MAIS3+ injuries. Pedestrian head injuries had the highest reduction, 80-90% depending on level of medical impairment. For bicyclist, an injury reduction was only observed between medium and high performing cars. Significant injury reductions were found for all body regions. It was also found that cars fitted with autonomous emergency braking including pedestrian detection might have a 60-70% lower crash involvement than expected. Based on these results, it was recommended that pedestrian protection are implemented on a global scale to provide protection for vulnerable road users worldwide.
The interactive effect on injury severity of driver-vehicle units in two-vehicle crashes.
Zeng, Qiang; Wen, Huiying; Huang, Helai
2016-12-01
This study sets out to investigate the interactive effect on injury severity of driver-vehicle units in two-vehicle crashes. A Bayesian hierarchical ordered logit model is proposed to relate the variation and correlation of injury severity of drivers involved in two-vehicle crashes to the factors of both driver-vehicle units and the crash configurations. A total of 6417 crash records with 12,834 vehicles involved in Florida are used for model calibration. The results show that older, female and not-at-fault drivers and those without use of safety equipment are more likely to be injured but less likely to injure the drivers in the other vehicles. New vehicles and lower speed ratios are associated with lower injury degree of both drivers involved. Compared with automobiles, vans, pick-ups, light trucks, median trucks, and heavy trucks possess better self-protection and stronger aggressivity. The points of impact closer to the driver's seat in general indicate a higher risk to the own drivers while engine cover and vehicle rear are the least hazardous to other drivers. Head-on crashes are significantly more severe than angle and rear-end crashes. We found that more severe crashes occurred on roadways than on shoulders or safety zones. Based on these results, some suggestions for traffic safety education, enforcement and engineering are made. Moreover, significant within-crash correlation is found in the crash data, which demonstrates the applicability of the proposed model. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Hot-Air Balloon Tours: Crash Epidemiology in the United States, 2000-2011
Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.
2016-01-01
Introduction Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. Methods National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. Results During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. Discussion The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces. PMID:24279231
Mahajan, Narinder; Aggarwal, Meenu; Raina, Sunil; Verma, Lekh Raj; Mazta, Salig Ram; Gupta, B P
2013-01-01
Research Question: What are the various injuries in road traffic crash cases? Objectives: To study various non-fatal injuries in road traffic crash cases. Study Design: Hospital based Descriptive study. Study Population: The study population comprised of 401 consecutive cases of non- fatal injuries involved in road traffic crashes and reported at Indira Gandhi Medical College hospital, Shimla. Study Period: 1st June 2005 to 31st May 2006. Study Variables: Demographic characteristics of the victims, pattern of injuries and hospital stay of the victims. Types of crashes, time, day and month of crashes, vehicles involved in crashes, use of protective gear etc. Statistical Analysis: Percentages, Proportions. Results: 73% of the injured victims were young between 20-49yrs, male to female ratio being 5.3:1. Employees (34.7%) and occupants of transport vehicles (45.9%) constituted the maximum number of the victims. Major injuries (fractures and abd. injuries) were reported in 53.4% of the victims and fractures of lower limb were the commonest of the injuries (26.3%). Use of seat-belt was found to be alarmingly low (14.3%) amongst the four- wheeler users and its non-use was found to be significantly associated with the major injuries. Helmet was used by 36 cases (66.7%) out of total of 54 users of motorized two-wheelers at the time of crash. Human error was the most reported cause of crash (82%) and the most common mode of crash was skidding and/rolling down (55%).23.1% of the drivers were reported to have consumed alcohol at the time of crash. PMID:24404456
DOT National Transportation Integrated Search
2016-05-01
Full-scale rollover crash tests were performed on three non-pressure tank carbodies to validate previous analytical work and : determine the effectiveness of two different types of protective structures in protecting the top fittings. The tests were ...
Benefits of a Low Severity Frontal Crash Test
Digges, Kennerly; Dalmotas, Dainius
2007-01-01
The US Federal Motor Vehicle Safety Standard for frontal protection requires vehicle crash tests into a rigid barrier with two belted dummies in the front seats. The standard was recently modified to require two separate 56 Kph frontal tests. In one test the dummies are 50% males. In the other test, the dummies are 5% females. Analysis of crash test data indicates that the 56 Kph test does not encourage technology to reduce chest injuries in lower severity crashes. Tests conducted by Transport Canada provide data from belted 5% female dummies in the front seats of vehicles that were subjected crashes into a rigid barrier at 40 Kph. An analysis of the results showed that for many vehicles, the risks of serious chest injuries were higher in the 40 Kph test than in a 56 Kph test. This paper examines the benefits that would result from a requirement for a low severity (40 Kph) frontal barrier crash test with two belted 5% female dummies and more stringent chest injury requirements. A preliminary benefits analysis for chest deflection allowable in the range of 28 mm. to 36 mm. was conducted. A standard that limits the chest deflection to 34 mm. would reduce serious chest injury by 16% to 24% for the belted population in frontal crashes. PMID:18184499
Benefits of a low severity frontal crash test.
Digges, Kennerly; Dalmotas, Dainius
2007-01-01
The US Federal Motor Vehicle Safety Standard for frontal protection requires vehicle crash tests into a rigid barrier with two belted dummies in the front seats. The standard was recently modified to require two separate 56 Kph frontal tests. In one test the dummies are 50% males. In the other test, the dummies are 5% females. Analysis of crash test data indicates that the 56 Kph test does not encourage technology to reduce chest injuries in lower severity crashes. Tests conducted by Transport Canada provide data from belted 5% female dummies in the front seats of vehicles that were subjected crashes into a rigid barrier at 40 Kph. An analysis of the results showed that for many vehicles, the risks of serious chest injuries were higher in the 40 Kph test than in a 56 Kph test. This paper examines the benefits that would result from a requirement for a low severity (40 Kph) frontal barrier crash test with two belted 5% female dummies and more stringent chest injury requirements. A preliminary benefits analysis for chest deflection allowable in the range of 28 mm. to 36 mm. was conducted. A standard that limits the chest deflection to 34 mm. would reduce serious chest injury by 16% to 24% for the belted population in frontal crashes.
Special issue : new federal airbag rule
DOT National Transportation Integrated Search
2000-06-17
time the federal government has issued a regulation to protect people from the safety : systems in their cars. Besides assuring that airbags will continue to prevent deaths and : injuries in serious crashes, the new standard for occupant protection i...
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
DOT National Transportation Integrated Search
1999-11-01
The National Highway Traffic Safety Administration's (NHTSA) plans for upgrading the Federal Motor Vehicle Safety Standard (FMVSS) No. 208, frontal crash protection safety standard, include improving protection requirements for the normally seated mi...
Development of improved injury criteria for the assessment of advanced automotive restraint systems
DOT National Transportation Integrated Search
1998-01-01
The National Highway Traffic Safety Administration's (NHTSA) plans for upgrading the Federal Motor Vehicle Safety Standard (FMVSS) No. 208, frontal crash protection safety standard, include improving protection requirements for the normally seated mi...
Graduated driver license compliant teens involved in fatal motor vehicle crashes.
Pressley, Joyce C; Addison, Diane; Dawson, Patrick; Nelson, Sharifa S
2015-09-01
Significant reductions in motor vehicle injury mortality have been reported for teen drivers after passage of graduated driver licensing (GDL), seat belt, and no tolerance alcohol and drug laws. Despite this, teen drivers remain a vulnerable population with elevated fatal crash involvement. This study examines driver, vehicle, and crash characteristics of GDL-compliant, belted, and unimpaired teen drivers with the goal of identifying areas where further improvements might be realized. The Fatality Analysis Reporting System (FARS) for 2007 to 2009 was used to examine and classify driver violations/errors in compliant teen drivers (n = 1,571) of passenger vehicles involved in a fatal collision. Teens driving unbelted, non-GDL compliant, or impaired by alcohol or drugs were excluded. Statistical analysis used χ, Fisher's exact and multivariable logistic regression. Odds ratios are reported with 95% confidence intervals. Significance was defined as p < 0.05. Nearly one third (n = 1,571) of teen drivers involved in a fatal motor vehicle crash were GDL compliant, unimpaired, and belted. The majority held an intermediate GDL license (90.6%). Crash-related factors were identified for 63.1% of fatal crashes. Age- and sex-adjusted odds identified overcorrecting, speeding, lane errors, school morning crashes, distractions, and driving on slippery surfaces as having increased odds of fatality for the teen driver as well as newer vehicle models and heavier vehicle weight as protective. Among compliant drivers, weekday crashes before and after school and committing a driving violation at the time of crash were associated with increased risk of driver death and higher incidence of incapacitating injury in surviving drivers. Therapeutic study, level V.
The Effects of Curtain Airbag on Occupant Kinematics and Injury Index in Rollover Crash
Li, Hongyun; Cui, Dong; Lu, Shuang
2018-01-01
Background Occupant injuries in rollover crashes are associated with vehicle structural performance, as well as the restraint system design. For a better understanding of the occupant kinematics and injury index in certain rollover crash, it is essential to carry out dynamic vehicle rollover simulation with dummy included. Objective This study focused on effects of curtain airbag (CAB) parameters on occupant kinematics and injury indexes in a rollover crash. Besides, optimized parameters of the CAB were proposed for the purpose of decreasing the occupant injuries in such rollover scenario. Method and Material The vehicle motion from the physical test was introduced as the input for the numerical simulation, and the 50% Hybrid III dummy model from the MADYMO database was imported into a simulation model. The restraint system, including a validated CAB module, was introduced for occupant kinematics simulation and injury evaluation. TTF setting, maximum inflator pressure, and protection area of the CAB were analysed. Results After introducing the curtain airbag, the maximum head acceleration was reduced from 91.60 g to 49.52 g, and the neck Mx and neck Fz were reduced significantly. Among these CAB parameters, the TTF setting had the largest effect on the head acceleration which could reduce 8.6 g furthermore after optimization. The neck Fz was decreased from 3766.48 N to 2571.77 N after optimization of CAB protection area. Conclusions Avoiding hard contact is critical for the occupant protection in the rollover crashes. The simulation results indicated that occupant kinematics and certain injury indexes were improved with the help of CAB in such rollover scenario. Appropriate TTF setting and inflator selection could benefit occupant kinematics and injury indexes. Besides, it was advised to optimize the curtain airbag thickness around the head contact area to improve head and neck injury indexes. PMID:29765463
Evaluation of Vehicle-Based Crash Severity Metrics.
Tsoi, Ada H; Gabler, Hampton C
2015-01-01
Vehicle change in velocity (delta-v) is a widely used crash severity metric used to estimate occupant injury risk. Despite its widespread use, delta-v has several limitations. Of most concern, delta-v is a vehicle-based metric which does not consider the crash pulse or the performance of occupant restraints, e.g. seatbelts and airbags. Such criticisms have prompted the search for alternative impact severity metrics based upon vehicle kinematics. The purpose of this study was to assess the ability of the occupant impact velocity (OIV), acceleration severity index (ASI), vehicle pulse index (VPI), and maximum delta-v (delta-v) to predict serious injury in real world crashes. The study was based on the analysis of event data recorders (EDRs) downloaded from the National Automotive Sampling System / Crashworthiness Data System (NASS-CDS) 2000-2013 cases. All vehicles in the sample were GM passenger cars and light trucks involved in a frontal collision. Rollover crashes were excluded. Vehicles were restricted to single-event crashes that caused an airbag deployment. All EDR data were checked for a successful, completed recording of the event and that the crash pulse was complete. The maximum abbreviated injury scale (MAIS) was used to describe occupant injury outcome. Drivers were categorized into either non-seriously injured group (MAIS2-) or seriously injured group (MAIS3+), based on the severity of any injuries to the thorax, abdomen, and spine. ASI and OIV were calculated according to the Manual for Assessing Safety Hardware. VPI was calculated according to ISO/TR 12353-3, with vehicle-specific parameters determined from U.S. New Car Assessment Program crash tests. Using binary logistic regression, the cumulative probability of injury risk was determined for each metric and assessed for statistical significance, goodness-of-fit, and prediction accuracy. The dataset included 102,744 vehicles. A Wald chi-square test showed each vehicle-based crash severity metric estimate to be a significant predictor in the model (p < 0.05). For the belted drivers, both OIV and VPI were significantly better predictors of serious injury than delta-v (p < 0.05). For the unbelted drivers, there was no statistically significant difference between delta-v, OIV, VPI, and ASI. The broad findings of this study suggest it is feasible to improve injury prediction if we consider adding restraint performance to classic measures, e.g. delta-v. Applications, such as advanced automatic crash notification, should consider the use of different metrics for belted versus unbelted occupants.
Antona-Makoshi, Jacobo; Mikami, Koji; Lindkvist, Mats; Davidsson, Johan; Schick, Sylvia
2018-08-01
This study estimated the frequency and risk of Moderate-to-Maximal traumatic brain injuries sustained by occupants in motor vehicle crashes in the US. National Automotive Sampling System - Crashworthiness Data System crashes that occurred in years 2001-2015 with light vehicles produced 2001 or later were incorporated in the study. Crash type, crash severity, car model year, belt usage and occupant age and sex were controlled for in the analysis. The results showed that Moderate concussions account for 79% of all MAIS brain 2+ injuries. Belted occupants were at lower risks than unbelted occupants for most brain injury categories, including concussions. After controlling for the effects of age and crash severity, belted female occupants involved in frontal crashes were estimated to be 1.5 times more likely to sustain a concussion than male occupants in similar conditions. Belted elderly occupants were found to be at 10.5 and 8 times higher risks for sub-dural haemorrhages than non-elderly belted occupants in frontal and side crashes, respectively. Adopted occupant protection strategies appear to be insufficient to achieve significant decreases in risk of both life-threatening brain injuries and concussions for all car occupants. Further effort to develop occupant and injury specific strategies for the prevention of brain injuries are needed. This study suggests that these strategies may consider prioritization of life-threatening brain vasculature injuries, particularly in elderly occupants, and concussion injuries, particularly in female occupants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Morgan, Richard M; Cui, Chongzhen; Digges, Kennerly H; Cao, Libo; Kan, Cing-Dao Steve
2012-01-01
This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags.This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data-representing 227,305 tow-away crashes-the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash.
Requirements for the Crash Protection of Older Vehicle Passengers
Morris, Andrew; Welsh, Ruth; Hassan, Ahamedali
2003-01-01
This study compares injury outcomes in vehicle crashes involving different age groups of belted passengers. Two datasets were considered. Firstly, UK national data revealed that younger passengers are much more likely to be involved in crashes per million miles travelled compared to older passengers although older passengers are much more likely to be killed or seriously injured compared to younger passengers. Secondly, in-depth vehicle crash injury data were examined to determine some of the underlying reasons for the enhanced injury risk amongst older passengers. In crashes of approximately equal severity, the older passenger group were significantly more likely to be fatally injured in frontal crashes (p<0.001). However young passengers were as equally likely to be killed in struck-side crashes compared to the older group. The results also showed that older passengers sustained more serious injuries to the chest region in frontal crashes compared with the younger aged group (p<0.0001) and it is this body region that is particularly problematic. When the data were analysed further, it was found that a large proportion of passengers were female and that in the majority of cases, the seat belt was responsible for injury. Since by the year 2030, 1 in 4 persons will be aged over 65 in most OECD countries, the results suggest a need for intervention through vehicle design including in-vehicle crashworthiness systems that take into account reduced tolerance to impact with ageing. PMID:12941224
Traffic-law enforcement and risk of death from motor-vehicle crashes: case-crossover study.
Redelmeier, Donald A; Tibshirani, Robert J; Evans, Leonard
2003-06-28
Driving offences and traffic deaths are common in countries with high rates of motor-vehicle use. We tested whether traffic convictions, because of their direct effect on the recipient, might be associated with a reduced risk of fatal motor-vehicle crashes. We identified licensed drivers in Ontario, Canada, who had been involved in fatal crashes in the past 11 years. We used the case-crossover design to analyse the protective effect of recent convictions on individual drivers. 8975 licensed drivers had fatal crashes during the study period. 21501 driving convictions were recorded for all drivers from the date of obtaining a full licence to the date of fatal crash, equivalent to about one conviction per driver every 5 years. The risk of a fatal crash in the month after a conviction was about 35% lower than in a comparable month with no conviction for the same driver (95% CI 20-45, p=0.0002). The benefit lessened substantially by 2 months and was not significant by 3-4 months. The benefit was not altered by age, previous convictions, and other personal characteristics; was greater for speeding violations with penalty points than speeding violations without points; was no different for crashes of differing severity; and was not seen in drivers whose licences were suspended. Traffic-law enforcement effectively reduces the frequency of fatal motor-vehicle crashes in countries with high rates of motor-vehicle use. Inconsistent enforcement, therefore, may contribute to thousands of deaths each year worldwide.
Jet Engines - The New Masters of Advanced Flight Control
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2018-05-01
ANTICIPATED UNITED STATES CONGRESS ACT should lead to reversing a neglected duty to the people by supporting FAA induced bill to civilize classified military air combat technology to maximize flight safety of airliners and cargo jet transports, in addition to FAA certifying pilots to master Jet-Engine Steering ("JES") as automatic or pilot recovery when Traditional Aerodynamic-only Flight Control ("TAFC") fails to prevent a crash and other related damages
Linder, Astrid; Holmqvist, Kristian; Svensson, Mats Y
2018-05-01
Soft tissue neck injuries, also referred to as whiplash injuries, which can lead to long term suffering accounts for more than 60% of the cost of all injuries leading to permanent medical impairment for the insurance companies, with respect to injuries sustained in vehicle crashes. These injuries are sustained in all impact directions, however they are most common in rear impacts. Injury statistics have since the mid-1960s consistently shown that females are subject to a higher risk of sustaining this type of injury than males, on average twice the risk of injury. Furthermore, some recently developed anti-whiplash systems have revealed they provide less protection for females than males. The protection of both males and females should be addresses equally when designing and evaluating vehicle safety systems to ensure maximum safety for everyone. This is currently not the case. The norm for crash test dummies representing humans in crash test laboratories is an average male. The female part of the population is not represented in tests performed by consumer information organisations such as NCAP or in regulatory tests due to the absence of a physical dummy representing an average female. Recently, the world first virtual model of an average female crash test dummy was developed. In this study, simulations were run with both this model and an average male dummy model, seated in a simplified model of a vehicle seat. The results of the simulations were compared to earlier published results from simulations run in the same test set-up with a vehicle concepts seat. The three crash pulse severities of the Euro NCAP low severity rear impact test were applied. The motion of the neck, head and upper torso were analysed in addition to the accelerations and the Neck Injury Criterion (NIC). Furthermore, the response of the virtual models was compared to the response of volunteers as well as the average male model, to that of the response of a physical dummy model. Simulations with the virtual male and female dummy models revealed differences in dynamic response related to the crash severity, as well as between the two dummies in the two different seat models. For the comparison of the response of the virtual models to the response of the volunteers and the physical dummy model, the peak angular motion of the first thoracic vertebra as found in the volunteer tests and mimicked by the physical dummy were not of the same magnitude in the virtual models. The results of the study highlight the need for an extended test matrix that includes an average female dummy model to evaluate the level of occupant protection different seats provide in vehicle crashes. This would provide developers with an additional tool to ensure that both male and female occupants receive satisfactory protection and promote seat concepts that provide the best possible protection for the whole adult population. This study shows that using the mathematical models available today can provide insights suitable for future testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
A New Approach for Semantic Web Matching
NASA Astrophysics Data System (ADS)
Zamanifar, Kamran; Heidary, Golsa; Nematbakhsh, Naser; Mardukhi, Farhad
In this work we propose a new approach for semantic web matching to improve the performance of Web Service replacement. Because in automatic systems we should ensure the self-healing, self-configuration, self-optimization and self-management, all services should be always available and if one of them crashes, it should be replaced with the most similar one. Candidate services are advertised in Universal Description, Discovery and Integration (UDDI) all in Web Ontology Language (OWL). By the help of bipartite graph, we did the matching between the crashed service and a Candidate one. Then we chose the best service, which had the maximum rate of matching. In fact we compare two services' functionalities and capabilities to see how much they match. We found that the best way for matching two web services, is comparing the functionalities of them.
NASA Astrophysics Data System (ADS)
Raman, R.; Jayanth, K.; Sarkar, I.; Ravi, K.
2017-11-01
Crashworthiness of a material is a measure of its ability to absorb energy during a crash. A well-designed crash box is instrumental in protecting the costly vehicle components. A square, hollow, hybrid beam of aluminum/CFRP was subjected to dynamic axial load to analyze the effect of five different lay-up sequences on its crashworthiness. The beam was placed between two plates. Boundary conditions were imposed on them to simulate a frontal body crash test model. Modeling and dynamic analysis of composite structures was done on ABAQUS. Different orientation of carbon fibers varies the crashworthiness of the hybrid beam. Addition of CFRP layer showed clear improvement in specific energy absorption and crush force efficiency compared to pure aluminum beam. Two layers of CFRP oriented at 90° on Aluminum showed 52% increase in CFE.
Brown, J Kristine; Jing, Yuezhou; Wang, Stewart; Ehrlich, Peter F
2006-02-01
Motor vehicle crashes (MVCs) account for 50% of pediatric trauma. Safety improvements are typically tested with child crash dummies using an in vitro model. The Crash Injury Research Engineering Network (CIREN) provides an in vivo validation process. Previous research suggest that children in lateral crashes or front-seat locations have higher Injury Severity Scale scores and lower Glasgow Coma Scale scores than those in frontal-impact crashes. However, specific injury patterns and crash characteristics have not been characterized. Data were collected from the CIREN multidisciplinary crash reconstruction network (10 pediatric trauma centers). Injuries were examined with regard to crash direction (frontal/lateral), restraint use, seat location, and change in velocity at impact (DeltaV). Injuries were limited to Abbreviated Injury Scale (AIS) scores of 3 or higher and included head, thoracic, abdominal, pelvic, spine, and long bone (orthopedic) injuries. Standard age groupings (0-4, 5-9, 10-14, and 15-18 years) were used. Statistical analyses used Fisher's Exact test and multiple logistic regressions. Four hundred seventeen MVCs with 2500 injuries were analyzed (males = 219, females = 198). Controlling for DeltaV and age, children in lateral-impact crashes (n = 232) were significantly more likely to suffer severe injuries to the head and thorax as compared with children in frontal crashes (n = 185), who were more likely to suffer severe spine and orthopedic injuries. Children in a front-seat (n = 236) vs those in a back-seat (n = 169) position had more injuries to the thoracic (27% vs 17%), abdominal (21% vs 13%), pelvic (11% vs 1%), and orthopedic (28% vs 10%) regions (P < .05 for all). Seat belts were protective for pelvic (5% vs 12% unbelted) and orthopedic (15% vs 40%) injuries (odds ratio = 3, P < .01 for both). A reproducible pattern of injury is noted for children involved in lateral-impact crashes characterized by head and chest injuries. The Injury Severity Scale scores were higher for children in front-seat positions. Increased lateral-impact safety measures such as mandatory side curtain airbags may decrease morbidity. Furthermore, continued public education for positioning children in the back seat of cars is warranted.
2010-01-01
Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network. PMID:20338064
Estimate of mortality reduction with implementation of advanced automatic collision notification.
Lee, Ellen; Wu, Jingshu; Kang, Thomas; Craig, Matthew
2017-05-29
Advanced Automatic Collision Notification (AACN) is a system on a motor vehicle that notifies a public safety answering point (PSAP), either directly or through a third party, that the vehicle has had a crash. AACN systems enable earlier notification of a motor vehicle crash and provide an injury prediction that can help dispatchers and first responders make better decisions about how and where to transport the patient, thus getting the patient to definitive care sooner. The purposes of the current research are to identify the target population that could benefit from AACN, and to develop a reasonable estimate range of potential lives saved with implementation of AACN within the vehicle fleet. Data from the Fatality Analysis Reporting System (FARS) years 2009-2015 and National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) years 2000-2015 were obtained. FARS data were used to determine absolute estimates of the target population who may receive benefit from AACN. These estimates accounted for a number of factors, such as whether a fatal occupant had nearby access to a trauma center and also was correctly identified by the injury severity prediction algorithm as having a "high probability of severe injury." NASS-CDS data were used to provide relative comparisons among subsets of the population. Specifically, relative survival rate ratios between occupants treated at trauma centers versus at non-trauma centers were determined using the nonparametric Kaplan-Meier estimator. Finally, the fatality reduction rate associated with trauma center care was combined with the previously published fatality reduction rate for faster notification time to develop a range for possible lives saved. Two relevant target populations were identified. A larger subset of 6893 fatalities can benefit only from earlier notification associated with AACN. A smaller subgroup of between 1495 and 2330 fatalities can benefit from both earlier notification and change in treatment destination (i.e., non-trauma center to trauma center). A Kaplan-Meier life curve and a multiple proportional hazard model were used to predict the benefits associated with transport to a trauma center. The resulting range for potential lives saved annually was 360 to 721. This analysis provides the estimates of lives that could potentially be saved with full implementation of AACN and universal cell coverage availability. This represents a fatality reduction of approximately 1.6% to 3.3% per year, and more than double the lives saved by earlier notification alone. In conclusion, AACN is a postcrash technology with a promising potential for safety benefit. AACN is therefore a key component of integrated safety systems that aim to protect occupants across the entire crash spectrum.
Type, size and age of vehicles driven by teenage drivers killed in crashes during 2008-2012.
McCartt, Anne T; Teoh, Eric R
2015-04-01
Given teenagers' elevated crash rates, it is especially important that their vehicles have key safety features and good crash protection. A profile of vehicles driven by teenagers killed in crashes was developed. Data on vehicles of drivers ages 15-17 and ages 35-50 who died in crashes during 2008-2012 were obtained from the Fatality Analysis Reporting System. Using vehicle identification numbers, the vehicle make, model and model year were identified. 29% of fatally injured teenagers were driving mini or small cars, 82% were driving vehicles at least 6 years old, and 48% were driving vehicles at least 11 years old. Compared with middle-aged drivers, teenagers' vehicles more often were small or mini cars or older vehicles. Few teenagers' vehicles had electronic stability control or side airbags as standard features. Parents should consider safety when choosing vehicles for their teenagers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOT National Transportation Integrated Search
1978-02-01
The results of test programs conducted by the Protection and Survival Laboratory to investigate the performance of prototype or operational seating and restraint systems relative to their ability to provide protection against crash injury and to inve...
DOT National Transportation Integrated Search
1978-06-01
The results of test programs conducted by the Protection and Survival Laboratory to investigate the performance of prototype or operational seating and restraint systems relative to their ability to provide protection against crash injury and to inve...
Ferguson, Susan A; Schneider, Lawrence W
2008-10-01
In the mid-1990s, evidence emerged that air bag deployments could result in deaths to vulnerable vehicle occupants who were very close to air bag modules when they deployed. In 1997, federal frontal crash test requirements were modified to allow crash testing with unbelted dummies to be performed using sled tests. As a result, vehicle manufacturers were able to redesign air bags to deploy with less force and energy, thereby reducing the toll of air bag-induced deaths. However, there was concern that depowered air bags may not provide the same level of protection to unbelted occupants in severe frontal crashes, particularly occupants of large stature and body mass. This paper provides a summary of recent studies addressing this issue. To expedite the accrual of data regarding air bag performance, the collection of additional crash data was funded by the Alliance of Automobile Manufacturers. A panel of experts was commissioned to oversee the process and evaluate the data. During the past 6 years, a series of studies has been undertaken by panel members and others to evaluate the performance of redesigned air bags and the data are summarized here. There is now convincing evidence that the combination of air bag redesign and public education have resulted in dramatic reductions in air bag-induced infant and child deaths. In addition, the frontal crash fatality risks among children sitting in front seats have been reduced by as much as half, with younger children showing the greatest benefits. Among adult drivers and right-front passengers, there is no evidence for the predicted overall loss of protection with sled-certified air bags and there are far fewer air bag-induced deaths among this population. However, despite exhaustive analyses of frontal-crash data, the possibility of a somewhat elevated fatality risk among a subset of unbelted drivers in sled-certified 1998-1999 model vehicles cannot be ruled out. There also is some evidence that the risks of serious chest injury may be higher among unbelted drivers in frontal crashes in sled-certified vehicles with redesigned air bags. Further research is warranted to determine whether these differences remain in newer model vehicles designed to the advanced air bag rule, which took effect in 2003.
Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Winslow, James E; Stitzel, Joel D
2017-01-01
Occult injuries are not easily detected and can be potentially life-threatening. The purpose of this study was to quantify the perceived occultness of the most frequent motor vehicle crash injuries according to emergency medical services (EMS) professionals. An electronic survey was distributed to 1,125 EMS professionals who were asked to quantify the likelihood that first responders would miss symptoms related to a particular injury on a 5-point Likert scale. The Occult Score for each injury was computed from the average of all the survey responses and normalized to be a continuous metric ranging from 0 to 1 where 0 is a non-occult (highly apparent on initial presentation) injury and 1 is an occult (unapparent on initial presentation) injury. Overall, 110,671 survey responses were collected. The Occult Score ranged from 0 to 1 with a mean, median, and standard deviation of 0.443, 0.450, and 0.233, respectively. When comparing the Occult Score of an injury to its corresponding AIS severity, there was no relationship between the metrics. When stratifying by body region, injury type, and AIS severity, it was evident that AIS 2-4 abdominal injuries with lacerations, hemorrhage, or contusions were perceived as the most occult injuries. Timely triage is key to reduce the morbidity and mortality associated with occult injuries. The Occult Score developed in this study to describe the predictability of an injury in a motor vehicle crash will be used as part of a larger effort, including incorporation into an advanced automatic crash notification (AACN) algorithm to detect crash conditions associated with a patient's need for prompt treatment at a trauma center. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exposure factors of Victoria's active motorcycle fleet related to serious injury crash risk.
Allen, T; McClure, R; Newstead, S V; Lenné, M G; Hillard, P; Symmons, M; Day, L
2016-11-16
The purpose of this study was to describe the nature and extent of current powered 2-wheeler (PTW) risk exposures in order to support future efforts to improve safety for this mode of transport. A cross-sectional analysis of the control arm of a population-based case-control study was conducted. The control sample was selected from 204 sites on public roads within 150 km of the city of Melbourne that were locations of recent serious injury motorcycle crashes. Traffic observations and measurements at each site were sampled for a mean of 2 h on the same type of day (weekday, Saturday, or Sunday) and within 1 h of the crash time. Photographs of passing riders during this observation period recorded data relating to characteristics of PTWs, age of riders, travel speed of PTWs and all vehicles, time gaps between vehicles, visibility, and protective clothing use. Motorcycles and scooters represented 0.6% of all traffic (compared with 4% of all vehicle registrations). Riders were significantly more likely to have larger time gaps in front and behind when compared to other vehicles. The average travel speed of motorcycles was not significantly different than the traffic, but a significantly greater proportion were exceeding the speed limit when compared to other vehicles (6 vs. 3%, respectively). The age of registered owners of passing motorcycles was 42 years. Over half of riders were wearing dark clothing with no fluorescent or reflective surfaces. One third of motorcyclists had maximum coverage of motorcycle-specific protective clothing. A very low prevalence of motorcyclists combined with relatively higher rates of larger time gaps to other vehicles around motorcycles may help explain their overrepresentation in injury crashes where another vehicle fails to give way. An increased risk of injury in the event of a crash exists for a small but greater proportion of motorcyclists (compared to other vehicle types) who were exceeding the speed limit. An apparent shift toward older age of the active rider population may be reducing injury crash risk relative to exposure time. There is significant scope to improve the physical conspicuity of motorcyclists and the frequency of motorcycle specific protective clothing use. These results can be used to inform policy development and monitor progress of current and future road safety initiatives.
Critical older driver errors in a national sample of serious U.S. crashes.
Cicchino, Jessica B; McCartt, Anne T
2015-07-01
Older drivers are at increased risk of crash involvement per mile traveled. The purpose of this study was to examine older driver errors in serious crashes to determine which errors are most prevalent. The National Highway Traffic Safety Administration's National Motor Vehicle Crash Causation Survey collected in-depth, on-scene data for a nationally representative sample of 5470 U.S. police-reported passenger vehicle crashes during 2005-2007 for which emergency medical services were dispatched. There were 620 crashes involving 647 drivers aged 70 and older, representing 250,504 crash-involved older drivers. The proportion of various critical errors made by drivers aged 70 and older were compared with those made by drivers aged 35-54. Driver error was the critical reason for 97% of crashes involving older drivers. Among older drivers who made critical errors, the most common were inadequate surveillance (33%) and misjudgment of the length of a gap between vehicles or of another vehicle's speed, illegal maneuvers, medical events, and daydreaming (6% each). Inadequate surveillance (33% vs. 22%) and gap or speed misjudgment errors (6% vs. 3%) were more prevalent among older drivers than middle-aged drivers. Seventy-one percent of older drivers' inadequate surveillance errors were due to looking and not seeing another vehicle or failing to see a traffic control rather than failing to look, compared with 40% of inadequate surveillance errors among middle-aged drivers. About two-thirds (66%) of older drivers' inadequate surveillance errors and 77% of their gap or speed misjudgment errors were made when turning left at intersections. When older drivers traveled off the edge of the road or traveled over the lane line, this was most commonly due to non-performance errors such as medical events (51% and 44%, respectively), whereas middle-aged drivers were involved in these crash types for other reasons. Gap or speed misjudgment errors and inadequate surveillance errors were significantly more prevalent among female older drivers than among female middle-aged drivers, but the prevalence of these errors did not differ significantly between older and middle-aged male drivers. These errors comprised 51% of errors among older female drivers but only 31% among older male drivers. Efforts to reduce older driver crash involvements should focus on diminishing the likelihood of the most common driver errors. Countermeasures that simplify or remove the need to make left turns across traffic such as roundabouts, protected left turn signals, and diverging diamond intersection designs could decrease the frequency of inadequate surveillance and gap or speed misjudgment errors. In the future, vehicle-to-vehicle and vehicle-to-infrastructure communications may also help protect older drivers from these errors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marmor, Michael; Marmor, Nicholas E.
2006-01-01
Objectives. We investigated risk factors for fatal motor vehicle crashes on slippery roads in the Northeastern United States, 1998–2002. Methods. We analyzed data from the Fatality Analysis Reporting System of the National Highway Traffic Safety Administration. Results. Rates of crashes on slippery roads, and ratios of crashes on slippery roads to crashes on dry roads, were greatest among the youngest drivers. Among those aged 16 to 19 years, logistic regression analysis showed significant, independent risks associated with excessive speed for conditions (odds ratio [OR]=1.38), time of day (OR=1.80 for 5:00 to 9:00 am vs 10:00 am to 2:00 pm), time of year (OR=6.17 for January vs July), type of road (OR=1.27 for rural vs urban roads ), and age (OR=1.19 for those aged 16 to 17 years vs those aged 18 to 19 years). Licensure from states with graduated licensing programs was protective against crashes attributed to swerving on slippery roads (adjusted OR = 0.63). Risk factors among drivers older than 19 years were similar but peaked at different times of day and included increased risks for women compared with men. Conclusions. Driver training programs need to better address hazards presented by slippery roads. PMID:16507735
Cummings, P
2002-01-01
Objective: Estimates of any protective effect of seat belts could be exaggerated if some crash survivors falsely claimed to police that they were belted in order to avoid a fine. The aim of this study was to determine whether estimates of seat belt effectiveness differed when based on belt use as recorded by the police and belt use determined by trained crash investigators. Design: Matched cohort study. Setting: United States. Subjects: Adult driver-passenger pairs in the same vehicle with at least one death (n=1689) sampled from crashes during 1988–2000; data from the National Accident Sampling System Crashworthiness Data System. Main outcome measure: Risk ratio for death among belted occupants compared with those not belted. Results: Trained investigators determined post-crash seat belt use by vehicle inspections for 92% of the occupants, confidential interviews with survivors for 5%, and medical or autopsy reports for 3%. Using this information, the adjusted risk ratio for belted persons was 0.36 (95% confidence interval 0.29 to 0.46). The risk ratio was also 0.36 using police reported belt use for the same crashes. Conclusions: Estimates of seat belt effects based upon police data were not substantially different from estimates which used data obtained by trained crash investigators who were not police officers. These results were from vehicles in which at least one front seat occupant died; these findings may not apply to estimates which use data from crashes without a death. PMID:12460976
Injury Risk for Rear-Seated Occupants in Small Overlap Crashes
Arbogast, Kristy B.; Locey, Caitlin M.; Hammond, Rachel; Belwadi, Aditya
2013-01-01
Small overlap crashes, where the primary crash engagement is outboard from the longitudinal energy absorbing structures of the vehicle, have received recent interest as a crash dynamic that results in high likelihood of injury. Previous analyses of good performing vehicles showed that 24% of crashes with AIS 3+ injuries to front seat occupants were small overlap crashes. However, similar evaluations have not been conducted for those rear seated. Vehicle dynamics suggest that rear seat occupants may be at greater risk due to lack of lateral seating support and a steering wheel to hold, making them more sensitive to lateral movement seen in these crashes. Thus, the objective was to calculate injury risk for rear-seated occupants in small overlap collisions. AIS 2+ and AIS 3+ injury risk was calculated from NASS-CDS data from 2000–2011. Inclusion criteria were vehicles of model year 2000 or later, with CDC codes of “FL” or “FR”, and an occupant in the second or third row. AIS2+ injury risk was 5.1%, and AIS3+ injury risk was 2.4%. Of note, half of the occupants were <15 years of age indicating rear seat protection should emphasize the young. Occupants seated near side were nearly three times as likely to sustain an AIS2+ injury than occupants seated far side. Particular attention should be paid to the prominence of head injuries in this crash dynamic and consideration given to their mitigation. Additional research should determine whether countermeasures being implemented for front seat occupants can be beneficial to rear seat occupants. PMID:24406964
Teschke, Kay; Dennis, Jessica; Reynolds, Conor C O; Winters, Meghan; Harris, M Anne
2016-07-22
Streetcar or train tracks in urban areas are difficult for bicyclists to negotiate and are a cause of crashes and injuries. This study used mixed methods to identify measures to prevent such crashes, by examining track-related crashes that resulted in injuries to cyclists, and obtaining information from the local transit agency and bike shops. We compared personal, trip, and route infrastructure characteristics of 87 crashes directly involving streetcar or train tracks to 189 crashes in other circumstances in Toronto, Canada. We complemented this with engineering information about the rail systems, interviews of personnel at seven bike shops about advice they provide to customers, and width measurements of tires on commonly sold bikes. In our study, 32 % of injured cyclists had crashes that directly involved tracks. The vast majority resulted from the bike tire being caught in the rail flangeway (gap in the road surface alongside rails), often when cyclists made unplanned maneuvers to avoid a collision. Track crashes were more common on major city streets with parked cars and no bike infrastructure, with left turns at intersections, with hybrid, racing and city bikes, among less experienced and less frequent bicyclists, and among women. Commonly sold bikes typically had tire widths narrower than the smallest track flangeways. There were no track crashes in route sections where streetcars and trains had dedicated rights of way. Given our results, prevention efforts might be directed at individual knowledge, bicycle tires, or route design, but their potential for success is likely to differ. Although it may be possible to reach a broader audience with continued advice about how to avoid track crashes, the persistence and frequency of these crashes and their unpredictable circumstances indicates that other solutions are needed. Using tires wider than streetcar or train flangeways could prevent some crashes, though there are other considerations that lead many cyclists to have narrower tires. To prevent the majority of track-involved injuries, route design measures including dedicated rail rights of way, cycle tracks (physically separated bike lanes), and protected intersections would be the best strategy.
Car safety seats for children: rear facing for best protection
Henary, B; Sherwood, C P; Crandall, J R; Kent, R W; Vaca, F E; Arbogast, K B; Bull, M J
2007-01-01
Objective To compare the injury risk between rear‐facing (RFCS) and forward‐facing (FFCS) car seats for children less than 2 years of age in the USA. Methods Data were extracted from a US National Highway Traffic Safety Administration vehicle crash database for the years 1988–2003. Children 0–23 months of age restrained in an RFCS or FFCS when riding in passenger cars, sport utility vehicles, or light trucks were included in the study. Logistic regression models and restraint effectiveness calculations were used to compare the risk of injury between children restrained in RFCSs and FFCSs. Results Children in FFCSs were significantly more likely to be seriously injured than children restrained in RFCSs in all crash types (OR = 1.76, 95% CI 1.40 to 2.20). When considering frontal crashes alone, children in FFCSs were more likely to be seriously injured (OR = 1.23), although this finding was not statistically significant (95% CI 0.95 to 1.59). In side crashes, however, children in FFCSs were much more likely to be injured (OR = 5.53, 95% CI 3.74 to 8.18). When 1 year olds were analyzed separately, these children were also more likely to be seriously injured when restrained in FFCSs (OR = 5.32, 95% CI 3.43 to 8.24). Effectiveness estimates for RFCSs (93%) were found to be 15% higher than those for FFCSs (78%). Conclusions RFCSs are more effective than FFCSs in protecting restrained children aged 0–23 months. The same findings apply when 1 year olds are analyzed separately. Use of an RFCS, in accordance with restraint recommendations for child size and weight, is an excellent choice for optimum protection up to a child's second birthday. PMID:18056317
Mueller, Becky; Farmer, Charles; Jermakian, Jessica; Zuby, David
2013-11-01
Pedestrian protection evaluations have been developed to encourage vehicle front-end designs that mitigate the consequences of vehicle-to-pedestrian crashes. The European New Car Assessment Program (Euro NCAP) evaluates pedestrian head protection with impacts against vehicle hood, windshield, and A-pillars. The Global Technical Regulation No. 9 (GTR 9), being evaluated for U.S. regulation, limits head protection evaluations to impacts against vehicle hoods. The objective of this study was to compare results from pedestrian head impact testing to the real-world rates of fatal and incapacitating injuries in U.S. pedestrian crashes. Data from police reported pedestrian crashes in 14 states were used to calculate real-world fatal and in- capacitating injury rates for seven 2002-07 small cars. Rates were 2.17-4.04 per 100 pedestrians struck for fatal injuries and 10.45-15.35 for incapacitating injuries. Euro NCAP style pedestrian headform tests were conducted against windshield, A-pillar, and hoods of the study vehicles. When compared with pedestrian injury rates, the vehicles' Euro NCAP scores, ranging 5-10 points, showed strong negative correlations (-0.6) to injury rates, though none were statistically significant. Data from the headform impacts for each of the study vehicles were used to calculate that vehicle's predicted serious injury risk. The predicted risks from both the Euro NCAP and GTR 9 test zones showed high positive correlations with the pedestrian fatal and incapacitating injury rates, though few were statistically significant. Whether vehicle stiffness is evaluated on all components of vehicle front ends (Euro NCAP) or is limited to hoods (GTR 9), softer vehicle components correspond to a lower risk of fatality.
