Sample records for automatic defect detection

  1. Automatic thermographic image defect detection of composites

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP

    2011-05-01

    Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.

  2. Development of an Automatic Testing Platform for Aviator's Night Vision Goggle Honeycomb Defect Inspection.

    PubMed

    Jian, Bo-Lin; Peng, Chao-Chung

    2017-06-15

    Due to the direct influence of night vision equipment availability on the safety of night-time aerial reconnaissance, maintenance needs to be carried out regularly. Unfortunately, some defects are not easy to observe or are not even detectable by human eyes. As a consequence, this study proposed a novel automatic defect detection system for aviator's night vision imaging systems AN/AVS-6(V)1 and AN/AVS-6(V)2. An auto-focusing process consisting of a sharpness calculation and a gradient-based variable step search method is applied to achieve an automatic detection system for honeycomb defects. This work also developed a test platform for sharpness measurement. It demonstrates that the honeycomb defects can be precisely recognized and the number of the defects can also be determined automatically during the inspection. Most importantly, the proposed approach significantly reduces the time consumption, as well as human assessment error during the night vision goggle inspection procedures.

  3. Detection of defects in laser powder deposition (LPD) components by pulsed laser transient thermography

    NASA Astrophysics Data System (ADS)

    Santospirito, S. P.; Słyk, Kamil; Luo, Bin; Łopatka, Rafał; Gilmour, Oliver; Rudlin, John

    2013-05-01

    Detection of defects in Laser Powder Deposition (LPD) produced components has been achieved by laser thermography. An automatic in-process NDT defect detection software system has been developed for the analysis of laser thermography to automatically detect, reliably measure and then sentence defects in individual beads of LPD components. A deposition path profile definition has been introduced so all laser powder deposition beads can be modeled, and the inspection system has been developed to automatically generate an optimized inspection plan in which sampling images follow the deposition track, and automatically control and communicate with robot-arms, the source laser and cameras to implement image acquisition. Algorithms were developed so that the defect sizes can be correctly evaluated and these have been confirmed using test samples. Individual inspection images can also be stitched together for a single bead, a layer of beads or multiple layers of beads so that defects can be mapped through the additive process. A mathematical model was built up to analyze and evaluate the movement of heat throughout the inspection bead. Inspection processes were developed and positional and temporal gradient algorithms have been used to measure the flaw sizes. Defect analysis is then performed to determine if the defect(s) can be further classified (crack, lack of fusion, porosity) and the sentencing engine then compares the most significant defect or group of defects against the acceptance criteria - independent of human decisions. Testing on manufactured defects from the EC funded INTRAPID project has successful detected and correctly sentenced all samples.

  4. Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto

    2017-09-19

    Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.

  5. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  6. A practical approach to tramway track condition monitoring: vertical track defects detection and identification using time-frequency processing technique

    NASA Astrophysics Data System (ADS)

    Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán

    2018-03-01

    This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.

  7. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  8. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  9. In-TFT-array-process micro defect inspection using nonlinear principal component analysis.

    PubMed

    Liu, Yi-Hung; Wang, Chi-Kai; Ting, Yung; Lin, Wei-Zhi; Kang, Zhi-Hao; Chen, Ching-Shun; Hwang, Jih-Shang

    2009-11-20

    Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD) manufacture, and has received much attention in the field of automatic optical inspection (AOI). Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA) algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM) with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image.

  10. In-TFT-Array-Process Micro Defect Inspection Using Nonlinear Principal Component Analysis

    PubMed Central

    Liu, Yi-Hung; Wang, Chi-Kai; Ting, Yung; Lin, Wei-Zhi; Kang, Zhi-Hao; Chen, Ching-Shun; Hwang, Jih-Shang

    2009-01-01

    Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD) manufacture, and has received much attention in the field of automatic optical inspection (AOI). Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA) algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM) with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image. PMID:20057957

  11. Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make...

  12. A Sensor System for Detection of Hull Surface Defects

    PubMed Central

    Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan

    2010-01-01

    This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590

  13. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  14. A 3D Laser Profiling System for Rail Surface Defect Detection

    PubMed Central

    Li, Qingquan; Mao, Qingzhou; Zou, Qin

    2017-01-01

    Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323

  15. Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...

  16. Automatic detection method for mura defects on display film surface using modified Weber's law

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Muk; Lee, Seung-Ho

    2014-07-01

    We propose a method that automatically detects mura defects on display film surfaces using a modified version of Weber's law. The proposed method detects mura defects regardless of their properties and shapes by identifying regions perceived by human vision as mura using the brightness of pixel and image distribution ratio of mura in an image histogram. The proposed detection method comprises five stages. In the first stage, the display film surface image is acquired and a gray-level shift performed. In the second and third stages, the image histogram is acquired and analyzed, respectively. In the fourth stage, the mura range is acquired. This is followed by postprocessing in the fifth stage. Evaluations of the proposed method conducted using 200 display film mura image samples indicate a maximum detection rate of ˜95.5%. Further, the results of application of the Semu index for luminance mura in flat panel display (FPD) image quality inspection indicate that the proposed method is more reliable than a popular conventional method.

  17. Automatic Detection of Welding Defects using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Hou, Wenhui; Wei, Ye; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2018-01-01

    In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.

  18. Automatic Fault Recognition of Photovoltaic Modules Based on Statistical Analysis of Uav Thermography

    NASA Astrophysics Data System (ADS)

    Kim, D.; Youn, J.; Kim, C.

    2017-08-01

    As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.

  19. A modular approach to detection and identification of defects in rough lumber

    Treesearch

    Sang Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt

    2001-01-01

    This paper describes a prototype scanning system that can automatically identify several important defects on rough hardwood lumber. The scanning system utilizes 3 laser sources and an embedded-processor camera to capture and analyze profile and gray-scale images. The modular approach combines the detection of wane (the curved sides of a board, possibly containing...

  20. Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection

    NASA Astrophysics Data System (ADS)

    Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei

    Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.

  1. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  2. Synthesis of actual knowledge on machine-tool monitoring methods and equipment

    NASA Astrophysics Data System (ADS)

    Tanguy, J. C.

    1988-06-01

    Problems connected with the automatic supervision of production were studied. Many different automatic control devices are now able to identify defects in the tools, but the solutions proposed to detect optimal limits in the utilization of a tool are not satisfactory.

  3. Context-based automated defect classification system using multiple morphological masks

    DOEpatents

    Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed

    2002-01-01

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.

  4. Detecting and Analyzing Corrosion Spots on the Hull of Large Marine Vessels Using Colored 3d LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Aijazi, A. K.; Malaterre, L.; Tazir, M. L.; Trassoudaine, L.; Checchin, P.

    2016-06-01

    This work presents a new method that automatically detects and analyzes surface defects such as corrosion spots of different shapes and sizes, on large ship hulls. In the proposed method several scans from different positions and viewing angles around the ship are registered together to form a complete 3D point cloud. The R, G, B values associated with each scan, obtained with the help of an integrated camera are converted into HSV space to separate out the illumination invariant color component from the intensity. Using this color component, different surface defects such as corrosion spots of different shapes and sizes are automatically detected, within a selected zone, using two different methods depending upon the level of corrosion/defects. The first method relies on a histogram based distribution whereas the second on adaptive thresholds. The detected corrosion spots are then analyzed and quantified to help better plan and estimate the cost of repair and maintenance. Results are evaluated on real data using different standard evaluation metrics to demonstrate the efficacy as well as the technical strength of the proposed method.

  5. Infrared machine vision system for the automatic detection of olive fruit quality.

    PubMed

    Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A

    2013-11-15

    External quality is an important factor in the extraction of olive oil and the marketing of olive fruits. The appearance and presence of external damage are factors that influence the quality of the oil extracted and the perception of consumers, determining the level of acceptance prior to purchase in the case of table olives. The aim of this paper is to report on artificial vision techniques developed for the online estimation of olive quality and to assess the effectiveness of these techniques in evaluating quality based on detecting external defects. This method of classifying olives according to the presence of defects is based on an infrared (IR) vision system. Images of defects were acquired using a digital monochrome camera with band-pass filters on near-infrared (NIR). The original images were processed using segmentation algorithms, edge detection and pixel value intensity to classify the whole fruit. The detection of the defect involved a pixel classification procedure based on nonparametric models of the healthy and defective areas of olives. Classification tests were performed on olives to assess the effectiveness of the proposed method. This research showed that the IR vision system is a useful technology for the automatic assessment of olives that has the potential for use in offline inspection and for online sorting for defects and the presence of surface damage, easily distinguishing those that do not meet minimum quality requirements. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  6. Labeling Defects in CT Images of Hardwood Logs with Species-Dependent and Species-Independent Classifiers

    Treesearch

    Pei Li; Jing He; A. Lynn Abbott; Daniel L. Schmoldt

    1996-01-01

    This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize...

  7. Scanning electron microscope automatic defect classification of process induced defects

    NASA Astrophysics Data System (ADS)

    Wolfe, Scott; McGarvey, Steve

    2017-03-01

    With the integration of high speed Scanning Electron Microscope (SEM) based Automated Defect Redetection (ADR) in both high volume semiconductor manufacturing and Research and Development (R and D), the need for reliable SEM Automated Defect Classification (ADC) has grown tremendously in the past few years. In many high volume manufacturing facilities and R and D operations, defect inspection is performed on EBeam (EB), Bright Field (BF) or Dark Field (DF) defect inspection equipment. A comma separated value (CSV) file is created by both the patterned and non-patterned defect inspection tools. The defect inspection result file contains a list of the inspection anomalies detected during the inspection tools' examination of each structure, or the examination of an entire wafers surface for non-patterned applications. This file is imported into the Defect Review Scanning Electron Microscope (DRSEM). Following the defect inspection result file import, the DRSEM automatically moves the wafer to each defect coordinate and performs ADR. During ADR the DRSEM operates in a reference mode, capturing a SEM image at the exact position of the anomalies coordinates and capturing a SEM image of a reference location in the center of the wafer. A Defect reference image is created based on the Reference image minus the Defect image. The exact coordinates of the defect is calculated based on the calculated defect position and the anomalies stage coordinate calculated when the high magnification SEM defect image is captured. The captured SEM image is processed through either DRSEM ADC binning, exporting to a Yield Analysis System (YAS), or a combination of both. Process Engineers, Yield Analysis Engineers or Failure Analysis Engineers will manually review the captured images to insure that either the YAS defect binning is accurately classifying the defects or that the DRSEM defect binning is accurately classifying the defects. This paper is an exploration of the feasibility of the utilization of a Hitachi RS4000 Defect Review SEM to perform Automatic Defect Classification with the objective of the total automated classification accuracy being greater than human based defect classification binning when the defects do not require multiple process step knowledge for accurate classification. The implementation of DRSEM ADC has the potential to improve the response time between defect detection and defect classification. Faster defect classification will allow for rapid response to yield anomalies that will ultimately reduce the wafer and/or the die yield.

  8. Automatic optical inspection system design for golf ball

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Huang; Su, Jyun-Wei; Chen, Chih-Lin

    2016-09-01

    ith the growing popularity of golf sport all over the world, the quantities of relevant products are increasing year by year. To create innovation and improvement in quality while reducing production cost, automation of manufacturing become a necessary and important issue. This paper reflect the trend of this production automa- tion. It uses the AOI (Automated Optical Inspection) technology to develop a system which can automatically detect defects on the golf ball. The current manual quality-inspection is not only error-prone but also very man- power demanding. Taking into consideration the competition of this industry in the near future, the development of related AOI equipment must be conducted as soon as possible. Due to the strong reflective property of the ball surface, as well as its surface dimples and subtle flaws, it is very difficult to take good quality image for automatic inspection. Based on the surface properties and shape of the ball, lighting has been properly design for image-taking environment and structure. Area-scan cameras have been used to acquire images with good contrast between defects and background to assure the achievement of the goal of automatic defect detection on the golf ball. The result obtained is that more than 973 of the NG balls have be detected, and system maintains less than 103 false alarm rate. The balls which are determined by the system to be NG will be inspected by human eye again. Therefore, the manpower spent in the inspection has been reduced by 903.

  9. A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor.

    PubMed

    Madrigal, Carlos A; Branch, John W; Restrepo, Alejandro; Mery, Domingo

    2017-10-02

    Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%.

  10. A Method for Automatic Surface Inspection Using a Model-Based 3D Descriptor

    PubMed Central

    Branch, John W.

    2017-01-01

    Automatic visual inspection allows for the identification of surface defects in manufactured parts. Nevertheless, when defects are on a sub-millimeter scale, detection and recognition are a challenge. This is particularly true when the defect generates topological deformations that are not shown with strong contrast in the 2D image. In this paper, we present a method for recognizing surface defects in 3D point clouds. Firstly, we propose a novel 3D local descriptor called the Model Point Feature Histogram (MPFH) for defect detection. Our descriptor is inspired from earlier descriptors such as the Point Feature Histogram (PFH). To construct the MPFH descriptor, the models that best fit the local surface and their normal vectors are estimated. For each surface model, its contribution weight to the formation of the surface region is calculated and from the relative difference between models of the same region a histogram is generated representing the underlying surface changes. Secondly, through a classification stage, the points on the surface are labeled according to five types of primitives and the defect is detected. Thirdly, the connected components of primitives are projected to a plane, forming a 2D image. Finally, 2D geometrical features are extracted and by a support vector machine, the defects are recognized. The database used is composed of 3D simulated surfaces and 3D reconstructions of defects in welding, artificial teeth, indentations in materials, ceramics and 3D models of defects. The quantitative and qualitative results showed that the proposed method of description is robust to noise and the scale factor, and it is sufficiently discriminative for detecting some surface defects. The performance evaluation of the proposed method was performed for a classification task of the 3D point cloud in primitives, reporting an accuracy of 95%, which is higher than for other state-of-art descriptors. The rate of recognition of defects was close to 94%. PMID:28974037

  11. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low light scattering. Likewise, SEM cannot be used effectively for post-inspection defect review and classification of these very shallow types of defects. To verify and obtain accurate shape and three-dimensional information of those defects, automatic defect review AFM (ADR AFM) is utilized for accurate locating and imaging of DOI. In ADR AFM, non-contact mode imaging is used for non-destructive characterization and preserving tip sharpness for data repeatability and reproducibility. Locating DOI and imaging are performed automatically with a throughput of many defects per hour. Topography images of DOI has been collected and compared with SEM images. The ADR AFM has been shown as a non-destructive metrology tool for defect review and obtaining three-dimensional topography information.

  12. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  13. THE CHOICE OF OPTIMAL STRUCTURE OF ARTIFICIAL NEURAL NETWORK CLASSIFIER INTENDED FOR CLASSIFICATION OF WELDING FLAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, R.; Chady, T.; Baniukiewicz, P.

    2010-02-22

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less

  14. The Choice of Optimal Structure of Artificial Neural Network Classifier Intended for Classification of Welding Flaws

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.

    2010-02-01

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.

  15. Automated real-time detection of defects during machining of ceramics

    DOEpatents

    Ellingson, W.A.; Sun, J.

    1997-11-18

    Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known ``feature masks`` representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified. 14 figs.

  16. Automated real-time detection of defects during machining of ceramics

    DOEpatents

    Ellingson, William A.; Sun, Jiangang

    1997-01-01

    Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known "feature masks" representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified.

  17. Development of Geometry Normalized Electromagnetic System (GNES) instrument for metal defect detection

    NASA Astrophysics Data System (ADS)

    Zakaria, Zakaria; Surbakti, Muhammad Syukri; Syahreza, Saumi; Mat Jafri, Mohd. Zubir; Tan, Kok Chooi

    2017-10-01

    It has been already made, calibrated and tested a geometry normalized electromagnetic system (GNES) for metal defect examination. The GNES has an automatic data acquisition system which supporting the efficiency and accuracy of the measurement. The data will be displayed on the computer monitor as a graphic display then saved automatically in the Microsoft Excel format. The transmitter will transmit the frequency pair (FP) signals i.e. 112.5 Hz and 337.5 Hz; 112.5 Hz and 1012.5 Hz; 112.5 Hz and 3037.5 Hz; 337.5 Hz and 1012.5 Hz; 337.5 Hz and 3037.5 Hz. Simultaneous transmissions of two electromagnetic waves without distortions by the transmitter will induce an eddy current in the metal. This current, in turn, will produce secondary electromagnetic fields which are measured by the receiver together with the primary fields. Measurement of percent change of a vertical component of the fields will give the percent response caused by the metal or the defect. The response examinations were performed by the models with various type of defect for the master curves. The materials of samples as a plate were using Aluminum, Brass, and Copper. The more of the defects is the more reduction of the eddy current response. The defect contrasts were tended to decrease when the more depth of the defect position. The magnitude and phase of the eddy currents will affect the loading on the coil thus its impedance. The defect must interrupt the surface eddy current flow to be detected. Defect lying parallel to the current path will not cause any significant interruption and may not be detected. The main factors which affect the eddy current response are metal conductivity, permeability, frequency, and geometry.

  18. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    NASA Astrophysics Data System (ADS)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  19. Fast rail corrugation detection based on texture filtering

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Lu, Kaixia

    2018-02-01

    The condition detection of rails in high-speed railway is one of the important means to ensure the safety of railway transportation. In order to replace the traditional manual inspection, save manpower and material resources, and improve the detection speed and accuracy, it is of great significance to develop a machine vision system for locating and identifying defects on rails automatically. Rail defects exhibit different properties and are divided into various categories related to the type and position of flaws on the rail. Several kinds of interrelated factors cause rail defects such as type of rail, construction conditions, and speed and/or frequency of trains using the rail. Rail corrugation is a particular kind of defects that produce an undulatory deformation on the rail heads. In high speed train, the corrugation induces harmful vibrations on wheels and its components and reduces the lifetime of rails. This type of defects should be detected to avoid rail fractures. In this paper, a novel method for fast rail corrugation detection based on texture filtering was proposed.

  20. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.

  1. Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.

    2006-06-01

    The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.

  2. Cognitive learning: a machine learning approach for automatic process characterization from design

    NASA Astrophysics Data System (ADS)

    Foucher, J.; Baderot, J.; Martinez, S.; Dervilllé, A.; Bernard, G.

    2018-03-01

    Cutting edge innovation requires accurate and fast process-control to obtain fast learning rate and industry adoption. Current tools available for such task are mainly manual and user dependent. We present in this paper cognitive learning, which is a new machine learning based technique to facilitate and to speed up complex characterization by using the design as input, providing fast training and detection time. We will focus on the machine learning framework that allows object detection, defect traceability and automatic measurement tools.

  3. Detection of fuze defects by image-processing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, M.J.

    1988-03-01

    This paper describes experimental studies of the detection of mechanical defects by the application of computer-processing methods to real-time radiographic images of fuze assemblies. The experimental results confirm that a new algorithm developed at Materials Research Laboratory has potential for the automatic inspection of these assemblies and of others that contain discrete components. The algorithm was applied to images that contain a range of grey levels and has been found to be tolerant to image variations encountered under simulated production conditions.

  4. An automatic method for detecting sliding railway wheels and hot bearings using thermal imagery.

    DOT National Transportation Integrated Search

    2016-05-03

    One of the most important safety-related tasks in the rail industry is early detection of defective rolling : stock components. Railway wheels and wheel bearings are two components prone to damage due to : their interactions with brakes and railway t...

  5. An Automated Classification Technique for Detecting Defects in Battery Cells

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2006-01-01

    Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.

  6. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  7. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Automatic Defect Detection for TFT-LCD Array Process Using Quasiconformal Kernel Support Vector Data Description

    PubMed Central

    Liu, Yi-Hung; Chen, Yan-Jen

    2011-01-01

    Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms. PMID:22016625

  9. Automatic defect detection for TFT-LCD array process using quasiconformal kernel support vector data description.

    PubMed

    Liu, Yi-Hung; Chen, Yan-Jen

    2011-01-01

    Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.

  10. A Computer Vision System forLocating and Identifying Internal Log Defects Using CT Imagery

    Treesearch

    Dongping Zhu; Richard W. Conners; Frederick Lamb; Philip A. Araman

    1991-01-01

    A number of researchers have shown the ability of magnetic resonance imaging (MRI) and computer tomography (CT) imaging to detect internal defects in logs. However, if these devices are ever to play a role in the forest products industry, automatic methods for analyzing data from these devices must be developed. This paper reports research aimed at developing a...

  11. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  12. X-ray online detection for laser welding T-joint of Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong

    2017-05-01

    In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.

  13. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    NASA Astrophysics Data System (ADS)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  14. Counterfeit Electronics Detection Using Image Processing and Machine Learning

    NASA Astrophysics Data System (ADS)

    Asadizanjani, Navid; Tehranipoor, Mark; Forte, Domenic

    2017-01-01

    Counterfeiting is an increasing concern for businesses and governments as greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. There is an ongoing effort in experimental and national labs inside the United States to detect and prevent such counterfeits in the most efficient time period. However, there is still a missing piece to automatically detect and properly keep record of detected counterfeit ICs. Here, we introduce a web application database that allows users to share previous examples of counterfeits through an online database and to obtain statistics regarding the prevalence of known defects. We also investigate automated techniques based on image processing and machine learning to detect different physical defects and to determine whether or not an IC is counterfeit.

  15. Automatic optical inspection of regular grid patterns with an inspection camera used below the Shannon-Nyquist criterion for optical resolution

    NASA Astrophysics Data System (ADS)

    Ferreira, Flávio P.; Forte, Paulo M. F.; Felgueiras, Paulo E. R.; Bret, Boris P. J.; Belsley, Michael S.; Nunes-Pereira, Eduardo J.

    2017-02-01

    An Automatic Optical Inspection (AOI) system for optical inspection of imaging devices used in automotive industry using an inspecting optics of lower spatial resolution than the device under inspection is described. This system is robust and with no moving parts. The cycle time is small. Its main advantage is that it is capable of detecting and quantifying defects in regular patterns, working below the Shannon-Nyquist criterion for optical resolution, using a single low resolution image sensor. It is easily scalable, which is an important advantage in industrial applications, since the same inspecting sensor can be reused for increasingly higher spatial resolutions of the devices to be inspected. The optical inspection is implemented with a notch multi-band Fourier filter, making the procedure especially fitted for regular patterns, like the ones that can be produced in image displays and Head Up Displays (HUDs). The regular patterns are used in production line only, for inspection purposes. For image displays, functional defects are detected at the level of a sub-image display grid element unit. Functional defects are the ones impairing the function of the display, and are preferred in AOI to the direct geometric imaging, since those are the ones directly related with the end-user experience. The shift in emphasis from geometric imaging to functional imaging is critical, since it is this that allows quantitative inspection, below Shannon-Nyquist. For HUDs, the functional detect detection addresses defects resulting from the combined effect of the image display and the image forming optics.

  16. Detection and evaluation of weld defects in stainless steel using alternating current field measurement

    NASA Astrophysics Data System (ADS)

    Wei-Li, Ma, Weiping; Pan-Qi, Wen-jiao, Dou; Yuan, Xin'an; Yin, Xiaokang

    2018-04-01

    Stainless steel is widely used in nuclear power plants, such as various high-radioactive pool, tools storage and fuel transportation channel, and serves as an important barrier to stop the leakage of high-radioactive material. NonDestructive Evaluation (NDE) methods, eddy current testing (ET), ultrasonic examination (UT), penetration testing (PT) and hybrid detection method, etc., have been introduced into the inspection of a nuclear plant. In this paper, the Alternating Current Field Measurement (ACFM) was fully applied to detect and evaluate the defects in the welds of the stainless steel. Simulations were carried out on different defect types, crack lengths, and orientation to reveal the relationship between the signals and dimensions to determine whether methods could be validated by the experiment. A 3-axis ACFM probe was developed and three plates including 16 defects, which served in nuclear plant before, were examined by automatic detection equipment. The result shows that the minimum detectable crack length on the surface is 2mm and ACFM shows excellent inspection results for a weld in stainless steel and gives an encouraging prospect of broader application.

  17. STARL -- a Program to Correct CCD Image Defects

    NASA Astrophysics Data System (ADS)

    Narbutis, D.; Vanagas, R.; Vansevičius, V.

    We present a program tool, STARL, designed for automatic detection and correction of various defects in CCD images. It uses genetic algorithm for deblending and restoring of overlapping saturated stars in crowded stellar fields. Using Subaru Telescope Suprime-Cam images we demonstrate that the program can be implemented in the wide-field survey data processing pipelines for production of high quality color mosaics. The source code and examples are available at the STARL website.

  18. Automatic detection system of shaft part surface defect based on machine vision

    NASA Astrophysics Data System (ADS)

    Jiang, Lixing; Sun, Kuoyuan; Zhao, Fulai; Hao, Xiangyang

    2015-05-01

    Surface physical damage detection is an important part of the shaft parts quality inspection and the traditional detecting methods are mostly human eye identification which has many disadvantages such as low efficiency, bad reliability. In order to improve the automation level of the quality detection of shaft parts and establish its relevant industry quality standard, a machine vision inspection system connected with MCU was designed to realize the surface detection of shaft parts. The system adopt the monochrome line-scan digital camera and use the dark-field and forward illumination technology to acquire images with high contrast; the images were segmented to Bi-value images through maximum between-cluster variance method after image filtering and image enhancing algorithms; then the mainly contours were extracted based on the evaluation criterion of the aspect ratio and the area; then calculate the coordinates of the centre of gravity of defects area, namely locating point coordinates; At last, location of the defects area were marked by the coding pen communicated with MCU. Experiment show that no defect was omitted and false alarm error rate was lower than 5%, which showed that the designed system met the demand of shaft part on-line real-time detection.

  19. Automatically high accurate and efficient photomask defects management solution for advanced lithography manufacture

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Chen, Lijun; Ma, Lantao; Li, Dejian; Jiang, Wei; Pan, Lihong; Shen, Huiting; Jia, Hongmin; Hsiang, Chingyun; Cheng, Guojie; Ling, Li; Chen, Shijie; Wang, Jun; Liao, Wenkui; Zhang, Gary

    2014-04-01

    Defect review is a time consuming job. Human error makes result inconsistent. The defects located on don't care area would not hurt the yield and no need to review them such as defects on dark area. However, critical area defects can impact yield dramatically and need more attention to review them such as defects on clear area. With decrease in integrated circuit dimensions, mask defects are always thousands detected during inspection even more. Traditional manual or simple classification approaches are unable to meet efficient and accuracy requirement. This paper focuses on automatic defect management and classification solution using image output of Lasertec inspection equipment and Anchor pattern centric image process technology. The number of mask defect found during an inspection is always in the range of thousands or even more. This system can handle large number defects with quick and accurate defect classification result. Our experiment includes Die to Die and Single Die modes. The classification accuracy can reach 87.4% and 93.3%. No critical or printable defects are missing in our test cases. The missing classification defects are 0.25% and 0.24% in Die to Die mode and Single Die mode. This kind of missing rate is encouraging and acceptable to apply on production line. The result can be output and reloaded back to inspection machine to have further review. This step helps users to validate some unsure defects with clear and magnification images when captured images can't provide enough information to make judgment. This system effectively reduces expensive inline defect review time. As a fully inline automated defect management solution, the system could be compatible with current inspection approach and integrated with optical simulation even scoring function and guide wafer level defect inspection.

  20. Exploring combined dark and bright field illumination to improve the detection of defects on specular surfaces

    NASA Astrophysics Data System (ADS)

    Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.

    2017-01-01

    An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.

  1. Defect detection of castings in radiography images using a robust statistical feature.

    PubMed

    Zhao, Xinyue; He, Zaixing; Zhang, Shuyou

    2014-01-01

    One of the most commonly used optical methods for defect detection is radiographic inspection. Compared with methods that extract defects directly from the radiography image, model-based methods deal with the case of an object with complex structure well. However, detection of small low-contrast defects in nonuniformly illuminated images is still a major challenge for them. In this paper, we present a new method based on the grayscale arranging pairs (GAP) feature to detect casting defects in radiography images automatically. First, a model is built using pixel pairs with a stable intensity relationship based on the GAP feature from previously acquired images. Second, defects can be extracted by comparing the difference of intensity-difference signs between the input image and the model statistically. The robustness of the proposed method to noise and illumination variations has been verified on casting radioscopic images with defects. The experimental results showed that the average computation time of the proposed method in the testing stage is 28 ms per image on a computer with a Pentium Core 2 Duo 3.00 GHz processor. For the comparison, we also evaluated the performance of the proposed method as well as that of the mixture-of-Gaussian-based and crossing line profile methods. The proposed method achieved 2.7% and 2.0% false negative rates in the noise and illumination variation experiments, respectively.

  2. Intelligent technologies in process of highly-precise products manufacturing

    NASA Astrophysics Data System (ADS)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  3. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography

    PubMed Central

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475

  4. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography.

    PubMed

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali

    2017-12-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.

  5. Automatic Review of Abstract State Machines by Meta Property Verification

    NASA Technical Reports Server (NTRS)

    Arcaini, Paolo; Gargantini, Angelo; Riccobene, Elvinia

    2010-01-01

    A model review is a validation technique aimed at determining if a model is of sufficient quality and allows defects to be identified early in the system development, reducing the cost of fixing them. In this paper we propose a technique to perform automatic review of Abstract State Machine (ASM) formal specifications. We first detect a family of typical vulnerabilities and defects a developer can introduce during the modeling activity using the ASMs and we express such faults as the violation of meta-properties that guarantee certain quality attributes of the specification. These meta-properties are then mapped to temporal logic formulas and model checked for their violation. As a proof of concept, we also report the result of applying this ASM review process to several specifications.

  6. 46 CFR 58.25-85 - Special requirements for tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...” in paragraph (g) of this section refers to the pressure-containing components in hydraulic or electro... least two identical hydraulic-power actuating systems, which, acting simultaneously in normal operation... hydraulic fluid from one system must be capable of being detected, and the defective system automatically...

  7. 46 CFR 58.25-85 - Special requirements for tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” in paragraph (g) of this section refers to the pressure-containing components in hydraulic or electro... least two identical hydraulic-power actuating systems, which, acting simultaneously in normal operation... hydraulic fluid from one system must be capable of being detected, and the defective system automatically...

  8. Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model.