NASA Astrophysics Data System (ADS)
Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki
This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.
Braver, E R; Ferguson, S A; Greene, M A; Lund, A K
1997-11-05
Virtually all new cars now are equipped with passenger air bags. Determining whether passenger air bags are saving lives is important, particularly because passenger air bags have caused some deaths among children and adults. To assess the effectiveness of passenger air bags in reducing the risk of death in frontal crashes for right front passengers. Air bags are designed to protect occupants in frontal crashes. Using Fatality Analysis Reporting System data for calendar years 1992 through 1995, the relative frequency of right front passenger deaths in frontal vs nonfrontal fatal crashes was compared for cars with dual air bags and for cars with driver-only air bags. Odds of right front passengers dying in frontal compared with nonfrontal fatal crashes were computed for 1992 through 1995 model year cars with dual air bags and for cars with driver-only air bags. Percentage reductions in right front passenger deaths in dual air bag vehicles were estimated. Right front passenger fatalities were 18% lower than expected in frontal crashes of cars with dual air bags and 11% lower in all crashes. An estimated 73 fewer than expected right front passengers died in 1992 through 1995 model cars with dual air bags during 1992 through 1995. The risk of frontal crash death for right front passengers in cars with dual air bags was reduced 14% among those reported to be using belts and 23% among belt nonusers. Children younger than 10 years in cars with dual air bags had a 34% increased risk of dying in frontal crashes. Passenger air bags were associated with substantial reductions in fatalities among right front passengers in frontal crashes. However, more children are being killed than are being saved by air bags. Immediate countermeasures to reduce the dangers of air bags to children and adults are suggested.
[Study on Intelligent Automatic Tracking Radiation Protection Curtain].
Zhao, Longyang; Han, Jindong; Ou, Minjian; Chen, Jinlong
2015-09-01
In order to overcome the shortcomings of traditional X-ray inspection taking passive protection mode, this paper combines the automatic control technology, puts forward a kind of active protection X-ray equipment. The device of automatic detection of patients receiving X-ray irradiation part, intelligent adjustment in patients and shooting device between automatic tracking radiation protection device height. The device has the advantages of automatic adjustment, anti-radiation device, reduce the height of non-irradiated area X-ray radiation and improve the work efficiency. Testing by the professional organization, the device can decrease more than 90% of X-ray dose for patients with non-irradiated area.
Rear Seat Occupant Thorax Protection in Near Side Impacts
Bohman, Katarina; Rosén, Erik; Sunnevang, Cecilia; Boström, Ola
2009-01-01
Thoracic side-airbags (SAB) have proven to protect front seat occupants in side impacts. This benefit has not been evaluated for rear seat occupants who are typically small statured. The objective was to analyze field data from rear seat occupants in near side impacts, and evaluate the effect of a SAB in the rear seat, through full scale vehicle tests. A field study using the NASS-CDS database was performed to review rear seat crash characteristics, occupant injuries (Abbreviated Injury Scale 3+, AIS3+) and injury sources. Full scale tests were performed with the side impact dummy SID-IIs at two different crash severities, with and without SAB in a midsize passenger car. Field data showed that of all AIS3+ injured restrained occupants 13 years and older, 59% had AIS3+ thoracic injuries and 38% had AIS3+ head injuries. The thoracic injuries were distributed to lungs (60%), skeletal fractures (38%) and injuries to arteries (1,26%) and heart (0,1%). For AIS3+ injured children, age 4–12, 51% had AIS3+ thoracic injuries and 54% had AIS3+ head injuries. Compared to adults, children sustained less fractures and more lung injuries. The rear side interior was the main injury source regardless of age group. In the full scale tests, the thoracic side-airbag reduced the average rib deflection by 50% and resulted in an AIS3+ injury risk reduction from 36% to 3%. At the higher impact speed, SAB reduced the injury risk from 93% to 24%. The full scale crash tests showed that SAB offer a significant potential for thoracic injury reduction in the crash severities causing the majority of serious injuries in real life crashes. PMID:20184828
Kumar, Sri; Enz, Bruce; Ponder, Perry L; Anderson, Bob
2009-01-01
Traffic safety has been significantly improved over the past several decades reducing injury and fatality rates. However, there is a paucity of research effort to address the safety issues in underride accidents, specifically the side underride crashes. It is well known that the compromise of occupant space in the vehicle leads to a higher probability of serious or fatal injuries. A better understanding of occupant protection and mechanism of injuries involved in side underride accidents assists in the advancement of safety measures. The present work evaluates the injury potential to occupants during side underride crashes using the car-to-trailer crash methodology. Four crash tests were conducted into the side of a stationary trailer fitted with the side underride guard system (SURG). The SURG used in these tests is 25% lighter than the previous design. A 5th percentile hybrid III female dummy was placed in the driver seat and restrained with the three-point lap and shoulder harness. The anthropometric dummy was instrumented with a head triaxial accelerometer, a chest triaxal accelerometer, a load cell to measure neck force and moment, and a load cell to measure the femur force. The vehicle acceleration was measured using a traxial accelerometer in the rear center tunnel. High speed, standard video and still photos were taken. In all tests, the intrusion was limited to the front structure of the vehicle without any significant compromise to the occupant space. Results indicate that the resultant head and chest accelerations, head injury criterion (HIC), neck force and moment, and femur force were well below the injury tolerance. The present findings support the hypothesis that the SURG not only limits or eliminates the intrusion into the occupant space but also results in biomechanical injury values well below the tolerance limit in motor vehicle crashes.
Heat shields for aircraft - A new concept to save lives in crash fires.
NASA Technical Reports Server (NTRS)
Neel, C. B.; Parker, J. A.; Fish, R. H.; Henshaw, J.; Newland, J. H.; Tempesta, F. L.
1971-01-01
A passenger compartment surrounded by a fire-retardant shell, to protect the occupants long enough for the fire to burn out or for fire-fighting equipment to reach the aircraft and extinguish it, is proposed as a new concept for saving lives in crash fires. This concept is made possible by the recent development of two new fire-retardant materials: a very lightweight foam plastic, called polyisocyanurate foam, and an intumescent paint. Exposed to heat, the intumescent paint expands to many times its original thickness and insulates the surface underneath it. Demonstration tests are illustrated, described and discussed. However, some problems, such as preventing fuselage rupture and protecting windows, must be solved before such a system can be used.
Morgan, Richard M.; Cui, Chongzhen; Digges, Kennerly H.; Cao, Libo; Kan, Cing-Dao (Steve)
2012-01-01
This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags. This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data—representing 227,305 tow-away crashes—the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash. PMID:23169135
Chen, Irene G; Durbin, Dennis R; Elliott, Michael R; Senserrick, Teresa; Winston, Flaura K
2006-01-01
To examine the association between child passenger injury risk, restraint use, and crash time (day vs. night) for children in crashes of vehicles driven by teenage versus adult drivers. Cross-sectional study involving telephone interviews with insured drivers in a probability sample of 6,184 crashes involving 10,028 children. Child passengers in teen nighttime crashes had an increased injury risk and an increased risk of restraint nonuse compared with those in teen daytime crashes. This increased injury risk can be explained by differences in the age of child passengers, collision type, and child passenger's restraint status associated with time of day. In order to limit the risk of injury to child passengers driven by teens, Graduated Driver Licensing (GDL) laws should include provisions restricting nighttime driving, as well as mandates for age-appropriate restraint for child passengers. Consideration should also be given for education in child passenger safety for novice teen drivers as part of the licensing process. Results of this study can be used to support advocacy efforts by the automotive industry and others to promote nighttime driving restrictions on novice drivers. In addition, given that both driver groups were more likely to be involved in a single-vehicle collision during the night, technologies such as electronic stability control may offer opportunities for protection. Further reseach on specific circumstances of teen nighttime crashes is needed to inform industry efforts to improve visibility or vehicle operation under poor lighting conditions.
An In-depth Study of Abdominal Injuries Sustained by Car Occupants in Frontal Crashes
Frampton, Richard; Lenard, James; Compigne, Sabine
2012-01-01
Currently, neither abdominal injury risk nor rear seat passenger safety is assessed in European frontal crash testing. The objective of this study was to provide real world in-depth analysis of the factors related to abdominal injury for belted front and rear seat occupants in frontal crashes. Rear occupants were significantly more at risk of AIS 2+ and 3+ abdominal injury, followed by front seat passengers and then drivers. This was still the case even after controlling for occupant age. Increasing age was separately identified as a factor related to increased abdominal injury risk in all seating positions. One exception to this trend concerned rear seated 15 to 19 year olds who sustained moderate to serious abdominal injury at almost the same rate as rear occupants aged 65+.No strong association was seen between AIS 2+ abdominal injury rates and gender. The majority of occupant body mass indices ranged from underweight to obese. Across that range, the AIS 2+ abdominal injury rates were very similar but a small number of very obese and extremely obese occupants outside of the range did exhibit noticeably higher rates. An analysis of variance in the rate of AIS 2+ abdominal injury with different restraint systems showed that simple belt systems, as used by most rear seat passengers, were the least protective. Increasing sophistication of the restraint system was related to lower rates of injury. The ANOVA also confirmed occupant age and crash severity as highly associated with abdominal injury risk. The most frequently injured abdominal organs for front seat occupants were the liver and spleen. Abdominal injury patterns for rear seat passengers were very different. While they also sustained significant injuries to solid organs, their rates of injury to the hollow organs (jejunum-ileum, mesentary, colon) were far higher even though the rate of fracture of two or more ribs did not differ significantly between seat positions. These results have implications for the design of restraint systems, particularly in relation to the occurrence of abdominal injury. They also raise issues of crash protection for older occupants as well as the protection afforded in different seating positions. PMID:23169124
Code of Federal Regulations, 2014 CFR
2014-10-01
... Requirements § 585.11 Scope. This subpart establishes requirements for manufacturers of passenger cars and... air bag requirements of Standard No. 208, Occupant crash protection (49 CFR 571.208). ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Requirements § 585.11 Scope. This subpart establishes requirements for manufacturers of passenger cars and... air bag requirements of Standard No. 208, Occupant crash protection (49 CFR 571.208). ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Requirements § 585.11 Scope. This subpart establishes requirements for manufacturers of passenger cars and... air bag requirements of Standard No. 208, Occupant crash protection (49 CFR 571.208). ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Requirements § 585.11 Scope. This subpart establishes requirements for manufacturers of passenger cars and... air bag requirements of Standard No. 208, Occupant crash protection (49 CFR 571.208). ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Requirements § 585.11 Scope. This subpart establishes requirements for manufacturers of passenger cars and... air bag requirements of Standard No. 208, Occupant crash protection (49 CFR 571.208). ...
Correlates of pilot fatality in general aviation crashes.
Li, G; Baker, S P
1999-04-01
General aviation accounts for the majority of aviation crashes and casualties in the United States, and general aviation safety has not improved in the past decade. This study identifies factors associated with pilot fatality in general aviation crashes. We analyzed the National Transportation Safety Board's Factual Reports for all airplane and helicopter crashes of general aviation flights that occurred in North Carolina and Maryland during 1985 through 1994. Surviving pilots were compared with fatally injured pilots in relation to crash circumstances, and pilot and aircraft characteristics, at bivariate level and multivariate level. A total of 667 crashes resulted in 276 deaths and 368 injuries during the 10-yr period in the two states. Of the pilots-in-command involved in these crashes, 146 (22%) died. The case fatality rate for pilots was significantly higher in crashes that occurred between 6 p.m. and 5 a.m. (34%), away from airports (36%), with aircraft fire (69%), or in instrument meteorological weather conditions (IMC) (71%). Multivariate logistic regression revealed that the significant correlates of pilot fatality were aircraft fire [odds ratio (OR) 13.7, 95% confidence interval (CI) 6.9-27.2], off-airport location (OR 9.9, 95% CI 5.0-19.6), IMC (OR 9.1, 95% CI 4.3-19.6), nighttime (OR 2.2, 95% CI 1.3-3.7), and pilot age > or = 50 yr (OR 1.7, 95% CI 1.0-3.0). Pilot gender, flight experience, principal profession, and type of aircraft (airplane vs. helicopter) were not significantly associated with the likelihood of survival. The most important correlates of pilot fatality are variables likely related to increased impact forces. Better occupant protection equipment, such as air bag and crashworthy fuel system, are needed for general aviation aircraft.
Integrated traffic conflict model for estimating crash modification factors.
Shahdah, Usama; Saccomanno, Frank; Persaud, Bhagwant
2014-10-01
Crash modification factors (CMFs) for road safety treatments are usually obtained through observational models based on reported crashes. Observational Bayesian before-and-after methods have been applied to obtain more precise estimates of CMFs by accounting for the regression-to-the-mean bias inherent in naive methods. However, sufficient crash data reported over an extended period of time are needed to provide reliable estimates of treatment effects, a requirement that can be a challenge for certain types of treatment. In addition, these studies require that sites analyzed actually receive the treatment to which the CMF pertains. Another key issue with observational approaches is that they are not causal in nature, and as such, cannot provide a sound "behavioral" rationale for the treatment effect. Surrogate safety measures based on high risk vehicle interactions and traffic conflicts have been proposed to address this issue by providing a more "causal perspective" on lack of safety for different road and traffic conditions. The traffic conflict approach has been criticized, however, for lacking a formal link to observed and verified crashes, a difficulty that this paper attempts to resolve by presenting and investigating an alternative approach for estimating CMFs using simulated conflicts that are linked formally to observed crashes. The integrated CMF estimates are compared to estimates from an empirical Bayes (EB) crash-based before-and-after analysis for the same sample of treatment sites. The treatment considered involves changing left turn signal priority at Toronto signalized intersections from permissive to protected-permissive. The results are promising in that the proposed integrated method yields CMFs that closely match those obtained from the crash-based EB before-and-after analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Florida's weakened motorcycle helmet law: effects on death rates in motorcycle crashes.
Kyrychenko, Sergey Y; McCartt, Anne T
2006-03-01
Effective July 1, 2000, Florida's universal helmet law was amended to exclude riders ages 21 and older with insurance coverage providing at least 10,000 US dollars in medical benefits for injuries sustained in a motorcycle crash. Observed helmet use in Florida was reported to have declined from nearly 100% in 1998, before the law change, to 53% after. This study examined the effects of the law change on the likelihood of death, given involvement in a motorcycle crash. Rates of motorcyclist deaths per crash involvement in Florida for 2001-2002 (after the law change) were compared with those for 1998-1999 (before the law change). Before/after death rate ratios (95% CIs) were examined, and logistic regression models estimated the effect of the helmet law change on the odds of death in a crash, while controlling for rider gender, age, and seating position, and number of vehicles. The motorcyclist death rate increased significantly after the law change, from 30.8 to 38.8 deaths per 1,000 crash involvements. Motorcyclist death rates increased for single- and multiple-vehicle crashes, for male and female operators, and for riders of all ages including those younger than 21. After controlling for gender and age, the likelihood of death given involvement in a motorcycle crash was 25% higher than expected after the law change. It is estimated that 117 motorcyclist deaths could have been avoided during 2001-2002 if Florida's universal helmet law had remained in place. This study provides evidence of the life-saving benefits of universal helmet laws. The results also suggest that age-specific helmet laws are not effective in protecting the youngest drivers. This is not surprising, as these laws are largely unenforceable.
Zou, Yaotian; Tarko, Andrew P
2018-02-01
The objective of this study was to develop crash modification factors (CMFs) and estimate the average crash costs applicable to a wide range of road-barrier scenarios that involved three types of road barriers (concrete barriers, W-beam guardrails, and high-tension cable barriers) to produce a suitable basis for comparing barrier-oriented design alternatives and road improvements. The intention was to perform the most comprehensive and in-depth analysis allowed by the cross-sectional method and the crash data available in Indiana. To accomplish this objective and to use the available data efficiently, the effects of barrier were estimated on the frequency of barrier-relevant (BR) crashes, the types of harmful events and their occurrence during a BR crash, and the severity of BR crash outcomes. The harmful events component added depth to the analysis by connecting the crash onset with its outcome. Further improvement of the analysis was accomplished by considering the crash outcome severity of all the individuals involved in a crash and not just drivers, utilizing hospital data, and pairing the observations with and without road barriers along same or similar road segments to better control the unobserved heterogeneity. This study confirmed that the total number of BR crashes tended to be higher where medians had installed barriers, mainly due to collisions with barriers and, in some cases, with other vehicles after redirecting vehicles back to traffic. These undesirable effects of barriers were surpassed by the positive results of reducing cross-median crashes, rollover events, and collisions with roadside hazards. The average cost of a crash (unit cost) was reduced by 50% with cable barriers installed in medians wider than 50ft. A similar effect was concluded for concrete barriers and guardrails installed in medians narrower than 50ft. The studied roadside guardrails also reduced the unit cost by 20%-30%. Median cable barriers were found to be the most effective among all the studied barriers due to the smaller increase in the crash frequency caused by these barriers and the less severe injury outcomes. More specifically, the occupants of vehicles colliding with near-side cable barriers tended to have less severe injuries than occupants of vehicles entering the median from median's farther side. The near-side cable barriers provided protection against rollover inside the median and against a potentially dangerous collision with or running over the median drain; therefore, the greatest safety benefit can be expected where cable barriers are installed at both edges of the median. The CMFs and unit crash costs for 48 road-barrier scenarios produced in this study are included in this paper. Copyright © 2017 Elsevier Ltd. All rights reserved.
Balloon crash damage and injuries: an analysis of 86 accidents, 2000-2004.
de Voogt, Alexander J; van Doorn, Robert R A
2006-05-01
General aviation accounts for the majority of aviation crashes and casualties in the United States. The role of ballooning in these statistics is not regularly studied. Since 2001, the National Transportation and Safety Board has made its accident reports more readily available, which presents opportunities for further study. This study analyzes and compares a 5-yr period of accident reports and includes an analysis of injuries and balloon damage in hot-air and gas balloon accidents. Balloon crash 2-page briefs and 5-page accident reports published by the National Transportation and Safety Board for the 5-yr time period 2000-2004 were examined. Data collected in the investigation of these crashes were analyzed and compared with the epidemiological data collected in earlier research. In 86 crashes during a 5-yr period, there were 4 fatalities and 75 people were seriously injured. Only one accident was reported involving a student pilot. Broken ankles and legs have been the most commonly recorded serious injury, but could not be linked to the severity of damage to the balloon. The absence of student pilot accidents may be explained by possible stricter supervision. Balloon basket and envelopes appear of sufficient quality to withstand crashes, but improving the protection of passengers during hard landings should help to decrease the number of serious injuries in ballooning.
Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel
2015-01-01
This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p < 0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.
Ferreri, Matthew; Slagley, Jeremy; Felker, Daniel
2015-01-01
This study compared four treatment protocols to reduce airborne composite fiber particulates during simulated aircraft crash recovery operations. Four different treatments were applied to determine effectiveness in reducing airborne composite fiber particulates as compared to a "no treatment" protocol. Both "gold standard" gravimetric methods and real-time instruments were used to describe mass per volume concentration, particle size distribution, and surface area. The treatment protocols were applying water, wetted water, wax, or aqueous film-forming foam (AFFF) to both burnt and intact tickets of aircraft composite skin panels. The tickets were then cut using a small high-speed rotary tool to simulate crash recovery operations. Aerosol test chamber. None. Airborne particulate control treatments. Measures included concentration units of milligrams per cubic meter of air, particle size distribution as described by both count median diameter and mass median diameter and geometric standard deviation of particles in micrometers, and surface area concentration in units of square micrometers per cubic centimeter. Finally, a Monte Carlo simulation was run on the particle size distribution results. Comparison was made via one-way analysis of variance. A significant difference (p<0.0001) in idealized particle size distribution was found between the water and wetted water treatments as compared to the other treatments for burnt tickets. Emergency crash recovery operations should include a treatment of the debris with water or wetted water. The resulting increase in particle size will make respiratory protection more effective in protecting the response crews.
Fitzharris, Michael; Fildes, Brian; Newstead, Stuart; Logan, David
2004-01-01
In-depth data at MUARC was used to evaluate the Australian Design Rule 69 (ADR69) - Full frontal dynamic crash requirement, as well as the effectiveness of frontal airbag deployment on injury risk and associated cost of injury. ADR69 was introduced in Australia in mid-1995 and was based largely on the US equivalent FMVSS-208. The results indicate reductions in excess of 90% in the likelihood of sustaining AIS 2+ injuries in body regions where frontal airbags would be expected to benefit. The average injury cost savings for drivers of post-ADR69 manufactured vehicles was found to be up to AUD19,000 dollars depending on body region considered. Limitations and implications of these findings are discussed.
Fitzharris, Michael; Fildes, Brian; Newstead, Stuart; Logan, David
2004-01-01
In-depth data at MUARC was used to evaluate the Australian Design Rule 69 (ADR69) - Full frontal dynamic crash requirement, as well as the effectiveness of frontal airbag deployment on injury risk and associated cost of injury. ADR69 was introduced in Australia in mid-1995 and was based largely on the US equivalent FMVSS-208. The results indicate reductions in excess of 90% in the likelihood of sustaining AIS 2+ injuries in body regions where frontal airbags would be expected to benefit. The average injury cost savings for drivers of post-ADR69 manufactured vehicles was found to be up to AUD$19,000 depending on body region considered. Limitations and implications of these findings are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
..., self-addressed postcard with the comments. Note that all comments received will be posted without... Components, 207 Seating Systems, 208 Occupant Crash Protection, 209 Seat Belt Assemblies, 210 Seat Belt Assembly Anchorages, 212 Windshield Mounting, 214 Side Impact Protection, 216 Roof Crush Resistance, 219...
Crashworthy Seats Would Afford Superior Protection
NASA Technical Reports Server (NTRS)
Gohmert, Dustin
2009-01-01
Seats to prevent or limit crash injuries to astronauts aboard the crew vehicle of the Orion spacecraft are undergoing development. The design of these seats incorporates and goes beyond crash-protection concepts embodied in prior spacecraft and racing-car seats to afford superior protection against impacts. Although the seats are designed to support astronauts in a recumbent, quasi-fetal posture that would likely not be suitable for non-spacecraft applications, parts of the design could be adapted to military and some civilian aircraft seats and to racing car seats to increase levels of protection. The main problem in designing any crashworthy seat is to provide full support of the occupant against anticipated crash and emergency-landing loads so as to safely limit motion, along any axis, of any part of the occupant s body relative to (1) any other part of the occupant s body, (2) the spacecraft or other vehicle, and (3) the seat itself. In the original Orion spacecraft application and in other applications that could easily be envisioned, the problem is complicated by severe limits on space available for the seat, a requirement to enable rapid egress by the occupant after a crash, and a requirement to provide for fitting of the seat to a wide range of sizes and shapes of a human body covered by a crash suit, space suit, or other protective garment. The problem is further complicated by other Orion-application-specific requirements that must be omitted here for the sake of brevity. To accommodate the wide range of crewmember body lengths within the limits on available space in the original Orion application, the design provides for taller crewmembers to pull their legs back closer toward their chests, while shorter crewmembers can allow their legs to stretch out further. The range of hip-support seat adjustments needed to effect this accommodation, as derived from NASA s Human Systems Integration Standard, was found to define a parabolic path along which the knees must be positioned. For a given occupant, the specific position along the path depends on the distance from the heel to the back of the knee. The application of the concept of parabolic adjustment of the hip-support structure caused the seat pan to also take on a parabolic shape, yielding the unanticipated additional benefit that the seat pan fits the occupant s buttocks and thighs more nearly conformally than do seat pans of prior design. This more nearly conformal fit effectively eliminates a void between the occupant s body and the seat pan, thereby helping to prevent what, in prior seat designs, was shifting of the occupant s body into that void during an impact.
Predictors of restraint use among child occupants.
Benedetti, Marco; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A
2017-11-17
The objective of this study was to identify factors that predict restraint use and optimal restraint use among children aged 0 to 13 years. The data set is a national sample of police-reported crashes for years 2010-2014 in which type of child restraint is recorded. The data set was supplemented with demographic census data linked by driver ZIP code, as well as a score for the state child restraint law during the year of the crash relative to best practice recommendations for protecting child occupants. Analysis used linear regression techniques. The main predictor of unrestrained child occupants was the presence of an unrestrained driver. Among restrained children, children had 1.66 (95% confidence interval, 1.27, 2.17) times higher odds of using the recommended type of restraint system if the state law at the time of the crash included requirements based on best practice recommendations. Children are more likely to ride in the recommended type of child restraint when their state's child restraint law includes wording that follows best practice recommendations for child occupant protection. However, state child restraint law requirements do not influence when caregivers fail to use an occupant restraint for their child passengers.
Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA.
Prasad, Priya; Dalmotas, Dainius; Chouinard, Aline
2015-11-01
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV's), and medium-to-heavy vehicles (MHV's) in the fleet, and the frequency of their interactions with one another in side impacts, were considered. Other factors like, crash severity in terms of closing velocity between two vehicles involved in crash, gender and age of involved drivers in two-vehicle and single vehicle crashes, were also examined. Injury risks in side impacts to drivers and passengers were determined in various circumstances such as near-side, far-side, and single vehicle crashes as a function of crash severity, in terms of estimated closing speed or lateral delta-V. Also injury risks in different pairs of striking and struck cars and LTV's, were estimated. A logistic regression model for studying injury risks in two vehicle crashes was developed. The risk factors included in the model include case and striking vehicles, consisting of cars, SUV's, vans, and pickup trucks, delta-V, damage extent, occupant proximity to the impact side, age and gender of the occupant, and belt use. Results show that car occupants make up the vast majority of serious-to-fatally injured occupants. Injury rates of car occupants in two-vehicle collision are highest when the car is struck by a pickup and lowest when struck by a car. This was the case across all lateral delta-V ranges. Additionally, near-side injury rates are substantially higher than those in far-side impacts.
Thomas, Patrick K; Dunn, Gary P; Passero, Maxine; Feris, Kevin P
2017-11-01
Cost-effective methods for protecting crops from grazing organisms like rotifers are needed to reduce the risk of pond crashes in mass algal cultures. We present a novel strategy to optimize the exposure time to free ammonia, via control of media pH, in both defined media and dairy anaerobic digester effluent to suppress rotifers and maintain algal productivity. We tested five different free ammonia exposure times (0, 1, 2, 6, and 12h) and found a significant nonlinear effect of exposure time (p<0.0001) but not pH (p>0.9) on rotifer survival. In both media types, 6-12h of elevated free ammonia significantly reduced Brachionus plicatilis rotifer survival with no negative effects on Nannochloropsis oculata, while shorter exposure times were insufficient to inhibit rotifers, leading to severe algal culture crashes. These results suggest that algal crops can be protected from rotifers, without productivity loss, by elevating free ammonia for 6 or more hours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Who can best influence the quality of teenagers' cars?
Keall, Michael D; Newstead, Stuart
2013-01-01
Because young drivers' vehicles have been found to offer poor occupant protection in many countries, this study sought to identify the most appropriate audience for information and publicity designed to change purchasing preferences to improve these vehicles and resultant injury outcomes. An analysis of New Zealand vehicles crashed by drivers aged 19 years or less linked to data on the owner of the vehicle was undertaken. Details on the crashed vehicles were merged with licensing information to identify the owner's age group. It was presumed that most vehicles driven by teens but owned by someone aged 30 to 59 would be owned by a parent of the teen. Only 14 percent of vehicles crashed by teens were owned by teens. Generally, older vehicles with poor crashworthiness were provided for the teenage driver, whatever the age group of the owner. However, cars crashed by teens but owned by their parents were on average almost 2 years younger and had relatively superior crashworthiness than the teenager-owned and crashed vehicles, although their crashworthiness was still poor compared to vehicles driven by older drivers. Evidently, parents are key people in making vehicle purchasing decisions regarding the cars that teenagers drive and should be the main audience for measures to improve the poor secondary safety performance of teenagers' vehicles.
Doud, Andrea N; Schoell, Samantha L; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Petty, John K; Meredith, J Wayne; Stitzel, Joel D
2017-04-01
Advanced Automatic Crash Notification (AACN) uses vehicle telemetry data to predict risk of serious injury among motor vehicle crash occupants and can thus improve the accuracy with which injured children are triaged by first responders. To better define serious injury for AACN systems (which typically use Abbreviated Injury Scale [AIS] metrics), an age-specific approach evaluating severity, time sensitivity (TS), and predictability of injury has been developed. This study outlines the development of the TS score. The 95% most frequent AIS 2+ injuries in a national motor vehicle crash data set spanning 2000 to 2011 were determined for the following age groups: 0 to 4, 5 to 9, 10 to 14, and 15 to 18 years. For each age-specific injury, clinicians with pediatric trauma expertise were asked if treatment at a trauma center was required and were asked about the urgency of treatment. A TS score (range 0-1) was calculated by combining the mean trauma center decision and urgency scores. A total of 30 to 32 responses were obtained for each age-specific injury. The most frequent motor vehicle crash-induced injuries in the younger groups received significantly higher scores than those in the older groups (median TS score 0 to 4 years: 0.89, 5-9 years: 0.87, 10-14 years: 0.82, 15-18 years: 0.72, P < .001). Large variations in TS existed within each AIS severity level; for example, scores among AIS 2 injuries in 0- to 4-year-olds ranged from 0.12 to 0.98. The TS of common pediatric injuries varies on the basis of age and may not be accurately reflected by AIS metrics. AIS may not capture all aspects of injury that should be considered by AACN systems. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
A Study of Transport Airplane Crash-Resistant Fuel Systems
NASA Technical Reports Server (NTRS)
Jones, Lisa (Technical Monitor); Robertson, S. H.; Johnson, N. B.; Hall, D. S.; Rimson, I. J.
2002-01-01
This report presents the results of a study, funded by the Federal Aviation Administration (FAA), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S. Army, which ultimately led to the current state of the art in CRFS technology. It describes the basic research, testing, field investigations and production efforts which have led to the highly successful military CRFS, which has saved many lives and reduced costs of accidents. Current CRFS technology used in transport category airplanes is defined and compared to the available state-of-the-art technology. The report provides information to the FAA and other government organizations which can help them plan their efforts to improve the state of crash fire protection in the transport airplane fleet. The report provides guidance to designers looking for information about CRFS design problems, analysis tools to use for product improvement, and a summary of current and proposed regulations for transport category airplane fuel systems.
Dissolver vessel bottom assembly
Kilian, Douglas C.
1976-01-01
An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.
49 CFR 380.503 - Entry-level driver training requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... countermeasures as a means to avoid crashes. (c) Driver wellness. Basic health maintenance including diet and exercise. The importance of avoiding excessive use of alcohol. (d) Whistleblower protection. The right of...
49 CFR 571.208 - Standard No. 208; Occupant crash protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., applies to vessels designed to contain a pressurized fluid or gas, and to explosive devices, for use in the above types of motor vehicles as part of a system designed to provide protection to occupants in... seat and the near side of the vehicle and is designed to allow access to more rearward seating...
49 CFR 571.208 - Standard No. 208; Occupant crash protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., applies to vessels designed to contain a pressurized fluid or gas, and to explosive devices, for use in the above types of motor vehicles as part of a system designed to provide protection to occupants in... seat and the near side of the vehicle and is designed to allow access to more rearward seating...
49 CFR 571.208 - Standard No. 208; Occupant crash protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., applies to vessels designed to contain a pressurized fluid or gas, and to explosive devices, for use in the above types of motor vehicles as part of a system designed to provide protection to occupants in... seat and the near side of the vehicle and is designed to allow access to more rearward seating...
Maistros, Alexander; Schneider, William H; Savolainen, Peter T
2014-06-01
Alcohol related crashes have accounted for approximately 35% of fatal crashes per year since 1994 nationwide, with approximately 30% involving impairment over the legal blood alcohol content limit of 0.08%. Educational campaigns and law enforcement efforts are two components of multi-faceted programs aimed toward reducing impaired driving. It is crucial that further research be conducted to guide the implementation of enforcement and educational programs. This research attempts to provide such guidance by examining differences in alcohol-involved crashes involving motorcycles and passenger cars. Prior safety research has shown that motorcyclists follow a significantly different culture than the average passenger car operator. These cultural differences may be reflected by differences in the contributing factors affecting crashes and the severity of the resulting injuries sustained by the driver or motorcyclist. This research is focused on single-vehicle crashes only, in order to isolate modal effects from the contribution of additional vehicles. The crash data provided for this study are from the Ohio Department of Public Safety from 2009 through 2012. The injury severity data are analysed through the development of two mixed logit models, one for motorcyclists and one for passenger car drivers. The models quantify the effects of various factors, including horizontal curves, speeds, seatbelt use, and helmet use, which indicate that the required motor skills and balance needed for proper motorcycle operation compounded with a lack of mechanical protection make motorcyclists more prone to severe injuries, particularly on curves and in collisions with roadside objects. The findings of this study have been incorporated into combined motorcycle and sober driving educational safety campaigns. The results have shown to be favorable in supporting national campaign messages with local justification and backing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thompson, J P; Baldock, M R J; Mathias, J L; Wundersitz, L N
2013-01-01
Motor vehicle crashes involving rural drivers aged 75 years and over are more than twice as likely to result in a serious or fatal injury as those involving their urban counterparts. The current study examined some of the reasons for this using a database of police-reported crashes (2004-2008) to identify the environmental (lighting, road and weather conditions, road layout, road surface, speed limit), driver (driver error, crash type), and vehicle (vehicle age) factors that are associated with the crashes of older rural drivers. It also determined whether these same factors are associated with an increased likelihood of serious or fatal injury in younger drivers for whom frailty does not contribute to the resulting injury severity. A number of environmental (i.e., undivided, unsealed, curved and inclined roads, and areas with a speed limit of 100km/h or greater) and driver (i.e., collision with a fixed object and rolling over) factors were more frequent in the crashes of older rural drivers and additionally associated with increased injury severity in younger drivers. Moreover, when these environmental factors were entered into a logistic regression model to predict whether older drivers who were involved in crashes did or did not sustain a serious or fatal injury, it was found that each factor independently increased the likelihood of a serious or fatal injury. Changes, such as the provision of divided and sealed roads, greater protection from fixed roadside objects, and reduced speed limits, appear to be indicated in order to improve the safety of the rural driving environment for drivers of all ages. Additionally, older rural drivers should be encouraged to reduce their exposure to these risky circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Does knowledge of seat design and whiplash injury mechanisms translate to understanding outcomes?
Ivancic, Paul C
2011-12-01
Review of whiplash injury mechanisms and effects of anti-whiplash systems including active head restraint (AHR) and Whiplash Protection System (WHIPS). This article provides an overview of previous biomechanical and epidemiological studies of AHR and WHIPS and investigates whether seat design and biomechanical knowledge of proposed whiplash injury mechanisms translates to understanding outcomes of rear crash occupants. In attempt to reduce whiplash injuries, some newer automobiles incorporate anti-whiplash systems such as AHR or WHIPS. During a rear crash, mechanically based systems activate by occupant momentum pressing into the seatback whereas electronically based systems activate using crash sensors and an electronic control unit linked to the head restraint. To investigate the effects of AHR and WHIPS on occupant responses including head and neck loads and motions, biomechanical studies of simulated rear crashes have been performed using human volunteers, mathematical models, crash dummies, whole cadavers, and hybrid cadaveric/surrogate models. Epidemiological studies have evaluated the effects of AHR and WHIPS on reducing whiplash injury claims and lessening subjective complaints of neck pain after rear crashes. RESULTS.: Biomechanical studies indicate that AHR and WHIPS reduced the potential for some whiplash injuries but did not completely eliminate the injury risk. Epidemiological outcomes indicate reduced whiplash injury claims or subjective complaints of crash-related neck pain between 43 and 75% due to AHR and between 21% and 49% due to WHIPS as compared to conventional seats and head restraints. Yielding energy-absorbing seats aim to reduce occupant loads and accelerations whereas AHRs aim to provide early head support to minimize head and neck motions. Continued objective biomechanical and epidemiological studies of anti-whiplash systems together with industry, governmental, and clinical initiatives will ultimately lead to reduced whiplash injuries through improved prevention strategies.
Vehicles driven by teenagers in their first year of licensure.
Williams, Allan F; Leaf, William A; Simons-Morton, Bruce G; Hartos, Jessica L
2006-03-01
to determine access to vehicles, vehicle ownership and its correlates, and types of vehicles driven by teenagers during their first year of licensure. About 3,500 Connecticut teenagers and their parents recruited at DMV offices participated in a study aimed at persuading parents to impose and maintain driving restrictions on their sons and daughters. Telephone interviews with teens and parents, which included questions on vehicles driven, were conducted upon licensure and at intervals throughout the year. The majority of both male and female teens owned vehicles immediately upon licensure. Family income and number of vehicles in the family were associated with early ownership. A year later 74% owned vehicles. Small cars, which provide inferior crash protection, were the most popular vehicle; the percent driving small cars increased from 36% to 42% over the year. About 25% were driving SUVs, pickups, or sports cars, which may increase crash risk for young beginners. One year after licensure, only 35% of teens were driving midsize or large passenger cars, the types of vehicles recommended for them, and about one-third of these vehicles were 10 or more years old. Owners were more likely than non-owners to drive older and smaller vehicles, to drive more miles, do more risky driving, and to have more traffic violations and crashes. Many teenagers in Connecticut were driving vehicles that rank low in crash protection or may increase crash risk. Attention to the young driver problem has been focused primarily on managing driving risks through graduated licensing systems. More attention needs to be given to the vehicles teens drive, and how decisions about vehicle type and ownership are made. Parents exert control over what vehicles their sons and daughters drive, and may benefit from information on how to make choices that better balance cost, safety, and other factors that go into these decisions.
Crash pulse optimization for occupant protection at various impact velocities.
Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji
2015-01-01
Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the velocity and the probability of occupant injury. The optimized vehicle deceleration consisted of a high deceleration in the initial phase, a small deceleration in the middle phase, and then a high deceleration in the final phase. The optimized vehicle crash pulse at a single impact velocity is effective for reducing occupant deceleration in a crash at the specific impact velocity. However, the crash pulse does not necessarily lead to occupant deceleration reduction at a lower velocity. The optimized vehicle deceleration-deformation characteristics, which are effective for all impact velocities, depend on the weighting of the occupant injury measures at each impact velocity.
Computer-aided target tracking in motion analysis studies
NASA Astrophysics Data System (ADS)
Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.
1990-08-01
Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.
Special issue : safety advancements
DOT National Transportation Integrated Search
1999-04-24
This issue of 'Status Report' focuses on some of the most recent key safety technology improvements. The crash protection in passenger vehicles is improving substantially; advanced frontal airbags will soon be available in a number of models and side...
Development and Evaluation of Anticipatory Crash Sensors for Automobiles
DOT National Transportation Integrated Search
1974-02-01
This report delineates the preferred means, potential effectiveness, and estimated costs of carrying out anticipatory sensing of automobile collisions. Actuation of passive restraint systems requires only a small advance warning to extend the protect...
Improved crashworthiness of rail passenger equipment in the United States
DOT National Transportation Integrated Search
2006-06-30
The Federal Railroad Administration has been conducting research to develop strategies for improved passenger : protection in train accidents. Crash energy management (CEM) has been developed as a strategy for structural : crashworthiness. Interior s...
Civil aircraft side-facing seat research summary.
DOT National Transportation Integrated Search
2012-11-01
The Federal Aviation Administration (FAA) has standards and regulations that are intended to protect aircraft : occupants in the event of a crash. However, side-facing seats were not specifically addressed when aircraft seat : dynamic test standards ...