    PubMed

    Mei, Shuang; Wang, Yudan; Wen, Guojun

    2018-04-02

    Fabric defect detection is a necessary and essential step of quality control in the textile manufacturing industry. Traditional fabric inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. In this paper, we propose an unsupervised learning-based automated approach to detect and localize fabric defects without any manual intervention. This approach is used to reconstruct image patches with a convolutional denoising autoencoder network at multiple Gaussian pyramid levels and to synthesize detection results from the corresponding resolution channels. The reconstruction residual of each image patch is used as the indicator for direct pixel-wise prediction. By segmenting and synthesizing the reconstruction residual map at each resolution level, the final inspection result can be generated. This newly developed method has several prominent advantages for fabric defect detection. First, it can be trained with only a small amount of defect-free samples. This is especially important for situations in which collecting large amounts of defective samples is difficult and impracticable. Second, owing to the multi-modal integration strategy, it is relatively more robust and accurate compared to general inspection methods (the results at each resolution level can be viewed as a modality). Third, according to our results, it can address multiple types of textile fabrics, from simple to more complex. Experimental results demonstrate that the proposed model is robust and yields good overall performance with high precision and acceptable recall rates.

  9. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  10. Real-Time Inspection Of Currency

    NASA Astrophysics Data System (ADS)

    Blazek, Henry

    1986-12-01

    An automatic inspection machine, designed and manufactured by the Perkin-Elmer Corporation for the U.S. Bureau of Engraving and Printing, is capable of real-time inspection of currency at rates compatible with the output of modern high-speed printing presses. Inspection is accomplished by comparing test notes (in 32-per-sheet format) with reference notes stored in the memory of a digital computer. This paper describes the development of algorithms for detecting defective notes, one of the key problems solved during the development of the inspection system. Results achieved on an analytical model, used for predicting probability of false alarms and probability of detecting typically defective notes, are compared to those obtained by system simulation.

  11. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector

    NASA Astrophysics Data System (ADS)

    Wang, Gaochao; Tse, Peter W.; Yuan, Maodan

    2018-02-01

    Visual inspection and assessment of the condition of metal structures are essential for safety. Pulse thermography produces visible infrared images, which have been widely applied to detect and characterize defects in structures and materials. When active thermography, a non-destructive testing tool, is applied, the necessity of considerable manual checking can be avoided. However, detecting an internal crack with active thermography remains difficult, since it is usually invisible in the collected sequence of infrared images, which makes the automatic detection of internal cracks even harder. In addition, the detection of an internal crack can be hindered by a complicated inspection environment. With the purpose of putting forward a robust and automatic visual inspection method, a computer vision-based thresholding method is proposed. In this paper, the image signals are a sequence of infrared images collected from the experimental setup with a thermal camera and two flash lamps as stimulus. The contrast of pixels in each frame is enhanced by the Canny operator and then reconstructed by a triple-threshold system. Two features, mean value in the time domain and maximal amplitude in the frequency domain, are extracted from the reconstructed signal to help distinguish the crack pixels from others. Finally, a binary image indicating the location of the internal crack is generated by a K-means clustering method. The proposed procedure has been applied to an iron pipe, which contains two internal cracks and surface abrasion. Some improvements have been made for the computer vision-based automatic crack detection methods. In the future, the proposed method can be applied to realize the automatic detection of internal cracks from many infrared images for the industry.

  12. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    PubMed Central

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  13. Robust automatic line scratch detection in films.

    PubMed

    Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick

    2014-03-01

    Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.

  14. Method of Testing Oxygen Regulators

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Borlik, E L

    1935-01-01

    Oxygen regulators are used in aircraft to regulate automatically the flow of oxygen to the pilot from a cylinder at pressures ranging up to 150 atmospheres. The instruments are adjusted to open at an altitude of about 15,000 ft. and thereafter to deliver oxygen at a rate which increases with the altitude. The instruments are tested to determine the rate of flow of oxygen delivered at various altitudes and to detect any mechanical defects which may exist. A method of testing oxygen regulators was desired in which the rate of flow could be determined more accurately than by the test method previously used (reference 1) and by which instruments defective mechanically could be detected. The new method of test fulfills these requirements.

  15. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  16. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  17. Eddy-Current Inspection Of Tab Seals On Beverage Cans

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1994-01-01

    Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.

  18. Automated grading, upgrading, and cuttings prediction of surfaced dry hardwood lumber

    Treesearch

    Sang-Mook Lee; Phil Araman; A.Lynn Abbott; Matthew F. Winn

    2010-01-01

    This paper concerns the scanning, sawing, and grading of kiln-dried hardwood lumber. A prototype system is described that uses laser sources and a video camera to scan boards. The system automatically detects defects and wane, searches for optimal sawing solutions, and then estimates the grades of the boards that would result. The goal is to derive maximum commercial...

  19. Hardwood lumber scanning tests to determine NHLA lumber grades

    Treesearch

    Philip A. Araman; Ssang-Mook Lee; A. Lynn Abbott; Matthew F. Winn

    2011-01-01

    This paper concerns the scanning, and grading of kiln-dried hardwood lumber. A prototype system is described that uses laser sources and a video camera to scan boards. The system automatically detects defects and wane, grades the boards, and then searches for higher value boards within the original board. The goal is to derive maximum commercial value based on current...

  20. An automatic detection method for the boiler pipe header based on real-time image acquisition

    NASA Astrophysics Data System (ADS)

    Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie

    2017-06-01

    Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  1. Ultrasonic detection technology based on joint robot on composite component with complex surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order tomore » express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.« less

  2. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame image is 2.39 ms. All the improvements have been verified in the paper to show the ability of our inspection method for optic cable.

  3. Automatic OPC repair flow: optimized implementation of the repair recipe

    NASA Astrophysics Data System (ADS)

    Bahnas, Mohamed; Al-Imam, Mohamed; Word, James

    2007-10-01

    Virtual manufacturing that is enabled by rapid, accurate, full-chip simulation is a main pillar in achieving successful mask tape-out in the cutting-edge low-k1 lithography. It facilitates detecting printing failures before a costly and time-consuming mask tape-out and wafer print occur. The OPC verification step role is critical at the early production phases of a new process development, since various layout patterns will be suspected that they might to fail or cause performance degradation, and in turn need to be accurately flagged to be fed back to the OPC Engineer for further learning and enhancing in the OPC recipe. At the advanced phases of the process development, there is much less probability of detecting failures but still the OPC Verification step act as the last-line-of-defense for the whole RET implemented work. In recent publication the optimum approach of responding to these detected failures was addressed, and a solution was proposed to repair these defects in an automated methodology and fully integrated and compatible with the main RET/OPC flow. In this paper the authors will present further work and optimizations of this Repair flow. An automated analysis methodology for root causes of the defects and classification of them to cover all possible causes will be discussed. This automated analysis approach will include all the learning experience of the previously highlighted causes and include any new discoveries. Next, according to the automated pre-classification of the defects, application of the appropriate approach of OPC repair (i.e. OPC knob) on each classified defect location can be easily selected, instead of applying all approaches on all locations. This will help in cutting down the runtime of the OPC repair processing and reduce the needed number of iterations to reach the status of zero defects. An output report for existing causes of defects and how the tool handled them will be generated. The report will with help further learning and facilitate the enhancement of the main OPC recipe. Accordingly, the main OPC recipe can be more robust, converging faster and probably in a fewer number of iterations. This knowledge feedback loop is one of the fruitful benefits of the Automatic OPC Repair flow.

  4. Improving reticle defect disposition via fully automated lithography simulation

    NASA Astrophysics Data System (ADS)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in-fab reticle qualification.

  5. Automated Inspection of Defects in Optical Fiber Connector End Face Using Novel Morphology Approaches.

    PubMed

    Mei, Shuang; Wang, Yudan; Wen, Guojun; Hu, Yang

    2018-05-03

    Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR), for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI), for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.

  6. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation

    PubMed Central

    Boya, Carlos; Parrado-Hernández, Emilio

    2017-01-01

    The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267

  7. Simulation supported POD for RT test case-concept and modeling

    NASA Astrophysics Data System (ADS)

    Gollwitzer, C.; Bellon, C.; Deresch, A.; Ewert, U.; Jaenisch, G.-R.; Zscherpel, U.; Mistral, Q.

    2012-05-01

    Within the framework of the European project PICASSO, the radiographic simulator aRTist (analytical Radiographic Testing inspection simulation tool) developed by BAM has been extended for reliability assessment of film and digital radiography. NDT of safety relevant components of aerospace industry requires the proof of probability of detection (POD) of the inspection. Modeling tools can reduce the expense of such extended, time consuming NDT trials, if the result of simulation fits to the experiment. Our analytic simulation tool consists of three modules for the description of the radiation source, the interaction of radiation with test pieces and flaws, and the detection process with special focus on film and digital industrial radiography. It features high processing speed with near-interactive frame rates and a high level of realism. A concept has been developed as well as a software extension for reliability investigations, completed by a user interface for planning automatic simulations with varying parameters and defects. Furthermore, an automatic image analysis procedure is included to evaluate the defect visibility. The radiographic modeling from 3D CAD of aero engine components and quality test samples are compared as a precondition for real trials. This enables the evaluation and optimization of film replacement for application of modern digital equipment for economical NDT and defined POD.

  8. A Big Data Analysis Approach for Rail Failure Risk Assessment.

    PubMed

    Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart

    2017-08-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  9. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    PubMed

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  10. Automatic visual monitoring of welding procedure in stainless steel kegs

    NASA Astrophysics Data System (ADS)

    Leo, Marco; Del Coco, Marco; Carcagnì, Pierluigi; Spagnolo, Paolo; Mazzeo, Pier Luigi; Distante, Cosimo; Zecca, Raffaele

    2018-05-01

    In this paper a system for automatic visual monitoring of welding process, in dry stainless steel kegs for food storage, is proposed. In the considered manufacturing process the upper and lower skirts are welded to the vessel by means of Tungsten Inert Gas (TIG) welding. During the process several problems can arise: 1) residuals on the bottom 2) darker weld 3) excessive/poor penetration and 4) outgrowths. The proposed system deals with all the four aforementioned problems and its inspection performances have been evaluated by using a large set of kegs demonstrating both the reliability in terms of defect detection and the suitability to be introduced in the manufacturing system in terms of computational costs.

  11. Device Rotates Bearing Balls For Inspection

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1988-01-01

    Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.

  12. Automatic red eye correction and its quality metric

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho

    2008-01-01

    The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.

  13. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, D.; Tavner, P.; Crabtree, C.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less

  14. Quantitative evaluation of skeletal muscle defects in second harmonic generation images.

    PubMed

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  15. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    NASA Astrophysics Data System (ADS)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  16. High-throughput automatic defect review for 300mm blank wafers with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2015-03-01

    While feature size in lithography process continuously becomes smaller, defect sizes on blank wafers become more comparable to device sizes. Defects with nm-scale characteristic size could be misclassified by automated optical inspection (AOI) and require post-processing for proper classification. Atomic force microscope (AFM) is known to provide high lateral and the highest vertical resolution by mechanical probing among all techniques. However, its low throughput and tip life in addition to the laborious efforts for finding the defects have been the major limitations of this technique. In this paper we introduce automatic defect review (ADR) AFM as a post-inspection metrology tool for defect study and classification for 300 mm blank wafers and to overcome the limitations stated above. The ADR AFM provides high throughput, high resolution, and non-destructive means for obtaining 3D information for nm-scale defect review and classification.

  17. Usefulness of automatic QT dispersion measurement for detecting exercise-induced myocardial ischemia.

    PubMed

    Takase, Bonpei; Masaki, Nobuyuki; Hattori, Hidemi; Ishihara, Masayuki; Kurita, Akira

    2009-06-01

    The electrocardiographic index of QT dispersion (QTd) is related to the occurrence of arrhythmia. In patients with suspected or known coronary artery disease, QTd may be affected by exercise. We investigated whether QTd that is automatically calculated by a newly developed computer system could be used as a marker of exercise-induced myocardial ischemia. The design of this study was prospective and observational. Eighty-three consecutive patients were enrolled in this study. Their QTd was measured at rest and after 3 min of exercise during exercise-stress Thallium-201 scintigraphy and compared with conventional ST-segment changes. The patients were classified into 4 groups (normal group, redistribution group, fixed defect group, redistribution with fixed defect group) based on the result of single photon emission computed tomography. As statistical analysis, one-way ANOVA with post-hoc Scheffe's method, receiver-operating characteristics (ROC) and multiple logistic regression analysis were performed. At rest, QTd was significantly greater (p<0.05) in the fixed defect group (52+/-21 ms) and the redistribution with fixed defect group (53+/-20 ms) than in the normal group (32+/-14 ms) and the redistribution group (31+/-16 ms). However, QTd tended to increase after exercise in the redistribution group, while QTd tended to decrease in the normal group, the fixed defect group, and the redistribution with fixed defect group (QTd after exercise, normal group, 28+/-17 ms, redistribution group, 35+/-19 ms, fixed defect group, 43+/-25 ms, redistribution with fixed defect group, 49+/-27 ms). Exercise significantly increased QTcd (RR interval-corrected QT dispersion) in the redistribution group. The best cut-off values of QTd and QTcd obtained from ROC curves for exercise-induced myocardial ischemia were 41.6 ms and 40.4 ms, respectively (Qtd--AUC 0.68, 95%CI 0.53- 0.83 and QTcd--AUC 0.67, 95%CI 0.55-0.80). Using these values as cut-off ones, QTd, QTcd, and conventional ST-segment change had comparable sensitivities and specificities for detecting exercise-induced myocardial ischemia (sensitivity - 60%, 58% and 49%, respectively;specificity - 78%, 80% and 83%, respectively). In addition, multiple logistic regression analysis showed that QTd (OR=2.01, 95%CI 1.15-4.10, p<0.05), QTcd (OR=2.12, 95% CI 1.02-4.30, p<0.05) and ST-segment change (OR=1.89, 95%CI 1.03-3.40, p<0.05), were the significantly associated with exercise-induced myocardial ischemia. QT dispersion and/or QTcd after exercise could be a useful marker for exercise-induced myocardial ischemia in routine clinical practice.

  18. Automated retinal nerve fiber layer defect detection using fundus imaging in glaucoma.

    PubMed

    Panda, Rashmi; Puhan, N B; Rao, Aparna; Padhy, Debananda; Panda, Ganapati

    2018-06-01

    Retinal nerve fiber layer defect (RNFLD) provides an early objective evidence of structural changes in glaucoma. RNFLD detection is currently carried out using imaging modalities like OCT and GDx which are expensive for routine practice. In this regard, we propose a novel automatic method for RNFLD detection and angular width quantification using cost effective redfree fundus images to be practically useful for computer-assisted glaucoma risk assessment. After blood vessel inpainting and CLAHE based contrast enhancement, the initial boundary pixels are identified by local minima analysis of the 1-D intensity profiles on concentric circles. The true boundary pixels are classified using random forest trained by newly proposed cumulative zero count local binary pattern (CZC-LBP) and directional differential energy (DDE) along with Shannon, Tsallis entropy and intensity features. Finally, the RNFLD angular width is obtained by random sample consensus (RANSAC) line fitting on the detected set of boundary pixels. The proposed method is found to achieve high RNFLD detection performance on a newly created dataset with sensitivity (SN) of 0.7821 at 0.2727 false positives per image (FPI) and the area under curve (AUC) value is obtained as 0.8733. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Automatic casting surface defect recognition and classification

    NASA Astrophysics Data System (ADS)

    Wong, Boon K.; Elliot, M. P.; Rapley, C. W.

    1995-03-01

    High integrity castings require surfaces free from defects to reduce, if not eliminate, vulnerability to component failure from such as physical or thermal fatigue or corrosion attack. Previous studies have shown that defects on casting surfaces can be optically enhanced from the surrounding randomly textured surface by liquid penetrants, magnetic particle and other methods. However, very little has been reported on recognition and classification of the defects. The basic problem is one of shape recognition and classification, where the shape can vary in size and orientation as well as in actual shape generally within an envelope that classifies it as a particular defect. The initial work done towards this has focused on recognizing and classifying standard shapes such as the circle, square, rectangle and triangle. Various approaches were tried and this led eventually to a series of fuzzy logic based algorithms from which very good results were obtained. From this work fuzzy logic memberships were generated for the detection of defects found on casting surfaces. Simulated model shapes of such as the quench crack, mechanical crack and hole have been used to test the generated algorithm and the results for recognition and classification are very encouraging.

  20. Real-time management of faulty electrodes in electrical impedance tomography.

    PubMed

    Hartinger, Alzbeta E; Guardo, Robert; Adler, Andy; Gagnon, Hervé

    2009-02-01

    Completely or partially disconnected electrodes are a fairly common occurrence in many electrical impedance tomography (EIT) clinical applications. Several factors can contribute to electrode disconnection: patient movement, perspiration, manipulations by clinical staff, and defective electrode leads or electronics. By corrupting several measurements, faulty electrodes introduce significant image artifacts. In order to properly manage faulty electrodes, it is necessary to: 1) account for invalid data in image reconstruction algorithms and 2) automatically detect faulty electrodes. This paper presents a two-part approach for real-time management of faulty electrodes based on the principle of voltage-current reciprocity. The first part allows accounting for faulty electrodes in EIT image reconstruction without a priori knowledge of which electrodes are at fault. The method properly weights each measurement according to its compliance with the principle of voltage-current reciprocity. Results show that the algorithm is able to automatically determine the valid portion of the data and use it to calculate high-quality images. The second part of the approach allows automatic real-time detection of at least one faulty electrode with 100% sensitivity and two faulty electrodes with 80% sensitivity enabling the clinical staff to fix the problem as soon as possible to minimize data loss.

  1. An intelligent system for real time automatic defect inspection on specular coated surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Parker, Johné M.; Hou, Zhen

    2005-07-01

    Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.

  2. Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model

    NASA Astrophysics Data System (ADS)

    Seifert, Eric; Roh, Young-Jung; Fritz, Andreas; Park, Young Gun; Kang, Seungbum; Theisen-Kunde, Dirk; Brinkmann, Ralf

    2013-06-01

    Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.

  3. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    NASA Technical Reports Server (NTRS)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  4. A Hessian-based methodology for automatic surface crack detection and classification from pavement images

    NASA Astrophysics Data System (ADS)

    Ghanta, Sindhu; Shahini Shamsabadi, Salar; Dy, Jennifer; Wang, Ming; Birken, Ralf

    2015-04-01

    Around 3,000,000 million vehicle miles are annually traveled utilizing the US transportation systems alone. In addition to the road traffic safety, maintaining the road infrastructure in a sound condition promotes a more productive and competitive economy. Due to the significant amounts of financial and human resources required to detect surface cracks by visual inspection, detection of these surface defects are often delayed resulting in deferred maintenance operations. This paper introduces an automatic system for acquisition, detection, classification, and evaluation of pavement surface cracks by unsupervised analysis of images collected from a camera mounted on the rear of a moving vehicle. A Hessian-based multi-scale filter has been utilized to detect ridges in these images at various scales. Post-processing on the extracted features has been implemented to produce statistics of length, width, and area covered by cracks, which are crucial for roadway agencies to assess pavement quality. This process has been realized on three sets of roads with different pavement conditions in the city of Brockton, MA. A ground truth dataset labeled manually is made available to evaluate this algorithm and results rendered more than 90% segmentation accuracy demonstrating the feasibility of employing this approach at a larger scale.

  5. Assessment of NDE reliability data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.

    1975-01-01

    Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.

  6. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben

    2015-08-01

    Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.

  7. Autonomous detection of ISO fade point with color laser printers

    NASA Astrophysics Data System (ADS)

    Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.

    2015-01-01

    Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.

  8. Towards Automatic Validation and Healing of Citygml Models for Geometric and Semantic Consistency

    NASA Astrophysics Data System (ADS)

    Alam, N.; Wagner, D.; Wewetzer, M.; von Falkenhausen, J.; Coors, V.; Pries, M.

    2013-09-01

    A steadily growing number of application fields for large 3D city models have emerged in recent years. Like in many other domains, data quality is recognized as a key factor for successful business. Quality management is mandatory in the production chain nowadays. Automated domain-specific tools are widely used for validation of business-critical data but still common standards defining correct geometric modeling are not precise enough to define a sound base for data validation of 3D city models. Although the workflow for 3D city models is well-established from data acquisition to processing, analysis and visualization, quality management is not yet a standard during this workflow. Processing data sets with unclear specification leads to erroneous results and application defects. We show that this problem persists even if data are standard compliant. Validation results of real-world city models are presented to demonstrate the potential of the approach. A tool to repair the errors detected during the validation process is under development; first results are presented and discussed. The goal is to heal defects of the models automatically and export a corrected CityGML model.

  9. Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements †

    PubMed Central

    2018-01-01

    Nowadays, there is a strong demand for inspection systems integrating both high sensitivity under various testing conditions and advanced processing allowing automatic identification of the examined object state and detection of threats. This paper presents the possibility of utilization of a magnetic multi-sensor matrix transducer for characterization of defected areas in steel elements and a deep learning based algorithm for integration of data and final identification of the object state. The transducer allows sensing of a magnetic vector in a single location in different directions. Thus, it enables detecting and characterizing any material changes that affect magnetic properties regardless of their orientation in reference to the scanning direction. To assess the general application capability of the system, steel elements with rectangular-shaped artificial defects were used. First, a database was constructed considering numerical and measurements results. A finite element method was used to run a simulation process and provide transducer signal patterns for different defect arrangements. Next, the algorithm integrating responses of the transducer collected in a single position was applied, and a convolutional neural network was used for implementation of the material state evaluation model. Then, validation of the obtained model was carried out. In this paper, the procedure for updating the evaluated local state, referring to the neighboring area results, is presented. Finally, the results and future perspective are discussed. PMID:29351215

  10. Nonlinear, non-stationary image processing technique for eddy current NDE

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita

    2012-05-01

    Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.

  11. Source Lines Counter (SLiC) Version 4.0

    NASA Technical Reports Server (NTRS)

    Monson, Erik W.; Smith, Kevin A.; Newport, Brian J.; Gostelow, Roli D.; Hihn, Jairus M.; Kandt, Ronald K.

    2011-01-01

    Source Lines Counter (SLiC) is a software utility designed to measure software source code size using logical source statements and other common measures for 22 of the programming languages commonly used at NASA and the aerospace industry. Such metrics can be used in a wide variety of applications, from parametric cost estimation to software defect analysis. SLiC has a variety of unique features such as automatic code search, automatic file detection, hierarchical directory totals, and spreadsheet-compatible output. SLiC was written for extensibility; new programming language support can be added with minimal effort in a short amount of time. SLiC runs on a variety of platforms including UNIX, Windows, and Mac OSX. Its straightforward command-line interface allows for customization and incorporation into the software build process for tracking development metrics. T

  12. Improving the Quality of Welding Seam of Automatic Welding of Buckets Based on TCP

    NASA Astrophysics Data System (ADS)

    Hu, Min

    2018-02-01

    Since February 2014, the welding defects of the automatic welding line of buckets have been frequently appeared. The average repair time of each bucket is 26min, which seriously affects the production efficiency and welding quality. We conducted troubleshooting, and found the main reasons for the welding defects of the buckets were the deviations of the center points of the robot tools and the poor quality of the locating welding. We corrected the gripper, welding torch, and accuracy of repeat positioning of robots to control the quality of positioning welding. The welding defect rate of buckets was reduced greatly, ensuring the production efficiency and welding quality.

  13. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  14. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  15. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  16. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  17. Development of an ultrasonic weld inspection system based on image processing and neural networks

    NASA Astrophysics Data System (ADS)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  18. Classification and printability of EUV mask defects from SEM images

    NASA Astrophysics Data System (ADS)

    Cho, Wonil; Price, Daniel; Morgan, Paul A.; Rost, Daniel; Satake, Masaki; Tolani, Vikram L.

    2017-10-01

    Classification and Printability of EUV Mask Defects from SEM images EUV lithography is starting to show more promise for patterning some critical layers at 5nm technology node and beyond. However, there still are many key technical obstacles to overcome before bringing EUV Lithography into high volume manufacturing (HVM). One of the greatest obstacles is manufacturing defect-free masks. For pattern defect inspections in the mask-shop, cutting-edge 193nm optical inspection tools have been used so far due to lacking any e-beam mask inspection (EBMI) or EUV actinic pattern inspection (API) tools. The main issue with current 193nm inspection tools is the limited resolution for mask dimensions targeted for EUV patterning. The theoretical resolution limit for 193nm mask inspection tools is about 60nm HP on masks, which means that main feature sizes on EUV masks will be well beyond the practical resolution of 193nm inspection tools. Nevertheless, 193nm inspection tools with various illumination conditions that maximize defect sensitivity and/or main-pattern modulation are being explored for initial EUV defect detection. Due to the generally low signal-to-noise in the 193nm inspection imaging at EUV patterning dimensions, these inspections often result in hundreds and thousands of defects which then need to be accurately reviewed and dispositioned. Manually reviewing each defect is difficult due to poor resolution. In addition, the lack of a reliable aerial dispositioning system makes it very challenging to disposition for printability. In this paper, we present the use of SEM images of EUV masks for higher resolution review and disposition of defects. In this approach, most of the defects detected by the 193nm inspection tools are first imaged on a mask SEM tool. These images together with the corresponding post-OPC design clips are provided to KLA-Tencor's Reticle Decision Center (RDC) platform which provides ADC (Automated Defect Classification) and S2A (SEM-to-Aerial printability) analysis of every defect. First, a defect-free or reference mask SEM is rendered from the post-OPC design, and the defective signature is detected from the defect-reference difference image. These signatures help assess the true nature of the defect as evident in e-beam imaging; for example, excess or missing absorber, line-edge roughness, contamination, etc. Next, defect and reference contours are extracted from the grayscale SEM images and fed into the simulation engine with an EUV scanner model to generate corresponding EUV defect and reference aerial images. These are then analyzed for printability and dispositioned using an Aerial Image Analyzer (AIA) application to automatically measure and determine the amount of CD errors. Thus by integrating EUV ADC and S2A applications together, every defect detection is characterized for its type and printability which is essential for not only determining which defects to repair, but also in monitoring the performance of EUV mask process tools. The accuracy of the S2A print modeling has been verified with other commercially-available simulators, and will also be verified with actual wafer print results. With EUV lithography progressing towards volume manufacturing at 5nm technology, and the likelihood of EBMI inspectors approaching the horizon, the EUV ADC-S2A system will continue serving an essential role of dispositioning defects off e-beam imaging.

  19. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  20. Automated spot defect characterization in a field portable night vision goggle test set

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen; Ozten, Metehan; Aubry, Gilles; Arquetoux, Guillaume

    2018-05-01

    This paper discusses a new capability developed for and results from a field portable test set for Gen 2 and Gen 3 Image Intensifier (I2) tube-based Night Vision Goggles (NVG). A previous paper described the test set and the automated and semi-automated tests supported for NVGs including a Knife Edge MTF test to replace the operator's interpretation of the USAF 1951 resolution chart. The major improvement and innovation detailed in this paper is the use of image analysis algorithms to automate the characterization of spot defects of I² tubes with the same test set hardware previously presented. The original and still common Spot Defect Test requires the operator to look through the NVGs at target of concentric rings; compare the size of the defects to a chart and manually enter the results into a table based on the size and location of each defect; this is tedious and subjective. The prior semi-automated improvement captures and displays an image of the defects and the rings; allowing the operator determine the defects with less eyestrain; while electronically storing the image and the resulting table. The advanced Automated Spot Defect Test utilizes machine vision algorithms to determine the size and location of the defects, generates the result table automatically and then records the image and the results in a computer-generated report easily usable for verification. This is inherently a more repeatable process that ensures consistent spot detection independent of the operator. Results of across several NVGs will be presented.

  1. Mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images

    NASA Astrophysics Data System (ADS)

    Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María

    2009-02-01

    Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.

  2. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  3. A Machine Vision System for Automatically Grading Hardwood Lumber - (Proceedings)

    Treesearch

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; Philip A. Araman; Robert L. Brisbon

    1990-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  4. Increasing reticle inspection efficiency and reducing wafer printchecks at 14nm using automated defect classification and simulation

    NASA Astrophysics Data System (ADS)

    Paracha, Shazad; Goodman, Eliot; Eynon, Benjamin G.; Noyes, Ben F.; Ha, Steven; Kim, Jong-Min; Lee, Dong-Seok; Lee, Dong-Heok; Cho, Sang-Soo; Ham, Young M.; Vacca, Anthony D.; Fiekowsky, Peter J.; Fiekowsky, Daniel I.

    2014-10-01

    IC fabs inspect critical masks on a regular basis to ensure high wafer yields. These requalification inspections are costly for many reasons including the capital equipment, system maintenance, and labor costs. In addition, masks typically remain in the "requal" phase for extended, non-productive periods of time. The overall "requal" cycle time in which reticles remain non-productive is challenging to control. Shipping schedules can slip when wafer lots are put on hold until the master critical layer reticle is returned to production. Unfortunately, substituting backup critical layer reticles can significantly reduce an otherwise tightly controlled process window adversely affecting wafer yields. One major requal cycle time component is the disposition process of mask inspections containing hundreds of defects. Not only is precious non-productive time extended by reviewing hundreds of potentially yield-limiting detections, each additional classification increases the risk of manual review techniques accidentally passing real yield limiting defects. Even assuming all defects of interest are flagged by operators, how can any person's judgment be confident regarding lithographic impact of such defects? The time reticles spend away from scanners combined with potential yield loss due to lithographic uncertainty presents significant cycle time loss and increased production costs An automatic defect analysis system (ADAS), which has been in fab production for numerous years, has been improved to handle the new challenges of 14nm node automate reticle defect classification by simulating each defect's printability under the intended illumination conditions. In this study, we have created programmed defects on a production 14nm node critical-layer reticle. These defects have been analyzed with lithographic simulation software and compared to the results of both AIMS optical simulation and to actual wafer prints.

  5. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images

    PubMed Central

    Ortega-Terol, Damian; Ballesteros, Rocio

    2017-01-01

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology. PMID:29036930

  6. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.

    PubMed

    Ortega-Terol, Damian; Hernandez-Lopez, David; Ballesteros, Rocio; Gonzalez-Aguilera, Diego

    2017-10-15

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology.