O'Neill, Brian
2009-04-01
Motor vehicle crashes result in some 1.2 million deaths and many more injuries worldwide each year and is one of the biggest public health problems facing societies today. This article reviews the history of, and future potential for, one important countermeasure-designing vehicles that reduce occupant deaths and injuries. For many years, people had urged automakers to add design features to reduce crash injuries, but it was not until the mid-1960s that the idea of pursuing vehicle countermeasures gained any significant momentum. In 1966, the U.S. Congress passed the National Traffic and Motor Vehicle Safety Act, requiring the government to issue a comprehensive set of vehicle safety standards. This was the first broad set of requirements issued anywhere in the world, and within a few years similar standards were adopted in Europe and Australia. Early vehicle safety standards specified a variety of safety designs resulting in cars being equipped with lap/shoulder belts, energy-absorbing steering columns, crash-resistant door locks, high-penetration-resistant windshields, etc. Later, the standards moved away from specifying particular design approaches and instead used crash tests and instrumented dummies to set limits on the potential for serious occupant injuries by crash mode. These newer standards paved the way for an approach that used the marketplace, in addition to government regulation, to improve vehicle safety designs-using crash tests and instrumented dummies to provide consumers with comparative safety ratings for new vehicles. The approach began in the late 1970s, when NHTSA started publishing injury measures from belted dummies in new passenger vehicles subjected to frontal barrier crash tests at speeds somewhat higher than specified in the corresponding regulation. This program became the world's first New Car Assessment Program (NCAP) and rated frontal crashworthiness by awarding stars (five stars being the best and one the worst) derived from head and chest injury measures recorded on driver and front-seat test dummies. NHTSA later added side crash tests and rollover ratings to the U.S. NCAP. Consumer crash testing spread worldwide in the 1990s. In 1995, the Insurance Institute for Highway Safety (IIHS) began using frontal offset crash tests to rate and compare frontal crashworthiness and later added side and rear crash assessments. Shortly after, Europe launched EuroNCAP to assesses new car performance including front, side, and front-end pedestrian tests. The influence of these consumer-oriented crash test programs on vehicle designs has been major. From the beginning, U.S. NCAP results prompted manufacturers to improve seat belt performance. Frontal offset tests from IIHS and EuroNCAP resulted in greatly improved front-end crumple zones and occupant compartments. Side impact tests have similarly resulted in improved side structures and accelerated the introduction of side impact airbags, especially those designed to protect occupant's heads. Vehicle safety designs, initially driven by regulations and later by consumer demand because of crash testing, have proven to be very successful public health measures. Since they were first introduced in the late 1960s, vehicle safety designs have saved hundreds of thousands of lives and prevented countless injuries worldwide. The designs that improved vehicle crashworthiness have been particularly effective. Some newer crash avoidance designs also have the potential to be effective-e.g., electronic stability control is already saving many lives in single-vehicle crashes. However, determining the actual effectiveness of these new technologies is a slow process and needs real-world crash experience because there are no assessment equivalent of crash tests for crash avoidance designs.
Fredriksson, Rikard; Zhang, Liying; Boström, Ola; Yang, King
2007-10-01
EuroNCAP and regulations in Europe and Japan evaluate the pedestrian protection performance of cars. The test methods are similar and they all have requirements for the passive protection of the hood area at a pedestrian to car impact speed of 40 km/h. In Europe, a proposal for a second phase of the regulation mandates a brake-assist system along with passive requirements. The system assists the driver in optimizing the braking performance during panic braking, resulting in activation only when the driver brakes sufficiently. In a European study this was estimated to occur in about 50% of pedestrian accidents. A future system for brake assistance will likely include automatic braking, in response to a pre-crash sensor, to avoid or mitigate injuries of vulnerable road users. An important question is whether these systems will provide sufficient protection, or if a parallel, passive pedestrian protection system will be necessary. This study investigated the influence of impact speed on head and brain injury risk, in impacts to the carhood. One car model was chosen and a rigid adjustable plate was mounted under the hood. Free-flying headform impacts were carried out at 20 and 30 km/h head impact velocities at different under-hood distances, 20 to 100 mm; and were compared to earlier tests at 40 km/h. The EEVC WG17 adult pedestrian headform was used for non-rotating tests and a Hybrid III adult 50th percentile head was used for rotational tests where linear and rotational acceleration was measured. Data from the rotational tests was used as input to a validated finite element model of the human head, the Wayne State University Head Injury Model (WSUHIM). The model was utilized to assess brain injury risk and potential injury mechanism in a pedestrian-hood impact. Although this study showed that it was not necessarily true that a lower HIC value reduced the risk for brain injury, it appeared, for the tested car model, under-hood distances of 60 mm in 20 km/h and 80 mm in 30 km/h reduced head injury values for both skull fractures and brain injuries. An earlier study showed that the corresponding value for a test speed of 40 km/h is 100 mm. A 10 km/h reduction in head impact velocity, as in automatic braking, allowed 20 mm less under-hood clearance with maintained head protection of the vulnerable road user.
Cafiso, Salvatore; D'Agostino, Carmelo; Persaud, Bhagwant
2017-04-03
A new European Union (EU) regulation for safety barriers, which is based on performance, has encouraged road agencies to perform an upgrade of old barriers, with the expectation that there will be safety benefits at the retrofitted sites. The new class of barriers was designed and installed in compliance with the 1998 (European Norm) EN 1317 standards for road restraint systems, which lays down common requirements for the testing and certification of road restraint systems in all countries of the European Committee for Standardization (CEN). Both the older and new barriers are made of steel and are installed in such a way as to avoid vehicle intrusion, but the older ones are thought to be only effective at low speeds and large angles of impact. The new standard seeks to remedy this by providing better protection at higher speeds. This article seeks to quantify the effect on the frequency of fatal and injury crashes of retrofitting motorways with barriers meeting the new standards. The estimation of the crash modification was carried out by performing an empirical Bayes before-after analysis based on data from the A18 Messina-Catania motorway in Italy. The methodology has the great advantage to account for the regression to the mean effects. Besides, to account for time trend effects and dispersion of crash data, a modified calibration methodology of safety performance was used. This study, based on data collected on 76 km of motorway in the period 2000-2012, derived Crash Modification Factor point estimates that indicate reductions of 72% for run-off-road fatal and injury crashes and 38% in total fatal and injury crashes that could be expected by upgrading an old safety barrier by complying with new EU 1317 standards. The estimated benefit-cost ratio of 5.57 for total crashes indicates that the treatment is cost effective. The magnitude of this benefit indicates that the retrofits are cost-effective even for total crashes and should continue in any European country inasmuch as the estimated Crash Modification Factors are based on treatment sites that are reasonably representative of all European motorways.
Development of a time sensitivity score for frequently occurring motor vehicle crash injuries.
Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Martin, R Shayn; Meredith, J Wayne; Stitzel, Joel D
2015-03-01
Injury severity alone is a poor indicator of the time sensitivity of injuries. The purpose of the study was to quantify the urgency with which the most frequent motor vehicle crash injuries require treatment, according to expert physicians. The time sensitivity was quantified for the top 95% most frequently occurring Abbreviated Injury Scale (AIS) 2+ injuries in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) 2000-2011. A Time Sensitivity Score was developed using expert physician survey data in which physicians were asked to determine whether a particular injury should go to a Level I/II trauma center and the urgency with which that injury required treatment. When stratifying by AIS severity, the mean Time Sensitivity Score increased with increasing AIS severity. The mean Time Sensitivity Scores by AIS severity were as follows: 0.50 (AIS 2); 0.78 (AIS 3); 0.92 (AIS 4); 0.97 (AIS 5); and 0.97 (AIS 6). When stratifying by anatomical region, the head, thorax, and abdomen were the most time sensitive. Appropriate triage depends on multiple factors, including the severity of an injury, the urgency with which it requires treatment, and the propensity of a significant injury to be missed. The Time Sensitivity Score did not correlate highly with the widely used AIS severity scores, which highlights the inability of AIS scores to capture all aspects of injury severity. The Time Sensitivity Score can be useful in Advanced Automatic Crash Notification systems for identifying highly time sensitive injuries in motor vehicle crashes requiring prompt treatment at a trauma center. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Car crash fatalities associated with fire in Sweden.
Viklund, Åsa; Björnstig, Johanna; Larsson, Magnus; Björnstig, Ulf
2013-01-01
To study the epidemiology and causes of death in fatal car crashes on Swedish roads in which the victim's vehicle caught fire. The data set is from the Swedish Transport Administrations in-depth studies of fatal crashes 1998-2008. Autopsies from all cases provided data on injuries, toxicological analyses, and cause of death. In total, 181 people died in 133 burning cars, accounting for 5 percent of all deaths in passenger cars, sport utility vehicles, vans, and minibuses during 1998 to 2008. The cause of death for a third of the victims was fire related, as burns and/or smoke inhalation injuries, with no fatal trauma injuries. Twenty-five of these 55 deaths were persons 19 years or younger and included 15 of 18 rear seat deaths. Over half of the 181 deaths were in vehicles that had collided with another vehicle and, of these cases, half were killed in collisions with heavy vehicles. The percentage of drivers with illegal blood alcohol concentrations (27%) and suicides (5.5%) were not higher than in other fatal crashes on Swedish roads. The ignition point of the fire was indicated in only half of the cases and, of those, half started in the engine compartment and one fourth started around the fuel tank or lines. Car fires are a deadly postcrash problem. Reducing this risk would be primarily a responsibility for the automotive industry. A multifactor approach could be considered as follows: risk-reducing design, insulation, reduced flammability in motor compartment fluids and plastics, and automatic fire extinguishing equipment. Inspiration could be found in how, for example, the auto racing and aviation industries handle this problem.
Experimental evaluation of fog warning system.
Al-Ghamdi, Ali S
2007-11-01
Highway safety is a major concern to the public and to transportation professionals, so the number of crashes caused by poor visibility due to fog form an alarming statistic. Drivers respond to poor visibility conditions in different ways: some slow down; others do not. Many drivers simply follow the taillights of the vehicle ahead. Accordingly, hazardous conditions are created in which speeds are both too high for the prevailing conditions and highly variable. Findings are presented from a study of traffic crashes due to fog in the southern region of Saudi Arabia. The primary objective was to assess the effectiveness of fog detection and warning system on driver behavior regarding speed and headway. This warning system includes visibility sensors that automatically activate a variable message sign that posts an advisory speed when hazardous conditions due to fog occur. The system was installed on a 2 km section of a two-lane, rural highway. A data set of 36,013 observations from both experimental and control sections at two study sites was collected and analyzed. The data included vehicle speed, volume, and classification; time headway, time of day, and visibility distance. Although the warning system was ineffective in reducing speed variability, mean speed throughout the experimental sections was reduced by about 6.5 kph. This reduction indicates that the warning system appeared to have a positive effect on driver behavior in fog even though the observed mean speeds were still higher than the posted advisory speed. From relationships found in the literature between mean driving speed and number of crashes, a speed reduction of only 5 kph would yield a 15% decrease in the number of crashes.
Microcomputer based software for biodynamic simulation
NASA Technical Reports Server (NTRS)
Rangarajan, N.; Shams, T.
1993-01-01
This paper presents a description of a microcomputer based software package, called DYNAMAN, which has been developed to allow an analyst to simulate the dynamics of a system consisting of a number of mass segments linked by joints. One primary application is in predicting the motion of a human occupant in a vehicle under the influence of a variety of external forces, specially those generated during a crash event. Extensive use of a graphical user interface has been made to aid the user in setting up the input data for the simulation and in viewing the results from the simulation. Among its many applications, it has been successfully used in the prototype design of a moving seat that aids in occupant protection during a crash, by aircraft designers in evaluating occupant injury in airplane crashes, and by users in accident reconstruction for reconstructing the motion of the occupant and correlating the impacts with observed injuries.
Nakagawa, Yoshinori; Park, Kaechang
2014-01-01
It is essential to find measures to compensate for the decline in elderly drivers' driving ability in order to meet their mobility needs and ensure their safety when driving. Although it has been well documented that elderly drivers' risks of crash involvement are alleviated by the presence of passengers, few studies have investigated whether the protective effect of passengers is influenced by driver characteristics including the degree of cognitive impairment. This study aimed to identify subgroups of elderly drivers whose crash involvement risks are more effectively alleviated by passenger presence. After dividing elderly drivers into three levels of cognitive impairment, as measured by the Short-Memory Questionnaire, and two gender groups, the present study found that only male drivers in the middle cognitive level benefited from passenger presence. The effectiveness of passenger presence may be more successfully achieved by proper selection of the appropriate range of cognitive decline and gender.
Reducing risks to children in vehicles with passenger airbags.
Graham, J D; Goldie, S J; Segui-Gomez, M; Thompson, K M; Nelson, T; Glass, R; Simpson, A; Woerner, L G
1998-07-01
This review examines the risk that passenger airbags pose for children and discusses behavioral and technologic measures aimed at protecting children from airbag deployment. Although airbags reduce fatal crash injuries among adult drivers and passengers, this safety technology increases mortality risk among children younger than age 12. The magnitude of the risk is multiplied when children are unrestrained or restrained improperly. As new vehicles are resold to buyers who tend to be less safety-conscious than new car owners, the number of children endangered by passenger airbag deployment may increase. For vehicles already in the fleet, strong measures are required to secure children in the rear seat and increase the proper use of appropriate restraint systems through police enforcement of laws. One promising strategy is to amend child passenger safety laws to require that parents secure children in the rear seats. For future vehicles, a mandatory performance standard should be adopted that suppresses airbag deployment automatically if a child is located in the front passenger seat. Other promising improvements in airbag design also are discussed. Major changes in passenger airbag design must be evaluated in a broad analytical framework that considers the welfare of adults as well as children.
Lord, Dominique; Park, Peter Young-Jin
2008-07-01
Traditionally, transportation safety analysts have used the empirical Bayes (EB) method to improve the estimate of the long-term mean of individual sites; to correct for the regression-to-the-mean (RTM) bias in before-after studies; and to identify hotspots or high risk locations. The EB method combines two different sources of information: (1) the expected number of crashes estimated via crash prediction models, and (2) the observed number of crashes at individual sites. Crash prediction models have traditionally been estimated using a negative binomial (NB) (or Poisson-gamma) modeling framework due to the over-dispersion commonly found in crash data. A weight factor is used to assign the relative influence of each source of information on the EB estimate. This factor is estimated using the mean and variance functions of the NB model. With recent trends that illustrated the dispersion parameter to be dependent upon the covariates of NB models, especially for traffic flow-only models, as well as varying as a function of different time-periods, there is a need to determine how these models may affect EB estimates. The objectives of this study are to examine how commonly used functional forms as well as fixed and time-varying dispersion parameters affect the EB estimates. To accomplish the study objectives, several traffic flow-only crash prediction models were estimated using a sample of rural three-legged intersections located in California. Two types of aggregated and time-specific models were produced: (1) the traditional NB model with a fixed dispersion parameter and (2) the generalized NB model (GNB) with a time-varying dispersion parameter, which is also dependent upon the covariates of the model. Several statistical methods were used to compare the fitting performance of the various functional forms. The results of the study show that the selection of the functional form of NB models has an important effect on EB estimates both in terms of estimated values, weight factors, and dispersion parameters. Time-specific models with a varying dispersion parameter provide better statistical performance in terms of goodness-of-fit (GOF) than aggregated multi-year models. Furthermore, the identification of hazardous sites, using the EB method, can be significantly affected when a GNB model with a time-varying dispersion parameter is used. Thus, erroneously selecting a functional form may lead to select the wrong sites for treatment. The study concludes that transportation safety analysts should not automatically use an existing functional form for modeling motor vehicle crashes without conducting rigorous analyses to estimate the most appropriate functional form linking crashes with traffic flow.
On-Board Detection of Pedestrian Intentions
Fang, Zhijie; Vázquez, David
2017-01-01
Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role. During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors. However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information. PMID:28946632
Patient Litter System Response in a Full-Scale CH-46 Crash Test.
Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph
2017-03-01
U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
ADIEM II end terminal for concrete barrier
DOT National Transportation Integrated Search
2001-03-01
On September 9, 1997, an ADIEM II (Advanced Dynamic Impact Extension Module) was installed on Interstate 5 near Salem, Oregon. The ADIEM II offered a redirecting, energy-absorbing crash cushion and end treatment for portable and permanent protection ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-06
... wish to receive confirmation that your comments were received, please enclose a stamped, self-addressed... Occupant Crash Protection 209 Seat Belt Assemblies, 210 Seat Belt Assembly Anchorages, 212 Windshield...
Strengthening seat belt use laws
DOT National Transportation Integrated Search
1996-09-01
Traffic crashes are a leading cause : of death in the United States. : Wearing seat belts is the easiest and : most effective way of cutting the : highway death tolland strong : occupant protection laws are the most : effective way of increasing s...
Pathology of trauma attributed to restraint systems in crash impacts.
DOT National Transportation Integrated Search
1969-02-01
Considerable attention has been focused on the sophisticated restraint and ejection protection of rigidly selected occupants of military aircraft and manned space vehicles. However, the vast majority of occupants of military and both civil transport ...
Determination of centers of gravity of infants.
DOT National Transportation Integrated Search
1969-11-01
Recent efforts to provide effective restraint equipment for crash protection of infants in our transportation complex and to develop satisfactory flotation equipment for the little ones have revealed that there is a lack of data concerning the locati...
DOT National Transportation Integrated Search
2000-01-01
This document focuses on what has been and what still needs to be done to protect children from death or injury in transportation-related crashes. The following issues areas are examined: air bags and children, permanent child safety seat fitting sta...
Investigation of Vehicle Rear Under Run Protection Device (RUPD) Using Aluminium Foam
NASA Astrophysics Data System (ADS)
Nagaraj Goud, B.; pachori, Avinash
2017-08-01
Whenever the passenger cars meet with accidents with the heavy duty truck from rear, it will tend to penetrate under the truck bed called truck trailer under-ride crash. This is responsible for the thousands of accidents, causing severe injuries and spot death. This is mostly due to the lack of effective guarding system. The Present paper gives an importance on energy absorption mechanism of a Rear under Run Protection Device (RUPD) under crash effect of the truck. The aim of the study is to replace Steel RUPD with aluminum foam, which promises an improvement of vehicle crashworthiness as well as to reduce weight of the vehicle. The aluminum foam is selected due to the high specific strength and specific stiffness. This inborn character makes it a promising candidate in the modern lightweight structures in the automotive engineering which can contribute to the improvement of mileage in addition to safety of the occupants.
Changes in baseline concussion assessment scores following a school bus crash.
Poland, Kristin M; McKay, Mary Pat; Zonfrillo, Mark R; Barth, Thomas H; Kaminski, Ronald
2016-09-01
The objective of this article is to present concussion assessment data for 30 male athletes prior to and after being involved in a large school bus crash. The athletes on the bus, all male and aged 14-18 years, were participants in their school's concussion management program that included baseline and postinjury testing using Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). This case study described changes in concussion assessment scores for 30 male athletes following a primarily frontal school bus crash. Data from the school's concussion management program, including baseline test data and postinjury assessment data, were reviewed. Athletes who required multiple postinjury assessments by the program were identified as having had significant cognitive changes as a result of the bus crash. Twenty-nine of 30 athletes were injured. One had lumbar compression fractures; others had various lacerations, abrasions, contusions, sprains, and nasal fractures. ImPACT data (postcrash) were available for all 30 athletes and 28 had available precrash baseline data. A total of 16 athletes (53.3%) had significant cognitive changes indicated by changes in their concussion assessment scores, some of which took months to improve. This case study highlights a unique opportunity to evaluate concussion assessment data from 30 male athletes involved in a high-speed school bus crash. Further, these data provide additional insight into assessing the effectiveness of current school bus occupant protection systems.
2014-09-04
lasers, and use of mission-oriented protective posture (MOPP) overgarments were associated with increased likelihood for a PDMH condition. 15...history of a vehicular accident/crash, exposure to sand/dust, exposure to lasers, and use of mission-oriented protective posture (MOPP) overgarments...Institutional Review Board and in accordance with Federal and USAF regulations on the protection of human subjects in biomedical and behavioral research
1995-06-01
Energy efficient, 30 and 40 watt ballasts are Rapid Start, thermally protected, automatic resetting. Class P, high or low power factor as required...BALLASTS Energy efficient, 30 ana 40 watt Rapic Start, thermally protected, automatic resetting. Class P. high power factor, CEM, sound rated A. unless...BALLASTS Energy efficient, 40 Watt Rapid Start, thermally protected, automatic resetting, Class P, high power factor, CBM, sound rated A, unless
Notrica, David M; Sayrs, Lois W; Krishna, Nidhi
2018-05-15
Motor vehicle crashes (MVCs) are a leading cause of adolescent death from trauma. A recent study found ACS verified pediatric trauma centers (vPTC) were inversely correlated with pediatric mortality, but the analysis was limited to a single year. This study assesses the contribution of vPTCs, crash characteristics, and state driver laws on 15 to 17 years old MVC mortality for all 50 states from 1999-2015. Prospective data on motor vehicle fatalities, crash characteristics, state driving laws, and ACS verified trauma centers were collected from publically available sources for 50 U.S. states from 1999-2015. A mixed fixed/random effects multivariate regression model was fitted to assess the relative contribution of crash characteristics, state laws and vPTCs while controlling for state variation and time trends. The final regression model included driver and crash characteristics, verified trauma centers, and state laws. Camera laws ([B=-0.57[P<0.001]) were associated with a 57% decrease in the rate of change in adolescent crude fatalities. The lagged Level 1 vPTC crude rate (B=-0.12[P<.001]) was protective and contributed independently to a 12% decline in the rate of change in teen fatalities over the time period. Seat belt laws (B=-0.15[P<0.001]), GDL passenger restrictions (B=-0.07[P<0.001]), GDL learner permit period (B=-0.04[P<0.002]), non-deployed airbag (B=-0.003[P<0.001]), Hispanic heritage (B=-0.003[P<0.05]), were protective. Increased risk of fatality was associated with mini-van (B=0.01[P<0.001]), speed>90mph (B=0.004[P<0.001]), rural roads (B=0.002[P<0.002], unknown seat belt compliance (B=0.004[P<0.001]) and dry road surface (B=0.005[P<0.001]). State camera laws during the study time frame are associated with a 57% decrease in the rate of change in adolescent crude fatalities; vPTCs during the study time period reduced overall rate of change in the crude fatality rate by 12%. State laws, restrictions on teenage passengers and longer learner's permit periods, and seat belt laws are associated with significant decreases the crude teen mortality rate. Level III, Prospective.
Graham, John D; Chang, Joice
2015-02-01
The use of table saws in the United States is associated with approximately 28,000 emergency department (ED) visits and 2,000 cases of finger amputation per year. This article provides a quantitative estimate of the economic benefits of automatic protection systems that could be designed into new table saw products. Benefits are defined as reduced health-care costs, enhanced production at work, and diminished pain and suffering. The present value of the benefits of automatic protection over the life of the table saw are interpreted as the switch-point cost value, the maximum investment in automatic protection that can be justified by benefit-cost comparison. Using two alternative methods for monetizing pain and suffering, the study finds switch-point cost values of $753 and $561 per saw. These point estimates are sensitive to the values of inputs, especially the average cost of injury. The various switch-point cost values are substantially higher than rough estimates of the incremental cost of automatic protection systems. Uncertainties and future research needs are discussed. © 2014 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Silva, Sonia Maria da Silva Faria Nogueira da
In this study we examine the economic consequences for firms that cross-delisted from a U.S. stock exchange. Using a sample of foreign firms that cross-delisted from U.S. exchange markets from 2000 to 2012, we investigate the long-term performance, the level of financial constraints, and the likelihood of stock price crashes after the cross-delisting event. We document several new findings as follows: i) cross-delisted firms have less growth opportunities, in the long-run, than their cross-listed peers; ii) after the adoption of Rule 12h-6 of 2007, cross-delisted firms exhibit a significant decline in operating performance; iii) cross-delisted firms underperform their cross-listed peers as they experience negative average abnormal returns, especially in the post-cross-delisting period; iv) cross-delisted firms face higher financial constraints post-delisting than their cross-listed counterparts, and also tend to save more cash out of cash flows; v) the increase in financial constraints post-cross-delisting seems to be primarily driven by informational frictions that constrain access to external financing, which are stronger for firms from countries with weaker investor protection and less developed capital markets; vi) cross-delisted firms experience a significant increase in crash risk associated with earnings management in the post-delisting period relative to a control sample of cross-listed firms, and this effect is more pronounced for delisted firms from countries with weaker investor protection and poor quality of their information environment; vii) cross-delisted firms that engage in earnings management to inflate reported earnings prior to a seasoned equity offering are more likely to a subsequent stock price crash.
NASA Technical Reports Server (NTRS)
Somers, Jeffrey; Granderson, Brad; Scheuring, Rick
2010-01-01
This slide presentation reviews NASA's efforts to arrive at protection of occupants of the ORION space craft on landing. An Abbreviated Injury Scale (AIS) has been developed, it is an anatomically-based, consensus-derived, global severity scoring system that classifies each injury by body region according to its relative importance on a 6-point ordinal scale. It reviews an Operationmally Relevant Injury Scale (ORIS), a classification methodology, and shows charts that detail the results of applying this ORIS to the injury databases. One chart uses NASCAR injury classification. It discusses providing a context for the level of risk inherent in the Orion landings in terms that people understand and have a sense for. For example is the risk of injury during an Orion landing roughly the same, better or worse than: An aircraft carrier landing, a NASCAR crash, or a helicopter crash, etc? The data for NASCAR and Indy Racing league (IRL) racing crash and injury data was reviewed. The risk from the Air Force, Navy, and Army injury data was also reviewed. Past NASA and the Soyuz programs injury risks are also reviewed. The work is an attempt to formulate a recommendation to the Orion Project for an acceptable level of injury risk associated with Nominal and Off-Nominal landing cases. The presentation also discusses the data mining and use of the data to Validate NASA Operationally-Relevant Injury Scale (NORIS) / Military Operationally-Relevant Injury Scale (MORIS), developing injury risk criteria, the types of data that are required, NASCAR modeling techniques and crash data, and comparison with the Brinkley model. The development of injury risk curves for each biodynamic response parameter is discussed. One of the main outcomes of this work is to establish an accurate Automated Test Dummy (ATD) that can be used to measure human tolerances.
A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.
Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung
2016-03-01
With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the multicollinearity between explanatory variables were also discussed. By including a specific congestion indicator, the model performance significantly improved. When comparing models with and without ridge regression, the magnitude of the coefficients was altered in the existence of multicollinearity. These conclusions suggest that the use of appropriate congestion measure and consideration of multicolilnearity among the variables would improve the models and our understanding about the effects of congestion on traffic safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Traffic safety facts 1996 : occupant protection
DOT National Transportation Integrated Search
1997-01-01
In 1996, 32,317 occupants of passenger vehicles (cars, light trucks, vans, and utility vehicles) were killed in motor vehicle traffic crashes, 77 percent of the 41,907 traffic fatalities reported for the year. Among passenger vehicle occupants over 4...
Traffic safety facts 1994 : occupant protection
DOT National Transportation Integrated Search
1995-01-01
In 1994, 30,780 occupants of passenger vehicles (cars, light trucks, vans, and utility vehicles) were killed in motor vehicle traffic crashes, 76 percent of the 40,676 traffic fatalities reported for the year. Among passenger vehicle occupants over 4...
Traffic safety facts 1995 : occupant protection
DOT National Transportation Integrated Search
1996-01-01
In 1995, 31,897 occupants of passenger vehicles (cars, light trucks, vans, and utility vehicles) were killed in motor vehicle traffic crashes, 76 percent of the 41,798 traffic fatalities reported for the year. Among passenger vehicle occupants over 4...
Traffic safety facts 1993 : occupant protection
DOT National Transportation Integrated Search
1994-01-01
In 1993, 26,873 front-seat occupants of passenger vehicles (cars, light trucks, vans, and utility vehicles) were killed in motor vehicle traffic crashes, 67 percent of the 40,115 traffic fatalities reported for the year. Among front-seat passenger ve...
Adiem II end terminal for concrete barrier : final report.
DOT National Transportation Integrated Search
2001-03-01
On September 9, 1997, an ADIEM II (Advanced Dynamic Impact Extension Module) was installed on Interstate 5 near Salem, Oregon. The ADIEM II offered a redirecting, energy-absorbing crash cushion and end treatment for portable and permanent protection ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
.... Energy Absorption Capability of Seat Backs c. Retrofitting Used Buses d. School Buses VIII. Lead Time IX... the seat, reinforcing the floor, walls or other areas of the motorcoach. The final cost and weight...
Child restraint systems for civil aircraft.
DOT National Transportation Integrated Search
1978-03-01
Child restraint systems have been developed to provide protection to children involved in automobile crashes. These systems are not yet approved for use in civil aircraft. Six typical systems were exposed to controlled impacts on a test sled to simul...
Children restraint systems for civil aircraft.
DOT National Transportation Integrated Search
1978-03-01
Child restraint systems have been developed to provide protection to children involved in automobile crashes. These systems are not yet approved for use in civil aircraft. Six typical systems were exposed to controlled impacts on a test sled to simul...
76 FR 53648 - Federal Motor Vehicle Safety Standards: Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... when the continuous motion of spooling the belt out is stopped. From that point, the seat belt cannot... reaction to LATCH found that drivers who preferred installing a CRS with seat belt as opposed to LATCH...
Han, Guang-Ming; Newmyer, Ashley; Qu, Ming
2015-01-01
Seat belt use is the single most effective way to save lives and reduce injuries in motor vehicle crashes. However, some case reports described seat belt use as a double-edged sword because some injuries are related to seat belt use in motor vehicle crashes. To comprehensively understand the effects of seat belt use, we systemically investigated the association between seat belt use and injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes. The injury information was obtained by linking crash reports with hospital discharge data and categorized by using the diagnosis codes based on the Barell injury diagnosis matrix. A total of 10,479 drivers (≥15 years) in passenger vehicles involved in motor vehicle crashes from 2006 to 2011 were included in this study. Seat belt use significantly reduced the proportions of traumatic brain injury (10.4% non-seat belt; 4.1% seat belt) and other head, face, and neck injury (29.3% non-seat belt; 16.6% seat belt) but increased the proportion of spine: thoracic to coccyx injury (17.9% non-seat belt; 35.5% seat belt). Although the proportion of spine: thoracic to coccyx injury was increased in drivers with seat belt use, the severity of injury was decreased, such as fracture (4.2% with seat belt use; 22.0% without seat belt use). Furthermore, the total medical charges decreased due to the change of injury profiles in drivers with seat belt use from a higher percentage of fractures (average cost for per case $26,352) to a higher percentage of sprains and/or strains ($1,897) with spine: thoracic to coccyx injury. This study provide a comprehensive picture for understanding the protective effect of seat belt use on injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes.
Protection of children restrained in child safety seats in side impact crashes.
Arbogast, Kristy B; Locey, Caitlin M; Zonfrillo, Mark R; Maltese, Matthew R
2010-10-01
The performance of child restraint systems (CRS) in side impact motor vehicle crashes has been under study due to the injury and fatality burden of these events. Although previous research has quantified injury risk or described injured body regions, safety advances require an understanding of injury causation. Therefore, the objective was to delineate injury causation scenarios for CRS-restrained children in side impacts and document probable contact points in the vehicle interior. Two in-depth crash investigation databases, the Crash Injury Research and Engineering Network and the Partners for Child Passenger Safety Study, were queried for rear-seated, CRS-restrained children in side impact crashes who sustained Abbreviated Injury Scale 2+ injury. These cases were reviewed by a multidisciplinary team of physicians and engineers to describe injury patterns, injury causation, and vehicle components that contributed to the injuries. Forty-one occupants (average age, 2.6 years) met the inclusion criteria. Twenty-four were near side to the crash, 7 were far side, and 10 were center seated. The most common injuries were to the skull and brain with an increasing proportion of skull fracture as age increased. Head and spine injuries without evidence of head contact were rare but present. All thoracic injuries were lung contusions and no rib fractures occurred. Near-side head and face contacts points were along the rear vertical plane of the window and the horizontal plane of the window sill. Head and face contact points for center- and far-side occupants were along the edges of the front seat back and front seat head restraint. Head injuries are the target for injury prevention for children in CRS in side impact crashes. Most of these injuries are due to the contact; for near-side occupants, contact with the CRS structure and the door interior, for far- or center-seated occupants, contact with the front seat back. These data are useful in developing both educational and technological interventions to reduce the burden of injury to these children.
Lai, Xinghua; Ma, Chunsheng; Hu, Jingwen; Zhou, Qing
2012-09-01
Occupant injury in real world vehicle accidents can be significantly affected by a set of crash characteristics, of which impact direction and impact location (or damage location) in general scale interval (e.g., frontal impact is frequently defined as general damage to vehicle frontal end with impact angle range of 11-1 o'clock) have been identified to associate with injury outcome. The effects of crash configuration in more specific scale of interval on the injury characteristics have not been adequately investigated. This paper presents a statistical analysis to investigate the combined effects of specific impact directions and impact locations on the serious-to-fatal injuries of driver occupants involved in near-side collisions using crash data from National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) for the calendar years of 1995-2005. The screened injury dataset is categorized by three impact locations (side front, side center and side distributed) and two impact directions (oblique impact at 10 o'clock and pure lateral impact at 9 o'clock), resulting in six crash configurations in total. The weighted counts and the risks of different types of injuries in each subgroup are calculated, with which the relative risks along with 95% confidence intervals under oblique impacts versus lateral impacts in each impact location category are computed. Accordingly, the most frequent injury patterns, the risks and the coded-sources of serious thoracic injuries in different crash configurations are identified. The approach adopted in the present study provides new perspectives into occupant injury outcomes and associated mechanism. Results of the analyses reveal the importance of consideration of the crash configurations beyond the scope of existing side-impact regulatory tests and stress the necessity of vehicle crashworthiness and restraint system design in omni-direction to better protect occupants in real-world crash scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kubokawa, C. C.; Yost, C.
1977-01-01
Foam is viscous and elastic with unusual and useful temperature, humidity, and compression responses. Applied weight and pressure distributed equally along entire interface with foam eliminates any pressure points. Flexible urethane foam is ideal for orthopedic and prosthetic devices, sports equipment, furniture, and crash protection.
Evaluating the benefits of centerline rumble strips on rural highways : Research Spotlight
DOT National Transportation Integrated Search
2012-01-01
Michigan began installing centerline rumble strips in 2008 in a new national initiative. Evaluating the impacts of these installations on driver behavior and traffic crashes will help confirm that centerline rumble strips protect motorists. It also w...
Determination of frontal offset test conditions based on crash data
DOT National Transportation Integrated Search
1998-01-01
This paper reports on the test procedure development : phase of the agencys Improved Frontal Protection : research program. It is anticipated that even after all cars : and light trucks have air bags for drivers and front seat : passengers there w...
Evaluation of various padding materials for crash protection.
DOT National Transportation Integrated Search
1966-12-01
Thirty-seven different materials and combinations of materials were impacted with an instrumented dummy head at 15 ft/sec and at 30 ft/sec. Peak g forces, rise times, and deceleration durations were determined for both impact velocities on each test ...
Association of driver air bags with driver fatality: a matched cohort study
Cummings, Peter; McKnight, Barbara; Rivara, Frederick P; Grossman, David C
2002-01-01
Objective To estimate the association of driver air bag presence with driver fatality in road traffic crashes. Design Matched pair cohort study. Setting All passenger vehicle crashes in the United States during 1990-2000 inclusive. Subjects 51 031 driver-passenger pairs in the same vehicle. Main outcome measures Relative risk of death within 30 days of a crash. Results Drivers with an air bag were less likely to die than drivers without an air bag (adjusted relative risk 0.92 (95% confidence interval 0.88 to 0.96)). This estimate was nearly the same whether drivers wore a seat belt (adjusted relative risk 0.93) or not (0.91). Air bags were associated with more protection for women (0.88 (0.82 to 0.93)), than for men (0.94 (0.90 to 0.99)). Drivers wearing a seat belt were less likely to die than unbelted drivers (0.35 (0.33 to 0.36)). Belted drivers with an air bag were less likely to die than unbelted drivers without an air bag (0.32 (0.30 to 0.34)). Conclusions If the associations are causal the average risk of driver death was reduced 8% (95% confidence interval 4% to 12%) by an air bag. Benefit was similar for belted and unbelted drivers and was slightly greater for women. However, seat belts offered much more protection than air bags. What is already known on this topicStudies have estimated that driver air bags reduce the risk of death in a road vehicle crash by 10-14%These studies disagree as to whether benefit is greater for drivers wearing a seat belt or for unbelted driversWhat this study addsHaving an air bag was associated with an 8% reduction in the risk of death, whether the driver was belted or notThe reduction in risk was greater for women (12%) than for men (6%)Seat belts provided much greater protection, with seat belt use reducing the risk of death by 65% (or by 68% in combination with an air bag) PMID:12003882
Sunnevång, Cecilia; Sui, Bo; Lindkvist, Mats; Krafft, Maria
2015-01-01
This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant. National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used. The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome. Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.
Association of driver air bags with driver fatality: a matched cohort study.
Cummings, Peter; McKnight, Barbara; Rivara, Frederick P; Grossman, David C
2002-05-11
To estimate the association of driver air bag presence with driver fatality in road traffic crashes. Matched pair cohort study. All passenger vehicle crashes in the United States during 1990-2000 inclusive. 51 031 driver-passenger pairs in the same vehicle. Relative risk of death within 30 days of a crash. Drivers with an air bag were less likely to die than drivers without an air bag (adjusted relative risk 0.92 (95% confidence interval 0.88 to 0.96)). This estimate was nearly the same whether drivers wore a seat belt (adjusted relative risk 0.93) or not (0.91). Air bags were associated with more protection for women (0.88 (0.82 to 0.93)), than for men (0.94 (0.90 to 0.99)). Drivers wearing a seat belt were less likely to die than unbelted drivers (0.35 (0.33 to 0.36)). Belted drivers with an air bag were less likely to die than unbelted drivers without an air bag (0.32 (0.30 to 0.34)). If the associations are causal the average risk of driver death was reduced 8% (95% confidence interval 4% to 12%) by an air bag. Benefit was similar for belted and unbelted drivers and was slightly greater for women. However, seat belts offered much more protection than air bags.
Sander, Ulrich; Lubbe, Nils
2018-06-01
Car occupants account for one third of all junction fatalities in the European Union. Driver warning can reduce intersection accidents by up to 50 percent; adding Autonomous Emergency Braking (AEB) delivers a reduction of up to 70 percent. However, these findings are based on an assumed 100 percent equipment rate, which may take decades to achieve. Our study investigates the relationship between intersection AEB market penetration rates and avoidance of accidents and injuries in order to guide implementation strategies. Additionally, residual accident characteristics (impact configurations and severity) are analyzed to provide a basis for future in-crash protection requirements. We determined which accidents would have been avoided through the use of an Intersection AEB system with different sensor field-of-views (180° and 120°) by means of re-simulating the pre-crash phase of 792 straight crossing path (SCP) car-to-car accidents recorded in the German In-Depth Accident Study (GIDAS) and the associated Pre-Crash Matrix (PCM). Intersection AEB was activated when neither of the conflict opponents could avoid the crash through reasonable braking or steering reactions. For not-avoided accidents, we used the Kudlich-Slibar rigid body impulse model to calculate the change of velocity during the impact as a measure of impact severity and the principal direction of force. Accident avoidance over market penetration is not linear but exponential, with higher gains at low penetration rates and lower gains at higher rates. A wide field-of-view sensor (180°) substantially increased accident avoidance and injury mitigation rates compared to a 120° field-of-view sensor. For a 180° field-of-view sensor at 100 percent market penetration, about 80 percent of the accidents and 90 percent of the MAIS2 + F injuries could be avoided. For the remaining accidents, AEB intervention rarely affected side of impact. The median change of velocity (delta-V) of the remaining crashes reduces only marginally at low penetration rates but this reduction increases with higher penetration rates. With 100 percent market penetration, one quarter of the vehicles still involved in straight crossing path accidents will sustain a delta-V higher than 17 km/h. Intersection AEB is very effective. Enabling a fast initial implementation of systems with wide field-of-view sensor(s) and ensuring a high market penetration over the longer term is essential to achieve high crash avoidance and injury mitigation rates over time. The standards for in-crash protection must be high to mitigate injury in the unavoidable, residual accidents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of a passenger rail vehicle crush zone
DOT National Transportation Integrated Search
1999-04-13
The use of crush zones in passenger rail vehicles is rapidly growing in the United States and throughout the world. Such crush zones are an important part of the crash energy management philosophy of train occupant protection. The objective of this s...
DOT National Transportation Integrated Search
2015-07-01
Advanced crash avoidance technologies (ACATs) for trucks have been developed in recent years and are beginning : to be deployed. Prior to the development of standards for heavy truck crashworthiness and occupant protection, : additional characterizat...
Impact injury to the pregnant female and fetus in lap belt restraint.
DOT National Transportation Integrated Search
1968-12-01
Although it has been well established that the lap (seat) belt offers considerable protection against injury or death in crash environments, there has long been controversy over the injury potential to the pregnant female. This question is of importa...
Seating positions and children's risk of dying in motor vehicle crashes
Braver, E.; Whitfield, R.; Ferguson, S.
1998-01-01
Objectives—To determine the effects of seating position, combined with restraint use and airbag status, on children's risk of dying in crashes. Methods—Using 1988–95 data from the United States Fatality Analysis Reporting System, risk of death was compared among front and rear seated passengers aged 12 and younger who were involved in fatal crashes for different categories of restraint use and in vehicles with and without passenger airbags. Results—Restrained children in rear seats had the lowest risk of dying in fatal crashes. Among children seated in the rear, risk of death was reduced 35% in vehicles without any airbags, 31% in vehicles equipped only with driver airbags, and 46% in vehicles with passenger airbags. Both restrained and unrestrained children aged 0–12 were at lower risk of dying in rear seats. Rear seats also afforded additional protection to children aged 5–12 restrained only with lap belts compared with lap/shoulder belted children in front seats. Children were about 10–20% less likely to die in rear center than in rear outboard positions. Conclusions—Parents and others who transport children should be strongly encouraged to place infants and children in rear seats whether or not vehicles have airbags. Existing laws requiring restraint use by children should be strengthened and actively enforced. PMID:9788087
Toward an Effective Long-Term Strategy for Preventing Motor Vehicle Crashes and Injuries
Mawson, Anthony R.; Walley, E. Kenneth
2014-01-01
Casualties due to motor vehicle crashes (MVCs) include some 40,000 deaths each year in the United States and one million deaths worldwide. One strategy that has been recommended for improving automobile safety is to lower speed limits and enforce them with speed cameras. However, motor vehicles can be hazardous even at low speeds whereas properly protected human beings can survive high-speed crashes without injury. Emphasis on changing driver behavior as the focus for road safety improvements has been largely unsuccessful; moreover, drivers today are increasingly distracted by secondary tasks such as cell phone use and texting. Indeed, the true limiting factor in vehicular safety is the capacity of human beings to sense and process information and to make rapid decisions. Given that dramatic reductions in injuries and deaths from MVCs have occurred over the past century due to improvements in safety technology, despite increases in the number of vehicles on the road and miles driven per vehicle, we propose that an effective long-term strategy for reducing MVC-related injury would be continued technological innovation in vehicle design, aimed at progressively removing the driver from routine operational decision-making. Once this is achieved, high rates of speed could be achieved on open highways, with minimal risk of crashes and injury to occupants and pedestrians. PMID:25116634
Toward an effective long-term strategy for preventing motor vehicle crashes and injuries.