  7. Fault prevention by early stage symptoms detection for automatic vehicle transmission using pattern recognition and curve fitting

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Cruz, Febus Reidj G.; Abu, Jon Ervin A.; Siño, Carlo G.; Ubaldo, Paolo E.; Zulueta, Christelle Jianne T.

    2017-06-01

    Automobiles have become essential parts of our everyday lives. It can correlate many factors that may affect a vehicle primarily those which may inconvenient or in some cases harm lives or properties. Thus, focusing on detecting an automatic transmission vehicle engine, body and other parts that cause vibration and sound may help prevent car problems using MATLAB. By using sound, vibration, and temperature sensors to detect the defects of the car and with the help of the transmitter and receiver to gather data wirelessly, it is easy to install on to the vehicle. A technique utilized from Toyota Balintawak Philippines that every car is treated as panels(a, b, c, d, and e) 'a' being from the hood until the front wheel of the car and 'e' the rear shield to the back of the car, this was applied on how to properly place the sensors so that precise data could be gathered. Data gathered would be compared to the normal graph taken from the normal status or performance of a vehicle, data that would surpass 50% of the normal graph would be considered that a problem has occurred. The system is designed to prevent car accidents by determining the current status or performance of the vehicle, also keeping people away from harm.

  8. Automatic defects recognition in composite aerospace structures from experimental and theoretical analysis as part of an intelligent infrared thermographic inspection system

    NASA Astrophysics Data System (ADS)

    David, Denis G. F.; Marin, J. Y.; Tretout, Herve R.

    An original concept for IR thermography nondestructive testing is validated. The principles of image and data processing investigated and developed as well as the utilization of AI should be transposable to other nondestructive techniques such as ultrasounds and X-rays. It is shown that modeling can be used in different ways to play a great part in the detection, the interpretation, and the sizing of the defects. The original concept lies in the comparison of experimental data with theoretical ones in order to identify regions of abnormal behavior related to defects. A Laplace transforms analytical method is successfully implemented in the case of composite materials such as graphite epoxy to identify a set of thermal parameters which contributes to the expertise. This approach is extended to a more complicated composite material such as Kevlar, which presents semitransparent characteristics. This modeling technique, which expresses experimental data in terms of thermal parameters, makes it possible to increase SNR and reduce the number of thermal images to be processed.

  9. Automatic defects recognition in composite aerospace structures from experimental and theoretical analysis as part of an intelligent infrared thermographic inspection system

    NASA Astrophysics Data System (ADS)

    David, D.; Marin, J. Y.; Tretout, H.

    1992-04-01

    An original concept for IR thermography nondestructive testing is validated. The principles of image and data processing investigated and developed as well as the utilization of AI should be transposable to other nondestructive techniques such as ultrasounds and X-rays. It is shown that modeling can be used in different ways to play a great part in the detection, the interpretation, and the sizing of the defects. The original concept lies in the comparison of experimental data with theoretical ones in order to identify regions of abnormal behavior related to defects. A Laplace transforms analytical method is successfully implemented in the case of composite materials such as graphite epoxy to identify a set of thermal parameters which contributes to the expertise. This approach is extended to a more complicated composite material such as Kevlar, which presents semitransparent characteristics. This modeling technique, which expresses experimental data in terms of thermal parameters, makes it possible to increase SNR and reduce the number of thermal images to be processed.

  10. Statistical Methods in Assembly Quality Management of Multi-Element Products on Automatic Rotor Lines

    NASA Astrophysics Data System (ADS)

    Pries, V. V.; Proskuriakov, N. E.

    2018-04-01

    To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.

  11. A Machine Vision System for Automatically Grading Hardwood Lumber - (Industrial Metrology)

    Treesearch

    Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas T. Drayer; Philip A. Araman; Robert L. Brisbon

    1992-01-01

    Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...

  12. Automation of the Image Analysis for Thermographic Inspection

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1998-01-01

    Several data processing procedures for the pulse thermal inspection require preliminary determination of an unflawed region. Typically, an initial analysis of the thermal images is performed by an operator to determine the locations of unflawed and the defective areas. In the present work an algorithm is developed for automatically determining a reference point corresponding to an unflawed region. Results are obtained for defects which are arbitrarily located in the inspection region. A comparison is presented of the distributions of derived values with right and wrong localization of the reference point. Different algorithms of automatic determination of the reference point are compared.

  13. Detection and Length Estimation of Linear Scratch on Solid Surfaces Using an Angle Constrained Ant Colony Technique

    NASA Astrophysics Data System (ADS)

    Pal, Siddharth; Basak, Aniruddha; Das, Swagatam

    In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.

  14. A system for automatic analysis of blood pressure data for digital computer entry

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1972-01-01

    Operation of automatic blood pressure data system is described. Analog blood pressure signal is analyzed by three separate circuits, systolic, diastolic, and cycle defect. Digital computer output is displayed on teletype paper tape punch and video screen. Illustration of system is included.

  15. Computerized image analysis for quantitative neuronal phenotyping in zebrafish.

    PubMed

    Liu, Tianming; Lu, Jianfeng; Wang, Ye; Campbell, William A; Huang, Ling; Zhu, Jinmin; Xia, Weiming; Wong, Stephen T C

    2006-06-15

    An integrated microscope image analysis pipeline is developed for automatic analysis and quantification of phenotypes in zebrafish with altered expression of Alzheimer's disease (AD)-linked genes. We hypothesize that a slight impairment of neuronal integrity in a large number of zebrafish carrying the mutant genotype can be detected through the computerized image analysis method. Key functionalities of our zebrafish image processing pipeline include quantification of neuron loss in zebrafish embryos due to knockdown of AD-linked genes, automatic detection of defective somites, and quantitative measurement of gene expression levels in zebrafish with altered expression of AD-linked genes or treatment with a chemical compound. These quantitative measurements enable the archival of analyzed results and relevant meta-data. The structured database is organized for statistical analysis and data modeling to better understand neuronal integrity and phenotypic changes of zebrafish under different perturbations. Our results show that the computerized analysis is comparable to manual counting with equivalent accuracy and improved efficacy and consistency. Development of such an automated data analysis pipeline represents a significant step forward to achieve accurate and reproducible quantification of neuronal phenotypes in large scale or high-throughput zebrafish imaging studies.

  16. R-on-1 automatic mapping: A new tool for laser damage testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Garrec, P.; Dijon, J.

    1996-12-31

    Laser damage threshold measurement is statistical in nature. For a commercial qualification or for a user, the threshold determined by the weakest point is a satisfactory characterization. When a new coating is designed, threshold mapping is very useful. It enables the technology to be improved and followed more accurately. Different statistical parameters such as the minimum, maximum, average, and standard deviation of the damage threshold as well as spatial parameters such as the threshold uniformity of the coating can be determined. Therefore, in order to achieve a mapping, all the tested sites should give data. This is the major interestmore » of the R-on-1 test in spite of the fact that the laser damage threshold obtained by this method may be different from the 1-on-1 test (smaller or greater). Moreover, on the damage laser test facility, the beam size is smaller (diameters of a few hundred micrometers) than the characteristic sizes of the components in use (diameters of several centimeters up to one meter). Hence, a laser damage threshold mapping appears very interesting, especially for applications linked to large optical components like the Megajoule project or the National Ignition Facility (N.I.F). On the test bench used, damage detection with a Nomarski microscope and scattered light measurement are almost equivalent. Therefore, it becomes possible to automatically detect on line the first defects induced by YAG irradiation. Scattered light mappings and laser damage threshold mappings can therefore be achieved using a X-Y automatic stage (where the test sample is located). The major difficulties due to the automatic capabilities are shown. These characterizations are illustrated at 355 nm. The numerous experiments performed show different kinds of scattering curves, which are discussed in relation with the damage mechanisms.« less

  17. A Performance Evaluation of a Lean Reparable Pipeline in Various Demand Environments

    DTIC Science & Technology

    2004-03-23

    of defects (Dennis, 2002:90). Shingo espoused the true goal should be zero defects and to this end, invented the poka - yoke , or a simple, inexpensive...92). Despite the inability to eliminate human errors, poka - yoke devices can still enable the elimination of production defects (Dennis, 2002:91... Poka - yoke devices are essentially foolproofing mechanisms which incorporate automatic inspection into the production process. Despite the fact

  18. Self-healing of damage inside metals triggered by electropulsing stimuli.

    PubMed

    Song, Hui; Wang, Zhong-Jin; He, Xiao-Dong; Duan, Jie

    2017-08-02

    The microscopic defects that distributed randomly in metals are not only hard to detect, but also may inevitably cause catastrophic failure. Thus, autonomic probing and healing for damage inside metals continue to be a challenging. Here we show a novel approach for self-healing using electropulsing as a stimulus to trigger repairing of damaged metals. This is achieved via a process that through expelling absolutely currents, the microcrack causes them to be redistributed to form a concentrated and a diluted region around it, thereby inducing an extremely high temperature gradient and a large compressive stress, which drive material flow to close microcracks. Simultaneously, a large enough heat for bonding atoms was produced. That is, the microcrack as an empty cavity can be regarded as a special micro-device to shape a localized microscopic energy field, which in turn activates a healing process. The microstructure and mechanical property verified the extrinsic self-healing of a titanium alloy. The process is performed on a short timescale, is enable to detect automatically and act directly on the internal defects in metals, and to heal damage without any healing agent, long time heating as well as applied high pressure, offering unique advantages over conventional healing approaches.

  19. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  20. Structure and yarn sensor for fabric

    DOEpatents

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  1. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts printability of defects at wafer level and automates the process of defect dispositioning from images captured using high resolution inspection machine. It first eliminates false defects due to registration, focus errors, image capture errors and random noise caused during inspection. For the remaining real defects, actual mask-like contours are generated using the Calibre® ILT solution [1][2], which is enhanced to predict the actual mask contours from high resolution defect images. It enables accurate prediction of defect contours, which is not possible from images captured using inspection machine because some information is already lost due to optical effects. Calibre's simulation engine is used to generate images at wafer level using scanner optical conditions and mask-like contours as input. The tool then analyses simulated images and predicts defect printability. It automatically calculates maximum CD variation and decides which defects are severe to affect patterns on wafer. In this paper, we assess the printability of defects for the mask of advanced technology nodes. In particular, we will compare the recovered mask contours with contours extracted from SEM image of the mask and compare simulation results with AIMSTM for a variety of defects and patterns. The results of printability assessment and the accuracy of comparison are presented in this paper. We also suggest how this method can be extended to predict printability of defects identified on EUV photomasks.

  2. 46 CFR 161.002-9 - Automatic fire detecting system, power supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire detecting...

  3. 46 CFR 161.002-9 - Automatic fire detecting system, power supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire detecting...

  4. Application test of a Detection Method for the Enclosed Turbine Runner Chamber

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Shen, Dingjie; Xie, Yi; Yang, Xiangwei; Long, Yi; Li, Wenbo

    2017-06-01

    At present, for the existing problems of the testing methods for the key hidden metal components of the turbine runner chamber, such as the poor reliability, the inaccurate locating and the larger detection blind spots of the detection device, under the downtime without opening the cover of the hydropower turbine runner chamber, an automatic detection method based on real-time image acquisition and simulation comparison techniques was proposed. By using the permanent magnet wheel, the magnetic crawler which carry the real-time image acquisition device, could complete the crawling work on the inner surface of the enclosed chamber. Then the image acquisition device completed the real-time collection of the scene image of the enclosed chamber. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  5. Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease

    PubMed Central

    Virgincar, Rohan S.; Cleveland, Zackary I.; Kaushik, S. Sivaram; Freeman, Matthew S.; Nouls, John; Cofer, Gary P.; Martinez-Jimenez, Santiago; He, Mu; Kraft, Monica; Wolber, Jan; McAdams, H. Page; Driehuys, Bastiaan

    2013-01-01

    In this study, hyperpolarized (HP) 129Xe MR ventilation and 1H anatomical images were obtained from 3 subject groups: young healthy volunteers (HV), subjects with chronic obstructive pulmonary disease (COPD), and age-matched control subjects (AMC). Ventilation images were quantified by 2 methods: an expert reader-based ventilation defect score percentage (VDS%) and a semi-automatic segmentation-based ventilation defect percentage (VDP). Reader-based values were assigned by two experienced radiologists and resolved by consensus. In the semi-automatic analysis, 1H anatomical images and 129Xe ventilation images were both segmented following registration, to obtain the thoracic cavity volume (TCV) and ventilated volume (VV), respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the TCV, and heterogeneity was analyzed using the coefficient of variation (CV). The reader-based VDS% correlated strongly with the semi-automatically generated VDP (r = 0.97, p < 0.0001), and with CV (r = 0.82, p < 0.0001). Both 129Xe ventilation defect scoring metrics readily separated the 3 groups from one another and correlated significantly with FEV1 (VDS%: r = -0.78, p = 0.0002; VDP: r = -0.79, p = 0.0003; CV: r = -0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HV and AMC), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between COPD subjects with similar ventilation defect scores but visibly different ventilation patterns. PMID:23065808

  6. Laser-based structural sensing and surface damage detection

    NASA Astrophysics Data System (ADS)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.

  7. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.123 Defective couplers. A railroad may not place or continue in service a car, if— (a) The car is... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction...

  8. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.123 Defective couplers. A railroad may not place or continue in service a car, if— (a) The car is... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction...

  9. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.123 Defective couplers. A railroad may not place or continue in service a car, if— (a) The car is... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction...

  10. Log Defect Recognition Using CT-images and Neural Net Classifiers

    Treesearch

    Daniel L. Schmoldt; Pei Li; A. Lynn Abbott

    1995-01-01

    Although several approaches have been introduced to automatically identify internal log defects using computed tomography (CT) imagery, most of these have been feasibility efforts and consequently have had several limitations: (1) reports of classification accuracy are largely subjective, not statistical, (2) there has been no attempt to achieve real-time operation,...

  11. Spectroscopic analysis technique for arc-welding process control

    NASA Astrophysics Data System (ADS)

    Mirapeix, Jesús; Cobo, Adolfo; Conde, Olga; Quintela, María Ángeles; López-Higuera, José-Miguel

    2005-09-01

    The spectroscopic analysis of the light emitted by thermal plasmas has found many applications, from chemical analysis to monitoring and control of industrial processes. Particularly, it has been demonstrated that the analysis of the thermal plasma generated during arc or laser welding can supply information about the process and, thus, about the quality of the weld. In some critical applications (e.g. the aerospace sector), an early, real-time detection of defects in the weld seam (oxidation, porosity, lack of penetration, ...) is highly desirable as it can reduce expensive non-destructive testing (NDT). Among others techniques, full spectroscopic analysis of the plasma emission is known to offer rich information about the process itself, but it is also very demanding in terms of real-time implementations. In this paper, we proposed a technique for the analysis of the plasma emission spectrum that is able to detect, in real-time, changes in the process parameters that could lead to the formation of defects in the weld seam. It is based on the estimation of the electronic temperature of the plasma through the analysis of the emission peaks from multiple atomic species. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, we employ the LPO (Linear Phase Operator) sub-pixel algorithm to accurately estimate the central wavelength of the peaks (allowing an automatic identification of each atomic species) and cubic-spline interpolation of the noisy data to obtain the intensity and width of the peaks. Experimental tests on TIG-welding using fiber-optic capture of light and a low-cost CCD-based spectrometer, show that some typical defects can be easily detected and identified with this technique, whose typical processing time for multiple peak analysis is less than 20msec. running in a conventional PC.

  12. Automated Grading of Rough Hardwood Lumber

    Treesearch

    Richard W. Conners; Tai-Hoon Cho; Philip A. Araman

    1989-01-01

    Any automatic hardwood grading system must have two components. The first of these is a computer vision system for locating and identifying defects on rough lumber. The second is a system for automatically grading boards based on the output of the computer vision system. This paper presents research results aimed at developing the first of these components. The...

  13. Automatic inspection system for nuclear fuel pellets or rods

    DOEpatents

    Miller, Jr., William H.; Sease, John D.; Hamel, William R.; Bradley, Ronnie A.

    1978-01-01

    An automatic inspection system is provided for determining surface defects on cylindrical objects such as nuclear fuel pellets or rods. The active element of the system is a compound ring having a plurality of pneumatic jet units directed into a central bore. These jet units are connected to provide multiple circuits, each circuit being provided with a pressure sensor. The outputs of the sensors are fed to a comparator circuit whereby a signal is generated when the difference of pressure between pneumatic circuits, caused by a defect, exceeds a pre-set amount. This signal may be used to divert the piece being inspected into a "reject" storage bin or the like.

  14. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  15. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  16. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  17. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  18. 46 CFR 78.47-13 - Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...

  19. Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2017-01-01

    The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.

  20. Supersymmetric k-defects

    DOE PAGES

    Koehn, Michael; Trodden, Mark

    2016-03-03

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. Furthermore, we find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  1. 46 CFR 161.002-2 - Types of fire-protective systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...

  2. 46 CFR 161.002-2 - Types of fire-protective systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...

  3. One-Sided Measurement Approach on Ultrasonic Beam Path Analysis in CFRP Composite Laminates

    NASA Astrophysics Data System (ADS)

    Im, K. H.; Hsu, D. K.; Kim, H. J.; Song, S. J.; Dayal, V.; Barnard, D.; Park, J. W.; Lee, K. S.; Yang, Y. J.; Yang, I. Y.

    2008-02-01

    Composite materials are attractive for a wide range of applications because of high performance engineering structures. In particular, the importance of carbon-fiber reinforced plastics (CFRP) has been generally recognized in both space and civil aircraft industries; so, CFRP composite laminates are widely used. It is very important to detect defects in composite laminates because they cause the mechanical properties (stiffness, strength) of the laminate to be reduced. As well known for ultrasonic technique for evaluating the defect of CFRP composite laminates, a pitch-catch technique was found to be more practical than normal incidence backwall echo of longitudinal wave to arbitrary flaws in the composite, including fiber orientation, low level porosity, ply waviness, and cracks. The measurement depth using Rayleigh probes can be increased by increasing the separation distance of the transmitting and receiving probes. Also, with the aid of the automatic scanner, the one-sided pitch-catch probe was used to produce C-scan images for mapping out the images with beam profiles. Especially pitch-catch beam path was nondestructively characterized for the specimens when measuring a peak-to-peak amplitude and time-of-flight in order to build the beam profile modeling in the unidirectional CFRP composite laminates. Also, the pitch-catch simulation was performed to predict the beam profile trend of wave propagation in the unidirectional CF/Epoxy composite laminates. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with simulated results and one-side ultrasonic measurement might be very useful to detect the defects in CFRP composites.

  4. Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces

    NASA Astrophysics Data System (ADS)

    Polzleitner, Wolfgang; Schwingshakl, Gert

    2004-10-01

    We describe a scanning system developed for the classification and grading of surfaces of wooden tiles. The system uses color imaging sensors to analyse the surfaces of either hard- or softwood material in terms of the texture formed by grain lines (orientation, spatial frequency, and color), various types of colorization, and other defects like knots, heart wood, cracks, holes, etc. The analysis requires two major tracks: the assignment of a tile to its texture class (like A, B, C, 1, 2, 3, Waste), and the detection of defects that decrease the commercial value of the tile (heart wood, knots, etc.). The system was initially developed under the international IMS program (Intelligent Manufacturing Systems) by an industry consortium. During the last two years it has been further developed, and several industrial systems have been installed, and are presently used in production of hardwood flooring. The methods implemented reflect some of the latest developments in the field of pattern recognition: genetic feature selection, two-dimensional second order statistics, special color space transforms, and classification by neural networks. In the industrial scenario we describe, many of the features defining a class cannot be described mathematically. Consequently a focus was the design of a learning architecture, where prototype texture samples are presented to the system, which then automatically finds the internal representation necessary for classification. The methods used in this approach have a wide applicability to problems of inspection, sorting, and optimization of high-value material typically used in the furniture, flooring, and related wood manufacturing industries.

  5. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform.

    PubMed

    Sun, Shuping; Jiang, Zhongwei; Wang, Haibin; Fang, Yu

    2014-05-01

    This paper proposes a novel automatic method for the moment segmentation and peak detection analysis of heart sound (HS) pattern, with special attention to the characteristics of the envelopes of HS and considering the properties of the Hilbert transform (HT). The moment segmentation and peak location are accomplished in two steps. First, by applying the Viola integral waveform method in the time domain, the envelope (E(T)) of the HS signal is obtained with an emphasis on the first heart sound (S1) and the second heart sound (S2). Then, based on the characteristics of the E(T) and the properties of the HT of the convex and concave functions, a novel method, the short-time modified Hilbert transform (STMHT), is proposed to automatically locate the moment segmentation and peak points for the HS by the zero crossing points of the STMHT. A fast algorithm for calculating the STMHT of E(T) can be expressed by multiplying the E(T) by an equivalent window (W(E)). According to the range of heart beats and based on the numerical experiments and the important parameters of the STMHT, a moving window width of N=1s is validated for locating the moment segmentation and peak points for HS. The proposed moment segmentation and peak location procedure method is validated by sounds from Michigan HS database and sounds from clinical heart diseases, such as a ventricular septal defect (VSD), an aortic septal defect (ASD), Tetralogy of Fallot (TOF), rheumatic heart disease (RHD), and so on. As a result, for the sounds where S2 can be separated from S1, the average accuracies achieved for the peak of S1 (AP₁), the peak of S2 (AP₂), the moment segmentation points from S1 to S2 (AT₁₂) and the cardiac cycle (ACC) are 98.53%, 98.31% and 98.36% and 97.37%, respectively. For the sounds where S1 cannot be separated from S2, the average accuracies achieved for the peak of S1 and S2 (AP₁₂) and the cardiac cycle ACC are 100% and 96.69%. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Computer systems for automatic earthquake detection

    USGS Publications Warehouse

    Stewart, S.W.

    1974-01-01

    U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously. 

  7. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  8. On a New Optimization Approach for the Hydroforming of Defects-Free Tubular Metallic Parts

    NASA Astrophysics Data System (ADS)

    Caseiro, J. F.; Valente, R. A. F.; Andrade-Campos, A.; Jorge, R. M. Natal

    2011-05-01

    In the hydroforming of tubular metallic components, process parameters (internal pressure, axial feed and counter-punch position) must be carefully set in order to avoid defects in the final part. If, on one hand, excessive pressure may lead to thinning and bursting during forming, on the other hand insufficient pressure may lead to an inadequate filling of the die. Similarly, an excessive axial feeding may lead to the formation of wrinkles, whilst an inadequate one may cause thinning and, consequentially, bursting. These apparently contradictory targets are virtually impossible to achieve without trial-and-error procedures in industry, unless optimization approaches are formulated and implemented for complex parts. In this sense, an optimization algorithm based on differentialevolutionary techniques is presented here, capable of being applied in the determination of the adequate process parameters for the hydroforming of metallic tubular components of complex geometries. The Hybrid Differential Evolution Particle Swarm Optimization (HDEPSO) algorithm, combining the advantages of a number of well-known distinct optimization strategies, acts along with a general purpose implicit finite element software, and is based on the definition of a wrinkling and thinning indicators. If defects are detected, the algorithm automatically corrects the process parameters and new numerical simulations are performed in real time. In the end, the algorithm proved to be robust and computationally cost-effective, thus providing a valid design tool for the conformation of defects-free components in industry [1].

  9. Solid State Lighting Program (Falcon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less

  10. Automatic allograft bone selection through band registration and its application to distal femur.

    PubMed

    Zhang, Yu; Qiu, Lei; Li, Fengzan; Zhang, Qing; Zhang, Li; Niu, Xiaohui

    2017-09-01

    Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.

  11. Automatic detection of confusion in elderly users of a web-based health instruction video.

    PubMed

    Postma-Nilsenová, Marie; Postma, Eric; Tates, Kiek

    2015-06-01

    Because of cognitive limitations and lower health literacy, many elderly patients have difficulty understanding verbal medical instructions. Automatic detection of facial movements provides a nonintrusive basis for building technological tools supporting confusion detection in healthcare delivery applications on the Internet. Twenty-four elderly participants (70-90 years old) were recorded while watching Web-based health instruction videos involving easy and complex medical terminology. Relevant fragments of the participants' facial expressions were rated by 40 medical students for perceived level of confusion and analyzed with automatic software for facial movement recognition. A computer classification of the automatically detected facial features performed more accurately and with a higher sensitivity than the human observers (automatic detection and classification, 64% accuracy, 0.64 sensitivity; human observers, 41% accuracy, 0.43 sensitivity). A drill-down analysis of cues to confusion indicated the importance of the eye and eyebrow region. Confusion caused by misunderstanding of medical terminology is signaled by facial cues that can be automatically detected with currently available facial expression detection technology. The findings are relevant for the development of Web-based services for healthcare consumers.

  12. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  13. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Zhao, Xiaoliang; Qian, Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-03-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained.

  14. Diagnostic accuracy of semi-automatic quantitative metrics as an alternative to expert reading of CT myocardial perfusion in the CORE320 study.

    PubMed

    Ostovaneh, Mohammad R; Vavere, Andrea L; Mehra, Vishal C; Kofoed, Klaus F; Matheson, Matthew B; Arbab-Zadeh, Armin; Fujisawa, Yasuko; Schuijf, Joanne D; Rochitte, Carlos E; Scholte, Arthur J; Kitagawa, Kakuya; Dewey, Marc; Cox, Christopher; DiCarli, Marcelo F; George, Richard T; Lima, Joao A C

    To determine the diagnostic accuracy of semi-automatic quantitative metrics compared to expert reading for interpretation of computed tomography perfusion (CTP) imaging. The CORE320 multicenter diagnostic accuracy clinical study enrolled patients between 45 and 85 years of age who were clinically referred for invasive coronary angiography (ICA). Computed tomography angiography (CTA), CTP, single photon emission computed tomography (SPECT), and ICA images were interpreted manually in blinded core laboratories by two experienced readers. Additionally, eight quantitative CTP metrics as continuous values were computed semi-automatically from myocardial and blood attenuation and were combined using logistic regression to derive a final quantitative CTP metric score. For the reference standard, hemodynamically significant coronary artery disease (CAD) was defined as a quantitative ICA stenosis of 50% or greater and a corresponding perfusion defect by SPECT. Diagnostic accuracy was determined by area under the receiver operating characteristic curve (AUC). Of the total 377 included patients, 66% were male, median age was 62 (IQR: 56, 68) years, and 27% had prior myocardial infarction. In patient based analysis, the AUC (95% CI) for combined CTA-CTP expert reading and combined CTA-CTP semi-automatic quantitative metrics was 0.87(0.84-0.91) and 0.86 (0.83-0.9), respectively. In vessel based analyses the AUC's were 0.85 (0.82-0.88) and 0.84 (0.81-0.87), respectively. No significant difference in AUC was found between combined CTA-CTP expert reading and CTA-CTP semi-automatic quantitative metrics in patient based or vessel based analyses(p > 0.05 for all). Combined CTA-CTP semi-automatic quantitative metrics is as accurate as CTA-CTP expert reading to detect hemodynamically significant CAD. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  15. Study on on-machine defects measuring system on high power laser optical elements

    NASA Astrophysics Data System (ADS)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  16. Differences between automatically detected and steady-state fractional flow reserve.

    PubMed

    Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht

    2016-02-01

    Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.

  17. Development of high sensitivity and high speed large size blank inspection system LBIS

    NASA Astrophysics Data System (ADS)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  18. Crack detection in oak flooring lamellae using ultrasound-excited thermography

    NASA Astrophysics Data System (ADS)

    Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle

    2018-01-01

    Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).

  19. Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer

    DTIC Science & Technology

    2016-06-01

    TECHNICAL REPORT Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar...Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer Leon Vaizer, Jesse Angle, Neil...of Magnetic Dipole Targets Using LSG i June 2016 TABLE OF CONTENTS INTRODUCTION

  20. Semi-automatic mapping of cultural heritage from airborne laser scanning using deep learning

    NASA Astrophysics Data System (ADS)

    Due Trier, Øivind; Salberg, Arnt-Børre; Holger Pilø, Lars; Tonning, Christer; Marius Johansen, Hans; Aarsten, Dagrun

    2016-04-01

    This paper proposes to use deep learning to improve semi-automatic mapping of cultural heritage from airborne laser scanning (ALS) data. Automatic detection methods, based on traditional pattern recognition, have been applied in a number of cultural heritage mapping projects in Norway for the past five years. Automatic detection of pits and heaps have been combined with visual interpretation of the ALS data for the mapping of deer hunting systems, iron production sites, grave mounds and charcoal kilns. However, the performance of the automatic detection methods varies substantially between ALS datasets. For the mapping of deer hunting systems on flat gravel and sand sediment deposits, the automatic detection results were almost perfect. However, some false detections appeared in the terrain outside of the sediment deposits. These could be explained by other pit-like landscape features, like parts of river courses, spaces between boulders, and modern terrain modifications. However, these were easy to spot during visual interpretation, and the number of missed individual pitfall traps was still low. For the mapping of grave mounds, the automatic method produced a large number of false detections, reducing the usefulness of the semi-automatic approach. The mound structure is a very common natural terrain feature, and the grave mounds are less distinct in shape than the pitfall traps. Still, applying automatic mound detection on an entire municipality did lead to a new discovery of an Iron Age grave field with more than 15 individual mounds. Automatic mound detection also proved to be useful for a detailed re-mapping of Norway's largest Iron Age grave yard, which contains almost 1000 individual graves. Combined pit and mound detection has been applied to the mapping of more than 1000 charcoal kilns that were used by an iron work 350-200 years ago. The majority of charcoal kilns were indirectly detected as either pits on the circumference, a central mound, or both. However, kilns with a flat interior and a shallow ditch along the circumference were often missed by the automatic detection method. The successfulness of automatic detection seems to depend on two factors: (1) the density of ALS ground hits on the cultural heritage structures being sought, and (2) to what extent these structures stand out from natural terrain structures. The first factor may, to some extent, be improved by using a higher number of ALS pulses per square meter. The second factor is difficult to change, and also highlights another challenge: how to make a general automatic method that is applicable in all types of terrain within a country. The mixed experience with traditional pattern recognition for semi-automatic mapping of cultural heritage led us to consider deep learning as an alternative approach. The main principle is that a general feature detector has been trained on a large image database. The feature detector is then tailored to a specific task by using a modest number of images of true and false examples of the features being sought. Results of using deep learning are compared with previous results using traditional pattern recognition.

  1. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  2. Defect inspection and printability study for 14 nm node and beyond photomask

    NASA Astrophysics Data System (ADS)

    Seki, Kazunori; Yonetani, Masashi; Badger, Karen; Dechene, Dan J.; Akima, Shinji

    2016-10-01

    Two different mask inspection techniques are developed and compared for 14 nm node and beyond photomasks, High resolution and Litho-based inspection. High resolution inspection is the general inspection method in which a 19x nm wavelength laser is used with the High NA inspection optics. Litho-based inspection is a new inspection technology. This inspection uses the wafer lithography information, and as such, this method has automatic defect classification capability which is based on wafer printability. Both High resolution and Litho-based inspection methods are compared using 14 nm and 7 nm node programmed defect and production design masks. The defect sensitivity and mask inspectability is compared, in addition to comparing the defect classification and throughput. Additionally, the Cost / Infrastructure comparison is analyzed and the impact of each inspection method is discussed.

  3. Automatic multimodal detection for long-term seizure documentation in epilepsy.

    PubMed

    Fürbass, F; Kampusch, S; Kaniusas, E; Koren, J; Pirker, S; Hopfengärtner, R; Stefan, H; Kluge, T; Baumgartner, C

    2017-08-01

    This study investigated sensitivity and false detection rate of a multimodal automatic seizure detection algorithm and the applicability to reduced electrode montages for long-term seizure documentation in epilepsy patients. An automatic seizure detection algorithm based on EEG, EMG, and ECG signals was developed. EEG/ECG recordings of 92 patients from two epilepsy monitoring units including 494 seizures were used to assess detection performance. EMG data were extracted by bandpass filtering of EEG signals. Sensitivity and false detection rate were evaluated for each signal modality and for reduced electrode montages. All focal seizures evolving to bilateral tonic-clonic (BTCS, n=50) and 89% of focal seizures (FS, n=139) were detected. Average sensitivity in temporal lobe epilepsy (TLE) patients was 94% and 74% in extratemporal lobe epilepsy (XTLE) patients. Overall detection sensitivity was 86%. Average false detection rate was 12.8 false detections in 24h (FD/24h) for TLE and 22 FD/24h in XTLE patients. Utilization of 8 frontal and temporal electrodes reduced average sensitivity from 86% to 81%. Our automatic multimodal seizure detection algorithm shows high sensitivity with full and reduced electrode montages. Evaluation of different signal modalities and electrode montages paces the way for semi-automatic seizure documentation systems. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Astrophysics Data System (ADS)

    Modarress, Dariush; Schaack, David F.

    1994-03-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  5. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Technical Reports Server (NTRS)

    Modarress, Dariush; Schaack, David F.

    1994-01-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  6. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  7. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  8. Review of automatic detection of pig behaviours by using image analysis

    NASA Astrophysics Data System (ADS)

    Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Kong, Fantao

    2017-06-01

    Automatic detection of lying, moving, feeding, drinking, and aggressive behaviours of pigs by means of image analysis can save observation input by staff. It would help staff make early detection of diseases or injuries of pigs during breeding and improve management efficiency of swine industry. This study describes the progress of pig behaviour detection based on image analysis and advancement in image segmentation of pig body, segmentation of pig adhesion and extraction of pig behaviour characteristic parameters. Challenges for achieving automatic detection of pig behaviours were summarized.

  9. Nondestructive Methods for Detecting Defects in Softwood Logs

    Treesearch

    Kristin C. Schad; Daniel L. Schmoldt; Robert J. Ross

    1996-01-01

    Wood degradation and defects, such as voids and knots, affect the quality and processing time of lumber. The ability to detect internal defects in the log can save mills time and processing costs. In this study, we investigated three nondestructive evaluation techniques for detecting internal wood defects. Sound wave transmission, x-ray computed tomography, and impulse...

  10. GMR-based eddy current probe for weld seam inspection and its non-scanning detection study

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya

    2017-04-01

    Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.

  11. Weak scratch detection and defect classification methods for a large-aperture optical element

    NASA Astrophysics Data System (ADS)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  12. Supporting the Development and Adoption of Automatic Lameness Detection Systems in Dairy Cattle: Effect of System Cost and Performance on Potential Market Shares

    PubMed Central

    Van Weyenberg, Stephanie; Van Nuffel, Annelies; Lauwers, Ludwig; Vangeyte, Jürgen

    2017-01-01

    Simple Summary Most prototypes of systems to automatically detect lameness in dairy cattle are still not available on the market. Estimating their potential adoption rate could support developers in defining development goals towards commercially viable and well-adopted systems. We simulated the potential market shares of such prototypes to assess the effect of altering the system cost and detection performance on the potential adoption rate. We found that system cost and lameness detection performance indeed substantially influence the potential adoption rate. In order for farmers to prefer automatic detection over current visual detection, the usefulness that farmers attach to a system with specific characteristics should be higher than that of visual detection. As such, we concluded that low system costs and high detection performances are required before automatic lameness detection systems become applicable in practice. Abstract Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was €2.57 per % less missed lame cows, €1.65 per % less false alerts, and €12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system’s potential adoption rate. PMID:28991188

  13. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  14. On-line high-speed rail defect detection : part II.

    DOT National Transportation Integrated Search

    2012-03-01

    The objectives of this project were (1) to improve the defect detection reliability and (2) to improve the inspection speed of conventional rail defect detection methods. The prototype developed in this work uses noncontact transducers, ultrasonic gu...

  15. A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview

    NASA Astrophysics Data System (ADS)

    Holford, Karen M.; Eaton, Mark J.; Hensman, James J.; Pullin, Rhys; Evans, Sam L.; Dervilis, Nikolaos; Worden, Keith

    2017-04-01

    The acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously and globally monitor large structures using a sparse sensor array and with no dependency on defect size. However, AE monitoring is yet to fulfil its true potential, due mainly to limitations in location accuracy and signal characterisation that often arise in complex structures with high levels of background noise. Furthermore, the technique has been criticised for a lack of quantitative results and the large amount of operator interpretation required during data analysis. This paper begins by introducing the challenges faced in developing an AE based structural health monitoring system and then gives a review of previous progress made in addresing these challenges. Subsequently an overview of a novel methodology for automatic detection of fatigue fractures in complex geometries and noisy environments is presented, which combines a number of signal processing techniques to address the current limitations of AE monitoring. The technique was developed for monitoring metallic landing gear components during pre-flight certification testing and results are presented from a full-scale steel landing gear component undergoing fatigue loading. Fracture onset was successfully identify automatically at 49,000 fatigue cycles prior to final failure (validated by the use of dye penetrant inspection) and the fracture position was located to within 10 mm of the actual location.

  16. Clinical experience with a computer-aided diagnosis system for automatic detection of pulmonary nodules at spiral CT of the chest

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter

    2001-05-01

    The purpose of the study was to evaluate a computer aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Two radiologists in consensus reported 88 consecutive spiral CT examinations. All examinations were reviewed using a UNIX-based CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm was designed to detect nodules with at least 5 mm diameter. The results of automatic nodule detection were compared to the consensus reporting of two radiologists as gold standard. Additional CAD findings were regarded as nodules initially missed by the radiologists or as false positive results. A total of 153 nodules were detected with all modalities (diameter: 85 nodules <5mm, 63 nodules 5-9 mm, 5 nodules >= 10 mm). Reasons for failure of automatic nodule detection were assessed. Sensitivity of radiologists for nodules >=5 mm was 85%, sensitivity of CAD was 38%. For nodules >=5 mm without pleural contact sensitivity was 84% for radiologists at 45% for CAD. CAD detected 15 (10%) nodules not mentioned in the radiologist's report but representing real nodules, among them 10 (15%) nodules with a diameter $GREW5 mm. Reasons for nodules missed by CAD include: exclusion because of morphological features during region analysis (33%), nodule density below the detection threshold (26%), pleural contact (33%), segmentation errors (5%) and other reasons (2%). CAD improves detection of pulmonary nodules at spiral CT significantly and is a valuable second opinion in a clinical setting for lung cancer screening. Optimization of region analysis and an appropriate density threshold have a potential for further improvement of automatic nodule detection.

  17. Automatic spatiotemporal matching of detected pleural thickenings

    NASA Astrophysics Data System (ADS)

    Chaisaowong, Kraisorn; Keller, Simon Kai; Kraus, Thomas

    2014-01-01

    Pleural thickenings can be found in asbestos exposed patient's lung. Non-invasive diagnosis including CT imaging can detect aggressive malignant pleural mesothelioma in its early stage. In order to create a quantitative documentation of automatic detected pleural thickenings over time, the differences in volume and thickness of the detected thickenings have to be calculated. Physicians usually estimate the change of each thickening via visual comparison which provides neither quantitative nor qualitative measures. In this work, automatic spatiotemporal matching techniques of the detected pleural thickenings at two points of time based on the semi-automatic registration have been developed, implemented, and tested so that the same thickening can be compared fully automatically. As result, the application of the mapping technique using the principal components analysis turns out to be advantageous than the feature-based mapping using centroid and mean Hounsfield Units of each thickening, since the resulting sensitivity was improved to 98.46% from 42.19%, while the accuracy of feature-based mapping is only slightly higher (84.38% to 76.19%).

  18. On-line high-speed rail defect detection.

    DOT National Transportation Integrated Search

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  19. Computer aided weld defect delineation using statistical parametric active contours in radiographic inspection.

    PubMed

    Goumeidane, Aicha Baya; Nacereddine, Nafaa; Khamadja, Mohammed

    2015-01-01

    A perfect knowledge of a defect shape is determinant for the analysis step in automatic radiographic inspection. Image segmentation is carried out on radiographic images and extract defects indications. This paper deals with weld defect delineation in radiographic images. The proposed method is based on a new statistics-based explicit active contour. An association of local and global modeling of the image pixels intensities is used to push the model to the desired boundaries. Furthermore, other strategies are proposed to accelerate its evolution and make the convergence speed depending only on the defect size as selecting a band around the active contour curve. The experimental results are very promising, since experiments on synthetic and radiographic images show the ability of the proposed model to extract a piece-wise homogenous object from very inhomogeneous background, even in a bad quality image.

  20. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan

    2018-01-01

    In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.

  1. Echocardiographic imaging techniques with subcostal and right parasternal longitudinal views in detecting sinus venosus atrial septal defects.

    PubMed

    McDonald, R W; Rice, M J; Reller, M D; Marcella, C P; Sahn, D J

    1996-01-01

    Sinus venosus atrial septal defects are frequently missed and difficult to visualize with conventional two-dimensional echocardiographic views. Using modified subcostal and right parasternal longitudinal views, nine patients were found to have a sinus venosus atrial septal defect. The modified subcostal view showed a sinus venosus atrial septal defect in all nine patients; three patients had secundum atrial septal defects as well. The right parasternal view detected only six patients with sinus venosus atrial septal defect. Partial anomalous pulmonary venous return was diagnosed in seven patients using these views. The combination of subcostal and right parasternal longitudinal imaging views will improve the detection of sinus venosus atrial septal defects.

  2. The algorithm for automatic detection of the calibration object

    NASA Astrophysics Data System (ADS)

    Artem, Kruglov; Irina, Ugfeld

    2017-06-01

    The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.

  3. Eddy Current Testing for Detecting Small Defects in Thin Films

    NASA Astrophysics Data System (ADS)

    Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor

    2007-03-01

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  4. Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefferkoetter, Joshua, E-mail: dnrjds@nus.edu.sg; Ouyang, Jinsong; Rakvongthai, Yothin

    2014-06-15

    Purpose: A study was designed to investigate the impact of time-of-flight (TOF) and point spread function (PSF) modeling on the detectability of myocardial defects. Methods: Clinical FDG-PET data were used to generate populations of defect-present and defect-absent images. Defects were incorporated at three contrast levels, and images were reconstructed by ordered subset expectation maximization (OSEM) iterative methods including ordinary Poisson, alone and with PSF, TOF, and PSF+TOF. Channelized Hotelling observer signal-to-noise ratio (SNR) was the surrogate for human observer performance. Results: For three iterations, 12 subsets, and no postreconstruction smoothing, TOF improved overall defect detection SNR by 8.6% as comparedmore » to its non-TOF counterpart for all the defect contrasts. Due to the slow convergence of PSF reconstruction, PSF yielded 4.4% less SNR than non-PSF. For reconstruction parameters (iteration number and postreconstruction smoothing kernel size) optimizing observer SNR, PSF showed larger improvement for faint defects. The combination of TOF and PSF improved mean detection SNR as compared to non-TOF and non-PSF counterparts by 3.0% and 3.2%, respectively. Conclusions: For typical reconstruction protocol used in clinical practice, i.e., less than five iterations, TOF improved defect detectability. In contrast, PSF generally yielded less detectability. For large number of iterations, TOF+PSF yields the best observer performance.« less

  5. Electrophysiological Correlates of Automatic Visual Change Detection in School-Age Children

    ERIC Educational Resources Information Center

    Clery, Helen; Roux, Sylvie; Besle, Julien; Giard, Marie-Helene; Bruneau, Nicole; Gomot, Marie

    2012-01-01

    Automatic stimulus-change detection is usually investigated in the auditory modality by studying Mismatch Negativity (MMN). Although the change-detection process occurs in all sensory modalities, little is known about visual deviance detection, particularly regarding the development of this brain function throughout childhood. The aim of the…

  6. Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu

    2007-11-01

    In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.

  7. [Comparison of different types automatic water-supply system for mouse rearing (author's transl)].

    PubMed

    Kikuchi, S; Suzuki, M; Tagashira, Y

    1979-04-01

    Rearing and breeding scores were compared between groups of mice (JCL : ICR and ddN strains) raised with two different types of automatic water-supply systems; the Japanese type and the American type, using manual water-supply system as control. The mice raised with the manual water-supply system were superior in body weight gain as compared to those with two automatic water-supply systems. As to the survival rate, however, the m; anual water-supply system and the Japanese type gave better results than the American type. As to weanling rate in the breeding test, the manual water-supply system gave somewhat better result than either of the two automatic types. Accidental water leaks, which are serious problems of automatic systems, occurred frequently only when the American type was used. Only one defect of the Japanese type revealed was that it was unfavorable for mice with smaller size (e.g., young ddN mice), resulting in lower body weight gain as well as lower breeding scores.

  8. Defect Detectability Improvement for Conventional Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hill, Chris

    2013-01-01

    This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.

  9. Application of image recognition-based automatic hyphae detection in fungal keratitis.

    PubMed

    Wu, Xuelian; Tao, Yuan; Qiu, Qingchen; Wu, Xinyi

    2018-03-01

    The purpose of this study is to evaluate the accuracy of two methods in diagnosis of fungal keratitis, whereby one method is automatic hyphae detection based on images recognition and the other method is corneal smear. We evaluate the sensitivity and specificity of the method in diagnosis of fungal keratitis, which is automatic hyphae detection based on image recognition. We analyze the consistency of clinical symptoms and the density of hyphae, and perform quantification using the method of automatic hyphae detection based on image recognition. In our study, 56 cases with fungal keratitis (just single eye) and 23 cases with bacterial keratitis were included. All cases underwent the routine inspection of slit lamp biomicroscopy, corneal smear examination, microorganism culture and the assessment of in vivo confocal microscopy images before starting medical treatment. Then, we recognize the hyphae images of in vivo confocal microscopy by using automatic hyphae detection based on image recognition to evaluate its sensitivity and specificity and compare with the method of corneal smear. The next step is to use the index of density to assess the severity of infection, and then find the correlation with the patients' clinical symptoms and evaluate consistency between them. The accuracy of this technology was superior to corneal smear examination (p < 0.05). The sensitivity of the technology of automatic hyphae detection of image recognition was 89.29%, and the specificity was 95.65%. The area under the ROC curve was 0.946. The correlation coefficient between the grading of the severity in the fungal keratitis by the automatic hyphae detection based on image recognition and the clinical grading is 0.87. The technology of automatic hyphae detection based on image recognition was with high sensitivity and specificity, able to identify fungal keratitis, which is better than the method of corneal smear examination. This technology has the advantages when compared with the conventional artificial identification of confocal microscope corneal images, of being accurate, stable and does not rely on human expertise. It was the most useful to the medical experts who are not familiar with fungal keratitis. The technology of automatic hyphae detection based on image recognition can quantify the hyphae density and grade this property. Being noninvasive, it can provide an evaluation criterion to fungal keratitis in a timely, accurate, objective and quantitative manner.

  10. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase.

    PubMed

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-11-01

    An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268-luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF-luciferase fusion protein. By means of the automatic analyzer with ZF-luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0×10 to 1.0×10(6) copies. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. [Application of automatic photography in Schistosoma japonicum miracidium hatching experiments].

    PubMed

    Ming-Li, Zhou; Ai-Ling, Cai; Xue-Feng, Wang

    2016-05-20

    To explore the value of automatic photography in the observation of results of Schistosoma japonicum miracidium hatching experiments. Some fresh S. japonicum eggs were added into cow feces, and the samples of feces were divided into a low infested experimental group and a high infested group (40 samples each group). In addition, there was a negative control group with 40 samples of cow feces without S. japonicum eggs. The conventional nylon bag S. japonicum miracidium hatching experiments were performed. The process was observed with the method of flashlight and magnifying glass combined with automatic video (automatic photography method), and, at the same time, with the naked eye observation method. The results were compared. In the low infested group, the miracidium positive detection rates were 57.5% and 85.0% by the naked eye observation method and automatic photography method, respectively ( χ 2 = 11.723, P < 0.05). In the high infested group, the positive detection rates were 97.5% and 100% by the naked eye observation method and automatic photography method, respectively ( χ 2 = 1.253, P > 0.05). In the two infested groups, the average positive detection rates were 77.5% and 92.5% by the naked eye observation method and automatic photography method, respectively ( χ 2 = 6.894, P < 0.05). The automatic photography can effectively improve the positive detection rate in the S. japonicum miracidium hatching experiments.

  12. Defects and anharmonicity induced electron spectra of YBa2Cu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Singh, Anu; Indu, B. D.

    2018-05-01

    The effects of defects and anharmonicities on the electron density of states (EDOS) have been studied in high-temperature superconductors (HTS) adopting the many body quantum dynamical theory of electron Green's functions via a generalized Hamiltonian that includes the effects of electron-phonon interactions, anharmonicities and point impurities. The automatic emergence of pairons and temperature dependence of EDOS are appear as special feature of the theory. The results thus obtained and their numerical analysis for YBa2Cu3O7-δ superconductors clearly demonstrate that the presence of defects, anharmonicities and electron-phonon interactions modifies the behavior of EDOS over a wide range of temperature.

  13. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  14. A fast button surface defects detection method based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran

    2018-01-01

    Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.

  15. Phenotype detection in morphological mutant mice using deformation features.

    PubMed

    Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S

    2013-01-01

    Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.

  16. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    NASA Astrophysics Data System (ADS)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  17. Path Planning Based on Ply Orientation Information for Automatic Fiber Placement on Mesh Surface

    NASA Astrophysics Data System (ADS)

    Pei, Jiazhi; Wang, Xiaoping; Pei, Jingyu; Yang, Yang

    2018-03-01

    This article introduces an investigation of path planning with ply orientation information for automatic fiber placement (AFP) on open-contoured mesh surface. The new method makes use of the ply orientation information generated by loading characteristics on surface, divides the surface into several zones according to the ply orientation information and then designs different fiber paths in different zones. This article also gives new idea of up-layer design in order to make up for defects between parts and improve product's strength.

  18. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes

    NASA Astrophysics Data System (ADS)

    Malenkov, Mikhail

    2016-03-01

    This report reviews the most important episodes in the history of designing the self-propelled automatic chassis of the first mobile extraterrestrial vehicle in the world, Lunokhod-1. The review considers the issues in designing moon rovers, their essential features, and the particular construction properties of their systems, mechanisms, units, and assemblies. It presents the results of exploiting the chassis of Lunokhod-1 and Lunokhod-2. Analysis of the approaches utilized and engineering solutions reveals their value as well as the consequences of certain defects.

  19. Automatic detection of typical dust devils from Mars landscape images

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Watanabe, Takeru; Okumura, Susumu; Hatanaka, Yuji

    2018-02-01

    This paper presents an improved algorithm for automatic detection of Martian dust devils that successfully extracts tiny bright dust devils and obscured large dust devils from two subtracted landscape images. These dust devils are frequently observed using visible cameras onboard landers or rovers. Nevertheless, previous research on automated detection of dust devils has not focused on these common types of dust devils, but on dust devils that appear on images to be irregularly bright and large. In this study, we detect these common dust devils automatically using two kinds of parameter sets for thresholding when binarizing subtracted images. We automatically extract dust devils from 266 images taken by the Spirit rover to evaluate our algorithm. Taking dust devils detected by visual inspection to be ground truth, the precision, recall and F-measure values are 0.77, 0.86, and 0.81, respectively.

  20. Automatic detection of articulation disorders in children with cleft lip and palate.

    PubMed

    Maier, Andreas; Hönig, Florian; Bocklet, Tobias; Nöth, Elmar; Stelzle, Florian; Nkenke, Emeka; Schuster, Maria

    2009-11-01

    Speech of children with cleft lip and palate (CLP) is sometimes still disordered even after adequate surgical and nonsurgical therapies. Such speech shows complex articulation disorders, which are usually assessed perceptually, consuming time and manpower. Hence, there is a need for an easy to apply and reliable automatic method. To create a reference for an automatic system, speech data of 58 children with CLP were assessed perceptually by experienced speech therapists for characteristic phonetic disorders at the phoneme level. The first part of the article aims to detect such characteristics by a semiautomatic procedure and the second to evaluate a fully automatic, thus simple, procedure. The methods are based on a combination of speech processing algorithms. The semiautomatic method achieves moderate to good agreement (kappa approximately 0.6) for the detection of all phonetic disorders. On a speaker level, significant correlations between the perceptual evaluation and the automatic system of 0.89 are obtained. The fully automatic system yields a correlation on the speaker level of 0.81 to the perceptual evaluation. This correlation is in the range of the inter-rater correlation of the listeners. The automatic speech evaluation is able to detect phonetic disorders at an experts'level without any additional human postprocessing.

  1. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  2. Automatic identification of artifacts in electrodermal activity data.

    PubMed

    Taylor, Sara; Jaques, Natasha; Chen, Weixuan; Fedor, Szymon; Sano, Akane; Picard, Rosalind

    2015-01-01

    Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.

  3. Advanced defect classification by smart sampling, based on sub-wavelength anisotropic scatterometry

    NASA Astrophysics Data System (ADS)

    van der Walle, Peter; Kramer, Esther; Ebeling, Rob; Spruit, Helma; Alkemade, Paul; Pereira, Silvania; van der Donck, Jacques; Maas, Diederik

    2018-03-01

    We report on advanced defect classification using TNO's RapidNano particle scanner. RapidNano was originally designed for defect detection on blank substrates. In detection-mode, the RapidNano signal from nine azimuth angles is added for sensitivity. In review-mode signals from individual angles are analyzed to derive additional defect properties. We define the Fourier coefficient parameter space that is useful to study the statistical variation in defect types on a sample. By selecting defects from each defect type for further review by SEM, information on all defects can be obtained efficiently.

  4. Intensity compensation for on-line detection of defects on fruit

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqing; Tao, Yang

    1997-10-01

    A machine-vision sorting system was developed that utilizes the difference in light reflectance of fruit surfaces to distinguish the defective and good apples. To accommodate to the spherical reflectance characteristics of fruit with curved surface like apple, a spherical transform algorithm was developed that converts the original image to a non-radiant image without losing defective segments on the fruit. To prevent high-quality dark-colored fruit form being classified into the defective class and increase the defect detection rate for light-colored fruit, an intensity compensation method using maximum propagation was used. Experimental results demonstrated the effectiveness of the method based on maximum propagation and spherical transform for on-line detection of defects on apples.

  5. Detection of small surface defects using DCT based enhancement approach in machine vision systems

    NASA Astrophysics Data System (ADS)

    He, Fuqiang; Wang, Wen; Chen, Zichen

    2005-12-01

    Utilizing DCT based enhancement approach, an improved small defect detection algorithm for real-time leather surface inspection was developed. A two-stage decomposition procedure was proposed to extract an odd-odd frequency matrix after a digital image has been transformed to DCT domain. Then, the reverse cumulative sum algorithm was proposed to detect the transition points of the gentle curves plotted from the odd-odd frequency matrix. The best radius of the cutting sector was computed in terms of the transition points and the high-pass filtering operation was implemented. The filtered image was then inversed and transformed back to the spatial domain. Finally, the restored image was segmented by an entropy method and some defect features are calculated. Experimental results show the proposed small defect detection method can reach the small defect detection rate by 94%.

  6. Further development of image processing algorithms to improve detectability of defects in Sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2017-02-01

    Sonic Infrared imaging (SIR) technology is a relatively new NDE technique that has received significant acceptance in the NDE community. SIR NDE is a super-fast, wide range NDE method. The technology uses short pulses of ultrasonic excitation together with infrared imaging to detect defects in the structures under inspection. Defects become visible to the IR camera when the temperature in the crack vicinity increases due to various heating mechanisms in the specimen. Defect detection is highly affected by noise levels as well as mode patterns in the image. Mode patterns result from the superposition of sonic waves interfering within the specimen during the application of sound pulse. Mode patterns can be a serious concern, especially in composite structures. Mode patterns can either mimic real defects in the specimen, or alternatively, hide defects if they overlap. In last year's QNDE, we have presented algorithms to improve defects detectability in severe noise. In this paper, we will present our development of algorithms on defect extraction targeting specifically to mode patterns in SIR images.

  7. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  8. Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation

    PubMed Central

    Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed

    2012-01-01

    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously. PMID:23202186

  9. Farm-specific economic value of automatic lameness detection systems in dairy cattle: From concepts to operational simulations.

    PubMed

    Van De Gucht, Tim; Saeys, Wouter; Van Meensel, Jef; Van Nuffel, Annelies; Vangeyte, Jurgen; Lauwers, Ludwig

    2018-01-01

    Although prototypes of automatic lameness detection systems for dairy cattle exist, information about their economic value is lacking. In this paper, a conceptual and operational framework for simulating the farm-specific economic value of automatic lameness detection systems was developed and tested on 4 system types: walkover pressure plates, walkover pressure mats, camera systems, and accelerometers. The conceptual framework maps essential factors that determine economic value (e.g., lameness prevalence, incidence and duration, lameness costs, detection performance, and their relationships). The operational simulation model links treatment costs and avoided losses with detection results and farm-specific information, such as herd size and lameness status. Results show that detection performance, herd size, discount rate, and system lifespan have a large influence on economic value. In addition, lameness prevalence influences the economic value, stressing the importance of an adequate prior estimation of the on-farm prevalence. The simulations provide first estimates for the upper limits for purchase prices of automatic detection systems. The framework allowed for identification of knowledge gaps obstructing more accurate economic value estimation. These include insights in cost reductions due to early detection and treatment, and links between specific lameness causes and their related losses. Because this model provides insight in the trade-offs between automatic detection systems' performance and investment price, it is a valuable tool to guide future research and developments. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Heavy Lift Helicopter Flight Control System. Volume III. Automatic Flight Control System Development and Feasibility Demonstration

    DTIC Science & Technology

    1977-09-01

    vdI1 SCCLRITY CLASSIFICATIOlN OF THIS PAGE(When DMae ffnifod) Block 20 (Cont): ------ AFCS control laws are examined. Associated documents are: Volume I...both the HII gain and LO gain outputs. Both were traced to defective components. In the former, the HII gain output amplifier AR4 was replaced and in...the latter, a relay in the relay module was defective . 613 S. . ......-. . . 6.2.2.4 ExcessivC Time Lag During the BARO altitude hold evaluation, the

  11. Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma.

    PubMed

    Kim, Hae Jin; Song, Yong Ju; Kim, Young Kook; Jeoung, Jin Wook; Park, Ki Ho

    2017-07-01

    To evaluate functional progression in preperimetric glaucoma (PPG) with disc hemorrhage (DH) and to determine the time interval between the first-detected DH and development of glaucomatous visual field (VF) defect. A total of 87 patients who had been first diagnosed with PPG were enrolled. The medical records of PPG patients without DH (Group 1) and with DH (Group 2) were reviewed. When glaucomatous VF defect appeared, the time interval from the diagnosis of PPG to the development of VF defect was calculated and compared between the two groups. In group 2, the time intervals from the first-detected DH to VF defect of the single- and recurrent-DH were compared. Of the enrolled patients, 45 had DH in the preperimetric stage. The median time interval from the diagnosis of PPG to the development of VF defect was 73.3 months in Group 1, versus 45.4 months in Group 2 (P = 0.042). The cumulative probability of development of VF defect after diagnosis of PPG was significantly greater in Group 2 than in Group 1. The median time interval from first-detected DH to the development of VF defect was 37.8 months. The median time interval from DH to VF defect and cumulative probability of VF defect after DH did not show a statistical difference between single and recurrent-DH patients. The median time interval between the diagnosis of PPG and the development of VF defect was significantly shorter in PPG with DH. The VF defect appeared 37.8 months after the first-detected DH in PPG.

  12. Automatic Processing of Changes in Facial Emotions in Dysphoria: A Magnetoencephalography Study.

    PubMed

    Xu, Qianru; Ruohonen, Elisa M; Ye, Chaoxiong; Li, Xueqiao; Kreegipuu, Kairi; Stefanics, Gabor; Luo, Wenbo; Astikainen, Piia

    2018-01-01

    It is not known to what extent the automatic encoding and change detection of peripherally presented facial emotion is altered in dysphoria. The negative bias in automatic face processing in particular has rarely been studied. We used magnetoencephalography (MEG) to record automatic brain responses to happy and sad faces in dysphoric (Beck's Depression Inventory ≥ 13) and control participants. Stimuli were presented in a passive oddball condition, which allowed potential negative bias in dysphoria at different stages of face processing (M100, M170, and M300) and alterations of change detection (visual mismatch negativity, vMMN) to be investigated. The magnetic counterpart of the vMMN was elicited at all stages of face processing, indexing automatic deviance detection in facial emotions. The M170 amplitude was modulated by emotion, response amplitudes being larger for sad faces than happy faces. Group differences were found for the M300, and they were indexed by two different interaction effects. At the left occipital region of interest, the dysphoric group had larger amplitudes for sad than happy deviant faces, reflecting negative bias in deviance detection, which was not found in the control group. On the other hand, the dysphoric group showed no vMMN to changes in facial emotions, while the vMMN was observed in the control group at the right occipital region of interest. Our results indicate that there is a negative bias in automatic visual deviance detection, but also a general change detection deficit in dysphoria.