Mawson, Anthony R; Walley, E Kenneth
2014-08-11
Casualties due to motor vehicle crashes (MVCs) include some 40,000 deaths each year in the United States and one million deaths worldwide. One strategy that has been recommended for improving automobile safety is to lower speed limits and enforce them with speed cameras. However, motor vehicles can be hazardous even at low speeds whereas properly protected human beings can survive high-speed crashes without injury. Emphasis on changing driver behavior as the focus for road safety improvements has been largely unsuccessful; moreover, drivers today are increasingly distracted by secondary tasks such as cell phone use and texting. Indeed, the true limiting factor in vehicular safety is the capacity of human beings to sense and process information and to make rapid decisions. Given that dramatic reductions in injuries and deaths from MVCs have occurred over the past century due to improvements in safety technology, despite increases in the number of vehicles on the road and miles driven per vehicle, we propose that an effective long-term strategy for reducing MVC-related injury would be continued technological innovation in vehicle design, aimed at progressively removing the driver from routine operational decision-making. Once this is achieved, high rates of speed could be achieved on open highways, with minimal risk of crashes and injury to occupants and pedestrians.
DOT National Transportation Integrated Search
2008-12-01
The 2007 Motor Vehicle Occupant Safety Survey was the sixth in a series of periodic national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by Sc...
Intelligent dilemma zone protection system at high-speed intersections : final report.
DOT National Transportation Integrated Search
2017-07-01
Drivers actions in an intersections dilemma zone the area where the decision to stop at a yellow light or continue through it is not clear-cut can lead to side-angle and rear-end crashes. In Maryland, researchers developed an intelligen...
DOT National Transportation Integrated Search
2001-11-01
The 2000 Motor Vehicle Occupant Safety Survey was the fourth in a series of biennial national telephone surveys on occupant protection issues conducted for the National Highway Traffic Safety Administration (NHTSA). Data collection was conducted by S...
Intelligent dilemma zone protection system at high-speed intersections : research summary.
DOT National Transportation Integrated Search
2017-07-01
Drivers actions in an intersections dilemma zone the area where the decision to stop at a yellow light or continue through it is not clear-cut can lead to side-angle and rear-end crashes. In Maryland, researchers developed an intelligen...
Wang, Stewart C.; Bednarski, Brian; Patel, Smita; Yan, Alice; Kohoyda-Inglis, Carla; Kennedy, Theresa; Link, Elizabeth; Rowe, Stephen; Sochor, Mark; Arbabi, Saman
2003-01-01
The objective of this study was to determine the effect of differences in subcutaneous fat depth on adult injury patterns in motor vehicle collisions. Sixty-seven consecutive adult crash subjects aged 19–65 who received computed tomography of their chest, abdomen and pelvis as part of their medical evaluation and who consented to inclusion in the Crash Injury Research Engineering Network (CIREN) study were included. Subcutaneous fat was measured just lateral to the rectus abdominus muscle in a transverse section taken through the subject at the level of L4. Women had significantly greater subcutaneous fat depth than men. Increased subcutaneous fat depth was associated with significantly decreased injury severity to the abdominal region of females. A similar trend was noted in males although it did not reach statistical significance. Our findings suggest that increased subcutaneous fat may be protective against injuries by cushioning the abdominal region against injurious forces in motor vehicle collisions. PMID:12941250
Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Petty, John; Stitzel, Joel D
2016-01-01
Appropriate treatment at designated trauma centers (TCs) improves outcomes among injured children after motor vehicle crashes (MVCs). Advanced Automatic Crash Notification (AACN) has shown promise in improving triage to appropriate TCs. Pediatric-specific AACN algorithms have not yet been created. To create such an algorithm, it will be necessary to include some metric of development (age, height, or weight) as a covariate in the injury risk algorithm. This study sought to determine which marker of development should serve as a covariate in such an algorithm and to quantify injury risk at different levels of this metric. A retrospective review of occupants age < 19 years within the MVC data set NASS-CDS 2000-2011 was performed. R(2) values of logistic regression models using age, height, or weight to predict 18 key injury types were compared to determine which metric should be used as a covariate in a pediatric AACN algorithm. Clinical judgment, literature review, and chi-square analysis were used to create groupings of the chosen metric that would discriminate injury patterns. Adjusted odds of particular injury types at the different levels of this metric were calculated from logistic regression while controlling for gender, vehicle velocity change (delta V), belted status (optimal, suboptimal, or unrestrained), and crash mode (rollover, rear, frontal, near-side, or far-side). NASS-CDS analysis produced 11,541 occupants age < 19 years with nonmissing data. Age, height, and weight were correlated with one another and with injury patterns. Age demonstrated the best predictive power in injury patterns and was categorized into bins of 0-4 years, 5-9 years, 10-14 years, and 15-18 years. Age was a significant predictor of all 18 injury types evaluated even when controlling for all other confounders and when controlling for age- and gender-specific body mass index (BMI) classifications. Adjusted odds of key injury types with respect to these age categorizations revealed that younger children were at increased odds of sustaining Abbreviated Injury Scale (AIS) 2+ and 3+ head injuries and AIS 3+ spinal injuries, whereas older children were at increased odds of sustaining thoracic fractures, AIS 3+ abdominal injuries, and AIS 2+ upper and lower extremity injuries. The injury patterns observed across developmental metrics in this study mirror those previously described among children with blunt trauma. This study identifies age as the metric best suited for use in a pediatric AACN algorithm and utilizes 12 years of data to provide quantifiable risks of particular injuries at different levels of this metric. This risk quantification will have important predictive purposes in a pediatric-specific AACN algorithm.
Safer Vehicles for People and the Planet: Letter to the Editor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc
Letter to the Editors from Leonard Evans, Bloomfield Hills, MI: Single-vehicle crashes, which account for half of occupant fatalities, are not mentioned in 'Safer Vehicles for People and the Planet', by Thomas P. Wenzel and Marc Ross (March-April). Simple physics shows that in such crashes risk declines as vehicle mass increases. The authors write 'driving imported luxury cars carries extremely low risk, for reasons that are not obvious'. The reasons are obvious--the cars are purchased by low-risk drivers. If they swapped vehicles with drivers of sports cars (which have high risk), the risks would stick with the drivers, not themore » vehicles. The article reflects the American belief that death on our roads can be substantially reduced by making vehicles in which it is safer to crash. From 1979 through 2002, Great Britain, Canada and Australia reduced fatalities by an average of 49 percent, compared with 16 percent in the U.S. Accumulating the differences over this time shows that by merely matching the safety performance of these other countries, about 200,000 fewer Americans would have died. These trends continue. In 2006 the U.S. recorded 42,642 traffic deaths, a modest 22 percent decline from our all-time high. Sweden recorded 445, a reduction of 66 percent from their all-time high. The obsessive focus on vehicles rather than on countermeasures that scientific research shows substantially reduce risk is at the core of our dramatic safety failure. The only way to substantially reduce deaths is to reduce the risk of crashing, not to make it safer to crash. The response from Drs. Wenzel and Ross: Of course Dr. Evans is correct in stating that driver behavior influences crash risk. In our article we made clear that our estimates of risk include how well a vehicle/driver combination avoids a crash, as well as how crash-worthy a vehicle (and robust a driver) is once a crash occurs. We also analyzed two variables that can account for driver behavior: the fraction of all driver fatalities that are young men, and a 'bad driver' rating that combines information about the current crash (drug or alcohol involvement, driving without a license, or reckless driving) as well as the operator's driving record for the previous three years. For example, the high risks of sports cars, and the low risks of minivans, are clearly influenced by who drives these types of vehicles (36 percent young males and 0.77 bad driver rating for sports cars, vs. 4 percent and 0.21 for minivans; the average values for all types of cars are 20 percent and 0.50). On the other hand, we were surprised to find that the imported luxury cars, with the lowest risks, have only average drivers (21 percent young males, 0.57 bad driver rating). That is the basis for our conclusion that the design of imported luxury vehicles, or at least specific safety features on them, overcome risky behavior taken by their drivers. The safety of vehicles has greatly improved over the years. In our studies we have found several examples of models that greatly reduced their risks over time; for example, the Ford Focus has a much better risk to its drivers (118) than the Ford Escort it replaced (148). Our data indicate that more young males drive the Focus (21 percent) than the Escort (15 percent), and that Focus drivers are perhaps slightly more risky (0.50 vs. 0.44 bad driver rating). Clearly vehicle design does not play as small a role in vehicle safety as Dr. Evans suggests. Dr. Evans asserts that we ignore single-vehicle crashes and that simple physics dictates that vehicle mass provides safety in single-vehicle crashes. By itself, additional vehicle mass does provide some protection from rapid deceleration in crashes with a movable object, particularly for an unbelted occupant. However, when it comes to vehicle safety, our research by vehicle model indicates that there is essentially no relationship between car mass and risk, even in frontal crashes. In his own papers, Dr. Evans appears to admit that it is not clear whether mass, or size (specifically crush space) is inherent to vehicle safety. Additional research indicates that it is not size per se that protects in two-vehicle crashes, but how well the stiff structures on the vehicles are aligned. The auto manufacturing industry has voluntarily made design changes to their pickup trucks to increase the likelihood that truck and car bumpers will interact in a frontal crash, reducing the aggressivity of pickup trucks in recent years. Regarding the differences in experiences between the U.S. and other countries, it is important to keep in mind that the U.S. vehicle fleet is fairly unique; about half of U.S. vehicles are light duty trucks (pickups, SUVs and minivans), which many studies have shown are dangerous to other road users.« less
Mechanisms of Injury in Automobile Crashes
Huelke, Donald F.
1972-01-01
The only way to determine the causes of injury in automobile collisions is through examination of data collected in detailed investigation of crashes. Such data were gathered from a ten-year study of collisions that caused injury to the occupants of the cars. In a comparison of injuries in the newer model automobiles—vehicles equipped with the safety features—with those in older model cars not equipped with the present-day occupant protection devices, significant reduction in injury severity was noted. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9.Figure 10.Figure 11.Figure 12.Figure 13.Figure 14.Figure 15.Figure 16.Figure 17. PMID:5059662
77 FR 29247 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
...). ACTION: Final rule; technical amendments. SUMMARY: This final rule makes technical amendments to Federal... advanced air bag requirements. As written now, the general warning label requirements contain an explicit... equipment requirements for restraint systems. This document makes technical amendments to several of the...
The Impact of the Thai Motorcycle Transition on Road Traffic Injury: Thai Cohort Study Results
Berecki-Gisolf, Janneke; Yiengprugsawan, Vasoontara; Kelly, Matthew; McClure, Roderick; Seubsman, Sam-ang; Sleigh, Adrian
2015-01-01
Objectives The aim of this study was to investigate the impact of motorcycle to car transitioning and urbanisation on traffic injury rates in Thailand. Design Analysis of two consecutive surveys of a large national cohort study. Setting Thailand. Participants The data derived from 57,154 Thai Cohort Study (TCS) participants who provided relevant data on both the 2005 and 2009 surveys. Primary and secondary outcome measures Motorcycle and car traffic crash injury self-reported in 2009, with twelve months’ recall. Results In 2009, 5608(10%) participants reported a traffic crash injury. Most crashes involved a motorcycle (74%). Car access increased and motorcycle use decreased between 2005 and 2009. Among those who used a motorcycle at both time points, traffic injury incidence was 2.8 times greater compared to those who did not use a motorcycle at either time point. Multivariable logistic regression models were used to test longitudinal and cross sectional factors associated with traffic crash injury: in the adjusted model, cars were negatively and motorcycles positively associated with injury. Living in an urban area was not injury protective in the adjusted model of traffic crash injury. Conclusions Ongoing urbanisation in Thailand can be expected to lead to further reductions in road traffic injuries based on transition from motorcycles to cars in urban areas. Cities, however, do not provide an intrinsically safer traffic environment. To accommodate a safe transition to car use in Thailand, traffic infrastructural changes anticipating the growing car density in urban areas is warranted. PMID:25826214
Reducing air-pollution: a new argument for getting drivers to abide by the speed limit?
Delhomme, P; Chappé, J; Grenier, K; Pinto, M; Martha, C
2010-01-01
Speeding is one of the main factors of car crash-risk, but it also contributes to increasing air-pollution. In two studies we attempted to lead drivers to abide by speed limits using "reducing air-pollution" as a new argument. We presented prevention messages that highlighted the role of speeding in increasing "crash-risk", "air-pollution", or both (Studies 1 and 2). The messages were also positively or negatively framed (Study 2). Given that women are more concerned with environmental issues than are men, we expected the following hypotheses to be validated for women. The message with the "air-pollution" argument was expected to be evaluated more positively than the "crash-risk" message (H1). The "air-pollution" and "crash-risk and air-pollution" messages were expected to be more effective than the "crash-risk" message on the behavioral intention to observe speed limits (H2a) and on the perceived efficacy of speed-limit observance in reducing air-pollution (H2b; Studies 1 and 2). Furthermore, positive framing was expected to be more effective than negative framing (H3), and presenting a message to be more effective than presenting no message (H4; Study 2). Broadly, our results argue in favor of our hypotheses. However in Study 2, the effects of message framing did not allow us to conclude that negative or positive framing was superior. All in all, messages with the "air-pollution" argument were more effective at leading drivers to observe speed limits. Thus, environmental protection may be a fruitful route to explore for increasing road safety.
Dozza, Marco; González, Nieves Pañeda
2013-11-01
New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential applications for NDS video processing. As new NDS such as SHRP2 are now providing the equivalent of five years of one vehicle data each day, the development of new methods, such as the one proposed in this paper, seems necessary to guarantee that these data can actually be analysed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Predicting severe injury using vehicle telemetry data.
Ayoung-Chee, Patricia; Mack, Christopher D; Kaufman, Robert; Bulger, Eileen
2013-01-01
In 2010, the National Highway Traffic Safety Administration standardized collision data collected by event data recorders, which may help determine appropriate emergency medical service (EMS) response. Previous models (e.g., General Motors ) predict severe injury (Injury Severity Score [ISS] > 15) using occupant demographics and collision data. Occupant information is not automatically available, and 12% of calls from advanced automatic collision notification providers are unanswered. To better inform EMS triage, our goal was to create a predictive model only using vehicle collision data. Using the National Automotive Sampling System Crashworthiness Data System data set, we included front-seat occupants in late-model vehicles (2000 and later) in nonrollover and rollover crashes in years 2000 to 2010. Telematic (change in velocity, direction of force, seat belt use, vehicle type and curb weight, as well as multiple impact) and nontelematic variables (maximum intrusion, narrow impact, and passenger ejection) were included. Missing data were multiply imputed. The University of Washington model was tested to predict severe injury before application of guidelines (Step 0) and for occupants who did not meet Steps 1 and 2 criteria (Step 3) of the Centers for Disease Control and Prevention Field Triage Guidelines. A probability threshold of 20% was chosen in accordance with Centers for Disease Control and Prevention recommendations. There were 28,633 crashes, involving 33,956 vehicles and 52,033 occupants, of whom 9.9% had severe injury. At Step 0, the University of Washington model sensitivity was 40.0% and positive predictive value (PPV) was 20.7%. At Step 3, the sensitivity was 32.3 % and PPV was 10.1%. Model analysis excluding nontelematic variables decreased sensitivity and PPV. The sensitivity of the re-created General Motors model was 38.5% at Step 0 and 28.1% at Step 3. We designed a model using only vehicle collision data that was predictive of severe injury at collision notification and in the field and was comparable with an existing model. These models demonstrate the potential use of advanced automatic collision notification in planning EMS response. Prognostic study, level II.
Fitzharris, Michael; Franklyn, Melanie; Frampton, Richard; Yang, King; Morris, Andrew; Fildes, Brian
2004-09-01
Using in-depth, real-world motor vehicle crash data from the United States and the United Kingdom, we aimed to assess the incidence and risk factors associated with thoracic aorta injuries. De-identified National Automotive Sampling System Crashworthiness Data System (U.S.) and Co-operative Crash Injury Study (U.K.) data formed the basis of this retrospective analysis. Logistic regression was used to assess the level of risk of thoracic aorta injury associated with impact direction, seat belt use and, given the asymmetry of the thoracic cavity, whether being struck toward the left side of the body was associated with increased risk in side-impact crashes. A total of 13,436 U.S. and 3,756 U.K. drivers and front seat passengers were analyzed. The incidence of thoracic aorta injury in the U.S. and U.K. samples was 1.5% (n = 197) and 1.9% (n = 70), respectively. The risk was higher for occupants seated on the side closest to the impact than for occupants involved in frontal impact crashes. This was the case irrespective of whether the force was applied toward the left (belted: relative risk [RR], 4.6; 95% confidence interval [CI], 2.9-7.1; p < 0.001) or the right side (belted: RR, 2.6; 95% CI, 1.4-5.1; p < 0.004) of the occupant's body. For occupants involved in side-impact crashes, there was no difference in the risk of thoracic aorta injury whether the impacting force was applied toward the left or toward the right side of the occupant's body. Seat belt use provided a protective benefit such that the risk of thoracic aorta injury among unbelted occupants was three times higher than among belted occupants (RR, 3.0; 95% CI, 2.2-4.3; p < 0.001); however, the benefit varied across impact direction. Thoracic aorta injuries were found to be associated with high impact severity, and being struck by a sports utility vehicle relative to a passenger vehicle (RR, 1.7; 95% CI, 1.2-2.3; p = 0.001). Aortic injuries have been conventionally associated with frontal impacts. However, emergency clinicians should be aware that occupants of side-impact crashes are at greater risk, particularly if the occupant was unbelted and involved in a crash of high impact severity.
How to decrease pedestrian injuries: conceptual evolutions starting from 137 crash tests.
Thollon, Lionel; Jammes, Christian; Behr, Michel; Arnoux, Pierre-Jean; Cavallero, Claude; Brunet, Christian
2007-02-01
The improvement of vulnerable users' protection has become an essential objective for our society. Injury assessments observed in clinical traumatology have led researchers and manufacturers to understand the mechanisms involved and to design safe vehicles (to reduce the severity of pedestrian injuries). In all, 137 crash tests between 1979 and 2004 with postmortal human subjects (PMHS) were performed at the Laboratory of Applied Biomechanics to access pedestrian protection. A retrospective analysis of these experimental tests, pedestrian/car impacts (full scale or subsystems), performed at the laboratory is thus proposed. This document focuses on injury mechanisms investigation on the evolution of the experimental approach, as well as on the vehicles' technological improvements performed by car manufacturers. The analysis of experimental results (injury assessment, kinematics, vehicle deformations, etc.) shows the complexity and variety of injury mechanisms. The injury assessment shows the need to improve lower-limb joints protection, as well as head and spine segments, because of the difficulties of surgical repair of these injuries. Experimental tests contribute to evaluate the automobile safety evolution in the field of pedestrian protection. The main induced car improvements concern considerable efforts on vehicle material behavior and their capacity to dissipate energy during shocks (replacement of the convex rigid bumpers by deformable structures, modification of the windscreen structure). They also concern the suppression of all aggressive structures for the pedestrian (spare wheel initially placed on the front part of the vehicle, protection of the heels of windscreen wiper, etc.).
75 FR 37343 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
...\\ Morgan, Christina. ``Effectiveness of Lap/Shoulder Belts in the Back Outboard Seating Positions,'' DOT HS... has also pursued vehicle-based technologies for increasing seat belt use. These include sensors in the... driver position, enhanced SBRSs primarily relied on sensors found in the seat belt buckle and latch...
78 FR 68748 - Federal Motor Vehicle Safety Standards; Designated Seating Positions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... example, FMVSS No. 208, Occupant Crash Protection, requires that each DSP in a light vehicle be provided... Justice (AAJ), Safety Research and Strategies (SRS), Toyota Motor North America (Toyota), Mitsubishi... regarding the accuracy of the data related to the Acura Integra 2-Door, the agency stated: Safety Research...
The influence of train type, car weight, and train length on passenger train crashworthiness
DOT National Transportation Integrated Search
2005-03-16
Crash energy management (CEM) is a type of equipment : design that is intended to protect occupant space during a : collision. Structures at the front and back of each car act as : crumple zones that absorb the collision energy. CEM is : intended to ...
78 FR 53386 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... contract with the Transportation Research Board of the National Academy of Sciences (NAS)) of the potential...\\ Bentley, J.J., Kurrus, R., & Beuse, N. ``Qualitative research regarding attitudes towards four... research program on seat belt interlocks in light of its newly-acquired statutory authority to allow...
The Effect of a Low-Speed Automatic Brake System Estimated From Real Life Data
Isaksson-Hellman, Irene; Lindman, Magdalena
2012-01-01
A substantial part of all traffic accidents involving passenger cars are rear-end collisions and most of them occur at low speed. Auto Brake is a feature that has been launched in several passenger car models during the last few years. City Safety is a technology designed to help the driver mitigate, and in certain situations avoid, rear-end collisions at low speed by automatically braking the vehicle. Studies have been presented that predict promising benefits from these kinds of systems, but few attempts have been made to show the actual effect of Auto Brake. In this study, the effect of City Safety, a standard feature on the Volvo XC60 model, is calculated based on insurance claims data from cars in real traffic crashes in Sweden. The estimated claim frequency of rear-end frontal collisions measured in claims per 1,000 insured vehicle years was 23% lower for the City Safety equipped XC60 model than for other Volvo models without the system. PMID:23169133
The effect of a low-speed automatic brake system estimated from real life data.
Isaksson-Hellman, Irene; Lindman, Magdalena
2012-01-01
A substantial part of all traffic accidents involving passenger cars are rear-end collisions and most of them occur at low speed. Auto Brake is a feature that has been launched in several passenger car models during the last few years. City Safety is a technology designed to help the driver mitigate, and in certain situations avoid, rear-end collisions at low speed by automatically braking the vehicle.Studies have been presented that predict promising benefits from these kinds of systems, but few attempts have been made to show the actual effect of Auto Brake. In this study, the effect of City Safety, a standard feature on the Volvo XC60 model, is calculated based on insurance claims data from cars in real traffic crashes in Sweden. The estimated claim frequency of rear-end frontal collisions measured in claims per 1,000 insured vehicle years was 23% lower for the City Safety equipped XC60 model than for other Volvo models without the system.
Modelling of a spread of hazardous substances in a Floreon+ system
NASA Astrophysics Data System (ADS)
Ronovsky, Ales; Brzobohaty, Tomas; Kuchar, Stepan; Vojtek, David
2017-07-01
This paper is focused on a module of an automatized numerical modelling of a spread of hazardous substances developed for the Floreon+ system on demand of the Fire Brigade of Moravian-Silesian. The main purpose of the module is to provide more accurate prediction for smog situations that are frequent problems in the region. It can be operated by non-scientific user through the Floreon+ client and can be used as a short term prediction model of an evolution of concentrations of dangerous substances (SO2, PMx) from stable sources, such as heavy industry factories, local furnaces or highways or as fast prediction of spread of hazardous substances in case of crash of mobile source of contamination (transport of dangerous substances) or in case of a leakage in a local chemical factory. The process of automatic gathering of atmospheric data, connection of Floreon+ system with an HPC infrastructure necessary for computing of such an advantageous model and the model itself are described bellow.
The prevalence of crash risk factors in a population-based study of motorcycle riders.
de Rome, Liz; Fitzharris, Michael; Baldock, Matthew; Fernandes, Ralston; Ma, Alice; Brown, Julie
2016-09-01
Motorcyclists represent an increasing proportion of road traffic casualties but, while factors associated with crashes are readily identifiable, little is known about the prevalence of those risk factors in the motorcycling population. A stratified random-sampling frame was used to survey the population of registered motorcycles owners in New South Wales (NSW) when they attended motor registry offices. The postal codes in the State database of registered motorcycle were used to stratify the population into quartiles based on socioeconomic characteristics and to determine sample weights. Participants (n=506) represented 47% of eligible riders approached. On average participants were aged 43, rode 7h/week and had 17 years of riding experience. Estimates based on multiple ownership rates suggest motorcycle registration numbers exceed the active riding population by approximately 15%. Less than half rode under 101km/week, 25% rode over 300km/week and just 42% rode every day. More rode frequently for leisure (70%) than for commuting (53%) and over half rarely rode in dark (52%) or wet (67%) conditions. Most wore protective clothing - helmets (100%), jackets (82%), pants (56%), boots (57%) and gloves (73%). Those with traffic infringements (32%) were mostly for driving (25%), not riding (10%) offences. In the past year, 13% had one or more motorcycle crashes including minor spills and 76% one or more near-crash experiences. The youngest riders (15-19) reported the highest rates of exposure in kilometres, hours, frequency of riding and commuting. They also reported lower crash involvement (3%) but more near-crashes (80%). This study provides an account of the prevalence of key risk factors across age groups in a population of active motorcycle riders in NSW. Novice riders were represented in all age groups although most novices were under 40 years. These data can be used to guide the development of targeted countermeasures aimed at improving motorcycling safety for riders of different age groups. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Use, perceptions, and benefits of automotive technologies among aging drivers.
Eby, David W; Molnar, Lisa J; Zhang, Liang; St Louis, Renée M; Zanier, Nicole; Kostyniuk, Lidia P; Stanciu, Sergiu
2016-12-01
Advanced in-vehicle technologies have been proposed as a potential way to keep older adults driving for as long as they can safely do so, by taking into account the common declines in functional abilities experienced by older adults. The purpose of this report was to synthesize the knowledge about older drivers and advanced in-vehicle technologies, focusing on three areas: use (how older drivers use these technologies), perception (what they think about the technologies), and outcomes (the safety and/or comfort benefits of the technologies). Twelve technologies were selected for review and grouped into three categories: crash avoidance systems (lane departure warning, curve speed warning, forward collision warning, blind spot warning, parking assistance); in-vehicle information systems (navigation assistance, intelligent speed adaptation); and other systems (adaptive cruise control, automatic crash notification, night vision enhancement, adaptive headlight, voice activated control). A comprehensive and systematic search was conducted for each technology to collect related publications. 271 articles were included into the final review. Research findings for each of the 12 technologies are synthesized in relation to how older adults use and think about the technologies as well as potential benefits. These results are presented separately for each technology. Can advanced in-vehicle technologies help extend the period over which an older adult can drive safely? This report answers this question with an optimistic "yes." Some of the technologies reviewed in this report have been shown to help older drivers avoid crashes, improve the ease and comfort of driving, and travel to places and at times that they might normally avoid.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... Envelope Protection: Performance Credit for Automatic Takeoff Thrust Control System (ATTCS) During Go... Automatic Takeoff Thrust Control System (ATTCS) during go-around. The applicable airworthiness regulations... FAA-2012-1199 using any of the following methods: Federal eRegulations Portal: Go to http://www...
Analysis of factors that increase motorcycle rider risk compared to car driver risk.
Keall, Michael D; Newstead, Stuart
2012-11-01
As in other parts of the Western world, there is concern in New Zealand about increasing popularity of motorcycles because of potential increases in road trauma. This study sought to identify important factors associated with increased risk for motorcyclists to inform potential policy approaches to reduce motorcyclist injury, such as changes to motorcyclist licensing, training and education. Using data extracted from a register of all New Zealand licensed motor vehicles that were matched to crash data, statistical models were fitted to examine patterns of motorcycle risk in comparison with small cars. These showed generally elevated risks for motorcyclists compared to cars, but particularly elevated risks for motorcycle owners aged in their 20s or who lived in more urbanised settings. In crashes, motorcyclists have little protection from injury, putting the motorcyclist at high risk of injury. When comparing new motorcycles with new cars, the odds of fatal or serious injury to a motorcycle rider involved in an injury crash were almost eight times the odds for a car driver. Copyright © 2011 Elsevier Ltd. All rights reserved.
Issues and challenges for pedestrian active safety systems based on real world accidents.
Hamdane, Hédi; Serre, Thierry; Masson, Catherine; Anderson, Robert
2015-09-01
The purpose of this study was to analyze real crashes involving pedestrians in order to evaluate the potential effectiveness of autonomous emergency braking systems (AEB) in pedestrian protection. A sample of 100 real accident cases were reconstructed providing a comprehensive set of data describing the interaction between the vehicle, the environment and the pedestrian all along the scenario of the accident. A generic AEB system based on a camera sensor for pedestrian detection was modeled in order to identify the functionality of its different attributes in the timeline of each crash scenario. These attributes were assessed to determine their impact on pedestrian safety. The influence of the detection and the activation of the AEB system were explored by varying the field of view (FOV) of the sensor and the level of deceleration. A FOV of 35° was estimated to be required to detect and react to the majority of crash scenarios. For the reaction of a system (from hazard detection to triggering the brakes), between 0.5 and 1s appears necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of a bus seat buffer to mitigate frontal crash effects
NASA Astrophysics Data System (ADS)
Stanisławek, Sebastian; Dziewulski, Paweł; Sławiński, Grzegorz
2018-01-01
The paper considers the problem of coach occupant safety during crash events. The authors present a simple low-cost seat buffer concept which may mitigate the effects of frontal impact. The method of computer simulation was chosen to solve the problem efficiently. The Finite Element Method (FEM) implemented in the LS-DYNA commercial code was used. The testing procedure was based on European Commission regulations, under which vehicles move at a defined speed. Simulations have shown that seat occupants suffer serious trauma during a crash, with the head experiencing relatively high acceleration, thus resulting in an HIC36 of 1490. The installation of a protective buffer mounted on the upper part of the seat reduced the HIC36 to only 510. However, in its current form it does not meet the requirements of the regulations. Further modifications to the overlay shape and structure are essential in order to better improve the deceleration of passengers' bodies. Moreover, a detailed model of seats and their anchorage should be taken into account. A more flexible structure should provide more positive and more accurate results.
WHIPS seat and occupant motions during simulated rear crashes.
Xiao, Ming; Ivancic, Paul C
2010-10-01
Objectives of this study were to investigate the motions of Volvo's Whiplash Protection System (WHIPS) seat and occupant during simulated rear crashes of a human model of the neck (HUMON). HUMON consisted of a human neck specimen (n = 6) mounted to the torso of BioRID II and carrying an anthropometric head stabilized with muscle force replication. HUMON was seated and secured in a 2005 Volvo XC90 minivan seat that included WHIPS and a fixed head restraint. Rear crashes of 9.9 g (ΔV 9.2 kph), 12.0 g (ΔV 11.4 kph), and 13.3 g (ΔV 13.4 kph) were simulated and WHIPS and occupant motions were monitored. Linear regression analyses (P < .05) were used to determine relationships between WHIPS and occupant motion peaks using data from all crashes combined. WHIPS motions consisted of simultaneous rearward and downward translations and extension of the seatback and plastic deformation of the bilateral WHIPS energy-absorbing components. Peak WHIPS motions were linearly correlated only with peak rearward occupant translations. Less rearward pelvis translation was required to cause WHIPS activation as compared to T1 translation. WHIPS reduced peak T1 horizontal acceleration by 39 percent compared to sled acceleration. This was within the range previously reported for WHIPS, between 30 and 60 percent, but higher than the 16 percent reduction previously reported due to active head restraint. Absorption of crash energy occurred during the initial 75 ms and the onset of head support occurred at 114 ms. Differential head-torso motions occurred prior to and during head support, indicating the potential for neck injury even with WHIPS.
Fault-tolerant wait-free shared objects
NASA Technical Reports Server (NTRS)
Jayanti, Prasad; Chandra, Tushar D.; Toueg, Sam
1992-01-01
A concurrent system consists of processes communicating via shared objects, such as shared variables, queues, etc. The concept of wait-freedom was introduced to cope with process failures: each process that accesses a wait-free object is guaranteed to get a response even if all the other processes crash. However, if a wait-free object 'crashes,' all the processes that access that object are prevented from making progress. In this paper, we introduce the concept of fault-tolerant wait-free objects, and study the problem of implementing them. We give a universal method to construct fault-tolerant wait-free objects, for all types of 'responsive' failures (including one in which faulty objects may 'lie'). In sharp contrast, we prove that many common and interesting types (such as queues, sets, and test&set) have no fault-tolerant wait-free implementations even under the most benign of the 'non-responsive' types of failure. We also introduce several concepts and techniques that are central to the design of fault-tolerant concurrent systems: the concepts of self-implementation and graceful degradation, and techniques to automatically increase the fault-tolerance of implementations. We prove matching lower bounds on the resource complexity of most of our algorithms.
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-2 - Automatic fire sensors; approved components; installation requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; approved components... Protection § 75.1103-2 Automatic fire sensors; approved components; installation requirements. (a) The components of each automatic fire sensor required to be installed in accordance with the provisions of § 75...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-2 - Automatic fire sensors; approved components; installation requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; approved components... Protection § 75.1103-2 Automatic fire sensors; approved components; installation requirements. (a) The components of each automatic fire sensor required to be installed in accordance with the provisions of § 75...
30 CFR 75.1103-2 - Automatic fire sensors; approved components; installation requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; approved components... Protection § 75.1103-2 Automatic fire sensors; approved components; installation requirements. (a) The components of each automatic fire sensor required to be installed in accordance with the provisions of § 75...
30 CFR 75.1103-2 - Automatic fire sensors; approved components; installation requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; approved components... Protection § 75.1103-2 Automatic fire sensors; approved components; installation requirements. (a) The components of each automatic fire sensor required to be installed in accordance with the provisions of § 75...
30 CFR 75.1103-2 - Automatic fire sensors; approved components; installation requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; approved components... Protection § 75.1103-2 Automatic fire sensors; approved components; installation requirements. (a) The components of each automatic fire sensor required to be installed in accordance with the provisions of § 75...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
DOT National Transportation Integrated Search
1993-08-01
This report describes a short test program to assess the potential for neck injury induced by placing padding on the interior walls of an aircraft cabin to reduce the possibility of a head injury during a crash. Such padding is a possible mechanism o...
Advanced life support equipment for nitrogen tetroxide environments
NASA Technical Reports Server (NTRS)
Bowman, G. H., III
1978-01-01
Design constraints considered in an effort to improve the self-contained atmospheric protection ensemble (SCAPE) are discussed. Emphasis is placed on overcoming the hazards of personnel engaged in orbiter crash/rescue operations. Specific topics covered include: suit material permeability; sealing of all suit penetration; and maintaining a positive pressure within the suit.
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
... volumes of a power car or a trailer car designed to crush as part of the crash energy management design... deformation to the cab, unless equivalent protection to crewmembers is provided under an alternate design approach, validated through analysis and testing, and approved by FRA under the provisions of § 238.21. (b...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... volumes of a power car or a trailer car designed to crush as part of the crash energy management design... deformation to the cab, unless equivalent protection to crewmembers is provided under an alternate design approach, validated through analysis and testing, and approved by FRA under the provisions of § 238.21. (b...
DOT National Transportation Integrated Search
2004-11-13
As a part of ongoing passenger rail equipment safety research, a full-scale impact test of two cars with energy absorbing end structures was carried out on February 26, 2004. In this test, two coupled cars impacted a rigid barrier at 29 mph. Similar ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... a novel or unusual design feature associated with aluminum-lithium fuselage construction that may... of the Bombardier C-series airplanes will be fabricated using aluminum-lithium construction. Structure fabricated from aluminum-lithium may provide different levels of protection from post-crash fuel...
Pierce, Jim D.
1994-01-01
A container for hazardous materials capable of protecting the enclosed materials from high speed impact. Energy absorption is provided by a multiplicity of crushable layers of either wire mesh or perforated metal sheets which thin and flow together under impact loading. Layers of a higher tensile strength material are interspersed within the crushable layers to confine them and increase performance.
49 CFR 571.220 - Standard No. 220; School bus rollover protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... result from failure of the school bus body structure to withstand forces encountered in rollover crashes. S3. Applicability. This standard applies to school buses. S4. Requirements. When a force in Newtons... roof of the vehicle's body structure through a force application plate as specified in S5, Test...
49 CFR 571.220 - Standard No. 220; School bus rollover protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... result from failure of the school bus body structure to withstand forces encountered in rollover crashes. S3. Applicability. This standard applies to school buses. S4. Requirements. When a force in Newtons... roof of the vehicle's body structure through a force application plate as specified in S5, Test...
49 CFR 571.220 - Standard No. 220; School bus rollover protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... result from failure of the school bus body structure to withstand forces encountered in rollover crashes. S3. Applicability. This standard applies to school buses. S4. Requirements. When a force in Newtons... roof of the vehicle's body structure through a force application plate as specified in S5, Test...
49 CFR 571.220 - Standard No. 220; School bus rollover protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... result from failure of the school bus body structure to withstand forces encountered in rollover crashes. S3. Applicability. This standard applies to school buses. S4. Requirements. When a force in Newtons... roof of the vehicle's body structure through a force application plate as specified in S5, Test...
DOT National Transportation Integrated Search
2000-03-01
A test in which a single rail passenger car was crashed into a fixed wall at 35 mph was conducted at the Transportation Technology Center on November 16, 1999. The car was instrumented to measure (1) the deformations of critical structural elements, ...
Crash sequence based risk matrix for motorcycle crashes.
Wu, Kun-Feng; Sasidharan, Lekshmi; Thor, Craig P; Chen, Sheng-Yin
2018-04-05
Considerable research has been conducted related to motorcycle and other powered-two-wheeler (PTW) crashes; however, it always has been controversial among practitioners concerning with types of crashes should be first targeted and how to prioritize resources for the implementation of mitigating actions. Therefore, there is a need to identify types of motorcycle crashes that constitute the greatest safety risk to riders - most frequent and most severe crashes. This pilot study seeks exhibit the efficacy of a new approach for prioritizing PTW crash causation sequences as they relate to injury severity to better inform the application of mitigating countermeasures. To accomplish this, the present study constructed a crash sequence-based risk matrix to identify most frequent and most severe motorcycle crashes in an attempt to better connect causes and countermeasures of PTW crashes. Although the frequency of each crash sequence can be computed from crash data, a crash severity model is needed to compare the levels of crash severity among different crash sequences, while controlling for other factors that also have effects on crash severity such drivers' age, use of helmet, etc. The construction of risk matrix based on crash sequences involve two tasks: formulation of crash sequence and the estimation of a mixed-effects (ME) model to adjust the levels of severities for each crash sequence to account for other crash contributing factors that would have an effect on the maximum level of crash severity in a crash. Three data elements from the National Automotive Sampling System - General Estimating System (NASS-GES) data were utilized to form a crash sequence: critical event, crash types, and sequence of events. A mixed-effects model was constructed to model the severity levels for each crash sequence while accounting for the effects of those crash contributing factors on crash severity. A total of 8039 crashes involving 8208 motorcycles occurred during 2011 and 2013 were included in this study, weighted to represent 338,655 motorcyclists involved in traffic crashes in three years (2011-2013)(NHTSA, 2013). The top five most frequent and severe types of crash sequences were identified, accounting for 23 percent of all the motorcycle crashes included in the study, and they are (1) run-off-road crashes on the right, and hitting roadside objects, (2) cross-median crashes, and rollover, (3) left-turn oncoming crashes, and head-on, (4) crossing over (passing through) or turning into opposite direction at intersections, and (5) side-impacted. In addition to crash sequences, several other factors were also identified to have effects on crash severity: use of helmet, presence of horizontal curves, alcohol consumption, road surface condition, roadway functional class, and nighttime condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Disaster Control and Civil Protection in Germany].
Kippnich, Maximilian; Kowalzik, Barbara; Cermak, Rudolf; Kippnich, Uwe; Kranke, Peter; Wurmb, Thomas
2017-09-01
The train crash of Bad Aibling/Germany in February 2016 and the terrorist attacks of the recent years in Europe have demonstrated the urgent need to be prepared for such disastrous events. Disaster preparedness and disaster control are very important governmental duties, as are civil protection and civil defense. In Germany the responsibility for those tasks are divided between the 16 "Länder" and the Federation. While the Federation takes care of the civil protection and disaster assistance, the Länder are responsible for disaster control. The presented article focuses on these issues and gives valuable insights into the German system of disaster control and civil protection with a focus on health protection. Georg Thieme Verlag KG Stuttgart · New York.