  13. Observer POD for radiographic testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanzler, Daniel, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Ewert, Uwe, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de; Müller, Christina, E-mail: daniel.kanzler@bam.de, E-mail: uwe.ewert@bam.de, E-mail: christina.mueller@bam.de

    2015-03-31

    The radiographic testing (RT) is a non-destructive testing (NDT) method capable of finding volumetric and open planar defects depending on their orientation. The radiographic contrast is higher for larger penetrated length of the defect in a component. Even though, the detectability of defects does not only depend on the contrast, but also on the noise, the defect area and the geometry of the defect. The currently applied Probability of Detection (POD) approach uses a detection threshold that is only based on a constant noise level or on a constant contrast threshold. This does not reflect accurately the results of evaluationsmore » by human observers. A new approach is introduced, using the widely applied POD evaluation and additionally a detection threshold depending on the lateral area and shape of the indication. This work shows the process of calculating the POD curves with simulated data by the modeling software aRTist and with artificial reference data of different defect types, such as ASTM E 476 EPS plates, flat bottom holes and notches. Additional experiments with different operators confirm that the depth of a defect, the lateral area and shape of its indication contribute with different weight to the detectability of the defect if evaluated by human operators on monitors.« less

  14. Detecting Submicron Pattern Defects On Optical Photomasks Using An Enhanced El-3 Electron-Beam Lithography Tool

    NASA Astrophysics Data System (ADS)

    Simpson, R. A.; Davis, D. E.

    1982-09-01

    This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.

  15. Detection and estimation of defects in a circular plate using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Pai, Perngjin F.; Oh, Yunje; Kim, Byeong-Seok

    2002-06-01

    This paper investigates dynamic characteristics (mode shapes and natural frequencies) and defect detection of circular plates using a scanning laser vibrometer. Exact dynamic characteristics of a circular aluminum plate having a clamped inner rim and a free outer rim are obtained using two methods; one uses Bessel functions and the other uses a multiple shooting method. An in-house finite element code GESA is also used to analyze the circular plate using the DKT plate element. Numerical results show that some reports in the literature are incorrect and that high-frequency Operational Deflection Shapes (ODSs) are needed in order to locate small defects. Detection of two defects in the circular aluminum plate is experimentally studied using the distributions of RMS velocities under broadband periodic chirp excitations. RMS velocities of ODSs, symmetry breaking of ODSs, splitting of natural frequencies and ODSs, and a Boundary Effect Detection (BED) method. The BED method is non-destructive and model-independent; it processes experimental ODSs to reveal extra local boundary effects caused by defects to reveal locations of defects. Experimental results show that small defects in circular plates can be pinpointed by these approaches. Moreover, a new concept of using the balance of elastic and kinetic energies within a mode cell for detecting defects in two- dimensional structures of irregular shapes is proposed.

  16. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  17. Automatic patient respiration failure detection system with wireless transmission

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  18. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  19. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  20. Online aptitude automatic surface quality inspection system for hot rolled strips steel

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan

    2005-12-01

    Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.

  1. Toward Intelligent Software Defect Detection

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  2. Convolution neural-network-based detection of lung structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.

    1994-05-01

    Chest radiography is one of the most primary and widely used techniques in diagnostic imaging. Nowadays with the advent of digital radiology, the digital medical image processing techniques for digital chest radiographs have attracted considerable attention, and several studies on the computer-aided diagnosis (CADx) as well as on the conventional image processing techniques for chest radiographs have been reported. In the automatic diagnostic process for chest radiographs, it is important to outline the areas of the lungs, the heart, and the diaphragm. This is because the original chest radiograph is composed of important anatomic structures and, without knowing exact positions of the organs, the automatic diagnosis may result in unexpected detections. The automatic extraction of an anatomical structure from digital chest radiographs can be a useful tool for (1) the evaluation of heart size, (2) automatic detection of interstitial lung diseases, (3) automatic detection of lung nodules, and (4) data compression, etc. Based on the clearly defined boundaries of heart area, rib spaces, rib positions, and rib cage extracted, one should be able to use this information to facilitate the tasks of the CADx on chest radiographs. In this paper, we present an automatic scheme for the detection of lung field from chest radiographs by using a shift-invariant convolution neural network. A novel algorithm for smoothing boundaries of lungs is also presented.

  3. A graphical automated detection system to locate hardwood log surface defects using high-resolution three-dimensional laser scan data

    Treesearch

    Liya Thomas; R. Edward Thomas

    2011-01-01

    We have developed an automated defect detection system and a state-of-the-art Graphic User Interface (GUI) for hardwood logs. The algorithm identifies defects at least 0.5 inch high and at least 3 inches in diameter on barked hardwood log and stem surfaces. To summarize defect features and to build a knowledge base, hundreds of defects were measured, photographed, and...

  4. Neural network model for automatic traffic incident detection : executive summary.

    DOT National Transportation Integrated Search

    2001-04-01

    Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...

  5. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    Technology derived by NASA for monitoring control gyros in the Skylab program is directly applicable to the problems of fault detection of railroad wheel bearings. Marhsall Space Flight Center's scientists have developed a detection concept based on the fact that bearing defects excite resonant frequency of rolling elements of the bearing as they impact the defect. By detecting resonant frequency and subsequently analyzing the character of this signal, bearing defects may be detected and identified as to source.

  6. Supporting the Development and Adoption of Automatic Lameness Detection Systems in Dairy Cattle: Effect of System Cost and Performance on Potential Market Shares.

    PubMed

    Van De Gucht, Tim; Van Weyenberg, Stephanie; Van Nuffel, Annelies; Lauwers, Ludwig; Vangeyte, Jürgen; Saeys, Wouter

    2017-10-08

    Most automatic lameness detection system prototypes have not yet been commercialized, and are hence not yet adopted in practice. Therefore, the objective of this study was to simulate the effect of detection performance (percentage missed lame cows and percentage false alarms) and system cost on the potential market share of three automatic lameness detection systems relative to visual detection: a system attached to the cow, a walkover system, and a camera system. Simulations were done using a utility model derived from survey responses obtained from dairy farmers in Flanders, Belgium. Overall, systems attached to the cow had the largest market potential, but were still not competitive with visual detection. Increasing the detection performance or lowering the system cost led to higher market shares for automatic systems at the expense of visual detection. The willingness to pay for extra performance was €2.57 per % less missed lame cows, €1.65 per % less false alerts, and €12.7 for lame leg indication, respectively. The presented results could be exploited by system designers to determine the effect of adjustments to the technology on a system's potential adoption rate.

  7. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  8. Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Doshi, Trushali; Soraghan, John; Grose, Derek; MacKenzie, Kenneth; Petropoulakis, Lykourgos

    2015-03-01

    Detection of larynx cancer from medical imaging is important for the quantification and for the definition of target volumes in radiotherapy treatment planning (RTP). Magnetic resonance imaging (MRI) is being increasingly used in RTP due to its high resolution and excellent soft tissue contrast. Manually detecting larynx cancer from sequential MRI is time consuming and subjective. The large diversity of cancer in terms of geometry, non-distinct boundaries combined with the presence of normal anatomical regions close to the cancer regions necessitates the development of automatic and robust algorithms for this task. A new automatic algorithm for the detection of larynx cancer from 2D gadoliniumenhanced T1-weighted (T1+Gd) MRI to assist clinicians in RTP is presented. The algorithm employs edge detection using spatial neighborhood information of pixels and incorporates this information in a fuzzy c-means clustering process to robustly separate different tissues types. Furthermore, it utilizes the information of the expected cancerous location for cancer regions labeling. Comparison of this automatic detection system with manual clinical detection on real T1+Gd axial MRI slices of 2 patients (24 MRI slices) with visible larynx cancer yields an average dice similarity coefficient of 0.78+/-0.04 and average root mean square error of 1.82+/-0.28 mm. Preliminary results show that this fully automatic system can assist clinicians in RTP by obtaining quantifiable and non-subjective repeatable detection results in a particular time-efficient and unbiased fashion.

  9. Automatically Detecting Likely Edits in Clinical Notes Created Using Automatic Speech Recognition

    PubMed Central

    Lybarger, Kevin; Ostendorf, Mari; Yetisgen, Meliha

    2017-01-01

    The use of automatic speech recognition (ASR) to create clinical notes has the potential to reduce costs associated with note creation for electronic medical records, but at current system accuracy levels, post-editing by practitioners is needed to ensure note quality. Aiming to reduce the time required to edit ASR transcripts, this paper investigates novel methods for automatic detection of edit regions within the transcripts, including both putative ASR errors but also regions that are targets for cleanup or rephrasing. We create detection models using logistic regression and conditional random field models, exploring a variety of text-based features that consider the structure of clinical notes and exploit the medical context. Different medical text resources are used to improve feature extraction. Experimental results on a large corpus of practitioner-edited clinical notes show that 67% of sentence-level edits and 45% of word-level edits can be detected with a false detection rate of 15%. PMID:29854187

  10. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  11. [Detection and evaluation of cartilage defects in the canine stifle joint - an ex vivo study using high-field magnetic resonance imaging].

    PubMed

    Flatz, K M; Glaser, C; Flatz, W H; Reiser, M F; Matis, U

    2014-01-01

    The aim of our study was to implement and test an imaging protocol for the detection and evaluation of standardised cartilage defects using high-field magnetic resonance imaging (MRI) and to determine its limitations. A total of 84 cartilage defects were created in the femoral condyles of euthanized dogs with a minimum body mass of 25 kg. The cartilage defects had a depth of 0.3 to 1.0 mm and a diameter of 1 to 5 mm. T1-FLASH-3D-WE-sequences with an isotropic voxel size of 0.5 x 0.5 x 0.5 mm and an anisotropic voxel size of 0.3 x 0.3 x 0.8 mm were used. In addition to quantitative evaluation of the cartilage defects, the sig- nal intensities, signal-to-noise ratios and contrast-to-noise ratios of the cartilage were determined. Of special interest were the limita- tions in identifying and delineating the standardised cartilage defects. With the anisotropic voxel size, more cartilage defects were detectable. Our results demonstrated that cartilage defects as small as 3.0 mm in diameter and 0.4 mm in depth were reliably detected using anisotropic settings. Cartilage defects below this size were not reliably detected. We found that for optimal delineation of the joint cartilage and associated defects, a higher in-plane resolution with a larger slice thickness should be used, corresponding to the anisotropic settings employed in this study. For the delineation of larger cartilage defects, both the anisotropic and isotropic imaging methods can be used.

  12. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    DOE PAGES

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; ...

    2016-09-29

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H 2) reactive mixture of H 2/O 2 in N 2 impinging and reacting on a Pt catalytic surface. In this article, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min -1) and gas flowrates (32.5 or 50 standard L min -1). Furthermore, a model is developed and validated formore » the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H 2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Lastly, overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.« less

  13. Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection

    NASA Astrophysics Data System (ADS)

    Zenyuk, Iryna V.; Englund, Nicholas; Bender, Guido; Weber, Adam Z.; Ulsh, Michael

    2016-11-01

    Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H2) reactive mixture of H2/O2 in N2 impinging and reacting on a Pt catalytic surface. In this paper, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min-1) and gas flowrates (32.5 or 50 standard L min-1). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines.

  14. Offline detection of broken rotor bars in AC induction motors

    NASA Astrophysics Data System (ADS)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  15. Neural network model for automatic traffic incident detection : final report, August 2001.

    DOT National Transportation Integrated Search

    2001-08-01

    Automatic freeway incident detection is an important component of advanced transportation management systems (ATMS) that provides information for emergency relief and traffic control and management purposes. In this research, a multi-paradigm intelli...

  16. Detecting cheaters without thinking: testing the automaticity of the cheater detection module.

    PubMed

    Van Lier, Jens; Revlin, Russell; De Neys, Wim

    2013-01-01

    Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity). This study, using the selection task, tested the critical automaticity assumption in three experiments. Experiments 1 and 2 established that performance on social contract versions did not depend on cognitive capacity or age. Experiment 3 showed that experimentally burdening cognitive resources with a secondary task had no impact on performance on the social contract version. However, in all experiments, performance on a non-social contract version did depend on available cognitive capacity. Overall, findings validate the automatic and effortless nature of social exchange reasoning.

  17. Algorithms and applications of aberration correction and American standard-based digital evaluation in surface defects evaluating system

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.

  18. The application of an optical Fourier spectrum analyzer on detecting defects in mass-produced satellite photographs

    NASA Technical Reports Server (NTRS)

    Athale, R.; Lee, S. H.

    1976-01-01

    Various defects in mass-produced pictures transmitted to earth from a satellite are investigated. It is found that the following defects are readily detectable via Fourier spectrum analysis: (1) bit slip, (2) breakup causing loss of image, and (3) disabled track at the top of the imagery. The scratches made on the film during mass production, which are difficult to detect by visual observation, also show themselves readily in Fourier spectrum analysis. A relation is established between the number of scratches, their width and depth and the intensity of their Fourier spectra. Other defects that are found to be equally suitable for Fourier spectrum analysis or visual (image analysis) detection are synchronous loss without blurring of image, and density variation in gray scale. However, the Fourier spectrum analysis is found to be unsuitable for detection of such defects as pin holes, annotation error, synchronous loss with blurring of images, and missing image in the beginning of the work order. The design of an automated, real time system, which will reject defective films, is treated.

  19. A novel rail defect detection method based on undecimated lifting wavelet packet transform and Shannon entropy-improved adaptive line enhancer

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Zhang, Xin; Wang, Yan; Shen, Yi; Makis, Viliam

    2018-07-01

    Acoustic emission (AE) technology is sensitive to subliminal rail defects, however strong wheel-rail contact rolling noise under high-speed condition has gravely impeded detecting of rail defects using traditional denoising methods. In this context, the paper develops an adaptive detection method for rail cracks, which combines multiresolution analysis with an improved adaptive line enhancer (ALE). To obtain elaborate multiresolution information of transient crack signals with low computational cost, lifting scheme-based undecimated wavelet packet transform is adopted. In order to feature the impulsive property of crack signals, a Shannon entropy-improved ALE is proposed as a signal enhancing approach, where Shannon entropy is introduced to improve the cost function. Then a rail defect detection plan based on the proposed method for high-speed condition is put forward. From theoretical analysis and experimental verification, it is demonstrated that the proposed method has superior performance in enhancing the rail defect AE signal and reducing the strong background noise, offering an effective multiresolution approach for rail defect detection under high-speed and strong-noise condition.

  20. Automatic Detection of Student Mental Models during Prior Knowledge Activation in MetaTutor

    ERIC Educational Resources Information Center

    Rus, Vasile; Lintean, Mihai; Azevedo, Roger

    2009-01-01

    This paper presents several methods to automatically detecting students' mental models in MetaTutor, an intelligent tutoring system that teaches students self-regulatory processes during learning of complex science topics. In particular, we focus on detecting students' mental models based on student-generated paragraphs during prior knowledge…

  1. Defect Detection of Steel Surfaces with Global Adaptive Percentile Thresholding of Gradient Image

    NASA Astrophysics Data System (ADS)

    Neogi, Nirbhar; Mohanta, Dusmanta K.; Dutta, Pranab K.

    2017-12-01

    Steel strips are used extensively for white goods, auto bodies and other purposes where surface defects are not acceptable. On-line surface inspection systems can effectively detect and classify defects and help in taking corrective actions. For detection of defects use of gradients is very popular in highlighting and subsequently segmenting areas of interest in a surface inspection system. Most of the time, segmentation by a fixed value threshold leads to unsatisfactory results. As defects can be both very small and large in size, segmentation of a gradient image based on percentile thresholding can lead to inadequate or excessive segmentation of defective regions. A global adaptive percentile thresholding of gradient image has been formulated for blister defect and water-deposit (a pseudo defect) in steel strips. The developed method adaptively changes the percentile value used for thresholding depending on the number of pixels above some specific values of gray level of the gradient image. The method is able to segment defective regions selectively preserving the characteristics of defects irrespective of the size of the defects. The developed method performs better than Otsu method of thresholding and an adaptive thresholding method based on local properties.

  2. Defect annealing of alpha-particle irradiated n-GaAs

    NASA Astrophysics Data System (ADS)

    Goodman, S. A.; Auret, F. D.; Myburg, G.

    1994-09-01

    The annealing behaviour of irradiation induced defects in n-type GaAs irradiated at 300 K with 5.4 MeV alpha-particles from an americium-241 (Am-241) radio nuclide have been investigated. The annealing kinetics are presented for the alpha-particle induced defects Eα1 Eα5 detected in Organo-Metallic Vapor Phase Epitaxially (OMVPE) grown n-GaAs doped with silicon to 1.2×1016 cm-3, these kinetics are compared to those obtained for similar defects (E1 E5) detected after electron irradiation. While defects Pα1 and Pα2 were detected after removal of the electron defects Eα4 and Eα5, respectively, a new defect labelled Pα0, located 0.152 eV below the conduction band, was introduced by annealing. The thermal behaviour and trap characteristics of these three defects (Pα0 Pα2) are presented. In an attempt to further characterise defects Pα0 and Pα1 a preiliminary study investigating the emission rate field dependence of these defects was conducted, it was observed that defect Pα0 exhibited a fairly strong field dependence while Pα1 exhibited a much weaker dependence.

  3. The accuracy of confrontation visual field test in comparison with automated perimetry.

    PubMed Central

    Johnson, L. N.; Baloh, F. G.

    1991-01-01

    The accuracy of confrontation visual field testing was determined for 512 visual fields using automated static perimetry as the reference standard. The sensitivity of confrontation testing excluding patchy defects was 40% for detecting anterior visual field defects, 68.3% for posterior defects, and 50% for both anterior and posterior visual field defects combined. The sensitivity within each group varied depending on the type of visual field defect encountered. Confrontation testing had a high sensitivity (75% to 100%) for detecting altitudinal visual loss, central/centrocecal scotoma, and homonymous hemianopsia. Confrontation testing was fairly insensitive (20% to 50% sensitivity) for detecting arcuate scotoma and bitemporal hemianopsia. The specificity of confrontation testing was high at 93.4%. The high positive predictive value (72.6%) and negative predictive value (75.7%) would indicate that visual field defects identified during confrontation testing are often true visual field defects. However, the many limitations of confrontation testing should be remembered, particularly its low sensitivity for detecting visual field loss associated with parasellar tumors, glaucoma, and compressive optic neuropathies. PMID:1800764

  4. Vision-based surface defect inspection for thick steel plates

    NASA Astrophysics Data System (ADS)

    Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo

    2017-05-01

    There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.

  5. Defect Detection in Superconducting Radiofrequency Cavity Surface Using C + + and OpenCV

    NASA Astrophysics Data System (ADS)

    Oswald, Samantha; Thomas Jefferson National Accelerator Facility Collaboration

    2014-03-01

    Thomas Jefferson National Accelerator Facility (TJNAF) uses superconducting radiofrequency (SRF) cavities to accelerate an electron beam. If theses cavities have a small particle or defect, it can degrade the performance of the cavity. The problem at hand is inspecting the cavity for defects, little bubbles of niobium on the surface of the cavity. Thousands of pictures have to be taken of a single cavity and then looked through to see how many defects were found. A C + + program with Open Source Computer Vision (OpenCV) was constructed to reduce the number of hours searching through the images and finds all the defects. Using this code, the SRF group is now able to use the code to identify defects in on-going tests of SRF cavities. Real time detection is the next step so that instead of taking pictures when looking at the cavity, the camera will detect all the defects.

  6. Validation of artificial skin equivalents as in vitro testing systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena

    2011-03-01

    With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakho, I., E-mail: aminafatima_sakho@yahoo.fr

    Energy positions and quantum defects of the 4s{sup 2}4p{sup 4} ({sup 1}D{sub 2},{sup 1}S{sub 0}) ns, nd Rydberg series originating from the 4s{sup 2}4p{sup 52}P{sub 3/2}{sup ∘} ground state and from the 4s{sup 2}4p{sup 52}P{sub 1/2}{sup ∘} metastable state of Kr{sup +} are reported. Calculations are performed using the Screening Constant by Unit Nuclear Charge (SCUNC) method. The results obtained are in suitable agreement with recent experimental data from the combined ASTRID merged-beam set up and Fourier Transform Ion Cyclotron Resonance device (Bizau et al., 2011), ALS measurements (Hinojosa et al., 2012), and multi-channel R-matrix eigenphase derivative calculations (McLaughlin andmore » Balance, 2012). In addition, analysis of the 4s{sup 2}4p{sup 4}({sup 1}D{sub 2})nd and the 4s{sup 2}4p{sup 4}({sup 1}S{sub 0})nd resonances is given via the SCUNC procedure. The excellent results obtained from our work point out that the SCUNC formalism may be used to confirm the results of the analysis from the standard quantum-defect expansion formulas. Eventual errors occurring in the analysis can then be automatically detected and corrected via the SCUNC procedure.« less

  8. Screening-Constant-by-Unit-Nuclear-Charge method investigations of high lying (1D2,1S0) ns, nd Rydberg series in the photoionization spectra of the halogen-like ion Kr+

    NASA Astrophysics Data System (ADS)

    Sakho, I.

    2014-01-01

    Energy positions and quantum defects of the 4s24p4 (1D2,1S0) ns, nd Rydberg series originating from the 4s24p52P3/2∘ ground state and from the 4s24p52P1/2∘ metastable state of Kr+ are reported. Calculations are performed using the Screening Constant by Unit Nuclear Charge (SCUNC) method. The results obtained are in suitable agreement with recent experimental data from the combined ASTRID merged-beam set up and Fourier Transform Ion Cyclotron Resonance device (Bizau et al., 2011), ALS measurements (Hinojosa et al., 2012), and multi-channel R-matrix eigenphase derivative calculations (McLaughlin and Balance, 2012). In addition, analysis of the 4s24p4(1D2)nd and the 4s24p4(1S0)nd resonances is given via the SCUNC procedure. The excellent results obtained from our work point out that the SCUNC formalism may be used to confirm the results of the analysis from the standard quantum-defect expansion formulas. Eventual errors occurring in the analysis can then be automatically detected and corrected via the SCUNC procedure.

  9. Code query by example

    NASA Astrophysics Data System (ADS)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  10. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  11. DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D.

    PubMed

    Shuvaev, Sergey A; Lazutkin, Alexander A; Kedrov, Alexander V; Anokhin, Konstantin V; Enikolopov, Grigori N; Koulakov, Alexei A

    2017-01-01

    Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.

  12. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction... knuckle that is broken or cracked on the inside pulling face of the knuckle. (d) The car has a knuckle pin...) Missing; (ii) Inoperative; (iii) Bent; (iv) Cracked; or (v) Broken. ...

  13. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... automatically with the adjacent car; (b) The car has a coupler that has a crack in the highly stressed junction... knuckle that is broken or cracked on the inside pulling face of the knuckle. (d) The car has a knuckle pin...) Missing; (ii) Inoperative; (iii) Bent; (iv) Cracked; or (v) Broken. ...

  14. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  15. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  16. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  17. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  18. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  19. Deep sub-wavelength metrology for advanced defect classification

    NASA Astrophysics Data System (ADS)

    van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.

    2017-06-01

    Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.

  20. OKCARS : Oklahoma Collision Analysis and Response System.

    DOT National Transportation Integrated Search

    2012-10-01

    By continuously monitoring traffic intersections to automatically detect that a collision or nearcollision : has occurred, automatically call for assistance, and automatically forewarn oncoming traffic, : our OKCARS has the capability to effectively ...

  1. Testing & Evaluation of Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions

    DOT National Transportation Integrated Search

    2012-01-01

    This report summarizes activities in support of the DOT contract on Testing & Evaluating Close-Range SAR for Monitoring & Automatically Detecting Pavement Conditions & Improve Visual Inspection Procedures. The work of this project was performed by Dr...

  2. Automated Segmentation Methods of Drusen to Diagnose Age-Related Macular Degeneration Screening in Retinal Images.

    PubMed

    Kim, Young Jae; Kim, Kwang Gi

    2018-01-01

    Existing drusen measurement is difficult to use in clinic because it requires a lot of time and effort for visual inspection. In order to resolve this problem, we propose an automatic drusen detection method to help clinical diagnosis of age-related macular degeneration. First, we changed the fundus image to a green channel and extracted the ROI of the macular area based on the optic disk. Next, we detected the candidate group using the difference image of the median filter within the ROI. We also segmented vessels and removed them from the image. Finally, we detected the drusen through Renyi's entropy threshold algorithm. We performed comparisons and statistical analysis between the manual detection results and automatic detection results for 30 cases in order to verify validity. As a result, the average sensitivity was 93.37% (80.95%~100%) and the average DSC was 0.73 (0.3~0.98). In addition, the value of the ICC was 0.984 (CI: 0.967~0.993, p < 0.01), showing the high reliability of the proposed automatic method. We expect that the automatic drusen detection helps clinicians to improve the diagnostic performance in the detection of drusen on fundus image.

  3. A fast automatic target detection method for detecting ships in infrared scenes

    NASA Astrophysics Data System (ADS)

    Özertem, Kemal Arda

    2016-05-01

    Automatic target detection in infrared scenes is a vital task for many application areas like defense, security and border surveillance. For anti-ship missiles, having a fast and robust ship detection algorithm is crucial for overall system performance. In this paper, a straight-forward yet effective ship detection method for infrared scenes is introduced. First, morphological grayscale reconstruction is applied to the input image, followed by an automatic thresholding onto the suppressed image. For the segmentation step, connected component analysis is employed to obtain target candidate regions. At this point, it can be realized that the detection is defenseless to outliers like small objects with relatively high intensity values or the clouds. To deal with this drawback, a post-processing stage is introduced. For the post-processing stage, two different methods are used. First, noisy detection results are rejected with respect to target size. Second, the waterline is detected by using Hough transform and the detection results that are located above the waterline with a small margin are rejected. After post-processing stage, there are still undesired holes remaining, which cause to detect one object as multi objects or not to detect an object as a whole. To improve the detection performance, another automatic thresholding is implemented only to target candidate regions. Finally, two detection results are fused and post-processing stage is repeated to obtain final detection result. The performance of overall methodology is tested with real world infrared test data.

  4. Nondestructive rule-based defect detection and identification system in CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2001-01-01

    This paper is concerned with the detection of internal defects in hardwood logs. Because the commercial value of hardwood lumber is directly related to the quantity, type, and location of defects in the wood, sawing strategies are typically chosen in an attempt to minimize the defects in the resulting boards. Traditionally, the sawyer makes sawing decisions by visually...

  5. An Analysis of the Magneto-Optic Imaging System

    NASA Technical Reports Server (NTRS)

    Nath, Shridhar

    1996-01-01

    The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.

  6. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    NASA Astrophysics Data System (ADS)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  7. Fabric defect detection based on faster R-CNN

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Liu, Xianghui; Li, Chunlei; Li, Bicao; Wang, Baorui

    2018-04-01

    In order to effectively detect the defects for fabric image with complex texture, this paper proposed a novel detection algorithm based on an end-to-end convolutional neural network. First, the proposal regions are generated by RPN (regional proposal Network). Then, Fast Region-based Convolutional Network method (Fast R-CNN) is adopted to determine whether the proposal regions extracted by RPN is a defect or not. Finally, Soft-NMS (non-maximum suppression) and data augmentation strategies are utilized to improve the detection precision. Experimental results demonstrate that the proposed method can locate the fabric defect region with higher accuracy compared with the state-of- art, and has better adaptability to all kinds of the fabric image.

  8. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  9. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    PubMed Central

    Huang, Kuo-Yi; Ye, Yu-Ting

    2015-01-01

    In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678

  10. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.

    PubMed

    Huang, Kuo-Yi; Ye, Yu-Ting

    2015-06-29

    In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  11. Improvement in defect classification efficiency by grouping disposition for reticle inspection

    NASA Astrophysics Data System (ADS)

    Lai, Rick; Hsu, Luke T. H.; Chang, Peter; Ho, C. H.; Tsai, Frankie; Long, Garrett; Yu, Paul; Miller, John; Hsu, Vincent; Chen, Ellison

    2005-11-01

    As the lithography design rule of IC manufacturing continues to migrate toward more advanced technology nodes, the mask error enhancement factor (MEEF) increases and necessitates the use of aggressive OPC features. These aggressive OPC features pose challenges to reticle inspection due to high false detection, which is time-consuming for defect classification and impacts the throughput of mask manufacturing. Moreover, higher MEEF leads to stricter mask defect capture criteria so that new generation reticle inspection tool is equipped with better detection capability. Hence, mask process induced defects, which were once undetectable, are now detected and results in the increase of total defect count. Therefore, how to review and characterize reticle defects efficiently is becoming more significant. A new defect review system called ReviewSmart has been developed based on the concept of defect grouping disposition. The review system intelligently bins repeating or similar defects into defect groups and thus allows operators to review massive defects more efficiently. Compared to the conventional defect review method, ReviewSmart not only reduces defect classification time and human judgment error, but also eliminates desensitization that is formerly inevitable. In this study, we attempt to explore the most efficient use of ReviewSmart by evaluating various defect binning conditions. The optimal binning conditions are obtained and have been verified for fidelity qualification through inspection reports (IRs) of production masks. The experiment results help to achieve the best defect classification efficiency when using ReviewSmart in the mask manufacturing and development.

  12. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations

    PubMed Central

    Core, Jason Q.; Mehrabi, Mehrsa; Robinson, Zachery R.; Ochs, Alexander R.; McCarthy, Linda A.; Zaragoza, Michael V.

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei. PMID:29149195

  13. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations.