Viano, David C; Parenteau, Chantal S
2018-06-21
This study investigated trends in severe injury and ejection in rollover crashes involving lap-shoulder belted drivers and right-front passengers. It was conducted because of changes in 2009 to consumer information programs and regulations related to rollover protection. The data is presented by model year (MY) of the vehicle in groups from 1995-2016. NASS-CDS cases with 2010-16 MY vehicles were also evaluated to determine the crash circumstances and causes for severe injury of belted occupants in vehicles with a high strength-to-weight (SWR) roof, curtain and side airbags and other safety improvements. 1997-2015 NASS-CDS data was evaluated for severe injury and ejection of lap-shoulder belted front-outboard occupants in light vehicles. Crashes were grouped by front, side, rear and rollover. The injury and ejection data was grouped by vehicle MY: 1995-99, 2000-04, 2005-09 and 2010-16. Only drivers and right-front passengers were included if they were lap-shoulder belted and 15+ years old. Severely injured occupants were defined as those with MAIS 4-6 or fatality (MAIS 4+F). National estimates were made with weighted data using the ratio weight in NASS-CDS. All NASS-CDS electronic cases were evaluated for belted occupants with MAIS 4+F injury in rollovers involving 2010-16 MY vehicles. The crash circumstances and injuries were studied. These vehicles had high SWR roofs to meet IIHS ratings and FMVSS 216. The 1997-2015 NASS-CDS included 2,083,776 belted front occupants in rollover crashes with 24,466 (1.17%) MAIS 4+F injuries. The frequency of rollover crashes has decreased with modern vehicles (p < 0.0001). The 1995-1999 MY vehicles involved in a rollover accounted for 7.03% of all crashes (756,228/10,760,000). The corresponding proportion was 3.57% with 2010-2016 MY vehicles (81,406 v 2,282,062). The risk for MAIS 4+F was 1.325 ± 0.347% in rollover crashes with 1995-99 MY vehicles. It was 27.2% lower in 2010-16 MY vehicles at 0.964 ± 0.331% (p < 0.001). There were 42,567 (2.002%) ejections of belted occupants in rollover crashes, irrespective of injury outcome. The risk for ejection was 3.042 ± 1.44% in rollover crashes with 1995-99 MY vehicles. It was 43.6% lower in 2004-2009 MY vehicle at 1.715 ± 0.660% (p <0.001) and 83.4% lower in 2010-16 MY vehicle at 0.505 ± 0.336% (p < 0.001). There were 17 rollovers with MAIS 4+F in 2010-16 MY vehicles in NASS-CDS. Their roof strength was SWR = 4.15 ± 1.05 based on 15 vehicles. Many of the collisions involved front or side impacts and then a rollover. Four cases involved 16-30 year old drivers in extremely high-speed loss of control crashes resulting in >10 cm vertical roof deformation or substantial roof deformation based on photos. The roof strength (SWR) of 4.20 ± 1.0 was not sufficient to prevent roof deformation in these crashes. This study found a reduction in severe injury and ejection risk with modern vehicles. It indicates vehicle safety has improved in response to IIHS and NHTSA efforts to expand the array of safety requirements and increase performance so that newer models are safer than earlier ones. There has been an incremental improvement in safety by these advances.
Castel, Nikki A; Wong, Linda L; Steinemann, Susan
2016-01-01
Helmet use reduces injury severity, disability, hospital length of stay, and hospital charges in motorcycle riders. The public absorbs billions of dollars annually in hospital charges for unhelmeted, uninsured motorcycle riders. We sought to quantify, on a statewide level, the healthcare burden of unhelmeted motorcycle and moped riders. We examined 1,965 emergency medical service (EMS) reports from motorcycle and moped crashes in Hawai‘i between 2007–2009. EMS records were linked to hospital medical records to assess associations between vehicle type, helmet use, medical charges, diagnoses, and final disposition. Unhelmeted riders of either type of vehicle suffered more head injuries, especially skull fractures (adjusted odds ratio (OR) of 4.48, P < .001, compared to helmeted riders). Motorcyclists without helmets were nearly three times more likely to die (adjusted OR 2.85, P = .001). Average medical charges were almost 50% higher for unhelmeted motorcycle and moped riders, with a significant (P = .006) difference between helmeted ($27,176) and unhelmeted ($40,217) motorcycle riders. Unhelmeted riders were twice as likely to self-pay (19.3%, versus 9.8% of helmeted riders), and more likely to have Medicaid or a similar income-qualifying insurance plan (13.5% versus 5.0%, respectively). Protective associations with helmet use are stronger among motorcyclists than moped riders, suggesting the protective effect is augmented in higher speed crashes. The public financial burden is higher from unhelmeted riders who sustain more severe injuries and are less likely to be insured. PMID:27980882
Galanis, Daniel J; Castel, Nikki A; Wong, Linda L; Steinemann, Susan
2016-12-01
Helmet use reduces injury severity, disability, hospital length of stay, and hospital charges in motorcycle riders. The public absorbs billions of dollars annually in hospital charges for unhelmeted, uninsured motorcycle riders. We sought to quantify, on a statewide level, the healthcare burden of unhelmeted motorcycle and moped riders. We examined 1,965 emergency medical service (EMS) reports from motorcycle and moped crashes in Hawai'i between 2007-2009. EMS records were linked to hospital medical records to assess associations between vehicle type, helmet use, medical charges, diagnoses, and final disposition. Unhelmeted riders of either type of vehicle suffered more head injuries, especially skull fractures (adjusted odds ratio (OR) of 4.48, P < .001, compared to helmeted riders). Motorcyclists without helmets were nearly three times more likely to die (adjusted OR 2.85, P = .001). Average medical charges were almost 50% higher for unhelmeted motorcycle and moped riders, with a significant ( P = .006) difference between helmeted ($27,176) and unhelmeted ($40,217) motorcycle riders. Unhelmeted riders were twice as likely to self-pay (19.3%, versus 9.8% of helmeted riders), and more likely to have Medicaid or a similar income-qualifying insurance plan (13.5% versus 5.0%, respectively). Protective associations with helmet use are stronger among motorcyclists than moped riders, suggesting the protective effect is augmented in higher speed crashes. The public financial burden is higher from unhelmeted riders who sustain more severe injuries and are less likely to be insured.
Brubacher, Jeffrey R.; Chan, Herbert; Erdelyi, Shannon; Schuurman, Nadine; Amram, Ofer
2016-01-01
Background British Columbia, Canada is a geographically large jurisdiction with varied environmental and socio-cultural contexts. This cross-sectional study examined variation in motor vehicle crash rates across 100 police patrols to investigate the association of crashes with key explanatory factors. Methods Eleven crash outcomes (total crashes, injury crashes, fatal crashes, speed related fatal crashes, total fatalities, single-vehicle night-time crashes, rear-end collisions, and collisions involving heavy vehicles, pedestrians, cyclists, or motorcyclists) were identified from police collision reports and insurance claims and mapped to police patrols. Six potential explanatory factors (intensity of traffic law enforcement, speed limits, climate, remoteness, socio-economic factors, and alcohol consumption) were also mapped to police patrols. We then studied the association between crashes and explanatory factors using negative binomial models with crash count per patrol as the response variable and explanatory factors as covariates. Results Between 2003 and 2012 there were 1,434,239 insurance claim collisions, 386,326 police reported crashes, and 3,404 fatal crashes. Across police patrols, there was marked variation in per capita crash rate and in potential explanatory factors. Several factors were associated with crash rates. Percent roads with speed limits ≤ 60 km/hr was positively associated with total crashes, injury crashes, rear end collisions, and collisions involving pedestrians, cyclists, and heavy vehicles; and negatively associated with single vehicle night-time crashes, fatal crashes, fatal speeding crashes, and total fatalities. Higher winter temperature was associated with lower rates of overall collisions, single vehicle night-time collisions, collisions involving heavy vehicles, and total fatalities. Lower socio-economic status was associated with higher rates of injury collisions, pedestrian collisions, fatal speeding collisions, and fatal collisions. Regions with dedicated traffic officers had fewer fatal crashes and fewer fatal speed related crashes but more rear end crashes and more crashes involving cyclists or pedestrians. The number of traffic citations per 1000 drivers was positively associated with total crashes, fatal crashes, total fatalities, fatal speeding crashes, injury crashes, single vehicle night-time crashes, and heavy vehicle crashes. Possible explanations for these associations are discussed. Conclusions There is wide variation in per capita rates of motor vehicle crashes across BC police patrols. Some variation is explained by factors such as climate, road type, remoteness, socioeconomic variables, and enforcement intensity. The ability of explanatory factors to predict crash rates would be improved if considered with local traffic volume by all travel modes. PMID:27099930
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Effect of electronic stability control on automobile crash risk.
Farmer, Charles
2004-12-01
Per vehicle crash involvement rates were compared for otherwise identical vehicle models with and without electronic stability control (ESC) systems. ESC was found to affect single-vehicle crashes to a greater extent than multiple-vehicle crashes, and crashes with fatal injuries to a greater extent than less severe crashes. Based on all police-reported crashes in 7 states over 2 years, ESC reduced single-vehicle crash involvement risk by approximately 41 percent (95 percent confidence limits 3348) and single-vehicle injury crash involvement risk by 41 percent (2752). This translates to an estimated 7 percent reduction in overall crash involvement risk (310) and a 9 percent reduction in overall injury crash involvement risk (314). Based on all fatal crashes in the United States over 3 years, ESC was found to have reduced single-vehicle fatal crash involvement risk by 56 percent (3968). This translates to an estimated 34 percent reduction in overall fatal crash involvement risk (2145).
Teoh, Eric R
2018-07-04
The objective of this study was to identify and quantify the motorcycle crash population that would be potential beneficiaries of 3 crash avoidance technologies recently available on passenger vehicles. Two-vehicle crashes between a motorcycle and a passenger vehicle that occurred in the United States during 2011-2015 were classified by type, with consideration of the functionality of 3 classes of passenger vehicle crash avoidance technologies: frontal crash prevention, lane maintenance, and blind spot detection. Results were expressed as the percentage of crashes potentially preventable by each type of technology, based on all known types of 2-vehicle crashes and based on all crashes involving motorcycles. Frontal crash prevention had the largest potential to prevent 2-vehicle motorcycle crashes with passenger vehicles. The 3 technologies in sum had the potential to prevent 10% of fatal 2-vehicle crashes and 23% of police-reported crashes. However, because 2-vehicle crashes with a passenger vehicle represent fewer than half of all motorcycle crashes, these technologies represent a potential to avoid 4% of all fatal motorcycle crashes and 10% of all police-reported motorcycle crashes. Refining the ability of passenger vehicle crash avoidance systems to detect motorcycles represents an opportunity to improve motorcycle safety. Expanding the capabilities of these technologies represents an even greater opportunity. However, even fully realizing these opportunities can affect only a minority of motorcycle crashes and does not change the need for other motorcycle safety countermeasures such as helmets, universal helmet laws, and antilock braking systems.
"Crashing the gates" - selection criteria for television news reporting of traffic crashes.
De Ceunynck, Tim; De Smedt, Julie; Daniels, Stijn; Wouters, Ruud; Baets, Michèle
2015-07-01
This study investigates which crash characteristics influence the probability that the crash is reported in the television news. To this purpose, all news items from the period 2006-2012 about traffic crashes from the prime time news of two Belgian television channels are linked to the official injury crash database. Logistic regression models are built for the database of all injury crashes and for the subset of fatal crashes to identify crash characteristics that correlate with a lower or higher probability of being reported in the news. A number of significant biases in terms of crash severity, time, place, types of involved road users and victims' personal characteristics are found in the media reporting of crashes. More severe crashes are reported in the media more easily than less severe crashes. Significant fluctuations in media reporting probability through time are found in terms of the year and month in which the crash took place. Crashes during week days are generally less reported in the news. The geographical area (province) in which the crash takes place also has a significant impact on the probability of being reported in the news. Crashes on motorways are significantly more represented in the news. Regarding the age of the involved victims, a clear trend of higher media reporting rates of crashes involving young victims or young fatalities is observed. Crashes involving female fatalities are also more frequently reported in the news. Furthermore, crashes involving a bus have a significantly higher probability of being reported in the news, while crashes involving a motorcycle have a significantly lower probability. Some models also indicate a lower reporting rate of crashes involving a moped, and a higher reporting rate of crashes involving heavy goods vehicles. These biases in media reporting can create skewed perceptions in the general public about the prevalence of traffic crashes and eventually may influence people's behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of crash parameters and driver characteristics associated with lower limb injury.
Ye, Xin; Poplin, Gerald; Bose, Dipan; Forbes, Aaron; Hurwitz, Shepard; Shaw, Greg; Crandall, Jeff
2015-10-01
This study aims to investigate changes in frequency, risk, and patterns of lower limb injuries due to vehicle and occupant parameters as a function of vehicle model year. From the National Automotive Sampling System-Crashworthiness Data System, 10,988 observations were sampled and analyzed, representing 4.7 million belted drivers involved in frontal crashes for the years 1998-2010. A logistic regression model was developed to understand the association of sustaining knee and below knee lower limb injuries of moderate or greater severity with motor vehicle crash characteristics such as vehicle type and model years, toepan and instrument panel intrusions in addition to the occupant's age, gender, height and weight. Toepan intrusion greater than 2cm was significantly associated with an increased likelihood of injury (odds ratio: 9.10, 95% confidence interval 1.82-45.42). Females sustained a higher likelihood of distal lower limb injuries (OR: 6.83, 1.56-29.93) as compared to males. Increased mass of the driver was also found to have a positive association with injury (OR: 1.04, 1.02-1.06), while age and height were not associated with injury likelihood. Relative to passenger cars, vans exhibited a protective effect against sustaining lower limb injury (OR: 0.24, 0.07-0.78), whereas no association was shown for light trucks (OR: 1.31, 0.69-2.49) or SUVs (OR: 0.76, 0.28-2.02). To examine whether current crash testing results are representative of real-world NASS-CDS findings, data from frontal offset crash tests performed by the Insurance Institute for Highway Safety (IIHS) were examined. IIHS data indicated a decreasing trend in vehicle foot well and toepan intrusion, foot accelerations, tibia axial forces and tibia index in relation to increasing vehicle model year between the year 1995 and 2013. Over 90% of vehicles received the highest IIHS rating, with steady improvement from the upper and lower tibia index, tibia axial force and the resultant foot acceleration considering both left and right extremities. Passenger cars received the highest rating followed by SUVs and light trucks, while vans attained the lowest rating. These results demonstrate that while there has been steady improvement in vehicle crash test performance, below-knee lower extremity injuries remain the most common AIS 2+ injury in real-world frontal crashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zaseck, Lauren Wood; Orton, Nichole Ritchie; Gruber, Rebekah; Rupp, Jonathan; Scherer, Risa; Reed, Matthew; Hu, Jingwen
2017-08-18
Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety-including differences in compartment geometry and occupant clothing and gear-that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes. In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test. Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear. ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.
Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways.
Wang, Kai; Ivan, John N; Ravishanker, Nalini; Jackson, Eric
2017-02-01
In an effort to improve traffic safety, there has been considerable interest in estimating crash prediction models and identifying factors contributing to crashes. To account for crash frequency variations among crash types and severities, crash prediction models have been estimated by type and severity. The univariate crash count models have been used by researchers to estimate crashes by crash type or severity, in which the crash counts by type or severity are assumed to be independent of one another and modelled separately. When considering crash types and severities simultaneously, this may neglect the potential correlations between crash counts due to the presence of shared unobserved factors across crash types or severities for a specific roadway intersection or segment, and might lead to biased parameter estimation and reduce model accuracy. The focus on this study is to estimate crashes by both crash type and crash severity using the Integrated Nested Laplace Approximation (INLA) Multivariate Poisson Lognormal (MVPLN) model, and identify the different effects of contributing factors on different crash type and severity counts on rural two-lane highways. The INLA MVPLN model can simultaneously model crash counts by crash type and crash severity by accounting for the potential correlations among them and significantly decreases the computational time compared with a fully Bayesian fitting of the MVPLN model using Markov Chain Monte Carlo (MCMC) method. This paper describes estimation of MVPLN models for three-way stop controlled (3ST) intersections, four-way stop controlled (4ST) intersections, four-way signalized (4SG) intersections, and roadway segments on rural two-lane highways. Annual Average Daily traffic (AADT) and variables describing roadway conditions (including presence of lighting, presence of left-turn/right-turn lane, lane width and shoulder width) were used as predictors. A Univariate Poisson Lognormal (UPLN) was estimated by crash type and severity for each highway facility, and their prediction results are compared with the MVPLN model based on the Average Predicted Mean Absolute Error (APMAE) statistic. A UPLN model for total crashes was also estimated to compare the coefficients of contributing factors with the models that estimate crashes by crash type and severity. The model coefficient estimates show that the signs of coefficients for presence of left-turn lane, presence of right-turn lane, land width and speed limit are different across crash type or severity counts, which suggest that estimating crashes by crash type or severity might be more helpful in identifying crash contributing factors. The standard errors of covariates in the MVPLN model are slightly lower than the UPLN model when the covariates are statistically significant, and the crash counts by crash type and severity are significantly correlated. The model prediction comparisons illustrate that the MVPLN model outperforms the UPLN model in prediction accuracy. Therefore, when predicting crash counts by crash type and crash severity for rural two-lane highways, the MVPLN model should be considered to avoid estimation error and to account for the potential correlations among crash type counts and crash severity counts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cirrus Airframe Parachute System and Odds of a Fatal Accident in Cirrus Aircraft Crashes.
Alaziz, Mustafa; Stolfi, Adrienne; Olson, Dean M
2017-06-01
General aviation (GA) accidents have continued to demonstrate high fatality rates. Recently, ballistic parachute recovery systems (BPRS) have been introduced as a safety feature in some GA aircraft. This study evaluates the effectiveness and associated factors of the Cirrus Airframe Parachute System (CAPS) at reducing the odds of a fatal accident in Cirrus aircraft crashes. Publicly available Cirrus aircraft crash reports were obtained from the National Transportation Safety Board (NTSB) database for the period of January 1, 2001-December 31, 2016. Accident metrics were evaluated through univariate and multivariate analyses regarding odds of a fatal accident and use of the parachute system. Included in the study were 268 accidents. For CAPS nondeployed accidents, 82 of 211 (38.9%) were fatal as compared to 8 of 57 (14.0%) for CAPS deployed accidents. After controlling for all other factors, the adjusted odds ratio for a fatal accident when CAPS was not deployed was 13.1. The substantial increased odds of a fatal accident when CAPS was not deployed demonstrated the effectiveness of CAPS at providing protection of occupants during an accident. Injuries were shifted from fatal to serious or minor with the use of CAPS and postcrash fires were significantly reduced. These results suggest that BPRS could play a significant role in the next major advance in improving GA accident survival.Alaziz M, Stolfi A, Olson DM. Cirrus Airframe Parachute System and odds of a fatal accident in Cirrus aircraft crashes. Aerosp Med Hum Perform. 2017; 88(6):556-564.
Olson, Carin M; Cummings, Peter; Rivara, Frederick P
2006-07-15
First-generation air bags entail a decreased risk of death for most front seat occupants in car crashes but an increased risk for children. Second-generation air bags were developed to reduce the risks for children, despite the possibility of decreasing protection for others. Using a matched cohort design, the authors estimated risk ratios for death for use of each generation of air bag versus no air bag, adjusted for seat position, restraint use, sex, age, and all vehicle and crash characteristics, among 128,208 automobile occupants involved in fatal crashes on US roadways during 1990-2002. The authors then compared adjusted risk ratios (aRRs) between the two generations of air bags. Among front seat occupants, the aRR for death with a first-generation air bag was 0.90 (95% confidence interval (CI): 0.86, 0.94); the aRR with a second-generation air bag was 0.89 (95% CI: 0.79, 1.00) (p = 0.83 for comparison of aRRs). Among children under age 6 years, the aRR with a first-generation air bag was 1.66 (95% CI: 1.20, 2.30), while the aRR with a second-generation air bag was 1.10 (95% CI: 0.63, 1.93) (p = 0.20 for comparison of aRRs). The differences in aRRs between first- and second-generation air bags among other subgroups were small and not statistically significant.
Lardelli Claret, Pablo; Luna del Castillo, Juan de Dios; Jiménez Moleón, José Juan; García Martín, Miguel; Bueno Cavanillas, Aurora; Gálvez Vargas, Ramón
2003-02-01
This study aimed to assess the protective effect of helmet use by cyclists on risk of suffering head injury or dying as a consequence of a traffic crash. 26,832 cyclists involved in traffic crashes with victims registered in the Dirección General de Tráfico database from 1990 to 1999 in Spain were studied. From this database, variables relating to each cyclist (i.e., age, sex, presence of head trauma, severity of lesions) and those related with the crash (i.e., place, date, type of crash), were collected. The odds ratio and the proportion of the population attributable risk for non-use of a helmet by cyclist were estimated. An adjusted odds ratio of 2.45 (2.19-2.73) for the association between non-use of a helmet and the risk of head injury was obtained. As death of the cyclist as the outcome, the corresponding odds ratio was 1.35 (1.09-1.67). The values of proportion of the population attributable risk were 0.51 (0.47-0.55) and 0.22 (0.07-0.36), for head injury and death, respectively. This study confirms that helmet use among cyclists significantly decreased the risk of head injury and, to a lesser extent, death. These results constitute a strong argument for increasing in the frequency of helmet use among cyclists in Spain.
Rib and sternum fractures in the elderly and extreme elderly following motor vehicle crashes.
Bansal, Vishal; Conroy, Carol; Chang, David; Tominaga, Gail T; Coimbra, Raul
2011-05-01
As the population ages, the need to protect the elderly during motor vehicle crashes becomes increasingly critical. This study focuses on causation of elderly rib and sternum fractures in seriously injured elderly occupants involved in motor vehicle crashes. We used data from the Crash Injury Research and Engineering Network (CIREN) database (1997-2009). Study case criteria included occupant (≥ 65 years old) drivers (sitting in the left outboard position of the first row) or passengers (sitting in the first row right outboard position) who were in frontal or side impacts. To avoid selection bias, only occupants with a Maximum Abbreviated Injury Scale (MAIS) 3 (serious) or greater severity injury were included in this study. Odds ratios were used as a descriptive measure of the strength of association between variables and Chi square tests were used to determine if there was a statistically significant relationship between categorical variables. Of the 211 elderly (65-79 years old) occupants with thoracic injury, 92.0% had rib fractures and 19.6% had sternum fractures. For the 76 extreme elderly (80 years or older) with thoracic injury, 90.4% had rib fractures and 27.7% had sternum fractures. Except for greater mortality and more rib fractures caused by safety belts, there were no differences between the extreme elderly and the elderly occupants. Current safety systems may need to be redesigned to prevent rib and sternum fractures in occupants 80 years and older. Copyright © 2010 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... School District (MCSD) of Ohio. With regard to changes to the regulatory text adopted by the October 2008... school buses greater than 4,536 kg (10,000 lb) GVWR, IC petitioned to change the requirement for school... Anchorages, School Bus Passenger Seating and Crash Protection AGENCY: National Highway Traffic Safety...
Pierce, J.D.
1994-08-16
A container for hazardous materials capable of protecting the enclosed materials from high speed impact is disclosed. Energy absorption is provided by a multiplicity of crushable layers of either wire mesh or perforated metal sheets which thin and flow together under impact loading. Layers of a higher tensile strength material are interspersed within the crushable layers to confine them and increase performance. 1 fig.
49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 222; School bus passenger seating and... VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standards § 571.222 Standard No. 222; School bus... requirements for school bus passenger seating and restraining barriers. S2. Purpose. The purpose of this...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
.... 205), and occupant crash protection, specifically advanced air bags (FMVSS No. 208). The basis for the... systems (FMVSS No. 126), glazing materials (FMVSS No. 205), and advanced air bags (FMVSS No. 208). The... advanced air bags. According to the petition, the three-year requested exemption period will give the...
77 FR 52619 - Make Inoperative Exemptions; Retrofit On-Off Switches for Air Bags
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... improved frontal crash protection for all occupants, by means that include advanced air bag technology. In... of advanced air bag technology and the retrofit switch brochures and forms that were included in Part.... We will also reexamine the at-risk groups in light of advanced air bag technology, the brochures and...
Doecke, Sam D; Kloeden, Craig N; Dutschke, Jeffrey K; Baldock, Matthew R J
2018-05-19
The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data. Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels. A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes. The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
Research in biomechanics of occupant protection.
King, A I; Yang, K H
1995-04-01
This paper discusses the biomechanical bases for occupant protection against frontal and side impact. Newton's Laws of Motion are used to illustrate the effect of a crash on restrained and unrestrained occupants, and the concept of ride down is discussed. Occupant protection through the use of energy absorbing materials is described, and the mechanism of injury of some of the more common injuries is explained. The role of the three-point belt and the airbag in frontal protection is discussed along with the potential injuries that can result from the use of these restraint systems. Side impact protection is more difficult to attain but some protection can be derived from the use of padding or a side impact airbag. It is concluded that the front seat occupants are adequately protected against frontal impact if belts are worn in an airbag equipped vehicle. Side impact protection may not be uniform in all vehicles.
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...
Filtness, A J; Armstrong, K A; Watson, A; Smith, S S
2017-02-01
Sleep-related (SR) crashes are an endemic problem the world over. However, police officers report difficulties in identifying sleepiness as a crash contributing factor. One approach to improving the sensitivity of SR crash identification is by applying a proxy definition post hoc to crash reports. To identify the prominent characteristics of SR crashes and highlight the influence of proxy definitions, ten years of Queensland (Australia) police reports of crashes occurring in ≥100km/h speed zones were analysed. In Queensland, two approaches are routinely taken to identifying SR crashes. First, attending police officers identify crash causal factors; one possible option is 'fatigue/fell asleep'. Second, a proxy definition is applied to all crash reports. Those meeting the definition are considered SR and added to the police-reported SR crashes. Of the 65,204 vehicle operators involved in crashes 3449 were police-reported as SR. Analyses of these data found that male drivers aged 16-24 years within the first two years of unsupervised driving were most likely to have a SR crash. Collision with a stationary object was more likely in SR than in not-SR crashes. Using the proxy definition 9739 (14.9%) crashes were classified as SR. Using the proxy definition removes the findings that SR crashes are more likely to involve males and be of high severity. Additionally, proxy defined SR crashes are no less likely at intersections than not-SR crashes. When interpreting crash data it is important to understand the implications of SR identification because strategies aimed at reducing the road toll are informed by such data. Without the correct interpretation, funding could be misdirected. Improving sleepiness identification should be a priority in terms of both improvement to police and proxy reporting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seacrist, Thomas; Belwadi, Aditya; Prabahar, Abhiti; Chamberlain, Samuel; Megariotis, James; Loeb, Helen
2016-09-01
Motor vehicle crashes are the leading cause of death for teens. Previous teen and adult crash rates have been based upon fatal crashes, police-reported crashes, and estimated miles driven. Large-scale naturalistic driving studies offer the opportunity to compute crash rates using a reliable methodology to capture crashes and driving exposure. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study contains extensive real-world data on teen and adult driving. This article presents findings on the crash rates of novice teen and experienced adult drivers in naturalistic crashes. A subset from the SHRP2 database consisting of 539 crash events for novice teens (16-19 years, n = 549) and experienced adults (35-54 years, n = 591) was used. Onboard instrumentation such as scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to identify rear-end striking crashes. Dynamic variables such as acceleration and velocity were analyzed for rear-end striking events. Number of crashes, crash rates, rear-end striking crash severity, and rear-end striking impact velocity were compared between novice teens and experienced adults. Video review of the SHRP2 crashes identified significantly more crashes (P < 0.01) and rear-end striking crashes (P < 0.01) among the teen group than among the adult group. This yielded crash rates of 30.0 crashes per million miles driven for novice teens compared to 5.3 crashes per million miles driven for experienced adults. The crash rate ratio for teens vs. adults was 5.7. The rear-end striking crash rate was 13.5 and 1.8 per million miles driven for novice teens and experienced adults, respectively. The rear-end striking crash rate ratio for teens vs. adults was 7.5. The rear-end striking crash severity measured by the accelerometers was greater (P < 0.05) for the teen group (1.8 ± 0.9 g; median = 1.6 g) than for the adult group (1.1 ± 0.4 g; median = 1.0 g), suggesting that teen crashes tend to be more serious than adult crashes. Increased rear-end striking impact velocity (P < 0.01) was also observed for novice teens (18.8 ± 13.2 mph; median = 18.9 mph) compared to experienced adults (3.3 ± 1.2 mph; median = 2.8 mph). To our knowledge, this is the first study to compare crash rates between teens and adults using a large-scale naturalistic driving database. Unlike previous crash rates, the reported rates reliably control for crash type and driving exposure. These results conform to previous findings that novice teens exhibit increased crash rates compared to experienced adults.
Energy attenuation performance of impact protection worn by motorcyclists in real-world crashes.
Albanese, Bianca; Gibson, Tom; Whyte, Tom; Meredith, Lauren; Savino, Giovanni; de Rome, Liz; Baldock, Matthew; Fitzharris, Michael; Brown, Julie
2017-05-29
Laboratory studies have demonstrated that impact protectors (IP) used in motorcycle clothing can reduce fracture severities. While crash studies have reported IP are associated with reduced likelihood of soft tissue injury, there is little evidence of their effectiveness in reducing fracture likelihood. This discrepancy might be related to IP quality. There are mandatory requirements for IP supplied with protective clothing in Europe, but not elsewhere. This study examines the energy attenuation performance of IP used by Australian riders. IP were harvested from clothing worn by crashed riders admitted to hospital. The IP were examined and energy attenuation properties were determined using EN 1621-1 test procedures. Impact injury was identified from medical records and defined as fractures, dislocations, and avulsions that occurred following impact to the rider's shoulders, elbows, hips, and/or knees. Fisher's exact test was used to examine the relationship between meeting the EN 1621-1 energy attenuation requirements and impact injury. The association between the average and maximum transmitted force, and impact injury was examined using generalized estimating equations. Motorcycle riders were recruited as part of an in-depth crash study through three hospitals in New South Wales, Australia, between 2012 and 2014. Riders were interviewed, and engineers conducted site, vehicle, and clothing inspections. Clothing was collected, or identical garments were purchased. Clothing was inspected for 62 riders. Of these, 19 wore clothing incorporating 76 IP. Twenty-six of these were impacted in the crash event. Almost all impacted IP (96%) were CE marked, and most (83%) met Level 1 energy attenuation requirements of EN 1621-1 when tested. Of the 26 impacted IP, four were associated with impact injuries, including midshaft and distal clavicle fractures and a scapula and olecranon fracture. No associations between meeting EN 1621-1 requirements and impact injury were found (p = 0.5). There was no association between average force transmitted and impact injury (95% CI: 0.91-1.24); however, as maximum force transmitted increased, the odds of impact injury increased (95% CI: 1.01-1.2). These results indicate a high probability of impact injury at 50 kN, the limit of maximum transmitted force specified in EN 1621-1. The allowable transmitted force of EN 1621-1 may be too high to effectively reduce the probability of impact injury. This is not surprising, given human tolerance levels that are reported in literature. Reducing the force limit below the reported fracture tolerance limits might be difficult with current technology. However, there is scope to reduce the EN 1621-1 maximum limit of 50 kN transmitted force. A reduction in the maximum force limit would improve rider protection and appears feasible, as 77% of tested IP recorded a maximum force <35 kN. This level of transmitted force is estimated to be associated with <20% probability of impact injury. While the performance of IP available to Australian riders is not regulated, most IP was CE marked. The results indicate a significant association between maximum transmitted force, tested according to EN 1621-1 procedures, and impact injury. Further investigation of the EN 1621-1 requirements may be warranted. This work will interest those targeting protective equipment for motorcyclists as a mechanism for reducing injury to these vulnerable road users.
Does unbelted safety requirement affect protection for belted occupants?
Hu, Jingwen; Klinich, Kathleen D; Manary, Miriam A; Flannagan, Carol A C; Narayanaswamy, Prabha; Reed, Matthew P; Andreen, Margaret; Neal, Mark; Lin, Chin-Hsu
2017-05-29
Federal regulations in the United States require vehicles to meet occupant performance requirements with unbelted test dummies. Removing the test requirements with unbelted occupants might encourage the deployment of seat belt interlocks and allow restraint optimization to focus on belted occupants. The objective of this study is to compare the performance of restraint systems optimized for belted-only occupants with those optimized for both belted and unbelted occupants using computer simulations and field crash data analyses. In this study, 2 validated finite element (FE) vehicle/occupant models (a midsize sedan and a midsize SUV) were selected. Restraint design optimizations under standardized crash conditions (U.S.-NCAP and FMVSS 208) with and without unbelted requirements were conducted using Hybrid III (HIII) small female and midsize male anthropomorphic test devices (ATDs) in both vehicles on both driver and right front passenger positions. A total of 10 to 12 design parameters were varied in each optimization using a combination of response surface method (RSM) and genetic algorithm. To evaluate the field performance of restraints optimized with and without unbelted requirements, 55 frontal crash conditions covering a greater variety of crash types than those in the standardized crashes were selected. A total of 1,760 FE simulations were conducted for the field performance evaluation. Frontal crashes in the NASS-CDS database from 2002 to 2012 were used to develop injury risk curves and to provide the baseline performance of current restraint system and estimate the injury risk change by removing the unbelted requirement. Unbelted requirements do not affect the optimal seat belt and airbag design parameters in 3 out of 4 vehicle/occupant position conditions, except for the SUV passenger side. Overall, compared to the optimal designs with unbelted requirements, optimal designs without unbelted requirements generated the same or lower total injury risks for belted occupants depending on statistical methods used for the analysis, but they could also increase the total injury risks for unbelted occupants. This study demonstrated potential for reducing injury risks to belted occupants if the unbelted requirements are eliminated. Further investigations are necessary to confirm these findings.
Tencer, Allan F; Kaufman, Robert; Mack, Christopher; Mock, Charles
2005-03-01
The goal of this study was to identify variables related to vehicle design which are associated with pelvic and thoracic accelerations as measured by the driver's (near side) crash dummy during new car assessment program (NCAP) testing of motor vehicles. Vehicle specific parameters were analyzed using NCAP side impact test results. Data from national automotive sampling system, crashworthiness data system (NASS-CDS) and crash injury research and engineering network (CIREN) (both National Highway Traffic Safety Administration (NHTSA) injury databases) were assessed to confirm NCAP test observations. In addition, door armrest stiffness measurements were performed using a mechanical tester on a sample of 40 vehicles. NCAP data showed that of 10 variables tested using multiple linear regression, vehicle weight and door crush correlated with pelvic acceleration of the driver's crash dummy (overall, r2=0.58, p=0.002, n=165). For thoracic trauma index (TTI) vehicle weight and peak door velocity correlated, significantly (overall, r2=0.41, p=0.03, n=165). Mean TTI was 63.7 g with no side airbag (n=108) and 55.6 g with a thoracic side airbag (n=54), p=0.01. The mean vehicle weight and door crush between airbag and no airbag groups were not significantly different. NASS-CDS data demonstrated a direct relationship between increased door crush and increased abbreviated injury score (AIS). CIREN data showed that occupants who sustained pelvic injuries had a median AIS of 3 with 24.9 cm of door crush, with abdominal injuries, a median AIS of 3 and 30 cm of crush, and with thoracic injuries, a median AIS of 4 and 34 cm of door crush. In addition, the frequency of bilateral pelvic injuries was significantly higher for subjects in CIREN crashes who were in a vehicle with a center console, but only if door intrusion was greater than 15 cm. This information may be useful in design of vehicles with greater protection in side impact crashes.
Energy Absorbing Seat System for an Agricultural Aircraft
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)
2002-01-01
A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.
Sternlund, Simon
2017-05-29
Lane departure crashes account for a significant proportion of passenger car occupant fatalities and serious injuries. Utilizing real-world data involving fatal passenger car crashes in Sweden, the characteristics of lane departure crashes were identified and the safety potential of lane departure warning (LDW) systems was quantified. The material consisted of 104 in-depth studies of fatal passenger car crashes in 2010. The crashes were classified as single-vehicle (n = 48), head-on (n = 52), and overtaking (n = 4) crashes. These crash types were identified as crashes that could have potentially involved lane departure. A case-by-case analysis was carried out and lane departure crashes were identified and characterized using police reports and information collected by crash investigators at the Swedish Transport Administration; for example, inspections and photographs of the crash sites and of the involved vehicles. Lane departure crashes were separated from crashes where loss of control occurred pre-lane departure. Furthermore, loss of control post-lane departures were identified. When studying the pre-stage of lane departure without prior loss of control, crashes were categorized as unintentional drifting, intentional lane change, or evasive maneuver. Using previously published effectiveness information, the potential for LDW systems to prevent crashes was estimated. Of all crashes with passenger car occupant fatalities in Sweden in 2010, 46% (63/138) were found to relate to lane departure without prior loss of control. These crashes accounted for 61% (63/104) of all single-vehicle, head-on, and overtaking crashes. The remaining 41 crashes were due to loss of control pre-lane departure. Unintentional drifting accounted for 81% (51/63) of all lane departure crashes without prior loss of control, which corresponded to 37% (51/138) of all fatal passenger car occupant crashes. LDW systems were found to potentially prevent 33-38 of the 100 fatal head-on and single vehicle crashes. These crashes involved drifting and occurred on roads with visible lane markings, signed posted speed limits ≥70 km/h, and without rumble strips on the corresponding lane departure side. The range of potentially prevented crashes (33-38) is due to the inclusion or exclusion of crashes involving excessive speeding. In this study, approximately half (51/100) of all head-on and single-vehicle crashes were identified as being a consequence of drifting, where LDW systems had the potential to prevent the majority (33-38) of these crashes. The typical lane departure crash without prior loss of control occurred on undivided roads in rural areas with signed posted speed limits ≥70 km/h, where the center and side road markings were visible.
1990-08-01
restraint, used in the Albatros D.V fighter during the first World War , is shown in Figure 1 (taken from the illustrated parts manual for the Albatros...provide effective and safe lower torso restraint.5o t " 5 It was during the first World War , when the belligerents began to recognize that the...during the World War I. In this development the 13w-! ends of the shoulder belts fitted over the tongue of the safety belt buckle so Ih, shoulder belt
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Rizzi, Matteo
2015-01-01
Several studies have shown that motorcycle antilock braking systems (ABS) reduce crashes and injuries. However, it has been suggested that the improved stability provided by ABS would make upright crashes more frequent, thus changing the injury distributions among motorcyclists and increasing the risk of leg injuries. The overall motorcycle design can vary across different categories and manufacturers. For instance, some motorcycles are equipped with boxer-twin engines; that is, with protruding cylinder heads. A previous study based on a limited material has suggested that these could provide some leg protection; therefore, the aim of this research was to analyze injury distributions in crashes involving ABS-equipped motorcycles with boxer-twin engines compared to similar ABS-equipped motorcycles with other engine configurations. Swedish hospital and police records from 2003-2014 were used. Crashes involving ABS-equipped motorcycles with boxer-twin engines (n = 55) were compared with similar ABS-equipped motorcycles with other engines configurations (n = 127). The distributions of Abbreviated Injury Scale (AIS) 1+ and AIS 2+ were compared. Each subject's injury scores were also converted to the risk for permanent medical impairment (RPMI), which shows the risk of different levels of permanent medical impairment given the severity and location and of injuries. To compare injury severity, the mean RPMI 1+ and RPMI 10+ were analyzed for each body region and in overall for each group of motorcyclists. It was found that AIS 1+, AIS 2+, and PMI 1+ leg injuries were reduced by approximately 50% among riders with boxer engines. These results were statistically significant. The number of injuries to the upper body did not increase; the mean RPMI to the head and upper body were similar across the 2 groups, suggesting that the severity of injuries did not increase either. Indications were found suggesting that the overall mean RPMI 1+ was lower among riders with boxer engines, although this result was not statistically significant. The mean values of the overall RPMI 10+ were similar. Boxer-twin engines were not originally developed to improve motorcycle crashworthiness. However, the present article indicates that these engines can reduce leg injuries among riders of motorcycles fitted with ABS. Though it is recommended that future research should look deeper into this particular aspect, the present findings suggest that the concept of integrated leg protection is indeed feasible and that further engineering efforts in this area are likely to yield significant savings in health losses among motorcyclists.
Gasoline prices and their relationship to drunk-driving crashes.
Chi, Guangqing; Zhou, Xuan; McClure, Timothy E; Gilbert, Paul A; Cosby, Arthur G; Zhang, Li; Robertson, Angela A; Levinson, David
2011-01-01
This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by several crash types and demographic groups at the monthly level from 2004 to 2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk-driving crashes among young and adult drivers, among male and female drivers, and among white and black drivers. Results from negative binomial regression models show that when gas prices are higher, there are fewer drunk-driving crashes, particularly among property-damage-only crashes. When alcohol consumption levels are higher, there are more drunk-driving crashes, particularly fatal and injury crashes. The effects of gasoline prices and alcohol consumption are stronger on drunk-driving crashes than on all crashes. The findings do not vary much across different demographic groups. Overall, gasoline prices have greater effects on less severe crashes and alcohol consumption has greater effects on more severe crashes. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lease, W.D.
1976-08-01
Lease AFEX, Inc., modified its standard design of an automatic fire protection system used in the past on logging equipment, and long-term, in-mine tested system on a Fiat-Alli's HD-41B dozer at the Lemmons and Company coal mine, Boonville, Ind. The modification of the standard AFEX system involved improving the actuation device. The AFEX system is called a point-type thermal sensor, automatic fire protection system. The in-mine test took place in late 1975, and early 1976. The system was then tested by simulating a fire on the dozer. The system operated successfully after the 4 months of in-mine endurance testing. (Colormore » illustrations reproduced in black and white.)« less
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Astrophysics Data System (ADS)
Saha, Nripen K.
1993-08-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Technical Reports Server (NTRS)
Saha, Nripen K.
1993-01-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
Crash avoidance potential of four large truck technologies.