    PubMed

    Core, Jason Q; Mehrabi, Mehrsa; Robinson, Zachery R; Ochs, Alexander R; McCarthy, Linda A; Zaragoza, Michael V; Grosberg, Anna

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.

  14. Looking for Holes in Sterile Wrapping: How Accurate Are We?

    PubMed

    Rashidifard, Christopher H; Mayassi, Hani A; Bush, Chelsea M; Opalacz, Brian M; Richardson, Mark W; Muccino, Paul M; DiPasquale, Thomas G

    2018-05-01

    Defects in sterile surgical wrapping are identified by the presence of holes through which light can be seen. However, it is unknown how reliably the human eye can detect these defects. The purpose of this study was to determine (1) how often holes in sterile packaging of various sizes could be detected; and (2) whether differences in lighting, experience level of the observer, or time spent inspecting the packaging were associated with improved likelihood of detection of holes in sterile packaging. Thirty participants (10 surgical technicians, 13 operating room nurses, seven orthopaedic surgery residents) inspected sterile sheets for perforations under ambient operating room (OR) lighting and then again with a standard powered OR lamp in addition to ambient lighting. There were no additional criteria for eligibility other than willingness to participate. Each sheet contained one of nine defect sizes with four sheets allocated to each defect size. Ten wraps were controls with no defects. Participants were allowed as much time as necessary for inspection. Holes ≥ 2.5 mm were detected more often than holes ≤ 2 mm (87% [832 of 960] versus 7% [82 of 1200]; odds ratio, 88.6 [95% confidence interval, 66.2-118.6]; p < 0.001). There was no difference in detection accuracy between OR lamp and ambient lightning nor experience level. There was no correlation between inspection time and detection accuracy. Defects ≤ 2 mm were not reliably detected with respect to lighting, time, or level of experience. Future research is warranted to determine defect sizes that are clinically meaningful. Level II, diagnostic study.

  15. Initial postbuckling analysis of elastoplastic thin-shear structures

    NASA Technical Reports Server (NTRS)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  16. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  17. Process for the detection of micro-cracks

    DOEpatents

    Lapinski, Norman; Sather, Allen

    1979-01-01

    A process for the nondestructive testing of ceramic objects to detect the presence of defects and micro-cracks in the surface in which a solution of silver nitrate is applied to the surface of the object which penetrates into the surface defects, drying the object so that the silver nitrate remains in the defects, and preparing an X-ray radiograph whereby any defects and micro-cracks will appear in the radiograph.

  18. Contribution a l'inspection automatique des pieces flexibles a l'etat libre sans gabarit de conformation

    NASA Astrophysics Data System (ADS)

    Sattarpanah Karganroudi, Sasan

    The competitive industrial market demands manufacturing companies to provide the markets with a higher quality of production. The quality control department in industrial sectors verifies geometrical requirements of products with consistent tolerances. These requirements are presented in Geometric Dimensioning and Tolerancing (GD&T) standards. However, conventional measuring and dimensioning methods for manufactured parts are time-consuming and costly. Nowadays manual and tactile measuring methods have been replaced by Computer-Aided Inspection (CAI) methods. The CAI methods apply improvements in computational calculations and 3-D data acquisition devices (scanners) to compare the scan mesh of manufactured parts with the Computer-Aided Design (CAD) model. Metrology standards, such as ASME-Y14.5 and ISO-GPS, require implementing the inspection in free-state, wherein the part is only under its weight. Non-rigid parts are exempted from the free-state inspection rule because of their significant geometrical deviation in a free-state with respect to the tolerances. Despite the developments in CAI methods, inspection of non-rigid parts still remains a serious challenge. Conventional inspection methods apply complex fixtures for non-rigid parts to retrieve the functional shape of these parts on physical fixtures; however, the fabrication and setup of these fixtures are sophisticated and expensive. The cost of fixtures has doubled since the client and manufacturing sectors require repetitive and independent inspection fixtures. To eliminate the need for costly and time-consuming inspection fixtures, fixtureless inspection methods of non-rigid parts based on CAI methods have been developed. These methods aim at distinguishing flexible deformations of parts in a free-state from defects. Fixtureless inspection methods are required to be automatic, reliable, reasonably accurate and repeatable for non-rigid parts with complex shapes. The scan model, which is acquired as point clouds, represent the shape of a part in a free-state. Afterward, the inspection of defects is performed by comparing the scan and CAD models, but these models are presented in different coordinate systems. Indeed, the scan model is presented in the measurement coordinate system whereas the CAD model is introduced in the designed coordinate system. To accomplish the inspection and facilitate an accurate comparison between the models, the registration process is required to align the scan and CAD models in a common coordinate system. The registration includes a virtual compensation for the flexible deformation of the parts in a free-state. Then, the inspection is implemented as a geometrical comparison between the CAD and scan models. This thesis focuses on developing automatic and accurate fixtureless CAI methods for non-rigid parts along with assessing the robustness of the methods. To this end, an automatic fixtureless CAI method for non-rigid parts based on filtering registration points is developed to identify and quantify defects more accurately on the surface of scan models. The flexible deformation of parts in a free-state in our developed automatic fixtureless CAI method is compensated by applying FE non-rigid Registration (FENR) to deform the CAD model towards the scan mesh. The displacement boundary conditions (BCs) for FENR are determined based on the corresponding sample points, which are generated by the Generalized Numerical Inspection Fixture (GNIF) method on the CAD and scan models. These corresponding sample points are evenly distributed on the surface of the models. The comparison between this deformed CAD model and the scan mesh intend to evaluate and quantify the defects on the scan model. However, some sample points can be located close or on defect areas which result in an inaccurate estimation of defects. These sample points are automatically filtered out in our CAI method based on curvature and von Mises stress criteria. Once filtered out, the remaining sample points are used in a new FENR, which allows an accurate evaluation of defects with respect to the tolerances. The performance and robustness of all CAI methods are generally required to be assessed with respect to the actual measurements. This thesis also introduces a new validation metric for Verification and Validation (V&V) of CAI methods based on ASME recommendations. The developed V&V approach uses a nonparametric statistical hypothesis test, namely the Kolmogorov-Smirnov (K-S) test. In addition to validating the defects size, the K-S test allows a deeper evaluation based on distance distribution of defects. The robustness of CAI method with respect to uncertainties such as scanning noise is quantitatively assessed using the developed validation metric. Due to the compliance of non-rigid parts, a geometrically deviated part can still be assembled in the assembly-state. This thesis also presents a fixtureless CAI method for geometrically deviated (presenting defects) non-rigid parts to evaluate the feasibility of mounting these parts in the functional assembly-state. Our developed Virtual Mounting Assembly-State Inspection (VMASI) method performs a non-rigid registration to virtually mount the scan mesh in assembly-state. To this end, the point clouds of scan model representing the part in a free-state is deformed to meet the assembly constraints such as fixation position (e.g. mounting holes). In some cases, the functional shape of a deviated part can be retrieved by applying assembly loads, which are limited to permissible loads, on the surface of the part. The required assembly loads are estimated through our developed Restraining Pressures Optimization (RPO) aiming at displacing the deviated scan model to achieve the tolerance for mounting holes. Therefore, the deviated scan model can be assembled if the mounting holes on the predicted functional shape of scan model attain the tolerance range. Different industrial parts are used to evaluate the performance of our developed methods in this thesis. The automatic inspection for identifying different types of small (local) and big (global) defects on the parts results in an accurate evaluation of defects. The robustness of this inspection method is also validated with respect to different levels of scanning noise, which shows promising results. Meanwhile, the VMASI method is performed on various parts with different types of defects, which concludes that in some cases the functional shape of deviated parts can be retrieved by mounting them on a virtual fixture in assembly-state under restraining loads.

  19. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Yang, D

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less

  20. Rubber hose surface defect detection system based on machine vision

    NASA Astrophysics Data System (ADS)

    Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng

    2018-01-01

    As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.

  1. Detection of internal defects in a liquid natural gas tank by use of infrared thermography

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.

    1978-01-01

    The use of an infrared scanning technique to detect defects in the secondary barrier of a liquid natural gas tank is described. The method works by detecting leak-caused temperature differences as low as 0.2 K, but can provide only an approximate idea of the extent of the defect. The nondestructive method was tested in a study of a LNG tank already at its location in a ship; the secondary barrier was located inside the tank wall. Defective areas indicated by the infrared radiometric measurements were confirmed by other probe techniques and by physical examination.

  2. Optimal fluorescence waveband determination for detecting defect cherry tomatoes using fluorescence excitation-emission matrix

    USDA-ARS?s Scientific Manuscript database

    A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...

  3. Eddy current inspection of weld defects in tubing

    NASA Technical Reports Server (NTRS)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  4. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  5. Oil defect detection of electrowetting display

    NASA Astrophysics Data System (ADS)

    Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang

    2015-08-01

    In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.

  6. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  7. Numerical simulation and experimental research on interaction of micro-defects and laser ultrasonic signal

    NASA Astrophysics Data System (ADS)

    Guo, Hualing; Zheng, Bin; Liu, Hui

    2017-11-01

    In the present research, the mechanism governing the interaction between laser-generated ultrasonic wave and the micro-defects on an aluminum plate has been studied by virtue of numerical simulation as well as practical experiments. Simulation results indicate that broadband ultrasonic waves are caused mainly by surface waves, and that the surface waves produced by micro-defects could be utilized for the detection of micro-defects because these waves reflect as much information of the defects as possible. In the research, a laser-generated ultrasonic wave testing system with a surface wave probe has been established for the detection of micro-defects, and the surface waves produced by the defects with different depths on an aluminum plate have been tested by using the system. The interaction between defect depth and the maximum amplitude of the surface wave and that between defect depth and the center frequency of the surface wave have also been analyzed in detail. Research results indicate that, when the defect depth is less than half of the wavelength of the surface wave, the maximum amplitude and the center frequency of the surface wave are in linear proportion to the defect depth. Sound consistency of experimental results with theoretical simulation indicates that the system as established in the present research could be adopted for the quantitative detection of micro-defects.

  8. Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods.

    PubMed

    Kong, Xiangyi; Gong, Shun; Su, Lijuan; Howard, Newton; Kong, Yanguo

    2018-01-01

    Automatic early detection of acromegaly is theoretically possible from facial photographs, which can lessen the prevalence and increase the cure probability. In this study, several popular machine learning algorithms were used to train a retrospective development dataset consisting of 527 acromegaly patients and 596 normal subjects. We firstly used OpenCV to detect the face bounding rectangle box, and then cropped and resized it to the same pixel dimensions. From the detected faces, locations of facial landmarks which were the potential clinical indicators were extracted. Frontalization was then adopted to synthesize frontal facing views to improve the performance. Several popular machine learning methods including LM, KNN, SVM, RT, CNN, and EM were used to automatically identify acromegaly from the detected facial photographs, extracted facial landmarks, and synthesized frontal faces. The trained models were evaluated using a separate dataset, of which half were diagnosed as acromegaly by growth hormone suppression test. The best result of our proposed methods showed a PPV of 96%, a NPV of 95%, a sensitivity of 96% and a specificity of 96%. Artificial intelligence can automatically early detect acromegaly with a high sensitivity and specificity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Investigation of an automatic trim algorithm for restructurable aircraft control

    NASA Technical Reports Server (NTRS)

    Weiss, J.; Eterno, J.; Grunberg, D.; Looze, D.; Ostroff, A.

    1986-01-01

    This paper develops and solves an automatic trim problem for restructurable aircraft control. The trim solution is applied as a feed-forward control to reject measurable disturbances following control element failures. Disturbance rejection and command following performances are recovered through the automatic feedback control redesign procedure described by Looze et al. (1985). For this project the existence of a failure detection mechanism is assumed, and methods to cope with potential detection and identification inaccuracies are addressed.

  10. Radiographic detection of artificial intra-bony defects in the edentulous area.

    PubMed

    Van Assche, N; Jacobs, R; Coucke, W; van Steenberghe, D; Quirynen, M

    2009-03-01

    Since intra-bony pathologies might jeopardize implant outcome, their preoperative detection is crucial. In sixteen human cadaver bloc sections from upper and lower jaws, artificial defects with progressively increasing size (n=7) have been created. From each respective defect, analogue and digital intra-oral radiographs were taken, the latter processed via a periodontal filter and afterwards presented in black-white as well as in colour, resulting in three sets of 7 images per bloc section. Eight observers were asked to diagnosis an eventual defect on randomly presented radiographs, and at another occasion to rank each set based on the defect size. The clinicians were only able to identify a defect, when the junctional area was involved, except for bony pieces with a very homogeneous structure. For longitudinal evaluation of healing bone (e.g. after tooth extraction), colour digital images can be recommended. These observations indicate that intra-oral radiographs are not always reliable for the detection of any intra-bony defect.

  11. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  12. Automatic mine detection based on multiple features

    NASA Astrophysics Data System (ADS)

    Yu, Ssu-Hsin; Gandhe, Avinash; Witten, Thomas R.; Mehra, Raman K.

    2000-08-01

    Recent research sponsored by the Army, Navy and DARPA has significantly advanced the sensor technologies for mine detection. Several innovative sensor systems have been developed and prototypes were built to investigate their performance in practice. Most of the research has been focused on hardware design. However, in order for the systems to be in wide use instead of in limited use by a small group of well-trained experts, an automatic process for mine detection is needed to make the final decision process on mine vs. no mine easier and more straightforward. In this paper, we describe an automatic mine detection process consisting of three stage, (1) signal enhancement, (2) pixel-level mine detection, and (3) object-level mine detection. The final output of the system is a confidence measure that quantifies the presence of a mine. The resulting system was applied to real data collected using radar and acoustic technologies.

  13. Automatically detect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction.

    PubMed

    Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan

    2007-11-01

    Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.

  14. Automatically detect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan

    2007-11-01

    Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.

  15. Computer optimization of cutting yield from multiple ripped boards

    Treesearch

    A.R. Stern; K.A. McDonald

    1978-01-01

    RIPYLD is a computer program that optimizes the cutting yield from multiple-ripped boards. Decisions are based on automatically collected defect information, cutting bill requirements, and sawing variables. The yield of clear cuttings from a board is calculated for every possible permutation of specified rip widths and both the maximum and minimum percent yield...

  16. 42 CFR 485.62 - Condition of participation: Physical environment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... generated by electricity, an alternate power source with automatic triggering must be present. (4) Lights... the exterior walkways and parking areas are clean and orderly and maintained free of any defects that... facility. (5) Parking spaces are large enough and close enough to the facility to allow safe access by the...

  17. 42 CFR 485.62 - Condition of participation: Physical environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... generated by electricity, an alternate power source with automatic triggering must be present. (4) Lights... the exterior walkways and parking areas are clean and orderly and maintained free of any defects that... facility. (5) Parking spaces are large enough and close enough to the facility to allow safe access by the...

  18. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.

    PubMed

    Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long

    2014-09-12

    Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.

    PubMed

    Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki

    2013-11-01

    The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Detecting Cheaters without Thinking: Testing the Automaticity of the Cheater Detection Module

    PubMed Central

    Van Lier, Jens; Revlin, Russell; De Neys, Wim

    2013-01-01

    Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity). This study, using the selection task, tested the critical automaticity assumption in three experiments. Experiments 1 and 2 established that performance on social contract versions did not depend on cognitive capacity or age. Experiment 3 showed that experimentally burdening cognitive resources with a secondary task had no impact on performance on the social contract version. However, in all experiments, performance on a non-social contract version did depend on available cognitive capacity. Overall, findings validate the automatic and effortless nature of social exchange reasoning. PMID:23342012

  1. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  2. Corner detection and sorting method based on improved Harris algorithm in camera calibration

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Wang, Yonghong; Dan, Xizuo; Huang, Anqi; Hu, Yue; Yang, Lianxiang

    2016-11-01

    In traditional Harris corner detection algorithm, the appropriate threshold which is used to eliminate false corners is selected manually. In order to detect corners automatically, an improved algorithm which combines Harris and circular boundary theory of corners is proposed in this paper. After detecting accurate corner coordinates by using Harris algorithm and Forstner algorithm, false corners within chessboard pattern of the calibration plate can be eliminated automatically by using circular boundary theory. Moreover, a corner sorting method based on an improved calibration plate is proposed to eliminate false background corners and sort remaining corners in order. Experiment results show that the proposed algorithms can eliminate all false corners and sort remaining corners correctly and automatically.

  3. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  4. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  5. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  6. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    PubMed

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-10-13

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  7. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  8. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.

    PubMed

    Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J

    2018-01-01

    Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.

  9. Day, night and all-weather security surveillance automation synergy from combining two powerful technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morellas, Vassilios; Johnson, Andrew; Johnston, Chris

    2006-07-01

    Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff andmore » landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)« less

  10. Automatic enforcement and highway safety.

    DOT National Transportation Integrated Search

    2011-05-01

    The objectives of this research are to: 1. Identify aspects of the automatic detection of red light running that the public finds offensive or problematical, and quantify the level of opposition on each aspect. 2. Identify aspects of the automatic de...

  11. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  12. Automatic food detection in egocentric images using artificial intelligence technology

    USDA-ARS?s Scientific Manuscript database

    Our objective was to develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable devic...

  13. Actinic defect counting statistics over 1-cm2 area of EUVL mask blank

    NASA Astrophysics Data System (ADS)

    Jeong, Seongtae; Lai, Chih-wei; Rekawa, Senajith; Walton, Christopher C.; Bokor, Jeffrey

    2000-07-01

    As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm2 of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.

  14. [Transthoracic and transesophageal echocardiography in the pre- and postoperative assessment of interatrial communication].

    PubMed

    San Román, J A; Vilacosta, I; Zamorano, J; Castillo, J A; Rollán, M J; Villanueva, M A; Almería, C; Sánchez-Harguindey, L

    1993-12-01

    Transthoracic echocardiography is the most useful noninvasive method to diagnose atrial septal defect. It is suggested by some authors that transesophageal echocardiography is more accurate than transthoracic echocardiography in this setting. Our aim was to compare the usefulness of both techniques in: 1) diagnosing atrial septal defect, 2) detecting associated anomalies and 3) postoperative assessment. Pre and postoperative transthoracic and transesophageal echocardiography were performed in 27 patients in whom diagnosis of atrial septal defect was confirmed at surgery. Transthoracic echocardiography demonstrated the defect in 20 patients (74%) (8 ostium primum, 10 ostium secundum and 2 sinus venosus). The 27 patients (100%) were correctly diagnosed by transesophageal echocardiography (8 ostium primum, 12 ostium secundum and 7 sinus venosus). Defect size determined by transthoracic echocardiography had a poor correlation with the surgical measurement (r = 0.34). A good correlation was obtained when transesophageal versus surgical defect size measurements were compared (r = 0.85; p < 0.05). Transesophageal echocardiography was superior in detecting associated anomalies (5 patients with anomalous partial pulmonary venous drainage, 3 persistence of left superior vena cava and 1 atrial septal aneurysm). Moreover, this technique better determined residual atrial septal defect, and detected a postsurgical inferior vena cava connection to the left atrium. Transesophageal echocardiography is superior to transthoracic echocardiography in diagnosing atrial septal defect sinus venosus type, detecting associated anomalies and postoperative assessment. Transthoracic echocardiography is diagnostic in the majority of patients with atrial septal defect ostium primum and ostium secundum types.

  15. Rapid surface defect detection based on singular value decomposition using steel strips as an example

    NASA Astrophysics Data System (ADS)

    Sun, Qianlai; Wang, Yin; Sun, Zhiyi

    2018-05-01

    For most surface defect detection methods based on image processing, image segmentation is a prerequisite for determining and locating the defect. In our previous work, a method based on singular value decomposition (SVD) was used to determine and approximately locate surface defects on steel strips without image segmentation. For the SVD-based method, the image to be inspected was projected onto its first left and right singular vectors respectively. If there were defects in the image, there would be sharp changes in the projections. Then the defects may be determined and located according sharp changes in the projections of each image to be inspected. This method was simple and practical but the SVD should be performed for each image to be inspected. Owing to the high time complexity of SVD itself, it did not have a significant advantage in terms of time consumption over image segmentation-based methods. Here, we present an improved SVD-based method. In the improved method, a defect-free image is considered as the reference image which is acquired under the same environment as the image to be inspected. The singular vectors of each image to be inspected are replaced by the singular vectors of the reference image, and SVD is performed only once for the reference image off-line before detecting of the defects, thus greatly reducing the time required. The improved method is more conducive to real-time defect detection. Experimental results confirm its validity.

  16. Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry

    NASA Astrophysics Data System (ADS)

    Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.

    2013-01-01

    This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.

  17. Comprehensive eye evaluation algorithm

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.

    2016-03-01

    In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.

  18. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines

    PubMed Central

    He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-01-01

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636

  19. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines.

    PubMed

    Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-03-02

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

  20. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  1. Recognition and defect detection of dot-matrix text via variation-model based learning

    NASA Astrophysics Data System (ADS)

    Ohyama, Wataru; Suzuki, Koushi; Wakabayashi, Tetsushi

    2017-03-01

    An algorithm for recognition and defect detection of dot-matrix text printed on products is proposed. Extraction and recognition of dot-matrix text contains several difficulties, which are not involved in standard camera-based OCR, that the appearance of dot-matrix characters is corrupted and broken by illumination, complex texture in the background and other standard characters printed on product packages. We propose a dot-matrix text extraction and recognition method which does not require any user interaction. The method employs detected location of corner points and classification score. The result of evaluation experiment using 250 images shows that recall and precision of extraction are 78.60% and 76.03%, respectively. Recognition accuracy of correctly extracted characters is 94.43%. Detecting printing defect of dot-matrix text is also important in the production scene to avoid illegal productions. We also propose a detection method for printing defect of dot-matrix characters. The method constructs a feature vector of which elements are classification scores of each character class and employs support vector machine to classify four types of printing defect. The detection accuracy of the proposed method is 96.68 %.

  2. Measuring the lesion load of multiple sclerosis patients within the corticospinal tract

    NASA Astrophysics Data System (ADS)

    Klein, Jan; Hanken, Katrin; Koceva, Jasna; Hildebrandt, Helmut; Hahn, Horst K.

    2015-03-01

    In this paper we present a framework for reliable determination of the lesion load within the corticospinal tract (CST) of multiple sclerosis patients. The basis constitutes a probabilistic fiber tracking approach which checks possible parameter intervals on the fly using an anatomical brain atlas. By exploiting the range of those intervals, the algorithm is able to resolve fiber crossings and to determine the CST in its full entity although it can use a simple diffusion tensor model. Another advantage is its short running time, tracking the CST takes less than a minute. For segmenting the lesions we developed a semi-automatic approach. First, a trained classifier is applied to multimodal MRI data (T1/FLAIR) where the spectrum of lesions has been determined in advance by a clustering algorithm. This leads to an automatic detection of the lesions which can be manually corrected afterwards using a threshold-based approach. For evaluation we scanned 46 MS patients and 16 healthy controls. Fiber tracking has been performed using our novel fiber tracking and a standard defection based algorithm. Regression analysis of the old and new version of the algorithm showed a highly significant superiority of the new algorithm for disease duration. Additionally, a low correlation between old and new approach supports the observation that standard DTI fiber tracking is not always able to track and quantify the CST reliably.

  3. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  4. Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso

    2010-02-01

    Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.

  5. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  6. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  7. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  8. 46 CFR 76.33-20 - Operation and installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so arranged and installed that the presence of smoke in any of the protected spaces will automatically be... automatically indicate the zone in which the smoke originated. The detecting cabinet shall normally be located...

  9. Automatic Conceptual Encoding of Printed Verbal Material: Assessment of Population Differences.

    ERIC Educational Resources Information Center

    Kee, Daniel W.; And Others

    1984-01-01

    The release from proactive interference task as used to investigate categorical encoding of items. Low socioeconomic status Black and middle socioeconomic status White children were compared. Conceptual encoding differences between these populations were not detected in automatic conceptual encoding but were detected when the free recall method…

  10. Classifying defects in pallet stringers by ultrasonic scanning

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Philip A. Araman; Mark E. Schafer; Sang-Mook Lee

    2003-01-01

    Detecting and classifying defects are required to grade and sort pallet parts. Use of quality parts can extend the life cycle of pallets and can reduce long-term cost. An investigation has been carried out to detect and classify defects in yellow-poplar (Liriodendron tulipifera, L.) and red oak (Quercus rubra, L.) stringers using ultrasonic scanning. Data were...

  11. Primary detection of hardwood log defects using laser surface scanning

    Treesearch

    Ed Thomas; Liya Thomas; Lamine Mili; Roger Ehrich; A. Lynn Abbott; Clifford Shaffer; Clifford Shaffer

    2003-01-01

    The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation's hardwood industry. The location, type, and...

  12. 40 CFR 63.7917 - What are my inspection and monitoring requirements for transfer systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... annually inspect the unburied portion of pipeline and all joints for leaks and other defects. In the event that a defect is detected, you must repair the leak or defect according to the requirements of... days after detection and repair shall be completed as soon as possible but no later than 45 calendar...

  13. Automatic lumbar vertebrae detection based on feature fusion deep learning for partial occluded C-arm X-ray images.

    PubMed

    Yang Li; Wei Liang; Yinlong Zhang; Haibo An; Jindong Tan

    2016-08-01

    Automatic and accurate lumbar vertebrae detection is an essential step of image-guided minimally invasive spine surgery (IG-MISS). However, traditional methods still require human intervention due to the similarity of vertebrae, abnormal pathological conditions and uncertain imaging angle. In this paper, we present a novel convolutional neural network (CNN) model to automatically detect lumbar vertebrae for C-arm X-ray images. Training data is augmented by DRR and automatic segmentation of ROI is able to reduce the computational complexity. Furthermore, a feature fusion deep learning (FFDL) model is introduced to combine two types of features of lumbar vertebrae X-ray images, which uses sobel kernel and Gabor kernel to obtain the contour and texture of lumbar vertebrae, respectively. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model performs more accurate in abnormal cases with pathologies and surgical implants in multi-angle views.

  14. Automatic textual annotation of video news based on semantic visual object extraction

    NASA Astrophysics Data System (ADS)

    Boujemaa, Nozha; Fleuret, Francois; Gouet, Valerie; Sahbi, Hichem

    2003-12-01

    In this paper, we present our work for automatic generation of textual metadata based on visual content analysis of video news. We present two methods for semantic object detection and recognition from a cross modal image-text thesaurus. These thesaurus represent a supervised association between models and semantic labels. This paper is concerned with two semantic objects: faces and Tv logos. In the first part, we present our work for efficient face detection and recogniton with automatic name generation. This method allows us also to suggest the textual annotation of shots close-up estimation. On the other hand, we were interested to automatically detect and recognize different Tv logos present on incoming different news from different Tv Channels. This work was done jointly with the French Tv Channel TF1 within the "MediaWorks" project that consists on an hybrid text-image indexing and retrieval plateform for video news.

  15. Multiple focused EMAT designs for improved surface breaking defect characterization

    NASA Astrophysics Data System (ADS)

    Thring, C. B.; Fan, Y.; Edwards, R. S.

    2017-02-01

    Ultrasonic Rayleigh waves can be employed for the detection of surface breaking defects such as rolling contact fatigue and stress corrosion cracking. Electromagnetic Acoustic Transducers (EMATs) are well suited to this technique as they can directly generate Rayleigh waves within the sample without the requirement for wedges, and they are robust and inexpensive compared to laser ultrasonics. Three different EMAT coil types have been developed, and these are compared to assess their ability to detect and characterize small (down to 0.5 mm depth, 1 mm diameter) surface breaking defects in aluminium. These designs are: a pair of linear meander coils used in a pseudo-pulse-echo mode, a pair of focused meander coils also used in pseudo-pulse-echo mode, and a pair of focused racetrack coils used in pitch-catch mode. The linear meander coils are able to detect most of the defects tested, but have a much lower signal to noise ratio and give limited sizing information. The focused meander coils and the focused racetrack coils can detect all defects tested, but have the advantage that they can also characterize the defect sizes on the sample surface, and have a stronger sensitivity at their focal point. Measurements using all three EMAT designs are presented and compared for high resolution imaging of surface-breaking defects.

  16. MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose, Soumya, E-mail: soumya.ghose@case.edu; Mitra, Jhimli; Rivest-Hénault, David

    Purpose: The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Methods: Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contoursmore » were selected in a spectral clustering manifold learning framework. This aids in clustering “similar” gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. Results: A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). Conclusions: An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.« less

  17. MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection.

    PubMed

    Ghose, Soumya; Mitra, Jhimli; Rivest-Hénault, David; Fazlollahi, Amir; Stanwell, Peter; Pichler, Peter; Sun, Jidi; Fripp, Jurgen; Greer, Peter B; Dowling, Jason A

    2016-05-01

    The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contours were selected in a spectral clustering manifold learning framework. This aids in clustering "similar" gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.

  18. Detection of incipient defects in cables by partial discharge signal analysis

    NASA Astrophysics Data System (ADS)

    Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.

    1992-07-01

    As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.

  19. Classification of defects in honeycomb composite structure of helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.

    2005-04-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.

  20. Detection of delamination defects in CFRP materials using ultrasonic signal processing.

    PubMed

    Benammar, Abdessalem; Drai, Redouane; Guessoum, Abderrezak

    2008-12-01

    In this paper, signal processing techniques are tested for their ability to resolve echoes associated with delaminations in carbon fiber-reinforced polymer multi-layered composite materials (CFRP) detected by ultrasonic methods. These methods include split spectrum processing (SSP) and the expectation-maximization (EM) algorithm. A simulation study on defect detection was performed, and results were validated experimentally on CFRP with and without delamination defects taken from aircraft. Comparison of the methods for their ability to resolve echoes are made.

  1. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fitted with an automatic sprinkling system, except in relatively incombustible spaces. 2 Sprinkler heads....1 Offices, lockers, and isolated storerooms Electric, pneumatic, or automatic sprinkling1 Do.1 Public spaces None required with 20-minute patrol. Electric, pneumatic, or automatic sprinkling with 1...

  2. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fitted with an automatic sprinkling system, except in relatively incombustible spaces. 2 Sprinkler heads....1 Offices, lockers, and isolated storerooms Electric, pneumatic, or automatic sprinkling1 Do.1 Public spaces None required with 20-minute patrol. Electric, pneumatic, or automatic sprinkling with 1...