Jermakian, Jessica S
2012-11-01
The objective of this paper was to estimate the maximum potential large truck crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and vehicle stability control. Estimates accounted for limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as location of damage on the vehicle, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented the crash. Of the four technologies, side view assist had the greatest potential for preventing large truck crashes of any severity; the technology is potentially applicable to 39,000 crashes in the United States each year, including 2000 serious and moderate injury crashes and 79 fatal crashes. Vehicle stability control is another promising technology, with the potential to prevent or mitigate up to 31,000 crashes per year including more serious crashes--up to 7000 moderate-to-serious injury crashes and 439 fatal crashes per year. Vehicle stability control could prevent or mitigate up to 20 and 11 percent of moderate-to-serious injury and fatal large truck crashes, respectively. Forward collision warning has the potential to prevent as many as 31,000 crashes per year, including 3000 serious and moderate injury crashes and 115 fatal crashes. Finally, 10,000 large truck crashes annually were relevant to lane departure warning/prevention systems. Of these, 1000 involved serious and moderate injuries and 247 involved fatal injuries. There is great potential effectiveness for truck-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. Actual effectiveness of crash avoidance systems will not be known until sufficient real-world experience has been gained. Copyright © 2012 Elsevier Ltd. All rights reserved.
A classification tree based modeling approach for segment related crashes on multilane highways.
Pande, Anurag; Abdel-Aty, Mohamed; Das, Abhishek
2010-10-01
This study presents a classification tree based alternative to crash frequency analysis for analyzing crashes on mid-block segments of multilane arterials. The traditional approach of modeling counts of crashes that occur over a period of time works well for intersection crashes where each intersection itself provides a well-defined unit over which to aggregate the crash data. However, in the case of mid-block segments the crash frequency based approach requires segmentation of the arterial corridor into segments of arbitrary lengths. In this study we have used random samples of time, day of week, and location (i.e., milepost) combinations and compared them with the sample of crashes from the same arterial corridor. For crash and non-crash cases, geometric design/roadside and traffic characteristics were derived based on their milepost locations. The variables used in the analysis are non-event specific and therefore more relevant for roadway safety feature improvement programs. First classification tree model is a model comparing all crashes with the non-crash data and then four groups of crashes (rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes) are separately compared to the non-crash cases. The classification tree models provide a list of significant variables as well as a measure to classify crash from non-crash cases. ADT along with time of day/day of week are significantly related to all crash types with different groups of crashes being more likely to occur at different times. From the classification performance of different models it was apparent that using non-event specific information may not be suitable for single vehicle/off-road crashes. The study provides the safety analysis community an additional tool to assess safety without having to aggregate the corridor crash data over arbitrary segment lengths. Copyright © 2010. Published by Elsevier Ltd.
A novel approach for analyzing severe crash patterns on multilane highways.
Pande, Anurag; Abdel-Aty, Mohamed
2009-09-01
This study presents a novel approach for analysis of patterns in severe crashes that occur on mid-block segments of multilane highways with partially limited access. A within stratum matched crash vs. non-crash classification approach is adopted towards that end. Under this approach crashes serve as units of analysis and it does not require aggregation of crash data over arterial segments of arbitrary lengths. Also, the proposed approach does not use information on non-severe crashes and hence is not affected by under-reporting of the minor crashes. Random samples of time, day of week, and location (i.e., milepost) combinations were collected for multilane arterials in the state of Florida and matched with severe crashes from the corresponding corridor to form matched strata consisting of severe crash and non-crash cases. For these cases, geometric design/roadside and traffic characteristics were derived based on the corresponding milepost locations. Four groups of crashes, severe rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes, on multilane arterials segments were compared separately to the non-crash cases. Severe lane-change related crashes may primarily be attributed to exposure while single-vehicle crashes and pedestrian crashes have no significant relationship with the ADT (Average Daily Traffic). For severe rear-end crashes speed limit, ADT, K-factor, time of day/day of week, median type, pavement condition, and presence of horizontal curvature were significant factors. The proposed approach uses general roadway characteristics as independent variables rather than event-specific information (i.e., crash characteristics such as driver/vehicle details); it has the potential to fit within a safety evaluation framework for arterial segments.
Pre-crash scenario typology for crash avoidance research
DOT National Transportation Integrated Search
2007-04-01
This report defines a new pre-crash scenario typology for crash avoidance research based on the 2004 General Estimates System (GES) crash database, which consists of pre-crash scenarios depicting vehicle movements and dynamics as well as the critical...
Safety analytics for integrating crash frequency and real-time risk modeling for expressways.
Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung
2017-07-01
To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.
The frequency--severity indeterminacy.
Hauer, Ezra
2006-01-01
Nothing is known about unreported crashes; the information we have is of reported crashes only. Whether a crash gets reported depends on its severity. It follows by logic that, using only data about reported crashes, it is impossible to say whether a change or difference in crash counts reflects a change or difference in crash frequency or in crash severity. This indeterminacy has practical implications. Examples discussed are of the misattribution of over-representation in reported crashes of older drivers and of trucks to causal factors related to the frequency of crash involvement, and of misinterpretation by researchers of findings about the rollover propensity of SUVs.
Harland, Karisa K; Greenan, Mitchell; Ramirez, Marizen
2014-09-01
Although approximately one-third of agricultural equipment-related crashes occur near town, these crashes are thought to be a rural problem. This analysis examines differences between agricultural equipment-related crashes by their urban-rural distribution and distance from a town. Agricultural equipment crashes were collected from nine Midwest Departments of Transportation (2005-2008). Crash zip code was assigned as urban or rural (large, small and isolated) using Rural-Urban Commuting Areas. Crash proximity to a town was estimated with ArcGIS. Multivariable logistic regression was used to estimate the odds of crashing in an urban versus rural zip codes and across rural gradients. ANOVA analysis estimated mean distance (miles) from a crash site to a town. Over four years, 4444 crashes involved agricultural equipment. About 30% of crashes occurred in urban zip codes. Urban crashes were more likely to be non-collisions (aOR=1.69[1.24-2.30]), involve ≥2 vehicles (2 vehicles: aOR=1.58[1.14-2.20], 3+ vehicles: aOR=1.68[0.98-2.88]), occur in a town (aOR=2.06[1.73-2.45]) and within one mile of a town (aOR=1.65[1.40-1.95]) than rural crashes. The proportion of crashes within a town differed significantly across rural gradients (P<0.0001). Small rural crashes, compared to isolated rural crashes, were 1.98 (95%CI[1.28-3.06]) times more likely to be non-collisions. The distance from the crash to town differed significantly by the urban-rural distribution (P<0.0001). Crashes with agricultural equipment are unexpectedly common in urban areas and near towns and cities. Education among all roadway users, increased visibility of agricultural equipment and the development of complete rural roads are needed to increase road safety and prevent agricultural equipment-related crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crash avoidance potential of four passenger vehicle technologies.
Jermakian, Jessica S
2011-05-01
The objective was to update estimates of maximum potential crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and adaptive headlights. Compared with previous estimates (Farmer, 2008), estimates in this study attempted to account for known limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as vehicle damage location, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented or mitigated the crash. Of the four crash avoidance technologies, forward collision warning/mitigation had the greatest potential for preventing crashes of any severity; the technology is potentially applicable to 1.2 million crashes in the United States each year, including 66,000 serious and moderate injury crashes and 879 fatal crashes. Lane departure warning/prevention systems appeared relevant to 179,000 crashes per year. Side view assist and adaptive headlights could prevent 395,000 and 142,000 crashes per year, respectively. Lane departure warning/prevention was relevant to the most fatal crashes, up to 7500 fatal crashes per year. A combination of all four current technologies potentially could prevent or mitigate (without double counting) up to 1,866,000 crashes each year, including 149,000 serious and moderate injury crashes and 10,238 fatal crashes. If forward collision warning were extended to detect objects, pedestrians, and bicyclists, it would be relevant to an additional 3868 unique fatal crashes. There is great potential effectiveness for vehicle-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. The actual effectiveness of these systems will not be known until sufficient real-world experience has been gained. Copyright © 2010 Elsevier Ltd. All rights reserved.
A numerical investigation of factors affecting cervical spine injuries during rollover crashes.
Hu, Jingwen; Yang, King H; Chou, Clifford C; King, Albert I
2008-11-01
Factors affecting the risk of cervical spine injury in rollover crashes were investigated using a detailed finite element human head-neck model. Analyze systematically neck responses and associated injury predictors under complex loading conditions similar to real-world rollover scenarios and use the findings to identify potential design improvements. Although many previous experimental and numerical studies have focused on cervical spine injury mechanisms and tolerance, none of them have investigated the risk of cervical spine injuries under loading condition similar to that in rollovers. The effects of changing the coefficient of friction (COF), impact velocity, padding material thickness and stiffness, and muscle force on the risk of neck injuries were analyzed in 16 different impact orientations based on a Taguchi array of design of experiments. Impact velocity is the most important factor in determining the risk of cervical spine fracture (P = 0.000). Decreases in the COF between the head and impact surface can effectively reduce the risk of cervical spine fracture (P = 0.038). If the COF is not 0, an impact with lateral force component could sometimes increase the risk of cervical spine fracture; and the larger the oriented angle of the impact surface, the more important it becomes to reduce the COF to protect the neck. Soft (P = 0.033) and thick (P = 0.137) padding can actually decrease the neck fracture risk, which is in contrast to previous experimental data. A careful selection of proper padding stiffness and thickness, along with a minimized COF between the head and impact surface or between the padding and its supporting structure, may simultaneously decrease the risk of head and neck injuries during rollover crashes. A seatbelt design to effectively reduce/eliminate the head-to-roof impact velocity is also very crucial to enhance the neck protection in rollovers.
Estimated injury risk for specific injuries and body regions in frontal motor vehicle crashes.
Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Swett, Katrina R; Stitzel, Joel D
2015-01-01
Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data. Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15-105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate. Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4-4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6-9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9-43.8% risk). These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.
47 CFR 74.436 - Special requirements for automatic relay stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL...) An automatic relay station must be designed, installed, and protected so that the transmitter can...
47 CFR 74.436 - Special requirements for automatic relay stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL...) An automatic relay station must be designed, installed, and protected so that the transmitter can...
47 CFR 74.436 - Special requirements for automatic relay stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL...) An automatic relay station must be designed, installed, and protected so that the transmitter can...
47 CFR 74.436 - Special requirements for automatic relay stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL...) An automatic relay station must be designed, installed, and protected so that the transmitter can...
47 CFR 74.436 - Special requirements for automatic relay stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL...) An automatic relay station must be designed, installed, and protected so that the transmitter can...
Characteristics of Single Vehicle Crashes with a Teen Driver in South Carolina, 2005-2008.
Shults, Ruth A; Bergen, Gwen; Smith, Tracy J; Cook, Larry; Kindelberger, John; West, Bethany
2017-09-22
Teens' crash risk is highest in the first years of independent driving. Circumstances surrounding fatal crashes have been widely documented, but less is known about factors related to nonfatal teen driver crashes. This study describes single vehicle nonfatal crashes involving the youngest teen drivers (15-17 years), compares these crashes to single vehicle nonfatal crashes among adult drivers (35-44 years) and examines factors related to nonfatal injury producing crashes for teen drivers. Police crash data linked to hospital inpatient and emergency department data for 2005-2008 from the South Carolina Crash Outcomes Data Evaluation System (CODES) were analyzed. Nonfatal, single vehicle crashes involving passenger vehicles occurring on public roadways for teen (15-17 years) drivers were compared with those for adult (35-44 years) drivers on temporal patterns and crash risk factors per licensed driver and per vehicle miles traveled. Vehicle miles traveled by age group was estimated using data from the 2009 National Household Travel Survey. Multivariable log-linear regression analysis was conducted for teen driver crashes to determine which characteristics were related to crashes resulting in a minor/moderate injury or serious injury to at least one vehicle occupant. Compared with adult drivers, teen drivers in South Carolina had 2.5 times the single vehicle nonfatal crash rate per licensed driver and 11 times the rate per vehicle mile traveled. Teen drivers were nearly twice as likely to be speeding at the time of the crash compared with adult drivers. Teen driver crashes per licensed driver were highest during the afternoon hours of 3:00-5:59 pm and crashes per mile driven were highest during the nighttime hours of 9:00-11:59 pm. In 66% of the teen driver crashes, the driver was the only occupant. Crashes were twice as likely to result in serious injury when teen passengers were present than when the teen driver was alone. When teen drivers crashed while transporting teen passengers, the passengers were >5 times more likely to all be restrained if the teen driver was restrained. Crashes in which the teen driver was unrestrained were 80% more likely to result in minor/moderate injury and 6 times more likely to result in serious injury compared with crashes in which the teen driver was restrained. Despite the reductions in teen driver crashes associated with Graduated Driver Licensing (GDL), South Carolina's teen driver crash rates remain substantially higher than those for adult drivers. Established risk factors for fatal teen driver crashes, including restraint nonuse, transporting teen passengers, and speeding also increase the risk of nonfatal injury in single vehicle crashes. As South Carolina examines strategies to further reduce teen driver crashes and associated injuries, the state could consider updating its GDL passenger restriction to either none or one passenger <21years and dropping the passenger restriction exemption for trips to and from school. Surveillance systems such as CODES that link crash data with health outcome data provide needed information to more fully understand the circumstances and consequences of teen driver nonfatal crashes and evaluate the effectiveness of strategies to improve teen driver safety. Published by Elsevier Ltd.
Evaluation of wheelchair drop seat crashworthiness.
Bertocci, G; Ha, D; van Roosmalen, L; Karg, P; Deemer, E
2001-05-01
Wheelchair seating crash performance is critical to protecting wheelchair users who remain seated in their wheelchairs during transportation. Relying upon computer simulation and sled testing seat loads associated with a 20 g/48 kph (20 g/30 mph) frontal impact and 50th percentile male occupant were estimated to develop test criteria. Using a static test setup we evaluated the performance of various types of commercially available drop seats against the loading test criteria. Five different types of drop seats (two specimens each) constructed of various materials (i.e. plastics, plywood, metal) were evaluated. Two types of drop seats (three of the total 10 specimens) met the 16650 N (3750 lb) frontal impact test criteria. While additional validation of the test protocol is necessary, this study suggests that some drop seat designs may be incapable of withstanding crash level loads.
KSC off-runway contingency operation - Mode 7
NASA Technical Reports Server (NTRS)
Maples, Arthur; Doerr, Donald
1991-01-01
The possibility of a mishap during a space shuttle landing at Kennedy Space Center (KSC) dictates the need for plans to rescue astronauts from areas other than the Shuttle Landing Facility (SLF). All shuttle landings are unpowered, gliding flight maneuvers, and a deviation from the planned flight profile could result in a shuttle landing or crashing somewhere other than the SLF runway. The geography of the Kennedy Space Center makes helicopter airlifting the only universal means of transportation for the rescue crew. This rescue crew is composed of KSC contractor fire-rescuemen who would ride to the crash scene on USAF HH-3 helicopters. These crews are provided with personal protective suits and training in shallow water, swamp, and dry land rescues. They aid the egress of the crew to a safe area for helicopter pickup and subsequent triage and medevac.
Winston, Flaura K; Xie, Dawei; Durbin, Dennis R; Elliott, Michael R
2007-01-01
Since nearly half of children fatally injured in automobile crashes were restrained, optimizing occupant protection systems for children is essential to reducing morbidity and mortality. Data from the Partners for Child Passenger Safety study were used to compare the differential injury risk between drivers and their child passengers in the same crash, with a focus on vehicle model year. A matched cohort design and conditional logistic regression model were used in the analyses. Overall, injury risk for drivers was higher than for children, but the risk difference was largest for the oldest model year vehicles, particularly for children aged 4–8 in seat belts. While drivers experienced significant benefits in safety with increasing model years, children restrained by safety belts alone derived less safety benefit from newer vehicles. PMID:18184488
Crash and risky driving involvement among novice adolescent drivers and their parents.
Simons-Morton, Bruce G; Ouimet, Marie Claude; Zhang, Zhiwei; Klauer, Sheila E; Lee, Suzanne E; Wang, Jing; Albert, Paul S; Dingus, Thomas A
2011-12-01
We compared rates of risky driving among novice adolescent and adult drivers over the first 18 months of adolescents' licensure. Data-recording systems installed in participants' vehicles provided information on driving performance of 42 newly licensed adolescent drivers and their parents. We analyzed crashes and near crashes and elevated g-force event rates by Poisson regression with random effects. During the study period, adolescents were involved in 279 crashes or near crashes (1 involving injury); parents had 34 such accidents. The incidence rate ratio (IRR) comparing adolescent and parent crash and near-crash rates was 3.91. Among adolescent drivers, elevated rates of g-force events correlated with crashes and near crashes (r = 0.60; P < .001). The IRR comparing incident rates of risky driving among adolescents and parents was 5.08. Adolescents' rates of crashes and near crashes declined with time (with a significant uptick in the last quarter), but elevated g-force event rates did not decline. Elevated g-force events among adolescents may have contributed to crash and near-crash rates that remained much higher than adult levels after 18 months of driving.
Casualty Crash Types for which Teens are at Excess Risk
Bingham, C. R.; Shope, J. T.
2007-01-01
This study identified casualty crash types for which teen drivers experience excess risk relative to adults. Michigan State Police crash records were used to examine casualty crashes in two statewide populations of drivers who experienced at least one crash from 1989–1996 (pre-graduated driver licensing in Michigan): teens (ages 16–19) and adults (ages 45–65). Rates and rate ratios (RR) based on crash occurrence per 100,000 person miles driven (PMD) compared teens and adults from the two statewide populations. Excess risk was defined as a RR for a specific type of crash that was significantly greater than the RR for all crashes combined. The RRs for all crashes combined for teenage males was 2.41 and 1.75 for teenage females. RRs for teenage males ranged from a low of 2.16 for casualty crashes attributed to alcohol to 8.98 for casualty road departure crashes at night. Among teenage females, RRs ranged from 2.06 for casualty crashes on the weekend to 7.86 for casualty crashes at night with passengers. Casualty crash rates for teenage males ranged from 0.21 per 100,000 PMD for rollover crashes to 1.95 per 100,000 PMD for crashes with passengers. Among teen females, casualty crash rates ranged from 0.21 per 100,000 PMD for drink/driving with passengers to 3.31 per 100,000 PMD for crashes with passengers. Implications for graduated driver licensing, teen driver supervision, and policy are discussed. This study was funded by the National Institute on Alcohol Abuse and Alcoholism and the Centers for Disease Control and Prevention’s National Center for Injury Prevention and Control. PMID:18184510
Code of Federal Regulations, 2014 CFR
2014-10-01
... a result of impact. S2. Application. This standard applies to passenger cars and to multipurpose... does not apply to vehicles that conform to the frontal barrier crash requirements (S5.1) of Standard No... impact. S4. Requirements. Each passenger car and each multipurpose passenger vehicle, truck and bus with...
Code of Federal Regulations, 2012 CFR
2012-10-01
... a result of impact. S2. Application. This standard applies to passenger cars and to multipurpose... does not apply to vehicles that conform to the frontal barrier crash requirements (S5.1) of Standard No... impact. S4. Requirements. Each passenger car and each multipurpose passenger vehicle, truck and bus with...
Code of Federal Regulations, 2013 CFR
2013-10-01
... a result of impact. S2. Application. This standard applies to passenger cars and to multipurpose... does not apply to vehicles that conform to the frontal barrier crash requirements (S5.1) of Standard No... impact. S4. Requirements. Each passenger car and each multipurpose passenger vehicle, truck and bus with...
49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...
49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...
49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...
49 CFR 571.222 - Standard No. 222; School bus passenger seating and crash protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., comprised of at least a frame, seat, and wheels. Wheelchair occupant restraint anchorage means the provision... passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.3.1 and S5.1.3.2, and subsequently, the application of additional force to the seat back as...
Effects of alcohol on automated and controlled driving performances.
Berthelon, Catherine; Gineyt, Guy
2014-05-01
Alcohol is the most frequently detected substance in fatal automobile crashes, but its precise mode of action is not always clear. The present study was designed to establish the influence of blood alcohol concentration as a function of the complexity of the scenarios. Road scenarios implying automatic or controlled driving performances were manipulated in order to identify which behavioral parameters were deteriorated. A single blind counterbalanced experiment was conducted on a driving simulator. Sixteen experienced drivers (25.3 ± 2.9 years old, 8 men and 8 women) were tested with 0, 0.3, 0.5, and 0.8 g/l of alcohol. Driving scenarios varied: road tracking, car following, and an urban scenario including events inspired by real accidents. Statistical analyses were performed on driving parameters as a function of alcohol level. Automated driving parameters such as standard deviation of lateral position measured with the road tracking and car following scenarios were impaired by alcohol, notably with the highest dose. More controlled parameters such as response time to braking and number of crashes when confronted with specific events (urban scenario) were less affected by the alcohol level. Performance decrement was greater with driving scenarios involving automated processes than with scenarios involving controlled processes.
Crashes of sightseeing helicopter tours in Hawaii.
Haaland, Wren L; Shanahan, Dennis F; Baker, Susan P
2009-07-01
Crashes of sightseeing helicopter flights in Hawaii and the resulting tourist deaths prompted the FAA to issue regulations in 1994 specific to air tours in Hawaii. Research was undertaken to examine the effect of the 1994 Rule and to describe the circumstances of such crashes. From National Transportation Safety Board data, 59 crashes of helicopter air tour flights in Hawaii during 1981-2008 were identified; crash investigation reports were read and coded. Crashes in 1995-2008 were compared with those in 1981-1994. The 1994 Rule was followed by a 47% decrease in the crash rate, from 3.4 to 1.8/100,000 flight hours. The number of crashes into the ocean decreased from eight before the Rule to one afterwards. VFR-IMC crashes increased from 5 to 32% of crashes. There were 46 tourists and 9 pilots who died in 16 fatal crashes. Aircraft malfunctions, primarily due to poor maintenance, precipitated 34 (58%) of the crashes and persisted throughout the 28-yr period. Pilot errors were apparent in 23 crashes (39%). Flight from visual to instrument conditions occurred in two cases before the Rule and seven cases after. Terrain unsuitable for landing was cited in 37 crashes (63%). Decreases occurred in the overall number and rate of crashes and in ocean crash landings. The increase in VFR-IMC crashes may be related to the requirement that tour helicopters fly at least 1500 ft. above terrain. Attention is still needed to maintenance, pilot training, and restricting flights to operating areas and conditions that enable safe emergency landings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morellas, Vassilios; Johnson, Andrew; Johnston, Chris
2006-07-01
Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff andmore » landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)« less
Sleep-related vehicle crashes on low speed roads.
Filtness, A J; Armstrong, K A; Watson, A; Smith, S S
2017-02-01
Very little is known about the characteristics of sleep related (SR) crashes occurring on low speed roads compared with current understanding of the role of sleep in crashes occurring on high speed roads e.g. motorways. To address this gap, analyses were undertaken to identify the differences and similarities between (1) SR crashes occurring on roads with low (≤60km/h) and high (≥100km/h) speed limits, and (2) SR crashes and not-SR crashes occurring on roads with low speed limits. Police reports of all crashes occurring on low and high speed roads over a ten year period between 2000 and 2009 were examined for Queensland, Australia. Attending police officers identified all crash attributes, including 'fatigue/fell asleep', which indicates that the police believe the crash to have a causal factor relating to falling asleep, sleepiness due to sleep loss, time of day, or fatigue. Driver or rider involvement in crashes was classified as SR or not-SR. All crash-associated variables were compared using Chi-square tests (Cramer's V=effect size). A series of logistic regression was performed, with driver and crash characteristics as predictors of crash category. A conservative alpha level of 0.001 determined statistical significance. There were 440,855 drivers or riders involved in a crash during this time; 6923 (1.6%) were attributed as SR. SR crashes on low speed roads have similar characteristics to those on high speed roads with young (16-24y) males consistently over represented. SR crashes on low speed roads are noticeably different to not-SR crashes in the same speed zone in that male and young novice drivers are over represented and outcomes are more severe. Of all the SR crashes identified, 41% occurred on low speed roads. SR crashes are not confined to high speed roads. Low speed SR crashes warrant specific investigation because they occur in densely populated areas, exposing a greater number of people to risk and have more severe outcomes than not-SR crashes on the same low speed roads. Copyright © 2016 Elsevier Ltd. All rights reserved.
School Fire Protection: Contents Count
ERIC Educational Resources Information Center
American School and University, 1976
1976-01-01
The heart of a fire protection system is the sprinkler system. National Fire Protection Association (NFPA) statistics show that automatic sprinklers dramatically reduce fire damage and loss of life. (Author)
Cost of Crashes Related to Road Conditions, United States, 2006
Zaloshnja, Eduard; Miller, Ted R.
2009-01-01
This is the first study to estimate the cost of crashes related to road conditions in the U.S. To model the probability that road conditions contributed to the involvement of a vehicle in the crash, we used 2000–03 Large Truck Crash Causation Study (LTCCS) data, the only dataset that provides detailed information whether road conditions contributed to crash occurrence. We applied the logistic regression results to a costed national crash dataset in order to calculate the probability that road conditions contributed to the involvement of a vehicle in each crash. In crashes where someone was moderately to seriously injured (AIS-2-6) in a vehicle that harmfully impacted a large tree or medium or large non-breakaway pole, or if the first harmful event was collision with a bridge, we changed the calculated probability of being road-related to 1. We used the state distribution of costs of fatal crashes where road conditions contributed to crash occurrence or severity to estimate the respective state distribution of non-fatal crash costs. The estimated comprehensive cost of traffic crashes where road conditions contributed to crash occurrence or severity was $217.5 billion in 2006. This represented 43.6% of the total comprehensive crash cost. The large share of crash costs related to road design and conditions underlines the importance of these factors in highway safety. Road conditions are largely controllable. Road maintenance and upgrading can prevent crashes and reduce injury severity. PMID:20184840
The impact of Michigan's text messaging restriction on motor vehicle crashes.
Ehsani, Johnathon P; Bingham, C Raymond; Ionides, Edward; Childers, David
2014-05-01
The purpose of this study was to determine the effects of Michigan's universal text messaging restriction (effective July 2010) across different age groups of drivers and crash severities. Changes in monthly crash rates and crash trends per 10,000 licensed drivers aged 16, 17, 18, 19, 20-24, and 25-50 years were estimated using time series analysis for three levels of crash severity: (1) fatal/disabling injury; (2) nondisabling injury; and (3) possible injury/property damage only (PDO) crashes for the period 2005-2012. Analyses were adjusted for crash rates of drivers' aged 65-99 years, Michigan's unemployment rate, and gasoline prices. After the introduction of the texting restriction, significant increases were observed in crash rates and monthly trends in fatal/disabling injury crashes and nondisabling injury crashes, and significant decreases in possible injury/PDO crashes. The magnitude of the effects where significant changes were observed was small. The introduction of the texting restriction was not associated with a reduction in crash rates or trends in severe crash types. On the contrary, small increases in the most severe crash types (fatal/disabling and nondisabling injury) and small decreases in the least severe crash types (possible injury/PDO) were observed. These findings extend the literature on the effects of cell phone restrictions by examining the effects of the restriction on newly licensed adolescent drivers and adult drivers separately by crash severity. Published by Elsevier Inc.
Chung, Younshik
2018-02-01
In-vehicle recording devices have enabled recent changes in methodological paradigms for traffic safety research. Such devices include event data recorders (EDRs), vehicle black boxes (VBBs), and various sensors used in naturalistic driving studies (NDSs). These technologies may help improve the validity of models used to assess impacts on traffic safety. The objective of this study is to analyze the injury severity in taxi-pedestrian crashes using the accurate crash data from VBBs, such as the time-to-collision (TTC), speed, angle, and region of the crash. VBB data from a two-year period (2010-2011) were collected from taxis operating in Incheon, South Korea. An ordered probit model was then applied to analyze the injury severity in crashes. Five variables were found to have a greater effect on injury severity: crash speed, crashes in no-median sections, crashes where the secondary impact object of pedestrians was the crash vehicle, crashes where the third impact object of pedestrians was another moving vehicle, and crashes where the third impact region of pedestrians was their head. However, injuries were less severe in crashes where the first impact region on the pedestrian was their leg, crashes with the car moving in a straight line, and crashes involving junior high school students. Copyright © 2017 Elsevier Ltd. All rights reserved.
30 CFR 75.1103-5 - Automatic fire warning devices; actions and response.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire warning devices; actions and... Protection § 75.1103-5 Automatic fire warning devices; actions and response. (a) When the carbon monoxide... fire sensor and warning device systems shall provide an effective warning signal at the following...
30 CFR 75.1103-5 - Automatic fire warning devices; actions and response.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire warning devices; actions and... Protection § 75.1103-5 Automatic fire warning devices; actions and response. (a) When the carbon monoxide... fire sensor and warning device systems shall provide an effective warning signal at the following...
McDonald, Catherine C; Curry, Allison E; Kandadai, Venk; Sommers, Marilyn S; Winston, Flaura K
2014-11-01
Motor vehicle crashes are the leading cause of death and acquired disability during the first four decades of life. While teen drivers have the highest crash risk, few studies examine the similarities and differences in teen and adult driver crashes. We aimed to: (1) identify and compare the most frequent crash scenarios-integrated information on a vehicle's movement prior to crash, immediate pre-crash event, and crash configuration-for teen and adult drivers involved in serious crashes, and (2) for the most frequent scenarios, explore whether the distribution of driver critical errors differed for teens and adult drivers. We analyzed data from the National Motor Vehicle Crash Causation Survey, a nationally representative study of serious crashes conducted by the U.S. National Highway Traffic Safety Administration from 2005 to 2007. Our sample included 642 16- to 19-year-old and 1167 35- to 54-year-old crash-involved drivers (weighted n=296,482 and 439,356, respectively) who made a critical error that led to their crash's critical pre-crash event (i.e., event that made the crash inevitable). We estimated prevalence ratios (PR) and 95% confidence intervals (CI) to compare the relative frequency of crash scenarios and driver critical errors. The top five crash scenarios among teen drivers, accounting for 37.3% of their crashes, included: (1) going straight, other vehicle stopped, rear end; (2) stopped in traffic lane, turning left at intersection, turn into path of other vehicle; (3) negotiating curve, off right edge of road, right roadside departure; (4) going straight, off right edge of road, right roadside departure; and (5) stopped in lane, turning left at intersection, turn across path of other vehicle. The top five crash scenarios among adult drivers, accounting for 33.9% of their crashes, included the same scenarios as the teen drivers with the exception of scenario (3) and the addition of going straight, crossing over an intersection, and continuing on a straight path. For two scenarios ((1) and (3) above), teens were more likely than adults to make a critical decision error (e.g., traveling too fast for conditions). Our findings indicate that among those who make a driver critical error in a serious crash, there are few differences in the scenarios or critical driver errors for teen and adult drivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vehicle model year and crash outcomes: a CIREN study.
Ryb, Gabriel E; Dischinger, Patricia C; Ho, Shiu
2009-12-01
To quantify the effect of model year (MY) on the occurrence of severe injuries and death after involvement in motor vehicle crashes. Cases involving adult front seat occupants of vehicles MY > or = 1994 equipped with frontal airbags were selected from the Crash Injury Research and Engineering Network (CIREN) database. Cases were grouped by MY: 1994-1997, 1998-2004, and 2005-2007 (MY groups [MYG] 1, 2, and 3, respectively. MYGs were compared in relation to mortality, Injury Severity Score (ISS), and the occurrence of Abbreviated Injury Severity score (AIS) 3+ and AIS4+ injuries to each body region using Mantel Haenszel chi-square, Kruskal-Wallis, and Bonferroni corrected t test. To adjust for confounders, multiple logistic regression models were built to explore the association of MYG with death. Covariates included age, BMI, delta v, principal direction of force (PDOF), restraint use, and vehicle type. A total of 1888 cases was distributed within MYG1 (34%), MYG2 (62%), and MYG (34%). Age, gender, BMI, and PDOF distribution did not differ among MYGs. Though ISS distribution was not different, a decrease in the occurrence of AIS4+ of the thorax and spine regions was noted over time. Mortality also decreased over time (18, 9, and 4% MYG 1, 2, and 3, respectively). Multivariate analysis revealed a protective effect of MYG2 and MGY3 (odds ratio [OR], 0.57 [0.44-0.75] and 0.22 [0.07-0.50], respectively) in relation to death. Front seat occupants of later MY vehicles injured during crashes experience a decreased likelihood of very severe thoracic injuries, spinal injuries, and death.
Aortic injuries in newer vehicles.
Ryb, Gabriel E; Dischinger, Patricia C; Kleinberger, Michael; McGwin, Gerald; Griffin, Russell L
2013-10-01
The occurrence of AI was studied in relation to vehicle model year (MY) among front seat vehicular occupants, age≥16 in vehicles MY≥1994, entered in the National Automotive Sampling System Crashworthiness Data System between 1997 and 2010 to determine whether newer vehicles, due to their crashworthiness improvements, are linked to a lower risk of aortic injuries (AI). MY was categorized as 1994-1997, 1998-2004, or 2005-2010 reflecting the introduction of newer occupant protection technology. Logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals for the association between AI and MY independent of possible confounders. Analysis was repeated, stratified by frontal and near lateral impacts. AI occurred in 19,187 (0.06%) of the 31,221,007 (weighted) cases, and contributed to 11% of all deaths. AIs were associated with advanced age, male gender, high BMI, near-side impact, rollover, ejection, collision against a fixed object, high ΔV, vehicle mismatch, unrestrained status, and forward track position. Among frontal crashes, MY 98-04 and MY 05-10 showed increased adjusted odds of AI when compared to MY 94-97 [OR 1.84 (1.02-3.32) and 1.99 (0.93-4.26), respectively]. In contrast, among near-side impact crashes, MY 98-04 and MY 05-10 showed decreased adjusted odds of AI [OR 0.50 (0.25-0.99) and 0.27 (0.06-1.31), respectively]. While occupants of newer vehicles experience lower odds of AI in near side impact crashes, a higher AI risk is present in frontal crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Costs of Alcohol-Involved Crashes, United States, 2010
Zaloshnja, Eduard; Miller, Ted R.; Blincoe, Lawrence J.
2013-01-01
This paper estimates total and unit costs of alcohol-involved crashes in the U.S. in 2010. With methods from earlier studies, we estimated costs per crash survivor by MAIS, body part, and fracture/dislocation involvement. We multiplied them times 2010 crash incidence estimates from NHTSA data sets, with adjustments for underreporting of crashes and their alcohol involvement. The unit costs are lifetime costs discounted at 3%. To develop medical costs, we combined 2008 Health Care Utilization Program national data for hospitalizations and ED visits of crash survivors with prior estimates of post-discharge costs. Productivity losses drew on Current Population Survey and American Time Use Survey data. Quality of life losses came from a 2011 AAAM paper and property damage from insurance data. We built a hybrid incidence file comprised of 2008–2010 and 1984–86 NHTSA crash surveillance data, weighted with 2010 General Estimates System weights. Fatality data came from the 2010 FARS. An estimated 12% of 2010 crashes but only 0.9% of miles driven were alcohol-involved (BAC > .05). Alcohol-involved crashes cost an estimated $125 billion. That is 22.5% of the societal cost of all crashes. Alcohol-attributable crashes accounted for an estimated 22.5% of US auto liability insurance payments. Alcohol-involved crashes cost $0.86 per drink. Above the US BAC limit of .08, crash costs were $8.37 per mile driven; 1 in 788 trips resulted in a crash and 1 in 1,016 trips in an arrest. Unit costs for crash survivors by severity are higher for impaired driving than for other crashes. That suggests national aggregate impaired driving cost estimates in other countries are substantial underestimates if they are based on all-crash unit costs. PMID:24406941
Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi
2016-12-01
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subaiya, Saleena; Hogg, Euan; Roberts, Ian
2011-02-03
All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. CRASH-1: ISRCTN74459797CRASH-2: ISRCTN86750102.
An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas
NASA Astrophysics Data System (ADS)
Tosco, Tiziana; Sethi, Rajandrea; di Molfetta, Antonio
2008-07-01
Time-related capture areas are usually delineated using the backward particle tracking method, releasing circles of equally spaced particles around each well. In this way, an accurate delineation often requires both a very high number of particles and a manual capture zone encirclement. The aim of this work was to propose an Automatic Protection Area (APA) delineation algorithm, which can be coupled with any model of flow and particle tracking. The computational time is here reduced, thanks to the use of a limited number of nonequally spaced particles. The particle starting positions are determined coupling forward particle tracking from the stagnation point, and backward particle tracking from the pumping well. The pathlines are postprocessed for a completely automatic delineation of closed perimeters of time-related capture zones. The APA algorithm was tested for a two-dimensional geometry, in homogeneous and nonhomogeneous aquifers, steady state flow conditions, single and multiple wells. Results show that the APA algorithm is robust and able to automatically and accurately reconstruct protection areas with a very small number of particles, also in complex scenarios.
Smith, Joyce A; Siegel, John H; Siddiqi, Shabana Q
2005-07-01
To examine the effect of change in velocity (DeltaV) and energy dissipation (IE) on impact, above and below the test levels for Federal MVC Safety Standards, on the incidence of spine fractures (SF), spinal cord injury (SCI)), SF mortality and the associated injury patterns in Frontal (F) and Lateral (L) MVCs. Comparison of 214 patients with SF or SCI with 938 patients who did not have SF or SCI. 1152 MVC adult drivers or front-seat passengers (701 F & 451 L) evaluated at 10 Level I CIREN study Trauma Centers together with vehicle and crash scene engineering reconstruction. Patient seat belt (SB) and/or airbag (AB) use correlated with clinical, or autopsy findings. The relationship between DeltaV and IE rose exponentially as DeltaV increased. Of the 1152 patients, all with AIS> or =3 injuries, there were 214 patients with spine fractures of AIS > or =2. In FMVCs there were more SF patients with Cervical SF than in LMVCs (68F versus 64 L) and more Thoracic (35F versus 21L) and Lumbar (39F versus 16L) SF. However, the incidence of spinal cord injury was greatest in the Cervical SF (33%), compared with the Thoracic SF (18%), or Lumbar SF (2%). Most important, in FMVCs 49% of SF, 47% of SCI and 71% of the SF deaths (p < 0.05) occurred at > mean of 47.4 kph. In contrast, in LMVCs 51% of SF, 52% of SCI and 67% of the SF deaths occurred at DeltaV > mean of 35.3 kph. However, 80% of all deaths in SCI occurred in Cervical SF cases, in these 74% also had a brain injury. In contrast, the deaths in Thoracic SF were due to combinations of brain (45%), thorax (95%) or associated pelvic fracture injuries (50%). Airbag (AB), or Seat belt (SB) restraints appeared to protect FMVC SF patients from SCI at lower DeltaV, but 84% of Cervical SCI patients at DeltaV > 47 kph had AB protection and in a few cases the AB appeared responsible for the SCI. In contrast, 82% of Lumbar SF patients had SB, but in FMVCs where jackknifing due to backloading occurred, improper SB positioning may have contributed to the SF. The implication for SCI in both front seat drivers and passengers in either FMVC or LMVC crashes above their respective DeltaV means is that improved spine fracture protection is necessary at higher DeltaV levels. More effective safety systems to prevent Cervical SCIs should be developed using two-level frontal and side AB & SB+pretensioner devices, which protect against SF at DeltaV both at and 1SD above the FMVC (47 & 72 kph = 30 & 45 mph) and LMVC (35 & 54 kph =22 & 34 mph) means.
The Pattern of Road Traffic Crashes in South East Iran
Rad, Mahdieh; Martiniuk, Alexandra LC.; Ansari-Moghaddam, Alireza; Mohammadi, Mahdi; Rashedi, Fariborz; Ghasemi, Ardavan
2016-01-01
Background: In the present study, the epidemiologic aspects of road traffic crashes in South East of Iran are described. Methods: This cross-sectional study included the profile of 2398 motor vehicle crashes recorded in the police office in one Year in South East of Iran. Data collected included: demographics, the type of crash, type of involved vehicle, location of crash and factors contributing to the crash. Descriptive statistics were used for data analysis. Results: Collisions with other vehicles or objects contributed the highest proportion (62.4%) of motor vehicle crashes. Human factors including careless driving, violating traffic laws, speeding, and sleep deprivation/fatigue were the most important causal factors accounting for 90% of road crashes. Data shows that 41% of drivers were not using a seat belt at the time of crash. One- third of the crashes resulted in injury (25%) or death (5%). Conclusions: Reckless driving such as speeding and violation of traffic laws are major risk factors for crashes in the South East of Iran. This highlights the need for education along with traffic law enforcement to reduce motor vehicle crashes in future. PMID:27157159
The Pattern of Road Traffic Crashes in South East Iran.
Rad, Mahdieh; Martiniuk, Alexandra Lc; Ansari-Moghaddam, Alireza; Mohammadi, Mahdi; Rashedi, Fariborz; Ghasemi, Ardavan
2016-09-01
In the present study, the epidemiologic aspects of road traffic crashes in South East of Iran are described. This cross-sectional study included the profile of 2398 motor vehicle crashes recorded in the police office in one Year in South East of Iran. Data collected included: demographics, the type of crash, type of involved vehicle, location of crash and factors contributing to the crash. Descriptive statistics were used for data analysis. Collisions with other vehicles or objects contributed the highest proportion (62.4%) of motor vehicle crashes. Human factors including careless driving, violating traffic laws, speeding, and sleep deprivation/fatigue were the most important causal factors accounting for 90% of road crashes. Data shows that 41% of drivers were not using a seat belt at the time of crash. One- third of the crashes resulted in injury (25%) or death (5%). Reckless driving such as speeding and violation of traffic laws are major risk factors for crashes in the South East of Iran. This highlights the need for education along with traffic law enforcement to reduce motor vehicle crashes in future.
Yang, Hongtai; Cherry, Christopher R; Su, Fan; Ling, Ziwen; Pannell, Zane; Li, Yanlai; Fu, Zhijian
2018-05-25
Unreported minor crashes have importance as a surrogate for more serious crashes that require infrastructure, education, and enforcement strategies; and they still inflict damages. To study factors that influence underreporting, cause, and severity of minor crashes; a survey was performed in Kunming and Beijing to collect self-reported personal characteristics and crash history data of the three major urban road users in China: automobile drivers, bicycle riders and electric bike (e-bike) riders. Underreporting rates of automobile to automobile, automobile to non-motorized vehicle, and non-motorized vehicle to non-motorized vehicle crashes are 56%, 77% and 94%, respectively. Minor crashes with higher reported injury severity levels are more likely to be reported. E-bike riders without a driver's license are more likely to cause crashes. Licensing and education could be an effective way to reduce their crashes. The party that is not at fault in a crash is more likely to sustain high level of injury.
Selection of comparison crash types for quasi-induced exposure risk estimation.
Keall, Michael; Newstead, Stuart
2009-03-01
The objective of this study was to find a comparison crash type that best represented exposure on the road and to identify situations where the induced exposure risk estimates were likely to be biased. Counts of crash involvements were compared with distance driven estimates derived from a register of licensed motor vehicles to identify the most appropriate comparison crash type for induced exposure estimation, which is the crash type whose counts are best correlated with vehicle distance driven. The best sets of comparison crashes for disaggregations by driver age and gender and vehicle type were found to be multi-vehicle crashes in which the vehicle was damaged in the rear or multi-vehicle crashes in which the driver was adjudged to be not at fault. Likely bias of induced exposure risk estimates was identified, even for these best sets of comparison crashes, according to vehicle size (with large vehicles underrepresented) and owner age and gender (with young owners and female owners overrepresented). This research identified some important features of crash occurrence useful for making choices of comparison crash types when controlling for exposure. None of the crash types considered as comparison crashes performed perfectly. Even the crash types that seemed to best reflect exposure on the road still appeared to over- or underestimate distance driven according to owner age group, gender, and vehicle size.
Death and injury in aerial spraying: pre-crash, crash, and post-crash prevention strategies.
Richter, E D; Gordon, M; Halamish, M; Gribetz, B
1981-01-01
To prevent crash-related death and injury among spray pilots, a program including pre-crash, crash and post-crash stages of intervention for aircraft, physical environment, and pilots and ground crews was proposed in accordance with a matrix of options derived from road crash epidemiology. In addition to the dangers of fixed obstacles, low-altitude runs, and heavy work schedules, work hazards included combined exposures to noise, vibration, G forces, heat stress, pesticides, and dehydration. Together, these exposures were believed to have produced slight, but crucial decreases in pilot performance, alertness and skill. For aircraft, the major pre-crash measure was cockpit air cooling, with filter technologies to prevent in-flight pesticide exposure. Crash and post-crash design changes to reduce energy transfers to the pilot's body (thermal, kinetic) were the most important recommendations, because absolute prevention of the crash event was unlikely. For the environment, pre-crash recommendations included marking fixed obstacles, such as power and telephone lines, but preferably their elimination. Other measures included drainage pits with sodium hydroxide points to neutralize parathion and prevent dispersion of parathion-containing mists. Pilot pre-crash measures (more fluid intake, biological monitoring--EMG, urinary alkyl phosphate, cholinesterase testing) required special organizational arrangements. Systematic application of options from the foregoing matrix suggest that the high risk of death and injury from aerial spraying is unnecessary.
Traffic crash statistics report, 1998
DOT National Transportation Integrated Search
1999-01-01
The information contained in this Traffic Crash Facts booklet is extracted from law : enforcement agency long-form reports of traffic crashes. A law enforcement officer must submit a : long-form crash report when investigating: : Motor vehicle crashe...
Traffic crash statistics report, 1995
DOT National Transportation Integrated Search
1996-01-01
The information contained in this Traffic Crash Facts booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashe...
Traffic crash statistics report, 1996
DOT National Transportation Integrated Search
1997-11-01
The information contained in this Traffic Crash Facts booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashe...
Traffic crash statistics report, 1994
DOT National Transportation Integrated Search
1995-01-01
The information contained in this Traffic Crash Data booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashes...
Traffic crash statistics report, 2004
DOT National Transportation Integrated Search
2005-01-01
The information contained in this Traffic Crash Data booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashes...
Traffic crash statistics report, 1997
DOT National Transportation Integrated Search
1998-01-01
The information contained in this Traffic Crash Facts booklet is extracted from law enforcement agency : long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report when : investigating: : Motor vehicle crashe...
Rear seat safety: Variation in protection by occupant, crash and vehicle characteristics.
Durbin, Dennis R; Jermakian, Jessica S; Kallan, Michael J; McCartt, Anne T; Arbogast, Kristy B; Zonfrillo, Mark R; Myers, Rachel K
2015-07-01
Current information on the safety of rear row occupants of all ages is needed to inform further advances in rear seat restraint system design and testing. The objectives of this study were to describe characteristics of occupants in the front and rear rows of model year 2000 and newer vehicles involved in crashes and determine the risk of serious injury for restrained crash-involved rear row occupants and the relative risk of fatal injury for restrained rear row vs. front passenger seat occupants by age group, impact direction, and vehicle model year. Data from the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and Fatality Analysis Reporting System (FARS) were queried for all crashes during 2007-2012 involving model year 2000 and newer passenger vehicles. Data from NASS-CDS were used to describe characteristics of occupants in the front and rear rows and to determine the risk of serious injury (AIS 3+) for restrained rear row occupants by occupant age, vehicle model year, and impact direction. Using a combined data set containing data on fatalities from FARS and estimates of the total population of occupants in crashes from NASS-CDS, logistic regression modeling was used to compute the relative risk (RR) of death for restrained occupants in the rear vs. front passenger seat by occupant age, impact direction, and vehicle model year. Among all vehicle occupants in tow-away crashes during 2007-2012, 12.3% were in the rear row where the overall risk of serious injury was 1.3%. Among restrained rear row occupants, the risk of serious injury varied by occupant age, with older adults at the highest risk of serious injury (2.9%); by impact direction, with rollover crashes associated with the highest risk (1.5%); and by vehicle model year, with model year 2007 and newer vehicles having the lowest risk of serious injury (0.3%). Relative risk of death was lower for restrained children up to age 8 in the rear compared with passengers in the right front seat (RR=0.27, 95% CI 0.12-0.58 for 0-3 years, RR=0.55, 95% CI 0.30-0.98 for 4-8 years) but was higher for restrained 9-12-year-old children (RR=1.83, 95% CI 1.18-2.84). There was no evidence for a difference in risk of death in the rear vs. front seat for occupants ages 13-54, but there was some evidence for an increased relative risk of death for adults age 55 and older in the rear vs. passengers in the right front seat (RR=1.41, 95% CI 0.94-2.13), though we could not exclude the possibility of no difference. After controlling for occupant age and gender, the relative risk of death for restrained rear row occupants was significantly higher than that of front seat occupants in model year 2007 and newer vehicles and significantly higher in rear and right side impact crashes. Results of this study extend prior research on the relative safety of the rear seat compared with the front by examining a more contemporary fleet of vehicles. The rear row is primarily occupied by children and adolescents, but the variable relative risk of death in the rear compared with the front seat for occupants of different age groups highlights the challenges in providing optimal protection to a wide range of rear seat occupants. Findings of an elevated risk of death for rear row occupants, as compared with front row passengers, in the newest model year vehicles provides further evidence that rear seat safety is not keeping pace with advances in the front seat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Kun-Feng; Donnell, Eric T; Aguero-Valverde, Jonathan
2014-06-01
To approach the goal of "Toward Zero Deaths," there is a need to develop an analysis paradigm to better understand the effects of a countermeasure on reducing the number of severe crashes. One of the goals in traffic safety research is to search for an effective treatment to reduce fatal and major injury crashes, referred to as severe crashes. To achieve this goal, the selection of promising countermeasures is of utmost importance, and relies on the effectiveness of candidate countermeasures in reducing severe crashes. Although it is important to precisely evaluate the effectiveness of candidate countermeasures in reducing the number of severe crashes at a site, the current state-of-the-practice often leads to biased estimates. While there have been a few advanced statistical models developed to mitigate the problem in practice, these models are computationally difficult to estimate because severe crashes are dispersed spatially and temporally, and cannot be integrated into the Highway Safety Manual framework, which develops a series of safety performance functions and crash modification factors to predict the number of crashes. Crash severity outcomes are generally integrated into the Highway Safety Manual using deterministic distributions rather than statistical models. Accounting for the variability in crash severity as a function geometric design, traffic flow, and other roadway and roadside features is afforded by estimating statistical models. Therefore, there is a need to develop a new analysis paradigm to resolve the limitations in the current Highway Safety Manual methods. We propose an approach which decomposes the severe crash frequency into a function of the change in the total number of crashes and the probability of a crash becoming a severe crash before and after a countermeasure is implemented. We tested this approach by evaluating the effectiveness of shoulder rumble strips on reducing the number of severe crashes. A total of 310 segments that have had shoulder rumble strips installed during 2002-2009 are included in the analysis. It was found that shoulder rumble strips reduce the total number of crashes, but have no statistically significant effect on reducing the probability of a severe crash outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crash risk factors for interstate large trucks in North Carolina.
Teoh, Eric R; Carter, Daniel L; Smith, Sarah; McCartt, Anne T
2017-09-01
Provide an updated examination of risk factors for large truck involvements in crashes resulting in injury or death. A matched case-control study was conducted in North Carolina of large trucks operated by interstate carriers. Cases were defined as trucks involved in crashes resulting in fatal or non-fatal injury, and one control truck was matched on the basis of location, weekday, time of day, and truck type. The matched-pair odds ratio provided an estimate of the effect of various driver, vehicle, or carrier factors. Out-of-service (OOS) brake violations tripled the risk of crashing; any OOS vehicle defect increased crash risk by 362%. Higher historical crash rates (fatal, injury, or all crashes) of the carrier were associated with increased risk of crashing. Operating on a short-haul exemption increased crash risk by 383%. Antilock braking systems reduced crash risk by 65%. All of these results were statistically significant at the 95% confidence level. Other safety technologies also showed estimated benefits, although not statistically significant. With the exception of the finding that short-haul exemption is associated with increased crash risk, results largely bolster what is currently known about large truck crash risk and reinforce current enforcement practices. Results also suggest vehicle safety technologies can be important in lowering crash risk. This means that as safety technology continues to penetrate the fleet, whether from voluntary usage or government mandates, reductions in large truck crashes may be achieved. Practical application: Results imply that increased enforcement and use of crash avoidance technologies can improve the large truck crash problem. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
2016-05-20
Previous analyses have indicated that mass reduction is associated with an increase in crash frequency (crashes per VMT), but a decrease in fatality or casualty risk once a crash has occurred, across all types of light-duty vehicles. These results are counter-intuitive: one would expect that lighter, and perhaps smaller, vehicles have better handling and shorter braking distances, and thus should be able to avoid crashes that heavier vehicles cannot. And one would expect that heavier vehicles would have lower risk once a crash has occurred than lighter vehicles. However, these trends occur under several alternative regression model specifications. This reportmore » tests whether these results continue to hold after accounting for crash severity, by excluding crashes that result in relatively minor damage to the vehicle(s) involved in the crash. Excluding non-severe crashes from the initial LBNL Phase 2 and simultaneous two-stage regression models for the most part has little effect on the unexpected relationships observed in the baseline regression models. This finding suggests that other subtle differences in vehicles and/or their drivers, or perhaps biases in the data reported in state crash databases, are causing the unexpected results from the regression models.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... the locations of automatic fire warning sensors and the intended air flow direction at these locations...) requires that a qualified person examine the automatic fire sensor and warning device systems on a weekly....1103-8(b) requires that a record of the weekly automatic fire sensor functional tests be maintained by...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device systems; minimum requirements; general. 75.1103-3 Section 75.1103-3 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum...
DOT National Transportation Integrated Search
1997-01-01
Indiana Crash Facts 1997...is the fifth annual publication : of Indiana Crash Facts. This year significant changes have been made : to the book, including the consolidation of the Alcohol Crash Facts and : the Crash Facts book into one publication. A...
DOT National Transportation Integrated Search
1996-01-01
According to Indiana State Police Crash Reports, : 221,465 traffic crashes were reported in Indiana : during 1996 (Table 1). Of these, 870 were fatal : crashes in which 982 people died. There were an : additional 52,058 personal injury crashes and a ...
The trend of road traffic crashes at urban signalised intersection
NASA Astrophysics Data System (ADS)
Farhana Nasarrudin, Nurul; Razelan, Intan Suhana Mohd
2018-04-01
Road traffic crash is one of the main contributing factors for deaths in the world. Intersection is listed as the second road type which road crashes occurred frequently. Hence, the traffic light was installed to minimise the road crashes at intersection. However, the crashes are still occurring and arising. The objective of this study was to exhibit the trend of road crashes at the signalised intersections. The data of road crashes for the past 6 years were analysed using descriptive analysis. The results showed that the road traffic crashes at three- and four-legged signalised intersection recorded the increasing trend. In conclusion, this finding shows that the road traffic crashes for these types of signalised intersection in Malaysia is rising. It is also one the contributors to the increasing number of crashes in Malaysia. This finding will encourage the local authority to conduct awareness programs on the safety at the signalised intersection.
Effects of blind spot monitoring systems on police-reported lane-change crashes.
Cicchino, Jessica B
2018-06-21
To examine the effectiveness of blind spot monitoring systems in preventing police-reported lane-change crashes. Poisson regression was used to compare crash involvement rates per insured vehicle year in police-reported lane-change crashes in 26 U.S. states during 2009-2015 between vehicles with blind spot monitoring and the same vehicle models without the optional system, controlling for other factors that can affect crash risk. Crash involvement rates in lane-change crashes were 14% lower (95% confidence limits -24% to -2%) among vehicles with blind spot monitoring than those without. Blind spot monitoring systems are effective in preventing police-reported lane-change crashes when considering crashes of all severities. If every U.S. vehicle in 2015 were equipped with blind spot monitoring that performed like the study systems, it is estimated that about 50,000 crashes could have been prevented.
BaHaMAS A Bash Handler to Monitor and Administrate Simulations
NASA Astrophysics Data System (ADS)
Sciarra, Alessandro
2018-03-01
Numerical QCD is often extremely resource demanding and it is not rare to run hundreds of simulations at the same time. Each of these can last for days or even months and it typically requires a job-script file as well as an input file with the physical parameters for the application to be run. Moreover, some monitoring operations (i.e. copying, moving, deleting or modifying files, resume crashed jobs, etc.) are often required to guarantee that the final statistics is correctly accumulated. Proceeding manually in handling simulations is probably the most error-prone way and it is deadly uncomfortable and inefficient! BaHaMAS was developed and successfully used in the last years as a tool to automatically monitor and administrate simulations.
Hybrid Aluminum and Natural Fiber Composite Structure for Crash Safety Improvement
NASA Astrophysics Data System (ADS)
Helaili, S.; Chafra, M.; Chevalier, Y.
There is a growing interest on pedestrian's protection in automotive safety standards. Pedestrians head impact is one of the most important tests. In this paper, a hybrid composite structure made from natural fiber and aluminum, which improve the head protection when impact is taken place, is presented. The structure is made from a honeycomb composite made from unidirectional and woven composites and a thin aluminum layer. A head impact model is developed. The number of hexagonal layers is fixed and the thickness of the aluminum layer of the honeycomb structure is varied. The specific absorption energy is then calculated.
Assessment of Carbon Fiber Electrical Effects
NASA Technical Reports Server (NTRS)
1980-01-01
The risks associated with the use of carbon fiber composites in civil aircraft are discussed along with the need for protection of civil aircraft equipment from fire-released carbon fibers. The size and number of carbon fibers released in civil aircraft crash fires, the downwind dissemination of the fibers, their penetration into buildings and equipment, and the vulnerability of electrical/electronic equipment to damage by the fibers are assessed.
Identifying work-related motor vehicle crashes in multiple databases.
Thomas, Andrea M; Thygerson, Steven M; Merrill, Ray M; Cook, Lawrence J
2012-01-01
To compare and estimate the magnitude of work-related motor vehicle crashes in Utah using 2 probabilistically linked statewide databases. Data from 2006 and 2007 motor vehicle crash and hospital databases were joined through probabilistic linkage. Summary statistics and capture-recapture were used to describe occupants injured in work-related motor vehicle crashes and estimate the size of this population. There were 1597 occupants in the motor vehicle crash database and 1673 patients in the hospital database identified as being in a work-related motor vehicle crash. We identified 1443 occupants with at least one record from either the motor vehicle crash or hospital database indicating work-relatedness that linked to any record in the opposing database. We found that 38.7 percent of occupants injured in work-related motor vehicle crashes identified in the motor vehicle crash database did not have a primary payer code of workers' compensation in the hospital database and 40.0 percent of patients injured in work-related motor vehicle crashes identified in the hospital database did not meet our definition of a work-related motor vehicle crash in the motor vehicle crash database. Depending on how occupants injured in work-related motor crashes are identified, we estimate the population to be between 1852 and 8492 in Utah for the years 2006 and 2007. Research on single databases may lead to biased interpretations of work-related motor vehicle crashes. Combining 2 population based databases may still result in an underestimate of the magnitude of work-related motor vehicle crashes. Improved coding of work-related incidents is needed in current databases.
Ito, Daisuke; Hayakawa, Kosei; Kondo, Yuma; Mizuno, Koji; Thomson, Robert; Piccinini, Giulio Bianchi; Hosokawa, Naruyuki
2018-08-01
Analyzing a crash using driving recorder data makes it possible to objectively examine factors contributing to the occurrence of the crash. In this study, car-to-cyclist crashes and near crashes recorded on cars equipped with advanced driving recorders were compared with each other in order to examine the factors that differentiate near crashes from crashes, as well as identify the causes of the crashes. Focusing on cases where the car and cyclist approached each other perpendicularly, the differences in the car's and cyclist's parameters such as velocity, distance and avoidance behavior were analyzed. The results show that car-to-cyclist crashes would not be avoidable when the car approaching the cyclist enters an area where the average deceleration required to stop the car is more than 0.45 G (4.4 m/s 2 ). In order for this situation to occur, there are two types of cyclist crash scenarios. In the first scenario, the delay in the drivers' reaction in activating the brakes is the main factor responsible for the crash. In this scenario, time-to-collision when the cyclist first appears in the video is more than 2.0 s. In the second scenario, the sudden appearance of a cyclist from behind an obstacle on the street is the factor responsible for the crash. In this case, the time-to-collision is less than 1.2 s, and the crash cannot be avoided even if the driver exhibited avoidance maneuvers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Risk and type of crash among young drivers by rurality of residence: findings from the DRIVE Study.
Chen, H Y; Ivers, R Q; Martiniuk, A L C; Boufous, S; Senserrick, T; Woodward, M; Stevenson, M; Williamson, A; Norton, R
2009-07-01
Most previous literature on urban/rural differences in road crashes has a primary focus on severe injuries or deaths, which may be largely explained by variations of medical resources. Little has been reported on police-reported crashes by geographical location, or crash type and severity, especially among young drivers. DRIVE is a prospective cohort study of 20,822 drivers aged 17-24 in NSW, Australia. Information on risk factors was collected via online questionnaire and subsequently linked to police-reported crashes. Poisson regression was used to analyse risk of various crash types by three levels of rurality of residence: urban, regional (country towns and surrounds) and rural. Compared to urban drivers, risk of crash decreased with increasing rurality (regional adjusted RR: 0.7, 95% CI 0.6-0.9; rural adjusted RR: 0.5, 95% CI 0.3-0.7). Among those who crashed, risk of injurious crash did not differ by geographic location; however, regional and rural drivers had significantly higher risk of a single versus multiple vehicle crash (regional adjusted RR 1.8, 95% CI 1.3-2.5; rural adjusted RR: 2.0, 95% CI 1.1-3.6), which was explained by speeding involvement and road alignment at the time or site of crash. Although young urban drivers have a higher crash risk overall, rural and regional residents have increased risk of a single vehicle crash. Interventions to reduce single vehicle crashes should aim to address key issues affecting such crashes, including speeding and specific aspects of road geometry.
DOT National Transportation Integrated Search
2014-04-01
Through the analysis of national crash databases from the National Highway Traffic Safety Administration, pre-crash scenarios are identified, prioritized, and described for the development of objective tests for pedestrian crash avoidance/mitigation ...
The Stock Market Crashes of 1929 and 1987: Linking History and Personal Finance Education
ERIC Educational Resources Information Center
Lopus, Jane S.
2005-01-01
This article discusses two twentieth-century stock market crashes: the crash of 1929 and the crash of 1987. When this material is presented to students, they see important parallels between the two historical events. But despite remarkable similarities in the severity and many other aspects of the two crashes, the crash of 1929 was followed by the…
Changes in fatal and nonfatal crash rates on a toll highway.
Doege, T C; Levy, P S
1976-02-01
Rates of crashes, crashes with injuries, and crashes with fatalities were lower during the 6 months of March 1-August 31, 1974, following a 5-15 mph (8-24 kph) decrease in speed limits on the Illinois Tollway, than the corresponding rates for any of the 6 preceding years, 1968-1973. During the same months of 1968-1974, rates of crashes and of crashes with injuries showed peaks without consistent trends, but rates and percentages of fatal crashes decreased. The data agree with the hypothesis that reducing speed limits on toll roads may lead to substantial reductions in rate of crashes and injuries.
The effect of crash experience on changes in risk taking among urban and rural young people.
Lin, Mau-Roung; Huang, Wenzheng; Hwang, Hei-Fen; Wu, Hong-Dar Isaac; Yen, Lee-Lan
2004-03-01
A 20-month prospective study was conducted to investigate the effect of motorcycle crash experience on changes in risk taking among 2514 urban and 2304 rural students in Taiwan. Risk taking was assessed using a 14-item self-administered questionnaire at the beginning and end of the study. A risk-taking score for each student at the initial and the last follow-up assessments was generated from adding up points across all 14 items. For exposure variables, the study documented past motorcycle crash history at the initial assessment and collected detailed information about any motorcycle crash involvement that occurred during the study period. A general linear mixed model was applied to assess the effects of prior and recent crash involvements on the path of risk-taking behavior. The results show that at the initial assessment, students with crash experience had higher risk-taking levels than those without crash experience. However, crash experience, irregardless of whether it was measured in terms of crash history prior to the study, crash frequency, time elapsed since the last crash, or crash severity, did not significantly change the risk-taking path among students, even though its effect differed between urban and rural areas.
Traffic environment and demographic factors affecting impaired driving and crashes
Romano, Eduardo O.; Peck, Raymond C.; Voas, Robert B.
2012-01-01
Introduction Data availability has forced researchers to examine separately the role of alcohol among drivers who crashed and drivers who did not crash. Such a separation fails to account fully for the transition from impaired driving to an alcohol-related crash. Method In this study, we analyzed recent data to investigate how traffic-related environments, conditions, and drivers’ demographics shape the likelihood of a driver being either involved in a crash (alcohol impaired or not) or not involved in a crash (alcohol impaired or not). Our data, from a recent case–control study, included a comprehensive sampling of the drivers in nonfatal crashes and a matched set of comparison drivers in two U.S. locations. Multinomial logistic regression was applied to investigate the likelihood that a driver would crash or would not crash, either with a blood alcohol concentration (BAC)=.00 or with a BAC≥.05. Conclusions To our knowledge, this study is the first to examine how different driver characteristics and environmental factors simultaneously contribute to alcohol use by crash-involved and non-crash-involved drivers. This effort calls attention to the need for research on the simultaneous roles played by all the factors that may contribute to motor vehicle crashes. PMID:22385743
Reporting on cyclist crashes in Australian newspapers.
Boufous, Soufiane; Aboss, Ahmad; Montgomery, Victoria
2016-10-01
To assess information on cyclist crashes reported in Australian newspapers. The Factiva news archive was searched for articles on cyclist crashes published in major Australian newspapers between 2010 and 2013. Information on the circumstances of cyclist crashes were extracted and coded. A total of 160 cyclist crashes were covered by 198 newspaper articles, with 44% of crashes resulting in cyclist fatalities. Crashes reported by more than one newspaper were more likely to involve public figures or protracted court cases. Individual characteristics of cyclists as well as the location of the crash were reported for more than 80% of crashes. The road user at fault was reported for more than half of crashes. In contrast, information on helmet use, alcohol and cycling lanes was mentioned for only about 10% of crashes. Fewer than one in five articles mentioned prevention strategies including education campaigns, legislative and infrastructure changes. Australian newspapers tend to focus on the most dramatic and more 'newsworthy' aspects of cyclist crashes. Cycling advocates need to work with journalists to improve the quality of this coverage. Better communication between cycling advocates and journalists is likely to have a positive impact on the safety and the uptake of cycling in the community. © 2016 Public Health Association of Australia.
2011-01-01
Background All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. Methods We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. Results The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Conclusions Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. Trial Registration Numbers CRASH-1: ISRCTN74459797 CRASH-2: ISRCTN86750102 PMID:21291517
Head-on crashes on two-way interurban roads: a public health concern in road safety.
Olabarria, Marta; Santamariña-Rubio, Elena; Marí-Dell'Olmo, Marc; Gotsens, Mercè; Novoa, Ana M; Borrell, Carme; Pérez, Katherine
2015-09-01
To describe the magnitude and characteristics of crashes and drivers involved in head-on crashes on two-way interurban roads in Spain between 2007 and 2012, and to identify the factors associated with the likelihood of head-on crashes on these roads compared with other types of crash. A cross-sectional study was conducted using the National Crash Register. The dependent variables were head-on crashes with injury (yes/no) and drivers involved in head-on crashes (yes/no). Factors associated with head-on crashes and with being a driver involved in a head-on crash versus other types of crash were studied using a multivariate robust Poisson regression model to estimate proportion ratios (PR) and confidence intervals (95% CI). There were 9,192 head-on crashes on two-way Spanish interurban roads. A total of 15,412 men and 3,862 women drivers were involved. Compared with other types of crash, head-on collisions were more likely on roads 7 m or more wide, on road sections with curves, narrowings or drop changes, on wet or snowy surfaces, and in twilight conditions. Transgressions committed by drivers involved in head-on crashes were driving in the opposite direction and incorrectly overtaking another vehicle. Factors associated with a lower probability of head-on crashes were the existence of medians (PR=0.57; 95%CI: 0.48-0.68) and a paved shoulder of less than 1.5 meters (PR=0.81; 95%CI: 0.77-0.86) or from 1.5 to 2.45 meters (PR=0.90; 95%CI: 0.84-0.96). This study allowed the characterization of crashes and drivers involved in head-on crashes on two-way interurban roads. The lower probability observed on roads with median strips point to these measures as an effective way to reduce these collisions. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan
2014-01-01
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reductions in injury crashes associated with red light camera enforcement in oxnard, california.
Retting, Richard A; Kyrychenko, Sergey Y
2002-11-01
This study estimated the impact of red light camera enforcement on motor vehicle crashes in one of the first US communities to employ such cameras-Oxnard, California. Crash data were analyzed for Oxnard and for 3 comparison cities. Changes in crash frequencies were compared for Oxnard and control cities and for signalized and nonsignalized intersections by means of a generalized linear regression model. Overall, crashes at signalized intersections throughout Oxnard were reduced by 7% and injury crashes were reduced by 29%. Right-angle crashes, those most associated with red light violations, were reduced by 32%; right-angle crashes involving injuries were reduced by 68%. Because red light cameras can be a permanent component of the transportation infrastructure, crash reductions attributed to camera enforcement should be sustainable.
Using automatic generation of Labanotation to protect folk dance
NASA Astrophysics Data System (ADS)
Wang, Jiaji; Miao, Zhenjiang; Guo, Hao; Zhou, Ziming; Wu, Hao
2017-01-01
Labanotation uses symbols to describe human motion and is an effective means of protecting folk dance. We use motion capture data to automatically generate Labanotation. First, we convert the motion capture data of the biovision hierarchy file into three-dimensional coordinate data. Second, we divide human motion into element movements. Finally, we analyze each movement and find the corresponding notation. Our work has been supervised by an expert in Labanotation to ensure the correctness of the results. At present, the work deals with a subset of symbols in Labanotation that correspond to several basic movements. Labanotation contains many symbols and several new symbols may be introduced for improvement in the future. We will refine our work to handle more symbols. The automatic generation of Labanotation can greatly improve the work efficiency of documenting movements. Thus, our work will significantly contribute to the protection of folk dance and other action arts.
Injury Risk Functions in Frontal Impacts Using Data from Crash Pulse Recorders
Stigson, Helena; Kullgren, Anders; Rosén, Erik
2012-01-01
Knowledge of how crash severity influences injury risk in car crashes is essential in order to create a safe road transport system. Analyses of real-world crashes increase the ability to obtain such knowledge. The aim of this study was to present injury risk functions based on real-world frontal crashes where crash severity was measured with on-board crash pulse recorders. Results from 489 frontal car crashes (26 models of four car makes) with recorded acceleration-time history were analysed. Injury risk functions for restrained front seat occupants were generated for maximum AIS value of two or greater (MAIS2+) using multiple logistic regression. Analytical as well as empirical injury risk was plotted for several crash severity parameters; change of velocity, mean acceleration and peak acceleration. In addition to crash severity, the influence of occupant age and gender was investigated. A strong dependence between injury risk and crash severity was found. The risk curves reflect that small changes in crash severity may have a considerable influence on the risk of injury. Mean acceleration, followed by change of velocity, was found to be the single variable that best explained the risk of being injured (MAIS2+) in a crash. Furthermore, all three crash severity parameters were found to predict injury better than age and gender. However, age was an important factor. The very best model describing MAIS2+ injury risk included delta V supplemented by an interaction term of peak acceleration and age. PMID:23169136
Selecting exposure measures in crash rate prediction for two-lane highway segments.
Qin, Xiao; Ivan, John N; Ravishanker, Nalini
2004-03-01
A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.
Intersection crash prediction modeling with macro-level data from various geographic units.
Lee, Jaeyoung; Abdel-Aty, Mohamed; Cai, Qing
2017-05-01
There have been great efforts to develop traffic crash prediction models for various types of facilities. The crash models have played a key role to identify crash hotspots and evaluate safety countermeasures. In recent, many macro-level crash prediction models have been developed to incorporate highway safety considerations in the long-term transportation planning process. Although the numerous macro-level studies have found that a variety of demographic and socioeconomic zonal characteristics have substantial effects on traffic safety, few studies have attempted to coalesce micro-level with macro-level data from existing geographic units for estimating crash models. In this study, the authors have developed a series of intersection crash models for total, severe, pedestrian, and bicycle crashes with macro-level data for seven spatial units. The study revealed that the total, severe, and bicycle crash models with ZIP-code tabulation area data performs the best, and the pedestrian crash models with census tract-based data outperforms the competing models. Furthermore, it was uncovered that intersection crash models can be drastically improved by only including random-effects for macro-level entities. Besides, the intersection crash models are even further enhanced by including other macro-level variables. Lastly, the pedestrian and bicycle crash modeling results imply that several macro-level variables (e.g., population density, proportions of specific age group, commuters who walk, or commuters using bicycle, etc.) can be a good surrogate exposure for those crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, He; Du, Wei; Li, Ning; Chen, Gong; Zheng, Xiaoying
2013-06-01
Traffic crashes have become the fifth leading cause of burden of diseases and injuries in China. More importantly, it may further aggravate the degree of health inequality among Chinese population, which is still under-investigated. Based on a nationally representative data, we calculated the concentration index (CI) to measure the socioeconomic inequality in traffic-related disability (TRD), and decomposed CI into potential sources of the inequality. Results show that more than 1.5 million Chinese adults were disabled by traffic crashes and the adults with financial disadvantage bear disproportionately heavier burden of TRD. Besides, strategies of reducing income inequality and protecting the safety of poor road users, are of great importance. Residence appears to counteract the socioeconomic inequality in TRD, however, it does not necessarily come to an optimistic conclusion. In addition to the worrying income gap between rural and urban areas, other possible mechanisms, e.g. the low level of post-crash medical resources in rural area, need further studies. China is one of the developing countries undergoing fast motorization and our findings could provide other countries in similar context with some insights about how to maintain socioeconomic equality in road safety. Copyright © 2013 Elsevier Ltd. All rights reserved.
Isaksson-Hellman, Irene; Lindman, Magdalena
2018-02-28
Lane changes, which frequently occur when vehicles travel on major roads, may contribute to critical situations that significantly affect the traffic flow and traffic safety. Thus, knowledge of lane change situations is important for infrastructure improvements as well as for driver support systems and automated driving development projects. The objectives of this study were to evaluate the crash avoidance performance of a lane change driver support system, the Blind Spot Information System (BLIS) in Volvo car models, and to describe the characteristics of lane change crashes by analyzing detailed information from insurance claim reports. An overall evaluation of the safety effect of BLIS was performed by analyzing crash rate differences in lane change situations for cars with and without the optionally mounted BLIS system based on a population of 380,000 insured vehicle years. Further, crashes in which the repair cost of the host vehicle exceeded approximately US$1,250 were selected and compared. Finally, the study examined different precrash factors and crash configurations, using in-depth insurance claims data from representative lane change crash cases including all severity levels in a population of more than 200,000 insured vehicle years. The technology did not significantly reduce the overall number of crashes when all types of lane change crashes and severity levels were considered, though a significant crash-reducing effect of 31% for BLIS cars was found when more severe crashes with a repair cost exceeding US$1,250 were analysed. Cars with the BLIS technology also have a 30% lower claim cost on average for reported lane change crashes, indicating reduced crash severity. When stratifying the data into specific situations, by collecting precrash information in a case-by-case study, the influence of BLIS was indicated to differ for the evaluated situations, although no significant results were found. For example, during general lane change maneuvers (i.e., not while exiting or entering highways or during weaving/merging situations) the crash rate was reduced by 14%, whereas in weaving/merging situations the crash rate increased. The insurance data analyzed provided useful information about real-world lane change crash characteristics by covering collisions in all crash severities and thus revealed information beyond what is available in, for example, data sets of police-reported crashes. This will guide further development of driver support systems. For crashes with repair cost exceeding US$1,250, a significant crash reduction was found, although the technology did not significantly reduce the total number of lane change crashes. An average lower insurance claim cost for cars equipped with the BLIS technology also indicated that the technology contributes to reduced crash severity even if crashes were not totally avoided. Stratifying the data into different lane change crash situations gave indications of the condition-specific performance of the system, even if the results were not statistically significant at the 95% level.
Roadside tree/pole crash barrier field test
NASA Technical Reports Server (NTRS)
Wilson, A. H.
1979-01-01
A series of tests was carried out to evaluate the performance of a crash barrier designed to protect the occupants of an automobile from serious injury. The JPL barrier design is a configuration of empty aluminum beverage cans contained in a tear-resistant bag which, in turn, is encased in a collapsible container made of plywood and steel. Tests were conducted with a driven vehicle impacting the barrier. The basic requirements of NCHRP Report 153 were followed except that speeds of 30 mph rather than 60 mph were used. Accelerometer readings on the driver's helmet showed that the driver was never subjected to dangerous decelerations, and never experienced more than temporary discomfort. Also, all of the requirements of the cited report were met. An extrapolation of data indicated that the JPL barrier installed in front of a tree or telephone pole along a roadside would also have met the requirements at a speed of 40 mph.
Hu, Jingwen; Lee, Jong B.; Yang, King H.; King, Albert I.
2005-01-01
The objective of this study was to investigate the main injury patterns and sources of non-ejected occupants (i.e. no full/partial ejection) during trip-over crashes, using the NASS-CDS database. Specific injury types and sources of the head, chest, and neck were identified. Results from this study suggest that cerebrum injuries, especially subarachnoid hemorrhage, rib fractures, lung injuries, and cervical spine fractures need to be emphasized if cadaveric tests or numerical simulations are designed to study rollover injury mechanisms. The roof has been identified as the major source for head and neck injuries. However, changing the roof design alone is not likely to improve rollover safety. Instead, the belt restraint systems, passive airbags, roof structure, and new innovations need to be considered in a systematic manner to provide enhanced rollover occupant protection. PMID:16179144
10 CFR 40.7 - Employee protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... protected activities. An employee's engagement in protected activities does not automatically render him or... 10 Energy 1 2011-01-01 2011-01-01 false Employee protection. 40.7 Section 40.7 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Provisions § 40.7 Employee protection. (a...
Lee, Chris; Li, Xuancheng
2014-10-01
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car-car crashes, and sideswipe crashes have opposite effects between car-car and truck-truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vehicle Related Factors that Influence Injury Outcome in Head-On Collisions
Blum, Jeremy J.; Scullion, Paul; Morgan, Richard M.; Digges, Kennerly; Kan, Cing-Dao; Park, Shinhee; Bae, Hanil
2008-01-01
This study specifically investigated a range of vehicle-related factors that are associated with a lower risk of serious or fatal injury to a belted driver in a head-on collision. This analysis investigated a range of structural characteristics, quantities that describes the physical features of a passenger vehicle, e.g., stiffness or frontal geometry. The study used a data-mining approach (classification tree algorithm) to find the most significant relationships between injury outcome and the structural variables. The algorithm was applied to 120,000 real-world, head-on collisions, from the National Highway Traffic Safety Administration’s (NHTSA’s) State Crash data files, that were linked to structural attributes derived from frontal crash tests performed as part of the USA New Car Assessment Program. As with previous literature, the analysis found that the heavier vehicles were correlated with lower injury risk to their drivers. This analysis also found a new and significant correlation between the vehicle’s stiffness and injury risk. When an airbag deployed, the vehicle’s stiffness has the most statistically significant correlation with injury risk. These results suggest that in severe collisions, lower intrusion in the occupant cabin associated with higher stiffness is at least as important to occupant protection as vehicle weight for self-protection of the occupant. Consequently, the safety community might better improve self-protection by a renewed focus on increasing vehicle stiffness in order to improve crashworthiness in head-on collisions. PMID:19026230
Sebego, Miriam; Naumann, Rebecca B.; Rudd, Rose A.; Voetsch, Karen; Dellinger, Ann M.; Ndlovu, Christopher
2015-01-01
In Botswana, increased development and motorization have brought increased road traffic-related death rates. Between 1981 and 2001, the road traffic-related death rate in Botswana more than tripled. The country has taken several steps over the last several years to address the growing burden of road traffic crashes and particularly to address the burden of alcohol-related crashes. This study examines the impact of the implementation of alcohol and road safety-related policies on crash rates, including overall crash rates, fatal crash rates, and single-vehicle nighttime fatal (SVNF) crash rates, in Botswana from 2004 to 2011. The overall crash rate declined significantly in June 2009 and June 2010, such that the overall crash rate from June 2010 to December 2011 was 22% lower than the overall crash rate from January 2004 to May 2009. Additionally, there were significant declines in average fatal crash and SVNF crash rates in early 2010. Botswana’s recent crash rate reductions occurred during a time when aggressive policies and other activities (e.g., education, enforcement) were implemented to reduce alcohol consumption and improve road safety. While it is unclear which of the policies or activities contributed to these declines and to what extent, these reductions are likely the result of several, combined efforts. PMID:24686164
Sebego, Miriam; Naumann, Rebecca B; Rudd, Rose A; Voetsch, Karen; Dellinger, Ann M; Ndlovu, Christopher
2014-09-01
In Botswana, increased development and motorization have brought increased road traffic-related death rates. Between 1981 and 2001, the road traffic-related death rate in Botswana more than tripled. The country has taken several steps over the last several years to address the growing burden of road traffic crashes and particularly to address the burden of alcohol-related crashes. This study examines the impact of the implementation of alcohol and road safety-related policies on crash rates, including overall crash rates, fatal crash rates, and single-vehicle nighttime fatal (SVNF) crash rates, in Botswana from 2004 to 2011. The overall crash rate declined significantly in June 2009 and June 2010, such that the overall crash rate from June 2010 to December 2011 was 22% lower than the overall crash rate from January 2004 to May 2009. Additionally, there were significant declines in average fatal crash and SVNF crash rates in early 2010. Botswana's recent crash rate reductions occurred during a time when aggressive policies and other activities (e.g., education, enforcement) were implemented to reduce alcohol consumption and improve road safety. While it is unclear which of the policies or activities contributed to these declines and to what extent, these reductions are likely the result of several, combined efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Wen; Gill, Gurdiljot Singh; Sakrani, Taha; Dasu, Mohan; Zhou, Jiao
2017-11-01
Motorcycle crashes constitute a very high proportion of the overall motor vehicle fatalities in the United States, and many studies have examined the influential factors under various conditions. However, research on the impact of weather conditions on the motorcycle crash severity is not well documented. In this study, we examined the impact of weather conditions on motorcycle crash injuries at four different severity levels using San Francisco motorcycle crash injury data. Five models were developed using Full Bayesian formulation accounting for different correlations commonly seen in crash data and then compared for fitness and performance. Results indicate that the models with serial and severity variations of parameters had superior fit, and the capability of accurate crash prediction. The inferences from the parameter estimates from the five models were: an increase in the air temperature reduced the possibility of a fatal crash but had a reverse impact on crashes of other severity levels; humidity in air was not observed to have a predictable or strong impact on crashes; the occurrence of rainfall decreased the possibility of crashes for all severity levels. Transportation agencies might benefit from the research results to improve road safety by providing motorcyclists with information regarding the risk of certain crash severity levels for special weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of roadway geometric features on crash severity on rural two-lane highways.