  3. Automatic detection of small surface targets with electro-optical sensors in a harbor environment

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; de Lange, Dirk-Jan J.; van den Broek, Sebastiaan P.; Kemp, Rob A. W.; Schwering, Piet B. W.

    2008-10-01

    In modern warfare scenarios naval ships must operate in coastal environments. These complex environments, in bays and narrow straits, with cluttered littoral backgrounds and many civilian ships may contain asymmetric threats of fast targets, such as rhibs, cabin boats and jet-skis. Optical sensors, in combination with image enhancement and automatic detection, assist an operator to reduce the response time, which is crucial for the protection of the naval and land-based supporting forces. In this paper, we present our work on automatic detection of small surface targets which includes multi-scale horizon detection and robust estimation of the background intensity. To evaluate the performance of our detection technology, data was recorded with both infrared and visual-light cameras in a coastal zone and in a harbor environment. During these trials multiple small targets were used. Results of this evaluation are shown in this paper.

  4. Wavelet subspace decomposition of thermal infrared images for defect detection in artworks

    NASA Astrophysics Data System (ADS)

    Ahmad, M. Z.; Khan, A. A.; Mezghani, S.; Perrin, E.; Mouhoubi, K.; Bodnar, J. L.; Vrabie, V.

    2016-07-01

    Health of ancient artworks must be routinely monitored for their adequate preservation. Faults in these artworks may develop over time and must be identified as precisely as possible. The classical acoustic testing techniques, being invasive, risk causing permanent damage during periodic inspections. Infrared thermometry offers a promising solution to map faults in artworks. It involves heating the artwork and recording its thermal response using infrared camera. A novel strategy based on pseudo-random binary excitation principle is used in this work to suppress the risks associated with prolonged heating. The objective of this work is to develop an automatic scheme for detecting faults in the captured images. An efficient scheme based on wavelet based subspace decomposition is developed which favors identification of, the otherwise invisible, weaker faults. Two major problems addressed in this work are the selection of the optimal wavelet basis and the subspace level selection. A novel criterion based on regional mutual information is proposed for the latter. The approach is successfully tested on a laboratory based sample as well as real artworks. A new contrast enhancement metric is developed to demonstrate the quantitative efficiency of the algorithm. The algorithm is successfully deployed for both laboratory based and real artworks.

  5. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  6. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    PubMed

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  7. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.

  8. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    PubMed

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-08-10

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  9. Use of an automatic resistivity system for detecting abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.G.

    1983-01-01

    A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.

  10. An image-based approach for automatic detecting five true-leaves stage of cotton

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Cao, Zhiguo; Wu, Xi; Yu, Zhenghong; Wang, Yu; Bai, Xiaodong

    2013-10-01

    Cotton, as one of the four major economic crops, is of great significance to the development of the national economy. Monitoring cotton growth status by automatic image-based detection makes sense due to its low-cost, low-labor and the capability of continuous observations. However, little research has been done to improve close observation of different growth stages of field crops using digital cameras. Therefore, algorithms proposed by us were developed to detect the growth information and predict the starting date of cotton automatically. In this paper, we introduce an approach for automatic detecting five true-leaves stage, which is a critical growth stage of cotton. On account of the drawbacks caused by illumination and the complex background, we cannot use the global coverage as the unique standard of judgment. Consequently, we propose a new method to determine the five true-leaves stage through detecting the node number between the main stem and the side stems, based on the agricultural meteorological observation specification. The error of the results between the predicted starting date with the proposed algorithm and artificial observations is restricted to no more than one day.

  11. Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-01-01

    automatic high- resolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an...structures can lead to earlier detection of retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Combined...optics systems sense perturbations in the detected wave-front and apply corrections to an optical element that flatten the wave-front and allow near

  12. Director, Operational Test and Evaluation FY 2004 Annual Report

    DTIC Science & Technology

    2004-01-01

    HIGH) Space Based Radar (SBR) Sensor Fuzed Weapon (SFW) P3I (CBU-97/B) Small Diameter Bomb (SDB) Secure Mobile Anti-Jam Reliable Tactical Terminal...detection, identification, and sampling capability for both fixed-site and mobile operations. The system must automatically detect and identify up to ten...staffing within the Services. SYSTEM DESCRIPTION AND MISSION The Services envision JCAD as a hand-held device that automatically detects, identifies, and

  13. Toward comprehensive detection of sight threatening retinal disease using a multiscale AM-FM methodology

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Barriga, S.; Murray, V.; Murillo, S.; Zamora, G.; Bauman, W.; Pattichis, M.; Soliz, P.

    2011-03-01

    In the United States and most of the western world, the leading causes of vision impairment and blindness are age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. In the last decade, research in automatic detection of retinal lesions associated with eye diseases has produced several automatic systems for detection and screening of AMD, DR, and glaucoma. However. advanced, sight-threatening stages of DR and AMD can present with lesions not commonly addressed by current approaches to automatic screening. In this paper we present an automatic eye screening system based on multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions that addresses not only the early stages, but also advanced stages of retinal and optic nerve disease. Ten different experiments were performed in which abnormal features such as neovascularization, drusen, exudates, pigmentation abnormalities, geographic atrophy (GA), and glaucoma were classified. The algorithm achieved an accuracy detection range of [0.77 to 0.98] area under the ROC curve for a set of 810 images. When set to a specificity value of 0.60, the sensitivity of the algorithm to the detection of abnormal features ranged between 0.88 and 1.00. Our system demonstrates that, given an appropriate training set, it is possible to use a unique algorithm to detect a broad range of eye diseases.

  14. Adaptive Self-Tuning Networks

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Draelos, T.; Young, C. J.; Lawry, B.; Chael, E. P.; Faust, A.; Peterson, M. G.

    2015-12-01

    The quality of automatic detections from seismic sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings. Yet, achieving superior automatic detection of seismic events is closely related to these parameters. We present an automated sensor tuning (AST) system that learns near-optimal parameter settings for each event type using neuro-dynamic programming (reinforcement learning) trained with historic data. AST learns to test the raw signal against all event-settings and automatically self-tunes to an emerging event in real-time. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Reducing false alarms early in the seismic pipeline processing will have a significant impact on this goal. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections in seismic waveforms from a network of stations, we show that AST increases the probability of detection while decreasing false alarms.

  15. A Comparison of Several Artificial Neural Network Classifiers for CT Images of Hardwood Logs

    Treesearch

    Daniel L. Schmoldt; Jing He; A. Lynn Abbott

    1998-01-01

    Knowledge of internal log defects, obtained by scanning, is critical to efficiency improvements for future hardwood sawmills. Nevertheless, before computed tomography (CT) scanning can be applied in industrial operations, we need to automatically interpret scan information so that it can provide the saw operator with the information necessary to make proper sawing...

  16. 49 CFR Appendix A to Part 209 - Statement of Agency Policy Concerning Enforcement of the Federal Railroad Safety Laws

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... railroading (e.g., the prohibition against disabling an automatic train control device) that any violation of... movement of railroad cars or locomotives that are actually known to contain certain defective conditions. A... areas, without regard to whether they use new technologies not associated with traditional railroads...

  17. 49 CFR Appendix A to Part 209 - Statement of Agency Policy Concerning Enforcement of the Federal Railroad Safety Laws

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... railroading (e.g., the prohibition against disabling an automatic train control device) that any violation of... movement of railroad cars or locomotives that are actually known to contain certain defective conditions. A... areas, without regard to whether they use new technologies not associated with traditional railroads...

  18. A low-cost color vision system for automatic estimation of apple fruit orientation and maximum equatorial diameter

    USDA-ARS?s Scientific Manuscript database

    The overall objective of this research was to develop an in-field presorting and grading system to separate undersized and defective fruit from fresh market-grade apples. To achieve this goal, a cost-effective machine vision inspection prototype was built, which consisted of a low-cost color camera,...

  19. Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data

    PubMed Central

    2017-01-01

    Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823

  20. Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data.

    PubMed

    Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls

    2017-10-06

    Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.

  1. Robust Spacecraft Component Detection in Point Clouds.

    PubMed

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  2. Robust Spacecraft Component Detection in Point Clouds

    PubMed Central

    Wei, Quanmao; Jiang, Zhiguo

    2018-01-01

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density. PMID:29561828

  3. In-flight automatic detection of vigilance states using a single EEG channel.

    PubMed

    Sauvet, F; Bougard, C; Coroenne, M; Lely, L; Van Beers, P; Elbaz, M; Guillard, M; Leger, D; Chennaoui, M

    2014-12-01

    Sleepiness and fatigue can reach particularly high levels during long-haul overnight flights. Under these conditions, voluntary or even involuntary sleep periods may occur, increasing the risk of accidents. The aim of this study was to assess the performance of an in-flight automatic detection system of low-vigilance states using a single electroencephalogram channel. Fourteen healthy pilots voluntarily wore a miniaturized brain electrical activity recording device during long-haul flights ( 10 ±2.0 h, Atlantic 2 and Falcon 50 M, French naval aviation). No subject was disturbed by the equipment. Seven pilots experienced at least a period of voluntary ( 26.8 ±8.0 min, n = 4) or involuntary sleep (N1 sleep stage, 26.6 ±18.7 s, n = 7) during the flight. Automatic classification (wake/sleep) by the algorithm was made for 10-s epochs (O1-M2 or C3-M2 channel), based on comparison of means to detect changes in α, β, and θ relative power, or ratio [( α+θ)/β], or fuzzy logic fusion (α, β). Pertinence and prognostic of the algorithm were determined using epoch-by-epoch comparison with visual-scoring (two blinded readers, AASM rules). The best concordance between automatic detection and visual-scoring was observed within the O1-M2 channel, using the ratio [( α+θ )/β] ( 98.3 ±4.1% of good detection, K = 0.94 ±0.07, with a 0.04 ±0.04 false positive rate and a 0.87 ±0.10 true positive rate). Our results confirm the efficiency of a miniaturized single electroencephalographic channel recording device, associated with an automatic detection algorithm, in order to detect low-vigilance states during real flights.

  4. PCB Fault Detection Using Image Processing

    NASA Astrophysics Data System (ADS)

    Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.

    2017-08-01

    The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images

  5. Damage of composite structures: Detection technique, dynamic response and residual strength

    NASA Astrophysics Data System (ADS)

    Lestari, Wahyu

    2001-10-01

    Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.

  6. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation.

    PubMed

    Vitikainen, Anne-Mari; Mäkelä, Elina; Lioumis, Pantelis; Jousmäki, Veikko; Mäkelä, Jyrki P

    2015-09-30

    The use of navigated repetitive transcranial magnetic stimulation (rTMS) in mapping of speech-related brain areas has recently shown to be useful in preoperative workflow of epilepsy and tumor patients. However, substantial inter- and intraobserver variability and non-optimal replicability of the rTMS results have been reported, and a need for additional development of the methodology is recognized. In TMS motor cortex mappings the evoked responses can be quantitatively monitored by electromyographic recordings; however, no such easily available setup exists for speech mappings. We present an accelerometer-based setup for detection of vocalization-related larynx vibrations combined with an automatic routine for voice onset detection for rTMS speech mapping applying naming. The results produced by the automatic routine were compared with the manually reviewed video-recordings. The new method was applied in the routine navigated rTMS speech mapping for 12 consecutive patients during preoperative workup for epilepsy or tumor surgery. The automatic routine correctly detected 96% of the voice onsets, resulting in 96% sensitivity and 71% specificity. Majority (63%) of the misdetections were related to visible throat movements, extra voices before the response, or delayed naming of the previous stimuli. The no-response errors were correctly detected in 88% of events. The proposed setup for automatic detection of voice onsets provides quantitative additional data for analysis of the rTMS-induced speech response modifications. The objectively defined speech response latencies increase the repeatability, reliability and stratification of the rTMS results. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    NASA Astrophysics Data System (ADS)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  8. Automatic detection and visualisation of MEG ripple oscillations in epilepsy.

    PubMed

    van Klink, Nicole; van Rosmalen, Frank; Nenonen, Jukka; Burnos, Sergey; Helle, Liisa; Taulu, Samu; Furlong, Paul Lawrence; Zijlmans, Maeike; Hillebrand, Arjan

    2017-01-01

    High frequency oscillations (HFOs, 80-500 Hz) in invasive EEG are a biomarker for the epileptic focus. Ripples (80-250 Hz) have also been identified in non-invasive MEG, yet detection is impeded by noise, their low occurrence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through noise reduction, beamforming and automatic detection with minimal user effort. We analysed 15 min of presurgical resting-state interictal MEG data of 25 patients with epilepsy. The MEG signal-to-noise was improved by using a cross-validation signal space separation method, and by calculating ~ 2400 beamformer-based virtual sensors in the grey matter. Ripples in these sensors were automatically detected by an algorithm optimized for MEG. A small subset of the identified ripples was visually checked. Ripple locations were compared with MEG spike dipole locations and the resection area if available. Running the automatic detection algorithm resulted in on average 905 ripples per patient, of which on average 148 ripples were visually reviewed. Reviewing took approximately 5 min per patient, and identified ripples in 16 out of 25 patients. In 14 patients the ripple locations showed good or moderate concordance with the MEG spikes. For six out of eight patients who had surgery, the ripple locations showed concordance with the resection area: 4/5 with good outcome and 2/3 with poor outcome. Automatic ripple detection in beamformer-based virtual sensors is a feasible non-invasive tool for the identification of ripples in MEG. Our method requires minimal user effort and is easily applicable in a clinical setting.

  9. Automatic Earthquake Detection and Location by Waveform coherency in Alentejo (South Portugal) Using CatchPy

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Matos, C.; Grigoli, F.; Cesca, S.; Heimann, S.; Rio, I.

    2015-12-01

    Seismic data processing is currently undergoing a step change, benefitting from high-volume datasets and advanced computer power. In the last decade, a permanent seismic network of 30 broadband stations, complemented by dense temporary deployments, covered mainland Portugal. This outstanding regional coverage currently enables the computation of a high-resolution image of the seismicity of Portugal, which contributes to fitting together the pieces of the regional seismo-tectonic puzzle. Although traditional manual inspections are valuable to refine automatic results they are impracticable with the big data volumes now available. When conducted alone they are also less objective since the criteria is defined by the analyst. In this work we present CatchPy, a scanning algorithm to detect earthquakes in continuous datasets. Our main goal is to implement an automatic earthquake detection and location routine in order to have a tool to quickly process large data sets, while at the same time detecting low magnitude earthquakes (i.e. lowering the detection threshold). CatchPY is designed to produce an event database that could be easily located using existing location codes (e.g.: Grigoli et al. 2013, 2014). We use CatchPy to perform automatic detection and location of earthquakes that occurred in Alentejo region (South Portugal), taking advantage of a dense seismic network deployed in the region for two years during the DOCTAR experiment. Results show that our automatic procedure is particularly suitable for small aperture networks. The event detection is performed by continuously computing the short-term-average/long-term-average of two different characteristic functions (CFs). For the P phases we used a CF based on the vertical energy trace while for S phases we used a CF based on the maximum eigenvalue of the instantaneous covariance matrix (Vidale 1991). Seismic event location is performed by waveform coherence analysis, scanning different hypocentral coordinates (Grigoli et al. 2013, 2014). The reliability of automatic detections, phase pickings and locations are tested trough the quantitative comparison with manual results. This work is supported by project QuakeLoc, reference: PTDC/GEO-FIQ/3522/2012

  10. Using parallel computing methods to improve log surface defect detection methods

    Treesearch

    R. Edward Thomas; Liya Thomas

    2013-01-01

    Determining the size and location of surface defects is crucial to evaluating the potential yield and value of hardwood logs. Recently a surface defect detection algorithm was developed using the Java language. This algorithm was developed around an earlier laser scanning system that had poor resolution along the length of the log (15 scan lines per foot). A newer...

  11. Detection of defects in red oak deckboards by ultrasonic scanning

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer

    2000-01-01

    Experiments were conducted to detect defects in red oak (Quercus rubra, L.) deckboards by ultrasonic scanning. Scanning of the deckboards was carried out with two rolling transducers in a pitch-catch arrangement with pallet parts moving between the transducers at 70 ft/m and 220 ft/m. Data were collected, stored and processed using LabViewTM software. The defects...

  12. An approach to detecting deliberately introduced defects and micro-defects in 3D printed objects

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2017-05-01

    In prior work, Zeltmann, et al. demonstrated the negative impact that can be created by defects of various sizes in 3D printed objects. These defects may make the object unsuitable for its application or even present a hazard, if the object is being used for a safety-critical application. With the uses of 3D printing proliferating and consumer access to printers increasing, the desire of a nefarious individual or group to subvert the desired printing quality and safety attributes of a printer or printed object must be considered. Several different approaches to subversion may exist. Attackers may physically impair the functionality of the printer or launch a cyber-attack. Detecting introduced defects, from either attack, is critical to maintaining public trust in 3D printed objects and the technology. This paper presents an alternate approach. It applies a quality assurance technology based on visible light sensing to this challenge and assesses its capability for detecting introduced defects of multiple sizes.

  13. Study on the Automatic Detection Method and System of Multifunctional Hydrocephalus Shunt

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Wang, Guangzhen; Dong, Quancheng; Li, Yuzhong

    2017-07-01

    Aiming to the difficulty of micro pressure detection and the difficulty of micro flow control in the testing process of hydrocephalus shunt, the principle of the shunt performance detection was analyzed.In this study, the author analyzed the principle of several items of shunt performance detection,and used advanced micro pressure sensor and micro flow peristaltic pump to overcome the micro pressure detection and micro flow control technology.At the same time,This study also puted many common experimental projects integrated, and successfully developed the automatic detection system for a shunt performance detection function, to achieve a test with high precision, high efficiency and automation.

  14. Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling.

    PubMed

    Yu, Hui; Aleman-Meza, Boanerges; Gharib, Shahla; Labocha, Marta K; Cronin, Christopher J; Sternberg, Paul W; Zhong, Weiwei

    2013-07-16

    Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.

  15. An automatic lightning detection and photographic system

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B.

    1973-01-01

    Conventional 35-mm camera is activated by an electronic signal every time lightning strikes in general vicinity. Electronic circuit detects lightning by means of antenna which picks up atmospheric radio disturbances. Camera is equipped with fish-eye lense, automatic shutter advance, and small 24-hour clock to indicate time when exposures are made.

  16. 46 CFR 161.002-9 - Automatic fire detecting system, power supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2013-10-01 2013-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...

  17. 46 CFR 161.002-9 - Automatic fire detecting system, power supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2014-10-01 2014-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...

  18. 46 CFR 161.002-9 - Automatic fire detecting system, power supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2012-10-01 2012-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...

  19. Temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf

    2013-06-01

    Retinal photocoagulation lacks objective dosage in clinical use, thus the commonly applied lesions are too deep and strong, associated with pain reception and the risk of visual field defects and induction of choroidal neovascularisations. Optoacoustics allows real-time non-invasive temperature measurement in the fundus during photocoagulation by applying short probe laser pulses additionally to the treatment radiation, which excite the emission of ultrasonic waves. Due to the temperature dependence of the Grüneisen parameter, the amplitudes of the ultrasonic waves can be used to derive the temperature of the absorbing tissue. By measuring the temperatures in real-time and automatically controlling the irradiation by feedback to the treatment laser, the strength of the lesions can be defined. Different characteristic functions for the time and temperature dependent lesion sizes were used as rating curves for the treatment laser, stopping the irradiation automatically after a desired lesion size is achieved. The automatically produced lesion sizes are widely independent of the adjusted treatment laser power and individual absorption. This study was performed on anaesthetized rabbits and is a step towards a clinical trial with automatically controlled photocoagulation.

  20. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    PubMed

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  1. Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide

    NASA Astrophysics Data System (ADS)

    Kerbiriou, X.; Barthe, M.-F.; Esnouf, S.; Desgardin, P.; Blondiaux, G.; Petite, G.

    2007-05-01

    Both for electronic and nuclear applications, it is of major interest to understand the properties of point defects into silicon carbide (SiC). Low energy electron irradiations are supposed to create primary defects into materials. SiC single crystals have been irradiated with electrons at two beam energies in order to investigate the silicon displacement threshold energy into SiC. This paper presents the characterization of the electron irradiation-induced point defects into both polytypes hexagonal (6H) and cubic (3C) SiC single crystals by using both positron annihilation spectroscopy (PAS) and electron paramagnetic resonance (EPR). The nature and the concentration of the generated point defects depend on the energy of the electron beam and the polytype. After an electron irradiation at an energy of 800 keV vSi mono-vacancies and vSi-vC di-vacancies are detected in both 3C and 6H-SiC polytypes. On the contrary, the nature of point defects detected after an electron irradiation at 190 keV strongly depends on the polytype. Into 6H-SiC crystals, silicon Frenkel pairs vSi-Si are detected whereas only carbon vacancy related defects are detected into 3C-SiC crystals. The difference observed in the distribution of defects detected into the two polytypes can be explained by the different values of the silicon displacement threshold energies for 3C and 6H-SiC. By comparing the calculated theoretical numbers of displaced atoms with the defects numbers measured using EPR, the silicon displacement threshold energy has been estimated to be slightly lower than 20 eV in the 6H polytype and close to 25 eV in the 3C polytype.

  2. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  3. Automatic data processing and analysis system for monitoring region around a planned nuclear power plant

    NASA Astrophysics Data System (ADS)

    Kortström, Jari; Tiira, Timo; Kaisko, Outi

    2016-03-01

    The Institute of Seismology of University of Helsinki is building a new local seismic network, called OBF network, around planned nuclear power plant in Northern Ostrobothnia, Finland. The network will consist of nine new stations and one existing station. The network should be dense enough to provide azimuthal coverage better than 180° and automatic detection capability down to ML -0.1 within a radius of 25 km from the site.The network construction work began in 2012 and the first four stations started operation at the end of May 2013. We applied an automatic seismic signal detection and event location system to a network of 13 stations consisting of the four new stations and the nearest stations of Finnish and Swedish national seismic networks. Between the end of May and December 2013 the network detected 214 events inside the predefined area of 50 km radius surrounding the planned nuclear power plant site. Of those detections, 120 were identified as spurious events. A total of 74 events were associated with known quarries and mining areas. The average location error, calculated as a difference between the announced location from environment authorities and companies and the automatic location, was 2.9 km. During the same time period eight earthquakes between magnitude range 0.1-1.0 occurred within the area. Of these seven could be automatically detected. The results from the phase 1 stations of the OBF network indicates that the planned network can achieve its goals.

  4. Feature selection from hyperspectral imaging for guava fruit defects detection

    NASA Astrophysics Data System (ADS)

    Mat Jafri, Mohd. Zubir; Tan, Sou Ching

    2017-06-01

    Development of technology makes hyperspectral imaging commonly used for defect detection. In this research, a hyperspectral imaging system was setup in lab to target for guava fruits defect detection. Guava fruit was selected as the object as to our knowledge, there is fewer attempts were made for guava defect detection based on hyperspectral imaging. The common fluorescent light source was used to represent the uncontrolled lighting condition in lab and analysis was carried out in a specific wavelength range due to inefficiency of this particular light source. Based on the data, the reflectance intensity of this specific setup could be categorized in two groups. Sequential feature selection with linear discriminant (LD) and quadratic discriminant (QD) function were used to select features that could potentially be used in defects detection. Besides the ordinary training method, training dataset in discriminant was separated in two to cater for the uncontrolled lighting condition. These two parts were separated based on the brighter and dimmer area. Four evaluation matrixes were evaluated which are LD with common training method, QD with common training method, LD with two part training method and QD with two part training method. These evaluation matrixes were evaluated using F1-score with total 48 defected areas. Experiment shown that F1-score of linear discriminant with the compensated method hitting 0.8 score, which is the highest score among all.

  5. Measurement of defect thickness of the wall thinning defect pipes by lock-in infrared thermography technique

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongsuk; Kim, Kyungsu; Jung, Hyunchul; Chang, Hosub

    2010-03-01

    Mostly piping which is using for the nuclear power plants are made up of carbon steel pipes. The wall thinning defects occurs by the effect of the flow accelerated corrosion of fluid that flows in carbon steel pipes. The defects could be found on the welding part and anywhere in the pipes. The infrared thermography technique which is one of the non-destructive testing method has used for detecting the defects of various kinds of materials over the years. There is a limitation for measuring the defect of metals that have a big coefficient of thermal diffusion. However, a technique using lock-in method gets over the difficulty. Consequently, the lock-in infrared thermography technique has been applied to the various industry fields. In this paper, the defect thickness of the straight pipe which has an artificial defect the inside of the pipes was measured by using the lock-in infrared thermography technique and the result could be utilized in detecting defects of carbon steel pipes.

  6. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  7. Method and apparatus for inspecting reflection masks for defects

    DOEpatents

    Bokor, Jeffrey; Lin, Yun

    2003-04-29

    An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.

  8. Fabric defect detection based on visual saliency using deep feature and low-rank recovery

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan

    2018-04-01

    Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.

  9. Defect detection and classification of machined surfaces under multiple illuminant directions

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Weng, Xin; Swonger, C. W.; Ni, Jun

    2010-08-01

    Continuous improvement of product quality is crucial to the successful and competitive automotive manufacturing industry in the 21st century. The presence of surface porosity located on flat machined surfaces such as cylinder heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas between critical mating surfaces, thus causing damage to the engine or transmission. Therefore 100% inline inspection plays an important role for improving product quality. Although the techniques of image processing and machine vision have been applied to machined surface inspection and well improved in the past 20 years, in today's automotive industry, surface porosity inspection is still done by skilled humans, which is costly, tedious, time consuming and not capable of reliably detecting small defects. In our study, an automated defect detection and classification system for flat machined surfaces has been designed and constructed. In this paper, the importance of the illuminant direction in a machine vision system was first emphasized and then the surface defect inspection system under multiple directional illuminations was designed and constructed. After that, image processing algorithms were developed to realize 5 types of 2D or 3D surface defects (pore, 2D blemish, residue dirt, scratch, and gouge) detection and classification. The steps of image processing include: (1) image acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) defect classification. An artificial machined surface and an actual automotive part: cylinder head surface were tested and, as a result, microscopic surface defects can be accurately detected and assigned to a surface defect class. The cycle time of this system can be sufficiently fast that implementation of 100% inline inspection is feasible. The field of view of this system is 150mm×225mm and the surfaces larger than the field of view can be stitched together in software.

  10. An interactive machine-learning approach for defect detection in computed tomogaraphy (CT) images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman

    2005-01-01

    This paper describes recent progress in the analysis of computed tomography (CT) images of hardwood logs. The long-term goal of the work is to develop a system that is capable of autonomous (or semiautonomous) detection of internal defects, so that log breakdown decisions can be optimized based on defect locations. The problem is difficult because wood exhibits large...

  11. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  12. Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines

    PubMed Central

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically idengified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  13. Lead Apron Inspection Using Infrared Light: A Model Validation Study.

    PubMed

    McKenney, Sarah E; Otero, Hansel J; Fricke, Stanley T

    2018-02-01

    To evaluate defect detection in radiation protective apparel, typically called lead aprons, using infrared (IR) thermal imaging. The use of IR lighting eliminates the need for access to x-ray-emitting equipment and radiation dose to the inspector. The performance of radiation workers was prospectively assessed using both a tactile inspection and the IR inspection with a lead apron phantom over a 2-month period. The phantom was a modified lead apron with a series of nine holes of increasing diameter ranging from 2 to 35 mm in accordance with typical rejection criteria. Using the tactile method, a radiation worker would feel for the defects in the lead apron. For the IR inspection, a 250-W IR light source was used to illuminate the lead apron phantom; an IR camera detected the transmitted radiation. The radiation workers evaluated two stills from the IR camera. From the 31 participants inspecting the lead apron phantom with the tactile method, only 2 participants (6%) correctly discovered all 9 holes and 1 participant reported a defect that was not there; 10 of the 20 participants (50%) correctly identified all 9 holes using the IR method. Using a weighted average, 5.4 defects were detected with the tactile method and 7.5 defects were detected with the IR method. IR light can penetrate an apron's protective outer fabric and illuminate defects below the current standard rejection size criteria. The IR method improves defect detectability as compared with the tactile method. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Relating Risk and Reliability Predictions to Design and Development Choices

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Cornford, Steven L.

    2006-01-01

    In this context there are many possible assurance activities. Some focus on the prevention of defects - for example, up-front planning, adoption of design standards, configuration management, training, etc. Others focus on the detection of defects - either to detect latent defects in a system (and so be able to correct them before actual deployment of the system), or to increase confidence that such defects are not present. For example, a wide gamut of reviews, design walkthroughs, tests, inspections, analyses, etc. can be applied to systems and their components.

  15. Defect window analysis by using SEM-contour based shape quantifying method for sub-20nm node production

    NASA Astrophysics Data System (ADS)

    Hibino, Daisuke; Hsu, Mingyi; Shindo, Hiroyuki; Izawa, Masayuki; Enomoto, Yuji; Lin, J. F.; Hu, J. R.

    2013-04-01

    The impact on yield loss due to systematic defect which remains after Optical Proximity Correction (OPC) modeling has increased, and achieving an acceptable yield has become more difficult in the leading technology beyond 20 nm node production. Furthermore Process-Window has become narrow because of the complexity of IC design and less process margin. In the past, the systematic defects have been inspected by human-eyes. However the judgment by human-eyes is sometime unstable and not accurate. Moreover an enormous amount of time and labor will have to be expended on the one-by-one judgment for several thousands of hot-spot defects. In order to overcome these difficulties and improve the yield and manufacturability, the automated system, which can quantify the shape difference with high accuracy and speed, is needed. Inspection points could be increased for getting higher yield, if the automated system achieves our goal. Defect Window Analysis (DWA) system by using high-precision-contour extraction from SEM image on real silicon and quantifying method which can calculate the difference between defect pattern and non-defect pattern automatically, which was developed by Hitachi High-Technologies, has been applied to the defect judgment instead of the judgment by human-eyes. The DWA result which describes process behavior might be feedback to design or OPC or mask. This new methodology and evaluation results will be presented in detail in this paper.