Haghighi, Nima; Liu, Xiaoyue Cathy; Zhang, Guohui; Porter, Richard J
2018-02-01
This study examines the impact of a wide range of roadway geometric features on the severity outcomes of crashes occurred on rural two-lane highways. We argue that crash data have a hierarchical structure which needs to be addressed in modeling procedure. Moreover, most of previous studies ignored the impact of geometric features on crash types when developing crash severity models. We hypothesis that geometric features are more likely to determine crash type, and crash type together with other occupant, environmental and vehicle characteristics determine crash severity outcome. This paper presents an application of multilevel models to successfully capture both hierarchical structure of crash data and indirect impact of geometric features on crash severity. Using data collected in Illinois from 2007 to 2009, multilevel ordered logit model is developed to quantify the impact of geometric features and environmental conditions on crash severity outcome. Analysis results revealed that there is a significant variation in severity outcomes of crashes occurred across segments which verifies the presence of hierarchical structure. Lower risk of severe crashes is found to be associated with the presence of 10-ft lane and/or narrow shoulders, lower roadside hazard rate, higher driveway density, longer barrier length, and shorter barrier offset. The developed multilevel model offers greater consistency with data generating mechanism and can be utilized to evaluate safety effects of geometric design improvement projects. Published by Elsevier Ltd.
Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining
De Angelis, Marco; Marín Puchades, Víctor; Fraboni, Federico; Pietrantoni, Luca
2017-01-01
The factors associated with severity of the bicycle crashes may differ across different bicycle crash patterns. Therefore, it is important to identify distinct bicycle crash patterns with homogeneous attributes. The current study aimed at identifying subgroups of bicycle crashes in Italy and analyzing separately the different bicycle crash types. The present study focused on bicycle crashes that occurred in Italy during the period between 2011 and 2013. We analyzed categorical indicators corresponding to the characteristics of infrastructure (road type, road signage, and location type), road user (i.e., opponent vehicle and cyclist’s maneuver, type of collision, age and gender of the cyclist), vehicle (type of opponent vehicle), and the environmental and time period variables (time of the day, day of the week, season, pavement condition, and weather). To identify homogenous subgroups of bicycle crashes, we used latent class analysis. Using latent class analysis, the bicycle crash data set was segmented into 19 classes, which represents 19 different bicycle crash types. Logistic regression analysis was used to identify the association between class membership and severity of the bicycle crashes. Finally, association rules were conducted for each of the latent classes to uncover the factors associated with an increased likelihood of severity. Association rules highlighted different crash characteristics associated with an increased likelihood of severity for each of the 19 bicycle crash types. PMID:28158296
Huisingh, Carrie; Owsley, Cynthia; Levitan, Emily B; Irvin, Marguerite R; MacLennan, Paul; McGwin, Gerald
2018-05-17
The purpose of this study was to examine the association between secondary task involvement and risk of crash and near-crash involvement among older drivers using naturalistic driving data. Data from drivers aged ≥70 years in the Strategic Highway Research Program (SHRP2) Naturalistic Driving Study database was utilized. The personal vehicle of study participants was equipped with four video cameras enabling recording of the driver and the road environment. Secondary task involvement during a crash or near-crash event was compared to periods of non-crash involvement in a case-crossover study design. Conditional logistic regression was used to generate odds ratios (OR) and 95% confidence intervals (CI). Overall, engaging in any secondary task was not associated with crash (OR=0.94, 95% CI 0.68-1.29) or near-crash (OR=1.08, 95% CI 0.79-1.50) risk. The risk of a major crash event with cell phone use was 3.79 times higher than the risk with no cell phone use (95% CI 1.00-14.37). Other glances into the interior of the vehicle were associated with an increased risk of near-crash involvement (OR=2.55, 95% CI 1.24-5.26). Other distractions external to the vehicle were associated with a decreased risk of crash involvement (OR=0.53, 95% CI 0.30-0.94). Interacting with a passenger and talking/singing were not associated with crash or near-crash risk. Older drivers should avoid any cell phone use and minimize non-driving related eye glances towards the interior of the vehicle while driving. Certain types of events external to the vehicle are associated with a reduced crash risk among older drivers.
Zhang, Guangnan; Li, Yanyan; King, Mark J; Zhong, Qiaoting
2018-03-21
Motor vehicle overloading is correlated with the possibility of road crash occurrence and severity. Although overloading of motor vehicles is pervasive in developing nations, few empirical analyses have been performed on factors that might influence the occurrence of overloading. This study aims to address this shortcoming by seeking evidence from several years of crash data from Guangdong province, China. Data on overloading and other factors are extracted for crash-involved vehicles from traffic crash records for 2006-2010 provided by the Traffic Management Bureau in Guangdong province. Logistic regression is applied to identify risk factors for overloading in crash-involved vehicles and within these crashes to identify factors contributing to greater crash severity. Driver, vehicle, road and environmental characteristics and violation types are considered in the regression models. In addition to the basic logistic models, association analysis is employed to identify the potential interactions among different risk factors during fitting the logistic models of overloading and severity. Crash-involved vehicles driven by males from rural households and in an unsafe condition are more likely to be overloaded and to be involved in higher severity overloaded vehicle crashes. If overloaded vehicles speed, the risk of severe traffic crash casualties increases. Young drivers (aged under 25 years) in mountainous areas are more likely to be involved in higher severity overloaded vehicle crashes. This study identifies several factors associated with overloading in crash-involved vehicles and with higher severity overloading crashes and provides an important reference for future research on those specific risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Weather impacts on single-vehicle truck crash injury severity.
Naik, Bhaven; Tung, Li-Wei; Zhao, Shanshan; Khattak, Aemal J
2016-09-01
The focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes. Random parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity. Results showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity. The research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Investigations of Crashes Involving Pregnant Occupants
Klinich, Kathleen DeSantis; Schneider, Lawrence W.; Moore, Jamie L.; Pearlman, Mark D.
2000-01-01
Case reports of 16 crashes involving pregnant occupants are presented that illustrate the main conclusions of a crash-investigation program that includes 42 crashes investigated to date. Some unusual cases that are exceptions to the overall trends are also described. The study indicates a strong association between adverse fetal outcome and both crash severity and maternal injury. Proper restraint use, with and without airbag deployment, generally leads to acceptable fetal outcomes in lower severity crashes, while it does not affect fetal outcome in high-severity crashes. Compared to properly restrained pregnant occupants, improperly restrained occupants have a higher risk of adverse fetal outcome in lower severity crashes, which comprise the majority of all motor-vehicle collisions. PMID:11558095
Schneider, Lawrence W; Klinich, Kathleen D; Moore, Jamie L; MacWilliams, Joel B
2010-04-01
In-depth investigations of motor-vehicle crashes involve detailed inspection, measurement, and photodocumentation of vehicle exterior and interior damage, evidence of belt-restraint use, and evidence of occupant contacts with the vehicle interior. Results of in-depth investigations thereby provide the most objective way to identify current and emerging injury problems and issues in occupant safety and crash protection, and provide important feedback on the real-world performance of the latest restraint-system and vehicle crashworthiness technologies. To provide an objective understanding of real-world transportation safety issues for wheelchair-seated travelers, the University of Michigan Transportation Research Institute (UMTRI) has been conducting and assembling data from in-depth investigations of motor-vehicle crashes and non-crash adverse moving-vehicle incidents, such as emergency vehicle braking, turning, and swerving, in which there was at least one vehicle occupant sitting in a wheelchair. The results of 39 investigations involving 42 wheelchair-seated occupants have been assembled and entered into a wheelchair-occupant crash/injury database. In addition, a biomechanical analysis of each case has been performed to identify key safety issues for wheelchair-seated travelers. The wheelchairs of 34 of the 42 occupants who were seated in wheelchairs while traveling in motor vehicles were effectively secured by either a four-point, strap-type tiedown system or a docking securement device, and all but one of these properly secured wheelchairs remained in place during the crash or non-collision event. However, 30 of the 42 occupants were improperly restrained, either because of non-use or incomplete use of available belt restraints, or because the belt restraints were improperly positioned on the occupant's body. Twenty-six of the 42 occupants sustained significant injuries and 10 of these occupants died as a direct result of injuries sustained, or from complications resulting from those injuries. These findings, when combined with the analyses of the individual cases, point to a need for better driver and caregiver education and training on how to properly secure wheelchairs and position belt restraints on wheelchair-seated passengers. They also point to a need for improved restraint systems used by wheelchair-seated drivers, and a need for wheelchair designs that facilitate the proper use and positioning of vehicle-anchored belt restraints. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Statistical analysis of vehicle crashes in Mississippi based on crash data from 2010 to 2014.
DOT National Transportation Integrated Search
2017-08-15
Traffic crash data from 2010 to 2014 were collected by Mississippi Department of Transportation (MDOT) and extracted for the study. Three tasks were conducted in this study: (1) geographic distribution of crashes; (2) descriptive statistics of crash ...
DOT National Transportation Integrated Search
2010-06-01
The New Jersey Crash Record Geocoding Initiative was designed as a provisional measure to address missing crash locations. The purpose of the initiative was twofold. Primarily, students worked to locate crashes that had no location information after ...
Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant
2004-01-01
This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (
Vehicular crash data used to rank intersections by injury crash frequency and severity.
Liu, Yi; Li, Zongzhi; Liu, Jingxian; Patel, Harshingar
2016-09-01
This article contains data on research conducted in "A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability" (Liu et al., 2016) [1]. The crash counts were sorted out from comprehensive crash records of over one thousand major signalized intersections in the city of Chicago from 2004 to 2010. For each intersection, vehicular crashes were counted by crash severity levels, including fatal, injury Types A, B, and C for major, moderate, and minor injury levels, property damage only (PDO), and unknown. The crash data was further used to rank intersections by equivalent injury crash frequency. The top 200 intersections with the highest number of crash occurrences identified based on crash frequency- and severity-based scenarios are shared in this brief. The provided data would be a valuable source for research in urban traffic safety analysis and could also be utilized to examine the effectiveness of traffic safety improvement planning and programming, intersection design enhancement, incident and emergency management, and law enforcement strategies.
Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant
2004-01-01
This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (<=45 and >=50 mph). The economic costs are hard dollar costs. The comprehensive costs include economic costs and quality of life losses. We merged previously developed costs per victim keyed on the Abbreviated Injury Scale (AIS) into US crash data files that scored injuries in both the AIS and police-coded severity scales to produce per crash estimates. The most costly crashes were non-intersection fatal/disabling injury crashes on a road with a speed limit of 50 miles per hour or higher where multiple vehicles crashed head-on or a single vehicle struck a human (over 1.69 and $1.16 million per crash, respectively). The annual cost of police-reported run-off-road collisions, which include both rollovers and object impacts, represented 34% of total costs. PMID:15319129
Predicting reduced visibility related crashes on freeways using real-time traffic flow data.
Hassan, Hany M; Abdel-Aty, Mohamed A
2013-06-01
The main objective of this paper is to investigate whether real-time traffic flow data, collected from loop detectors and radar sensors on freeways, can be used to predict crashes occurring at reduced visibility conditions. In addition, it examines the difference between significant factors associated with reduced visibility related crashes to those factors correlated with crashes occurring at clear visibility conditions. Random Forests and matched case-control logistic regression models were estimated. The findings indicated that real-time traffic variables can be used to predict visibility related crashes on freeways. The results showed that about 69% of reduced visibility related crashes were correctly identified. The results also indicated that traffic flow variables leading to visibility related crashes are slightly different from those variables leading to clear visibility crashes. Using time slices 5-15 minutes before crashes might provide an opportunity for the appropriate traffic management centers for a proactive intervention to reduce crash risk in real-time. Copyright © 2013 Elsevier Ltd. All rights reserved.
Levine, Zachary S.; Floridi, Luciano
2017-01-01
We investigate the causal uncertainty surrounding the flash crash in the U.S. Treasury bond market on October 15, 2014, and the unresolved concern that no clear link has been identified between the start of the flash crash at 9:33 and the opening of the U.S. equity market at 9:30. We consider the contributory effect of mini flash crashes in equity markets, and find that the number of equity mini flash crashes in the three-minute window between market open and the Treasury Flash Crash was 2.6 times larger than the number experienced in any other three-minute window in the prior ten weekdays. We argue that (a) this statistically significant finding suggests that mini flash crashes in equity markets both predicted and contributed to the October 2014 U.S. Treasury Bond Flash Crash, and (b) mini-flash crashes are important phenomena with negative externalities that deserve much greater scholarly attention. PMID:29091931
Seacrist, Thomas; Douglas, Ethan C; Huang, Elaine; Megariotis, James; Prabahar, Abhiti; Kashem, Abyaad; Elzarka, Ayya; Haber, Leora; MacKinney, Taryn; Loeb, Helen
2018-02-28
Motor vehicle crashes are the leading cause of death among young drivers. Though previous research has focused on crash events, near crashes offer additional data to help identify driver errors that could potentially lead to crashes as well as evasive maneuvers used to avoid them. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) contains extensive data on real-world driving and offers a reliable methodology to quantify and study near crashes. This article presents findings on near crashes and how they compare to crash events among teen, young adult, and experienced adult drivers. A subset from the SHRP2 database consisting of 1,653 near crashes for teen (16-19 years, n = 550), young adult (20-24 years, n = 748), and experienced adult (35-54 years, n = 591) drivers was used. Onboard instrumentation including scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to classify near crashes based on 7 types: rear-end, road departure, intersection, head-on, side-swipe, pedestrian/cyclist, and animal. Near crash rates, incident type, secondary tasks, and evasive maneuvers were compared across age groups and between crashes and near crashes. For rear-end near crashes, vehicle dynamic variables including near crash severity, headway distance, time headway, and time to collision at the time of braking were compared across age groups. Crashes and near crashes were combined to compare the frequency of critical events across age. Teen drivers exhibited a significantly higher (P <.01) near crash rate than young adult and experienced adult drivers. The near crash rates were 81.6, 56.6, and 37.3 near crashes per million miles for teens, young adults, and experienced adults, respectively. Teens were also involved in significantly more rear-end (P <.01), road departure (P <.01), side-swipe (P <.01), and animal (P <.05) near crashes compared to young and experienced adults. Teens exhibited a significantly greater (P <.01) critical event rate of 102.2 critical events per million miles compared to 72.4 and 40.0 critical events per million miles for young adults and experienced adults, respectively; the critical event rate ratio was 2.6 and 1.8 for teens and young adults, respectively. To our knowledge, this is the first study to examine near crashes among teen, young adult, and experienced adult drivers using SHRP2 naturalistic data. Near crash and critical event rates significantly decreased with increasing age and driver experience. Overall, teens were more than twice as likely to be involved in critical events compared to experienced adults. These data can be used to develop more targeted driver training programs and help manufacturers design active safety systems based on the most common driving errors for vulnerable road users.
The continued burden of spine fractures after motor vehicle crashes.
Wang, Marjorie C; Pintar, Frank; Yoganandan, Narayan; Maiman, Dennis J
2009-02-01
Spine fractures are a significant cause of morbidity and mortality after motor vehicle crashes (MVCs). Public health interventions, such as the National Highway Traffic Safety Administration's Federal Motor Vehicle Safety Standards, have led to an increase in automobiles with air bags and the increased use of seat belts to lessen injuries sustained from MVCs. The purpose of this study was to evaluate secular trends in the occurrence of spine fractures associated with MVCs and evaluate the association between air bag and seat belt use with spine fractures. Using the Crash Outcome Data Evaluation System, a database of the police reports of all MVCs in Wisconsin linked to hospital records, the authors studied the occurrence of spine fractures and seat belt and air bag use from 1994 to 2002. Demographic information and crash characteristics were obtained from the police reports. Injury characteristics were determined using International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) hospital discharge codes. From 1994 to 2002, there were 29,860 hospital admissions associated with automobile or truck crashes. There were 20,276 drivers or front-seat passengers 16 years of age and older who were not missing ICD-9-CM discharge codes, seat belt or air bag data, and who had not been ejected from the vehicle. Of these, 2530 (12.5%) sustained a spine fracture. The occurrence of spine fractures increased over the study period, and the use of a seat belt plus air bag, and of air bags alone also increased during this period. However, the occurrence of severe spine fractures (Abbreviated Injury Scale Score > or =3) did not significantly increase over the study period. The use of both seat belt and air bag was associated with decreased odds of a spine fracture. Use of an air bag alone was associated with increased odds of a severe thoracic, but not cervical spine fracture. Among drivers and front-seat passengers admitted to the hospital after MVCs, the occurrence of spine fractures increased from 1994 to 2002 despite concomitant increases in seat belt and air bag use. However, the occurrence of severe spine fractures did not increase over the study period. The use of both seat belt and air bag is protective against spine fractures. Although the overall increased occurrence of spine fractures may appear contrary to the increased use of seat belts and air bags in general, it is possible that improved imaging technology may be associated with an increase in the diagnosis of relatively minor fractures. However, given the significant protective effects of both seat belt and air bag use against spine fractures, resources should continue to be dedicated toward increasing their use to mitigate the effects of MVCs.
Newgard, Craig D; Lewis, Roger J
2005-06-01
Current recommendations regarding children traveling in passenger vehicles equipped with passenger air bags are based, in part, on evidence that the air-bag-related risk of injury and death is higher for children < or =12 years of age. However, the age or body size required to allow a child to be seated safely in front of a passenger air bag is unknown. To evaluate specific cutoff points for age, height, and weight as effect modifiers of the association between the presence of a passenger air bag and serious injury among children involved in motor vehicle crashes (MVCs), while controlling for important crash factors. A national population-based cohort of children involved in MVCs and included in the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) database from 1995 to 2002 was studied. NASS CDS clusters, strata, and weights were included in all analyses. Children 0 to 18 years of age involved in MVCs and seated in the right front passenger seat. Serious injury, defined as an Abbreviated Injury Scale score of > or =3 for any body region. A total of 3790 patients (1 month to 18 years of age) were represented in the NASS CDS database during the 8-year period. Sixty children (1.6%) were seriously injured (Abbreviated Injury Scale score of > or =3). Among age, height, and weight, age of 0 to 14 years (versus 15-18 years) was the only consistent effect modifier of the association between air-bag presence (or air-bag deployment) and serious injury, particularly for crashes with a moderate probability of injury. In analyses stratified according to age and adjusted for important crash factors, children 0 to 14 years of age involved in frontal collisions seemed to be at increased risk of serious injury from air-bag presence (odds ratio [OR]: 2.66; 95% confidence interval [CI]: 0.23-30.9) and deployment (OR: 6.13; 95% CI: 0.30-126), although these values did not reach statistical significance. Among children 15 to 18 years of age involved in frontal collisions, there was a protective effect on injury from both air-bag presence (OR: 0.19; 95% CI: 0.05-0.75) and deployment (OR: 0.31; 95% CI: 0.09-0.99). These findings persisted in analyses involving all collision types. We did not identify similar cutoff points for height or weight. Children up to 14 years of age may be at risk for serious preventable injury when seated in front of a passenger air bag, and children 15 to 18 years of age seem to experience protective effects of air-bag presence and deployment. Age may be a better marker than height or weight for risk assessment regarding children and air bags.
Kashani, Ali Tavakoli; Besharati, Mohammad Mehdi
2017-06-01
The aim of this study was to uncover patterns of pedestrian crashes. In the first stage, 34,178 pedestrian-involved crashes occurred in Iran during a four-year period were grouped into homogeneous clusters using a clustering analysis. Next, some in-cluster and inter-cluster crash patterns were analysed. The clustering analysis yielded six pedestrian crash groups. Car/van/pickup crashes on rural roads as well as heavy vehicle crashes were found to be less frequent but more likely to be fatal compared to other crash clusters. In addition, after controlling for crash frequency in each cluster, it was found that the fatality rate of each pedestrian age group as well as the fatal crash involvement rate of each driver age group varies across the six clusters. Results of present study has some policy implications including, promoting pedestrian safety training sessions for heavy vehicle drivers, imposing limitations over elderly heavy vehicle drivers, reinforcing penalties toward under 19 drivers and motorcyclists. In addition, road safety campaigns in rural areas may be promoted to inform people about the higher fatality rate of pedestrians on rural roads. The crash patterns uncovered in this study might also be useful for prioritizing future pedestrian safety research areas.
Under-reporting of road traffic crash data in Ghana.
Salifu, Mohammed; Ackaah, Williams
2012-01-01
Having reliable estimates of the shortfalls in road traffic crash data is an important prerequisite for setting more realistic targets for crash/casualty reduction programmes and for a better appreciation of the socio-economic significance of road traffic crashes. This study was carried out to establish realistic estimates of the overall shortfall (under-reporting) in the official crash statistics in Ghana over an eight-year period (1997-2004). Surveys were conducted at hospitals and among drivers to generate relevant alternative data which were then matched against records in police crash data files and the official database. Overall shortfalls came from two sources, namely, 'non-reporting' and 'under-recording'. The results show that the level of non-reporting varied significantly with the severity of the crash from about 57% for property damage crashes through 8% for serious injury crashes to 0% for fatal crashes. Crashes involving cyclists and motorcyclists were also substantially non-reported. Under-recording on the other hand declined significantly over the period from an average of 37% in 1997-1998 to 27% in 2003-2004. Thus, the official statistics of road traffic crashes in Ghana are subject to significant shortfalls that need to be accounted for. Correction factors have therefore been suggested for adjusting the official data.
Characteristics of the Injury Environment in Far-Side Crashes
Digges, K.; Gabler, H; Mohan, P.; Alonso, B.
2005-01-01
The population of occupants in far-side crashes that are documented in the US National database (NASS/CDS) was studied. The annual number of front seat occupants with serious or fatal injuries in far-side planar and rollover crashes was 17,194. The crash environment that produces serious and fatal injuries to belted front seat occupants in planar far-side crashes was investigated in detail. It was found that both the change in velocity and extent of damage were important factors that relate to crash severity. The median severity for crashes with serious or fatal injuries was a lateral delta-V of 28 kph and an extent of damage of CDC 3.6. Vehicle-to-vehicle impacts were simulated by finite element models to determine the intrusion characteristics associated with the median crash condition. These simulations indicated that the side damage caused by the IIHS barrier was representative of the damage in crashes that produce serious injuries in far-side crashes. Occupant simulations of the IIHS barrier crash at 28 kph showed that existing dummies lack biofidelity in upper body motion. The analysis suggested test conditions for studying far-side countermeasures and supported earlier studies that showed the need for an improved dummy to evaluate safety performance in the far-side crash environment. PMID:16179148
Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.
Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas
2018-01-02
Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to increase the effectiveness of the countermeasures in preventing and reducing vehicle-pedestrian crashes.
DOT National Transportation Integrated Search
2016-08-01
This research supports establishing an updated understanding of the pedestrian crash problem and defining a way to connect the crash problem with vehicle-to-pedestrian (V2P) communication crash avoidance technology. It describes 5 priority pre-crash ...
Naturalistic Assessment of Novice Teenage Crash Experience
Lee, Suzanne E.; Simons-Morton, Bruce G.; Klauer, Sheila E.; Ouimet, Marie Claude; Dingus, Thomas A.
2011-01-01
Background Crash risk is highest during the first months after licensure. Current knowledge about teenagers’ driving exposure and the factors increasing their crash risk is based on self-reported data and crash database analyses. While these research tools are useful, new developments in naturalistic technologies have allowed researchers to examine newly-licensed teenagers’ exposure and crash risk factors in greater detail. The Naturalistic Teenage Driving Study (NTDS) described in this paper is the first study to follow a group of newly-licensed teenagers continuously for 18 months after licensure. The goals of this paper are to compare the crash and near-crash experience of drivers in the NTDS to national trends, to describe the methods and lessons learned in the NTDS, and to provide initial data on driving exposure for these drivers. Methods A data acquisition system was installed in the vehicles of 42 newly-licensed teenage drivers 16 years of age during their first 18 months of independent driving. It consisted of cameras, sensors (accelerometers, GPS, yaw, front radar, lane position, and various sensors obtained via the vehicle network), and a computer with removable hard drive. Data on the driving of participating parents was also collected when they drove the instrumented vehicle. Findings The primary findings after 18 months included the following: (1) crash and near-crash rates among teenage participants were significantly higher during the first six months of the study than the final 12 months, mirroring the national trends; (2) crash and near-crash rates were significantly higher for teenage than adult (parent) participants, also reflecting national trends; (3) teenaged driving exposure averaged between 507-710 kilometers (315-441 miles) per month over the study period, but varied substantially between participants with standard errors representing 8-14 percent of the mean; and (4) crash and near-crash types were very similar for male and female teenage drivers.. Discussion The findings are the first comparing crash and near-crash rates among novice teenage drivers with those of adults using the same vehicle over the same period of time. The finding of highly elevated crash rates of novice teenagers during the first six months of licensure are consistent with and confirm the archival crash data showing high crash risk for novice teenagers. The NTDS convenience sample of teenage drivers was similar to the U.S. teenage driver population in terms of exposure and crash experience. The dataset is expected be a valuable resource for future in-depth analyses of crash risk, exposure to risky driving conditions, and comparisons of teenage and adult driving performance in various driving situations. PMID:21545880
Improved method for roadside barrier length of need modeling using real-world trajectories.
Johnson, Nicholas S; Thomson, Robert; Gabler, Hampton C
2015-07-01
The 2011 AASHTO Roadside Design Guide (RDG) contains perhaps the most widely used procedure for choosing an appropriate length of need (LON) for roadside barriers. However, this procedure has several limitations. The procedure uses a highly simplified model of vehicle departure, and the procedure does not allow designers to specify an explicit level of protection. A new procedure for choosing LON that addresses these limitations is presented in this paper. This new procedure is based on recent, real-world road departure trajectories and uses this departure data in a more realistic way. The new procedure also allows LON to be specified for a precisely known level of protection - a level which can be based on number of crashes, injury outcomes or even estimated crash cost - while still remaining straightforward and quick to use like the 2011 RDG procedure. In this analysis, the improved procedure was used to explore the effects of the RDG procedure's assumptions. LON recommendations given by the 2011 RDG procedure were compared with recommendations given by this improved procedure. For 55 mph roads, the 2011 RDG procedure appears to lead to a LON sufficient to intercept between 80% and 90% of right-side departures that would otherwise strike a hazard located 10 m from the roadway. For hazards closer than 10 m, the 2011 RDG procedure intercepts progressively higher percentages of real-world departures. This suggests the protection level provided by the 2011 RDG procedure varies with the hazard offset, becoming more conservative as the hazard moves closer to the roadway. The improved procedure, by comparison, gives a consistent protection level regardless of hazard location. Copyright © 2015. Published by Elsevier Ltd.
Risk factors affecting injury severity determined by the MAIS score.
Ferreira, Sara; Amorim, Marco; Couto, Antonio
2017-07-04
Traffic crashes result in a loss of life but also impact the quality of life and productivity of crash survivors. Given the importance of traffic crash outcomes, the issue has received attention from researchers and practitioners as well as government institutions, such as the European Commission (EC). Thus, to obtain detailed information on the injury type and severity of crash victims, hospital data have been proposed for use alongside police crash records. A new injury severity classification based on hospital data, called the maximum abbreviated injury scale (MAIS), was developed and recently adopted by the EC. This study provides an in-depth analysis of the factors that affect injury severity as classified by the MAIS score. In this study, the MAIS score was derived from the International Classification of Diseases. The European Union adopted an MAIS score equal to or greater than 3 as the definition for a serious traffic crash injury. Gains are expected from using both police and hospital data because the injury severities of the victims are detailed by medical staff and the characteristics of the crash and the site of its occurrence are also provided. The data were obtained by linking police and hospital data sets from the Porto metropolitan area of Portugal over a 6-year period (2006-2011). A mixed logit model was used to understand the factors that contribute to the injury severity of traffic victims and to explore the impact of these factors on injury severity. A random parameter approach offers methodological flexibility to capture individual-specific heterogeneity. Additionally, to understand the importance of using a reliable injury severity scale, we compared MAIS with length of hospital stay (LHS), a classification used by several countries, including Portugal, to officially report injury severity. To do so, the same statistical technique was applied using the same variables to analyze their impact on the injury severity classified according to LHS. This study showed the impact of variables, such as the presence of blood alcohol, the use of protection devices, the type of crash, and the site characteristics, on the injury severity classified according to the MAIS score. Additionally, the sex and age of the victims were analyzed as risk factors, showing that elderly and male road users are highly associated with MAIS 3+ injuries. The comparison between the marginal effects of the variables estimated by the MAIS and LHS models showed significant differences. In addition to the differences in the magnitude of impact of each variable, we found that the impact of the road environment variable was dependent on the injury severity classification. The differences in the effects of risk factors between the classifications highlight the importance of using a reliable classification of injury severity. Additionally, the relationship between LHS and MAIS levels is quite different among countries, supporting the previous conclusion that bias is expected in the assessment of risk factors if an injury severity classification other than MAIS is used.
76 FR 53660 - Federal Motor Vehicle Safety Standards; Seat Belt Assemblies
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... further require integration of electrical signals from existing front and side crash sensor information... require additional crash sensors for rollover and rear-end crash events for vehicles without such sensors. Crash imminent sensors, or sensors that detect an impending crash, may also be needed. It is also...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation
NASA Technical Reports Server (NTRS)
Black, Dugald O.
1952-01-01
The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described
Comparative analysis of PA-31-350 Chieftain (N44LV) accident and NASA crash test data
NASA Technical Reports Server (NTRS)
Hayduk, R. J.
1979-01-01
A full scale, controlled crash test to simulate the crash of a Piper PA-31-350 Chieftain airplane is described. Comparisons were performed between the simulated crash and the actual crash in order to assess seat and floor behavior, and to estimate the acceleration levels experienced in the craft at the time of impact. Photographs, acceleration histories, and the tested airplane crash data is used to augment the accident information to better define the crash conditions. Measured impact parameters are presented along with flight path velocity and angle in relation to the impact surface.
Real World Crash Evaluation of Vehicle Stability Control (VSC) Technology
Bahouth, G.
2005-01-01
This study quantifies the effect of Vehicle Stability Control (VSC) in reducing crash involvement rates for a subset of vehicles in the US fleet. Crash rates for a variety of impact types before and after VSC technology was implemented are compared. Police-reported crashes from six available US state files from 1998–2002 were analyzed including 13,987 crash-involved study vehicles not equipped with the technology and 5,671 crashes of vehicles equipped with VSC as a standard feature. Overall, an 11.2% (95% CI: 2.4%, 21.1%) reduction in multi-vehicle frontal crash involvement was identified for VSC-equipped vehicles. A 52.6% (95% CI: 42.5%, 62.7%) reduction in single-vehicle crash rates was found. PMID:16179137
Real world crash evaluation of vehicle stability control (VSC) technology.
Bahouth, G
2005-01-01
This study quantifies the effect of Vehicle Stability Control (VSC) in reducing crash involvement rates for a subset of vehicles in the US fleet. Crash rates for a variety of impact types before and after VSC technology was implemented are compared. Police-reported crashes from six available US state files from 1998-2002 were analyzed including 13,987 crash-involved study vehicles not equipped with the technology and 5,671 crashes of vehicles equipped with VSC as a standard feature. Overall, an 11.2% (95% CI: 2.4%, 21.1%) reduction in multi-vehicle frontal crash involvement was identified for VSC-equipped vehicles. A 52.6% (95% CI: 42.5%, 62.7%) reduction in single-vehicle crash rates was found.
Farmer, C M
2001-05-01
Fatal crash rates for passenger cars and vans were compared for the last model year before four-wheel antilock brakes were introduced and the first model year for which antilock brakes were standard equipment. A prior study, based on fatal crash experience through 1995, reported that vehicle models with antilock brakes were more likely than identical but 1-year-earlier models to be involved in crashes fatal to their own occupants, but were less likely to be involved in crashes fatal to occupants of other vehicles. Overall, there was no significant effect of antilocks on the likelihood of fatal crashes. Similar analyses, based on fatal crash experience during 1996-98, yielded very different results. During 1996-98, vehicles with antilock brakes were again less likely than earlier models to be involved in crashes fatal to occupants of other vehicles, but they were no longer overinvolved in crashes fatal to their own occupants.
Neighborhood Influences on Vehicle-Pedestrian Crash Severity.
Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas
2017-12-01
Socioeconomic factors are known to be contributing factors for vehicle-pedestrian crashes. Although several studies have examined the socioeconomic factors related to the location of the crashes, limited studies have considered the socioeconomic factors of the neighborhood where the road users live in vehicle-pedestrian crash modelling. This research aims to identify the socioeconomic factors related to both the neighborhoods where the road users live and where crashes occur that have an influence on vehicle-pedestrian crash severity. Data on vehicle-pedestrian crashes that occurred at mid-blocks in Melbourne, Australia, was analyzed. Neighborhood factors associated with road users' residents and location of crash were investigated using boosted regression tree (BRT). Furthermore, partial dependence plots were applied to illustrate the interactions between these factors. We found that socioeconomic factors accounted for 60% of the 20 top contributing factors to vehicle-pedestrian crashes. This research reveals that socioeconomic factors of the neighborhoods where the road users live and where the crashes occur are important in determining the severity of the crashes, with the former having a greater influence. Hence, road safety countermeasures, especially those focussing on the road users, should be targeted at these high-risk neighborhoods.
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.
Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan
2014-03-01
The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p < 0.01) and medium (OR, 0.9; 95% CI, 0.8-1.0; p < 0.05) crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p < 0.001), but not at high ΔV (p ≥ 0.09). Among adults in model year 1998 to 2010 vehicles involved in medium and high severity motor vehicle crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.
Identifying crash-prone traffic conditions under different weather on freeways.
Xu, Chengcheng; Wang, Wei; Liu, Pan
2013-09-01
Understanding the relationships between traffic flow characteristics and crash risk under adverse weather conditions will help highway agencies develop proactive safety management strategies to improve traffic safety in adverse weather conditions. The primary objective is to develop separate crash risk prediction models for different weather conditions. The crash data, weather data, and traffic data used in this study were collected on the I-880N freeway in California in 2008 and 2010. This study considered three different weather conditions: clear weather, rainy weather, and reduced visibility weather. The preliminary analysis showed that there was some heterogeneity in the risk estimates for traffic flow characteristics by weather conditions, and that the crash risk prediction model for all weather conditions cannot capture the impacts of the traffic flow variables on crash risk under adverse weather conditions. The Bayesian random intercept logistic regression models were applied to link the likelihood of crash occurrence with various traffic flow characteristics under different weather conditions. The crash risk prediction models were compared to their corresponding logistic regression model. It was found that the random intercept model improved the goodness-of-fit of the crash risk prediction models. The model estimation results showed that the traffic flow characteristics contributing to crash risk were different across different weather conditions. The speed difference between upstream and downstream stations was found to be significant in each crash risk prediction model. Speed difference between upstream and downstream stations had the largest impact on crash risk in reduced visibility weather, followed by that in rainy weather. The ROC curves were further developed to evaluate the predictive performance of the crash risk prediction models under different weather conditions. The predictive performance of the crash risk model for clear weather was better than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
Conner, Kristen A; Smith, Gary A
2017-05-19
Nationally, motor vehicle crashes are the leading cause of death among youth ages 16 to 20 years. Graduated driver licensing (GDL) laws have been implemented to reduce motor vehicle crashes among teen drivers. Studies have shown decreases in teen crash rates and crash-related fatality rates following enactment of GDL laws. However, GDL laws typically apply to teens only until their 18th birthday; therefore, the effect, if any, that GDL laws have on youth drivers ages 18 to 20 years and whether these programs should be extended to include these older youth warrant further study. The objective of this study was to evaluate the effects of Ohio's 2007 revised GDL law on motor vehicle crashes and crash-related injuries for crashes involving teen drivers ages 16 to 20 years, with a focus on the effects on crashes involving drivers ages 18 to 20 years. Cross-sectional analysis of motor vehicle crashes involving drivers ages 16 to 20 years in Ohio in the pre-GDL (2004-2006) and post-GDL (2008-2010) periods was performed. Descriptive statistics and population-based crash rates for drivers and occupants ages 16 to 20 years were calculated, as well as rate ratios and 95% confidence intervals (CIs) comparing crashes in the pre-GDL and post-GDL periods. Compared with the pre-GDL period, the post-GDL period was associated with lower crash rates for drivers age 16 years (relative risk [RR] = 0.94; 95% CI, 0.90-0.98), age 17 years (RR = 0.90; 95% CI, 0.88-0.93), age 18 years (RR = 0.95; 95% CI, 0.92-0.97), and ages 16-17 years combined (RR = 0.92; 95% CI, 0.90-0.95). Crash rate was higher for the post-GDL period for drivers age 19 years (RR = 1.04; 95% CI, 1.01-1.07), age 20 years (RR = 1.09; 95% CI, 1.05-1.13), and ages 18-20 years combined (RR = 1.02; 95% CI, 1.00-1.03). Unlike previous studies, this investigation used linked data to evaluate the outcomes of all occupants in crashes involving drivers ages 16-20 years. The post-GDL period was associated with lower crash, injury crash, and fatal crash involvement among drivers and occupants ages 16-17 years but higher overall crash involvement for drivers and occupants ages 19 years, 20 years, and 18-20 years combined. These findings support extending GDL restrictions to novice drivers ages 18 through 20 years to reduce crashes in that group.
Moran, Dane; Bose, Dipan; Bhalla, Kavi
2017-11-17
European car design regulations and New Car Assessment Program (NCAP) ratings have led to reductions in pedestrian injuries. The aim of this study was to evaluate the impact of improving vehicle front design on mortality and morbidity due to pedestrian injuries in a European country (Germany) and 2 countries (the United States and India) that do not have pedestrian-focused NCAP testing or design regulations. We used data from the International Road Traffic and Accident Database and the Global Burden of Disease project to estimate baseline pedestrian deaths and nonfatal injuries in each country in 2013. The effect of improved passenger car star ratings on probability of pedestrian injury was based on recent evaluations of pedestrian crash data from Germany. The effect of improved heavy motor vehicle (HMV) front end design on pedestrian injuries was based on estimates reported by simulation studies. We used burden of disease methods to estimate population health loss by combining the burden of morbidity and mortality in disability-adjusted life years (DALYs) lost. Extrapolating from evaluations in Germany suggests that improving front end design of cars can potentially reduce the burden of pedestrian injuries due to cars by up to 24% in the United States and 41% in India. In Germany, where cars comply with the United Nations regulation on pedestrian safety, additional improvements would have led to a 1% reduction. Similarly, improved HMV design would reduce DALYs lost by pedestrian victims hit by HMVs by 20% in each country. Overall, improved vehicle design would reduce DALYs lost to road traffic injuries (RTIs) by 0.8% in Germany, 4.1% in the United States, and 6.7% in India. Recent evaluations show a strong correlation between Euro NCAP pedestrian scores and real-life pedestrian injuries, suggesting that improved car front end design in Europe has led to substantial reductions in pedestrian injuries. Although the United States has fewer pedestrian crashes, it would nevertheless benefit substantially by adopting similar regulations and instituting pedestrian NCAP testing. The maximum benefit would be realized in low- and middle-income countries like India that have a high proportion of pedestrian crashes. Though crash avoidance technologies are being developed to protect pedestrians, supplemental protection through design regulations may significantly improve injury countermeasures for vulnerable road users.
Stimpson, Jim P; Wilson, Fernando A; Muelleman, Robert L
2013-01-01
Distracted driving is an increasingly deadly threat to road safety. This study documents trends in and characteristics of pedestrian, bicycle rider, and other victim deaths caused by distracted drivers on U.S. public roads. We obtained data from the Fatality Analysis Reporting System database from 2005 to 2010 on every crash that resulted in at least one fatality within 30 days occurring on public roads in the U.S. Following the definition used by the National Highway Traffic Safety Administration, we identified distracted driving based on whether police investigators determined that a driver had been using a technological device, including a cell phone, onboard navigation system, computer, fax machine, two-way radio, or head-up display, or had been engaged in inattentive or careless activities. The rate of fatalities per 10 billion vehicle miles traveled increased from 116.1 in 2005 to 168.6 in 2010 for pedestrians and from 18.7 in 2005 to 24.6 in 2010 for bicyclists. Pedestrian victims of distracted driving crashes were disproportionately male, 25-64 years of age, and non-Hispanic white. They were also more likely to die at nighttime, be struck by a distracted driver outside of a marked crosswalk, and be in a metro location. Bicycling victims of distracted crashes were disproportionately male, non-Hispanic white, and struck by a distracted driver outside of a crosswalk. Compared with pedestrians, bicyclists were less likely to be hit in early morning. Distracted drivers are the cause of an increasing share of fatalities found among pedestrians and bicycle riders. Policies are needed to protect pedestrians and bicycle riders as they cross intersections or travel on roadways.
How have changes in front air bag designs affected frontal crash death rates? An update.
Teoh, Eric R
2014-01-01
Provide updated death rates comparing latest generations of frontal air bags in fatal crashes. Rates of driver and right-front passenger deaths in frontal crashes per 10 million registered vehicle years were compared using Poisson marginal structural models for passenger vehicles equipped with air bags certified as advanced and compliant (CAC), sled-certified air bags with advanced features, and sled-certified air bags without any advanced features. Analyses of driver death rates were disaggregated by age group, gender, and belt use. CAC air bags were associated with slightly elevated frontal crash death rates for both drivers and right-front passengers compared to sled-certified air bags with advanced features, but the differences were not statistically significant. Sled-certified air bags with advanced features were associated with significant benefits for drivers and for right-front passengers compared to sled-certified air bags without advanced features. CAC air bags were associated with a significant increase in belted driver death rate and a comparable but nonsignificant decrease in unbelted driver death rate compared to sled-certified air bags with advanced features. Sled-certified air bags with advanced features were associated with a nonsignificant 2 percent increase in belted driver death rate and a significant 26 percent decrease in unbelted driver death rate, relative to sled-certified air bags without advanced features. Implementing advanced features in sled-certified air bags was beneficial overall to drivers and right-front passengers with sled-certified air bags. No overall benefit was observed for CAC air bags compared to sled-certified air bags with advanced features. Further study is needed to understand the apparent reduction in belted driver protection observed for CAC air bags.