  16. Automatic Co-Registration of QuickBird Data for Change Detection Applications

    NASA Technical Reports Server (NTRS)

    Bryant, Nevin A.; Logan, Thomas L.; Zobrist, Albert L.

    2006-01-01

    This viewgraph presentation reviews the use Automatic Fusion of Image Data System (AFIDS) for Automatic Co-Registration of QuickBird Data to ascertain if changes have occurred in images. The process is outlined, and views from Iraq and Los Angelels are shown to illustrate the process.

  17. 40 CFR 264.1086 - Standards: Containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than 24 hours after detection and repair shall be completed as soon as possible but no later than 5 calendar days after detection. If repair of a defect cannot be completed within 5 calendar days, then the... efforts at repair of the defect no later than 24 hours after detection, and repair shall be completed as...

  18. Detection method based on Kalman filter for high speed rail defect AE signal on wheel-rail rolling rig

    NASA Astrophysics Data System (ADS)

    Hao, Qiushi; Shen, Yi; Wang, Yan; Zhang, Xin

    2018-01-01

    Nondestructive test (NDT) of rails has been carried out intermittently in traditional approaches, which highly restricts the detection efficiency under rapid development of high speed railway nowadays. It is necessary to put forward a dynamic rail defect detection method for rail health monitoring. Acoustic emission (AE) as a practical real-time detection technology takes advantage of dynamic AE signal emitted from plastic deformation of material. Detection capacities of AE on rail defects have been verified due to its sensitivity and dynamic merits. Whereas the application under normal train service circumstance has been impeded by synchronous background noises, which are directly linked to the wheel speed. In this paper, surveys on a wheel-rail rolling rig are performed to investigate defect AE signals with varying speed. A dynamic denoising method based on Kalman filter is proposed and its detection effectiveness and flexibility are demonstrated by theory and computational results. Moreover, after comparative analysis of modelling precision at different speeds, it is predicted that the method is also applicable for high speed condition beyond experiments.

  19. In situ high temperature microwave microscope for nondestructive detection of surface and sub-surface defects.

    PubMed

    Wang, Peiyu; Li, Zhencheng; Pei, Yongmao

    2018-04-16

    An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.

  20. ROC evaluation of SPECT myocardial lesion detectability with and without single iteration non-uniform Chang attenuation compensation using an anthropomorphic female phantom

    NASA Astrophysics Data System (ADS)

    Jang, Sunyoung; Jaszczak, R. J.; Tsui, B. M. W.; Metz, C. E.; Gilland, D. R.; Turkington, T. G.; Coleman, R. E.

    1998-08-01

    The purpose of this work was to evaluate lesion detectability with and without nonuniform attenuation compensation (AC) in myocardial perfusion SPECT imaging in women using an anthropomorphic phantom and receiver operating characteristics (ROC) methodology. Breast attenuation causes artifacts in reconstructed images and may increase the difficulty of diagnosis of myocardial perfusion imaging in women. The null hypothesis tested using the ROC study was that nonuniform AC does not change the lesion detectability in myocardial perfusion SPECT imaging in women. The authors used a filtered backprojection (FBP) reconstruction algorithm and Chang's (1978) single iteration method for AC. In conclusion, with the authors' proposed myocardial defect model nuclear medicine physicians demonstrated no significant difference for the detection of the anterior wall defect; however, a greater accuracy for the detection of the inferior wall defect was observed without nonuniform AC than with it (P-value=0.0034). Medical physicists did not demonstrate any statistically significant difference in defect detection accuracy with or without nonuniform AC in the female phantom.

  1. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Treesearch

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  2. Ultrasonic sensor based defect detection and characterisation of ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh; Zhang, Tonzhua; Crouch, Ian

    2014-01-01

    Ceramic tiles, used in body armour systems, are currently inspected visually offline using an X-ray technique that is both time consuming and very expensive. The aim of this research is to develop a methodology to detect, locate and classify various manufacturing defects in Reaction Sintered Silicon Carbide (RSSC) ceramic tiles, using an ultrasonic sensing technique. Defects such as free silicon, un-sintered silicon carbide material and conventional porosity are often difficult to detect using conventional X-radiography. An alternative inspection system was developed to detect defects in ceramic components using an Artificial Neural Network (ANN) based signal processing technique. The inspection methodology proposed focuses on pre-processing of signals, de-noising, wavelet decomposition, feature extraction and post-processing of the signals for classification purposes. This research contributes to developing an on-line inspection system that would be far more cost effective than present methods and, moreover, assist manufacturers in checking the location of high density areas, defects and enable real time quality control, including the implementation of accept/reject criteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Automatic target detection using binary template matching

    NASA Astrophysics Data System (ADS)

    Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook

    2005-03-01

    This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.

  4. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  5. A comparison of damage profiling of automated tap testers on aircraft CFRP panel

    NASA Astrophysics Data System (ADS)

    Mohd Aris, K. D.; Shariff, M. F.; Abd Latif, B. R.; Mohd Haris, M. Y.; Baidzawi, I. J.

    2017-12-01

    The use of composite materials nevertheless is getting more prominent. The combination of reinforcing fibers and matrices will produce the desired strength orientation, tailorability and not to mention the complex shape that is hard to form on metallic structure. The weight percentage of composite materials used in aerospace, civil, marine etc. has increased tremendously. Since composite are stacked together, the possibility of delamination and/disbond defects are highly present either in the monolithic or sandwich structures. Tap test is the cheapest form of nondestructive test to identify the presence of this damage. However, its inconsistency and wide area of coverage can reduce its effectivity since it is carried out manually. The indigenous automated tap tester known as KETOK was used to detect the damage due to trapped voids and air pockets. The mechanism of detection is through controlling the tapping on the surface automatically at a constant rate. Another manual tap tester RD-3 from Wichitech Industries Inc. was used as reference. The acquired data was translated into damage profiling and both results were compared. The results have shown that the indigenous automated tester can profile the damage better when compared with the existing tap tester. As a conclusion, the indigenous automated tap tester has a potential to be used as an IN-SITU damage detection tool to detect delamination and disbond damage on composite panel. However, more conclusive tests need to be done in order to make the unit available to conventional users.

  6. wft4galaxy: a workflow testing tool for galaxy.

    PubMed

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  7. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting

    NASA Astrophysics Data System (ADS)

    Wang, Lin-zhi; Wang, Sen; Wu, Jiao-jiao

    2017-11-01

    Effects of laser energy density (LED) on densities and surface roughness of AlSi10Mg samples processed by selective laser melting were studied. The densification behaviors of the SLM manufactured AlSi10Mg samples at different LEDs were characterized by a solid densitometer, an industrial X-ray and CT detection system. A field emission scanning electron microscope, an automatic optical measuring system, and a surface profiler were used for measurements of surface roughness. The results show that relatively high density can be obtained with the point distance of 80-105 μm and the exposure time of 140-160 μs. The LED has an important influence on the surface morphology of the forming part, too high LED may lead to balling effect, while too low LED tends to produce defects, such as porosity and microcrack, and then affect surface roughness and porosities of the parts finally.

  8. Considerations In The Design And Specifications Of An Automatic Inspection System

    NASA Astrophysics Data System (ADS)

    Lee, David T.

    1980-05-01

    Considerable activities have been centered around the automation of manufacturing quality control and inspection functions. Several reasons can be cited for this development. The continuous pressure of direct and indirect labor cost increase is only one of the obvious motivations. With the drive for electronics miniaturization come more and more complex processes where control parameters are critical and the yield is highly susceptible to inadequate process monitor and inspection. With multi-step, multi-layer process for substrate fabrication, process defects that are not detected and corrected at certain critical points may render the entire subassembly useless. As a process becomes more complex, the time required to test the product increases significantly in the total build cycle. The urgency to reduce test time brings more pressure to improve in-process control and inspection. The advances and improvements of components, assemblies and systems such as micro-processors, micro-computers, programmable controllers, and other intelligent devices, have made the automation of quality control much more cost effective and justifiable.

  9. A novel methodology for in-process monitoring of flow forming

    NASA Astrophysics Data System (ADS)

    Appleby, Andrew; Conway, Alastair; Ion, William

    2017-10-01

    Flow forming (FF) is an incremental cold working process with near-net-shape forming capability. Failures by fracture due to high deformation can be unexpected and sometimes catastrophic, causing tool damage. If process failures can be identified in real time, an automatic cut-out could prevent costly tool damage. Sound and vibration monitoring is well established and commercially viable in the machining sector to detect current and incipient process failures, but not for FF. A broad-frequency microphone was used to record the sound signature of the manufacturing cycle for a series of FF parts. Parts were flow formed using single and multiple passes, and flaws were introduced into some of the parts to simulate the presence of spontaneously initiated cracks. The results show that this methodology is capable of identifying both introduced defects and spontaneous failures during flow forming. Further investigation is needed to categorise and identify different modes of failure and identify further potential applications in rotary forming.

  10. Automatic detection and notification of "wrong patient-wrong location'' errors in the operating room.

    PubMed

    Sandberg, Warren S; Häkkinen, Matti; Egan, Marie; Curran, Paige K; Fairbrother, Pamela; Choquette, Ken; Daily, Bethany; Sarkka, Jukka-Pekka; Rattner, David

    2005-09-01

    When procedures and processes to assure patient location based on human performance do not work as expected, patients are brought incrementally closer to a possible "wrong patient-wrong procedure'' error. We developed a system for automated patient location monitoring and management. Real-time data from an active infrared/radio frequency identification tracking system provides patient location data that are robust and can be compared with an "expected process'' model to automatically flag wrong-location events as soon as they occur. The system also generates messages that are automatically sent to process managers via the hospital paging system, thus creating an active alerting function to annunciate errors. We deployed the system to detect and annunciate "patient-in-wrong-OR'' events. The system detected all "wrong-operating room (OR)'' events, and all "wrong-OR'' locations were correctly assigned within 0.50+/-0.28 minutes (mean+/-SD). This corresponded to the measured latency of the tracking system. All wrong-OR events were correctly annunciated via the paging function. This experiment demonstrates that current technology can automatically collect sufficient data to remotely monitor patient flow through a hospital, provide decision support based on predefined rules, and automatically notify stakeholders of errors.

  11. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes

    PubMed Central

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L.; Kay, Steven M.; Besio, Walter G.

    2012-01-01

    Epilepsy affects approximately one percent of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback. PMID:22772373

  12. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L; Kay, Steven M; Besio, Walter G

    2012-07-01

    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback.

  13. Automated stent defect detection and classification with a high numerical aperture optical system

    NASA Astrophysics Data System (ADS)

    Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger

    2017-06-01

    Stent quality control is a highly critical process. Cardiovascular stents have to be inspected 100% so as no defective stent is implanted in a human body. However, this visual control is currently performed manually and every stent could need tenths of minutes to be inspected. In this paper, a novel optical inspection system is presented. By the combination of a high numerical aperture (NA) optical system, a rotational stage and a line-scan camera, unrolled sections of the outer and inner surfaces of the stent are obtained and image-processed at high speed. Defects appearing in those surfaces and also in the edges are extremely contrasted due to the shadowing effect of the high NA illumination and acquisition approach. Therefore by means of morphological operations and a sensitivity parameter, defects are detected. Based on a trained defect library, a binary classifier sorts each kind of defect through a set of scoring vectors, providing the quality operator with all the required information to finally take a decision. We expect this new approach to make defect detection completely objective and to dramatically reduce the time and cost of stent quality control stage.

  14. Automatic detection of DNA double strand breaks after irradiation using an γH2AX assay.

    PubMed

    Hohmann, Tim; Kessler, Jacqueline; Grabiec, Urszula; Bache, Matthias; Vordermark, Dyrk; Dehghani, Faramarz

    2018-05-01

    Radiation therapy belongs to the most common approaches for cancer therapy leading amongst others to DNA damage like double strand breaks (DSB). DSB can be used as a marker for the effect of radiation on cells. For visualization and assessing the extent of DNA damage the γH2AX foci assay is frequently used. The analysis of the γH2AX foci assay remains complicated as the number of γH2AX foci has to be counted. The quantification is mostly done manually, being time consuming and leading to person-dependent variations. Therefore, we present a method to automatically analyze the number of foci inside nuclei, facilitating and quickening the analysis of DSBs with high reliability in fluorescent images. First nuclei were detected in fluorescent images. Afterwards, the nuclei were analyzed independently from each other with a local thresholding algorithm. This approach allowed accounting for different levels of noise and detection of the foci inside the respective nucleus, using Hough transformation searching for circles. The presented algorithm was able to correctly classify most foci in cases of "high" and "average" image quality (sensitivity>0.8) with a low rate of false positive detections (positive predictive value (PPV)>0.98). In cases of "low" image quality the approach had a decreased sensitivity (0.7-0.9), depending on the manual control counter. The PPV remained high (PPV>0.91). Compared to other automatic approaches the presented algorithm had a higher sensitivity and PPV. The used automatic foci detection algorithm was capable of detecting foci with high sensitivity and PPV. Thus it can be used for automatic analysis of images of varying quality.

  15. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology?

    PubMed

    Ali, Zulfiqar; Alsulaiman, Mansour; Muhammad, Ghulam; Elamvazuthi, Irraivan; Al-Nasheri, Ahmed; Mesallam, Tamer A; Farahat, Mohamed; Malki, Khalid H

    2017-05-01

    A large population around the world has voice complications. Various approaches for subjective and objective evaluations have been suggested in the literature. The subjective approach strongly depends on the experience and area of expertise of a clinician, and human error cannot be neglected. On the other hand, the objective or automatic approach is noninvasive. Automatic developed systems can provide complementary information that may be helpful for a clinician in the early screening of a voice disorder. At the same time, automatic systems can be deployed in remote areas where a general practitioner can use them and may refer the patient to a specialist to avoid complications that may be life threatening. Many automatic systems for disorder detection have been developed by applying different types of conventional speech features such as the linear prediction coefficients, linear prediction cepstral coefficients, and Mel-frequency cepstral coefficients (MFCCs). This study aims to ascertain whether conventional speech features detect voice pathology reliably, and whether they can be correlated with voice quality. To investigate this, an automatic detection system based on MFCC was developed, and three different voice disorder databases were used in this study. The experimental results suggest that the accuracy of the MFCC-based system varies from database to database. The detection rate for the intra-database ranges from 72% to 95%, and that for the inter-database is from 47% to 82%. The results conclude that conventional speech features are not correlated with voice, and hence are not reliable in pathology detection. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Blotch removal for old movie restoration using epitome analysis

    NASA Astrophysics Data System (ADS)

    Rashwan, Abdullah M.

    2011-10-01

    Automatic blotch removal in old movies is important in film restoration. Blotches are black or white spots randomly occurring along the movie frames. Removing these spots are obtained by first automatically detecting the blotches then interpolating them using the spatial and temporal information in current, succeeding, and preceding frames. In this paper, simplified Rank Order Detector (sROD) is used with tweaked parameters to over detect the blotches, Epitome Analysis is used for interpolating the detected blotches.

  17. The Infrared Automatic Mass Screening (IRAMS) System For Printed Circuit Board Fault Detection

    NASA Astrophysics Data System (ADS)

    Hugo, Perry W.

    1987-05-01

    Office of the Program Manager for TMDE (OPM TMDE) has initiated a program to develop techniques for evaluating the performance of printed circuit boards (PCB's) using infrared thermal imaging. It is OPM TMDE's expectation that the standard thermal profile (STP) will become the basis for the future rapid automatic detection and isolation of gross failure mechanisms on units under test (UUT's). To accomplish this OPM TMDE has purchased two Infrared Automatic Mass Screening ( I RAMS) systems which are scheduled for delivery in 1987. The IRAMS system combines a high resolution infrared thermal imager with a test bench and diagnostic computer hardware and software. Its purpose is to rapidly and automatically compare the thermal profiles of a UUT with the STP of that unit, recalled from memory, in order to detect thermally responsive failure mechanisms in PCB's. This paper will review the IRAMS performance requirements, outline the plan for implementing the two systems and report on progress to date.

  18. Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images

    NASA Astrophysics Data System (ADS)

    Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias

    2012-02-01

    Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.

  19. Automatic updating and 3D modeling of airport information from high resolution images using GIS and LIDAR data

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng

    2007-11-01

    As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.

  20. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

    PubMed

    López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A

    2018-05-01

    Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Adaptive detection of missed text areas in OCR outputs: application to the automatic assessment of OCR quality in mass digitization projects

    NASA Astrophysics Data System (ADS)

    Ben Salah, Ahmed; Ragot, Nicolas; Paquet, Thierry

    2013-01-01

    The French National Library (BnF*) has launched many mass digitization projects in order to give access to its collection. The indexation of digital documents on Gallica (digital library of the BnF) is done through their textual content obtained thanks to service providers that use Optical Character Recognition softwares (OCR). OCR softwares have become increasingly complex systems composed of several subsystems dedicated to the analysis and the recognition of the elements in a page. However, the reliability of these systems is always an issue at stake. Indeed, in some cases, we can find errors in OCR outputs that occur because of an accumulation of several errors at different levels in the OCR process. One of the frequent errors in OCR outputs is the missed text components. The presence of such errors may lead to severe defects in digital libraries. In this paper, we investigate the detection of missed text components to control the OCR results from the collections of the French National Library. Our verification approach uses local information inside the pages based on Radon transform descriptors and Local Binary Patterns descriptors (LBP) coupled with OCR results to control their consistency. The experimental results show that our method detects 84.15% of the missed textual components, by comparing the OCR ALTO files outputs (produced by the service providers) to the images of the document.

  2. Sequential detection of web defects

    DOEpatents

    Eichel, Paul H.; Sleefe, Gerard E.; Stalker, K. Terry; Yee, Amy A.

    2001-01-01

    A system for detecting defects on a moving web having a sequential series of identical frames uses an imaging device to form a real-time camera image of a frame and a comparitor to comparing elements of the camera image with corresponding elements of an image of an exemplar frame. The comparitor provides an acceptable indication if the pair of elements are determined to be statistically identical; and a defective indication if the pair of elements are determined to be statistically not identical. If the pair of elements is neither acceptable nor defective, the comparitor recursively compares the element of said exemplar frame with corresponding elements of other frames on said web until one of the acceptable or defective indications occur.

  3. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  4. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    PubMed

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  5. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    PubMed Central

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-01-01

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode. PMID:29669992

  6. Evaluation of equivalent defect heat generation in carbon epoxy composite under powerful ultrasonic stimulation by using infrared thermography

    NASA Astrophysics Data System (ADS)

    Derusova, D. A.; Vavilov, V. P.; Pawar, S. S.

    2015-04-01

    Low velocity impact is a frequently observed event during the operation of an aircraft composite structure. This type of damage is aptly called as “blind-side impact damage” as it is barely visible as a dent on the impacted surface, but may produce extended delaminations closer to the rear surface. One-sided thermal nondestructive testing is considered as a promising technique for detecting impact damage but because of diffusive nature of optical thermal signals there is drop in detectability of deeper subsurface defects. Ultrasonic Infrared thermography is a potentially attractive nondestructive evaluation technique used to detect the defects through observation of vibration-induced heat generation. Evaluation of the energy released by such defects is a challenging task. In this study, the thin delaminations caused by impact damage in composites and which are subjected to ultrasonic excitation are considered as local heat sources. The actual impact damage in a carbon epoxy composite which was detected by applying a magnetostrictive ultrasonic device is then modeled as a pyramid-like defect with a set of delaminations acting as an air-filled heat sources. The temperature rise expected on the surface of the specimen was achieved by varying energy contribution from each delamination through trial and error. Finally, by comparing the experimental temperature elevations in defective area with the results of temperature simulations, we estimated the energy generated by each defect and defect power of impact damage as a whole. The results show good correlation between simulations and measurements, thus validating the simulation approach.

  7. The diagnostic accuracy of endovaginal and transperineal ultrasound for detecting anal sphincter defects: The PREDICT study.

    PubMed

    Roos, A-M; Abdool, Z; Sultan, A H; Thakar, R

    2011-07-01

    To determine the accuracy and predictive value of transperineal (TPU) and endovaginal ultrasound (EVU) in the detection of anal sphincter defects in women with obstetric anal sphincter injuries and/or postpartum symptoms of faecal incontinence. One hundred and sixty-five women were recruited, four women were excluded as they were seen years after their last delivery. TPU and EVU, followed by endonanal ultrasound (EAU), were performed using the B&K Viking 2400 scanner. Sensitivity and specificity, as well as predictive values with 95% confidence intervals, for detecting anal sphincter defects were calculated for EVU and TPU, using EAU as the reference standard. On EAU a defect was found in 42 (26%) women: 39 (93%) had an external (EAS) and 23 (55%) an internal anal sphincter (IAS) defect. Analysable images of one level of the EAS combined with an analysable IAS were available in 140 (87%) women for EVU and in 131 (81%) for TPU. The sensitivity and specificity for the detection of any defect was 48% (30-67%) and 85% (77-91%) for EVU and 64% (44-81%) and 85% (77-91%) for TPU, respectively. Although EAU using a rotating endoprobe is the validated reference standard in the identification of anal sphincter defects, it is not universally available. However while TPU and/or EVU with conventional ultrasound probes can be useful in identifying normality, for clinical purposes they are not sensitive enough to identify an underlying sphincter defect. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Vision-Based Sensor for Early Detection of Periodical Defects in Web Materials

    PubMed Central

    Bulnes, Francisco G.; Usamentiaga, Rubén; García, Daniel F.; Molleda, Julio

    2012-01-01

    During the production of web materials such as plastic, textiles or metal, where there are rolls involved in the production process, periodically generated defects may occur. If one of these rolls has some kind of flaw, it can generate a defect on the material surface each time it completes a full turn. This can cause the generation of a large number of surface defects, greatly degrading the product quality. For this reason, it is necessary to have a system that can detect these situations as soon as possible. This paper presents a vision-based sensor for the early detection of this kind of defects. It can be adapted to be used in the inspection of any web material, even when the input data are very noisy. To assess its performance, the sensor system was used to detect periodical defects in hot steel strips. A total of 36 strips produced in ArcelorMittal Avilés factory were used for this purpose, 18 to determine the optimal configuration of the proposed sensor using a full-factorial experimental design and the other 18 to verify the validity of the results. Next, they were compared with those provided by a commercial system used worldwide, showing a clear improvement. PMID:23112629

  9. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  10. On-line high-speed rail defect detection, phase III : research results.

    DOT National Transportation Integrated Search

    2005-10-01

    The Federal Railroad Administration (FRA) Office of Research and Developments Track and Structures Program sponsored a study for developing and testing a rail defect detection system based on ultrasonic guided waves and non-contact probing. Curren...

  11. On-line high-speed rail defect detection : research results.

    DOT National Transportation Integrated Search

    2008-08-01

    The rail defect detection prototype, which is being developed by the University of California-San Diego (UCSD) under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, has produced encouraging results in recent fi...

  12. Automatic visibility retrieval from thermal camera images

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Ott, Beat; Wellig, Peter; Wunderle, Stefan

    2017-10-01

    This study presents an automatic visibility retrieval of a FLIR A320 Stationary Thermal Imager installed on a measurement tower on the mountain Lagern located in the Swiss Jura Mountains. Our visibility retrieval makes use of edges that are automatically detected from thermal camera images. Predefined target regions, such as mountain silhouettes or buildings with high thermal differences to the surroundings, are used to derive the maximum visibility distance that is detectable in the image. To allow a stable, automatic processing, our procedure additionally removes noise in the image and includes automatic image alignment to correct small shifts of the camera. We present a detailed analysis of visibility derived from more than 24000 thermal images of the years 2015 and 2016 by comparing them to (1) visibility derived from a panoramic camera image (VISrange), (2) measurements of a forward-scatter visibility meter (Vaisala FD12 working in the NIR spectra), and (3) modeled visibility values using the Thermal Range Model TRM4. Atmospheric conditions, mainly water vapor from European Center for Medium Weather Forecast (ECMWF), were considered to calculate the extinction coefficients using MODTRAN. The automatic visibility retrieval based on FLIR A320 images is often in good agreement with the retrieval from the systems working in different spectral ranges. However, some significant differences were detected as well, depending on weather conditions, thermal differences of the monitored landscape, and defined target size.

  13. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  14. Automatic detection and severity measurement of eczema using image processing.

    PubMed

    Alam, Md Nafiul; Munia, Tamanna Tabassum Khan; Tavakolian, Kouhyar; Vasefi, Fartash; MacKinnon, Nick; Fazel-Rezai, Reza

    2016-08-01

    Chronic skin diseases like eczema may lead to severe health and financial consequences for patients if not detected and controlled early. Early measurement of disease severity, combined with a recommendation for skin protection and use of appropriate medication can prevent the disease from worsening. Current diagnosis can be costly and time-consuming. In this paper, an automatic eczema detection and severity measurement model are presented using modern image processing and computer algorithm. The system can successfully detect regions of eczema and classify the identified region as mild or severe based on image color and texture feature. Then the model automatically measures skin parameters used in the most common assessment tool called "Eczema Area and Severity Index (EASI)," by computing eczema affected area score, eczema intensity score, and body region score of eczema allowing both patients and physicians to accurately assess the affected skin.

  15. A novel approach: high resolution inspection with wafer plane defect detection

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Wihl, Mark; Shi, Rui-fang; Xiong, Yalin; Pang, Song

    2008-05-01

    High Resolution reticle inspection is well-established as a proven, effective, and efficient means of detecting yield-limiting mask defects as well as defects which are not immediately yield-limiting yet can enable manufacturing process improvements. Historically, RAPID products have enabled detection of both classes of these defects. The newly-developed Wafer Plane Inspection (WPI) detector technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. Wafer Plane Inspection accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. This has the effect of reducing sensitivity to non-printing defects while enabling higher sensitivity focused in high MEEF areas where small reticle defects still yield significant printing defects on wafers. WPI is a new inspection mode that has been developed by KLA-Tencor and is currently under test with multiple customers. It employs the same transmitted and reflected-light high-resolution images as the industry-standard high-resolution inspections, but with much more sophisticated processing involved. A rigorous mask pattern recovery algorithm is used to convert the transmitted and reflected light images into a modeled representation of the reticle. Lithographic modeling of the scanner is then used to generate an aerial image of the mask. This is followed by resist modeling to determine the exposure of the photoresist. The defect detectors are then applied on this photoresist plane so that only printing defects are detected. Note that no hardware modifications to the inspection system are required to enable this detector. The same tool will be able to perform both our standard High Resolution inspections and the Wafer Plane Inspection detector. This approach has several important features. The ability to ignore non-printing defects and to apply additional effective sensitivity in high MEEF areas enables advanced node development. In addition, the modeling allows the inclusion of important polarization effects that occur in the resist for high NA operation. This allows for the results to better match wafer print results compared to alternate approaches. Finally, the simulation easily allows for the application of arbitrary illumination profiles. With this approach, users of WPI can make use of unique or custom scanner illumination profiles. This allows the more precise modeling of profiles without inspection system hardware modification or loss of company intellectual property. This paper examines WPI in Die:Die mode. Future work includes a review of Die:Database WPI capability.

  16. Multisource oil spill detection

    NASA Astrophysics Data System (ADS)

    Salberg, Arnt B.; Larsen, Siri O.; Zortea, Maciel

    2013-10-01

    In this paper we discuss how multisource data (wind, ocean-current, optical, bathymetric, automatic identification systems (AIS)) may be used to improve oil spill detection in SAR images, with emphasis on the use of automatic oil spill detection algorithms. We focus particularly on AIS, optical, and bathymetric data. For the AIS data we propose an algorithm for integrating AIS ship tracks into automatic oil spill detection in order to improve the confidence estimate of a potential oil spill. We demonstrate the use of ancillary data on a set of SAR images. Regarding the use of optical data, we did not observe a clear correspondence between high chlorophyll values (estimated from products derived from optical data) and observed slicks in the SAR image. Bathymetric data was shown to be a good data source for removing false detections caused by e.g. sand banks on low tide. For the AIS data we observed that a polluter could be identified for some dark slicks, however, a precise oil drift model is needed in order to identify the polluter with high certainty.

  17. Automatic construction of a recurrent neural network based classifier for vehicle passage detection

    NASA Astrophysics Data System (ADS)

    Burnaev, Evgeny; Koptelov, Ivan; Novikov, German; Khanipov, Timur

    2017-03-01

    Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.

  18. Simultaneous macula detection and optic disc boundary segmentation in retinal fundus images

    NASA Astrophysics Data System (ADS)

    Girard, Fantin; Kavalec, Conrad; Grenier, Sébastien; Ben Tahar, Houssem; Cheriet, Farida

    2016-03-01

    The optic disc (OD) and the macula are important structures in automatic diagnosis of most retinal diseases inducing vision defects such as glaucoma, diabetic or hypertensive retinopathy and age-related macular degeneration. We propose a new method to detect simultaneously the macula and the OD boundary. First, the color fundus images are processed to compute several maps highlighting the different anatomical structures such as vessels, the macula and the OD. Then, macula candidates and OD candidates are found simultaneously and independently using seed detectors identified on the corresponding maps. After selecting a set of macula/OD pairs, the top candidates are sent to the OD segmentation method. The segmentation method is based on local K-means applied to color coordinates in polar space followed by a polynomial fitting regularization step. Pair scores are updated, resulting in the final best macula/OD pair. The method was evaluated on two public image databases: ONHSD and MESSIDOR. The results show an overlapping area of 0.84 on ONHSD and 0.90 on MESSIDOR, which is better than recent state of the art methods. Our segmentation method is robust to contrast and illumination problems and outputs the exact boundary of the OD, not just a circular or elliptical model. The macula detection has an accuracy of 94%, which again outperforms other macula detection methods. This shows that combining the OD and macula detections improves the overall accuracy. The computation time for the whole process is 6.4 seconds, which is faster than other methods in the literature.

  19. Detection and characterization of corrosion of bridge cables by time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric

    1999-02-01

    In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.

  20. Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling

    PubMed Central

    Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474

  1. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  2. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2008-09-01

    We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer.

  3. Computer-based planning of optimal donor sites for autologous osseous grafts

    NASA Astrophysics Data System (ADS)

    Krol, Zdzislaw; Chlebiej, Michal; Zerfass, Peter; Zeilhofer, Hans-Florian U.; Sader, Robert; Mikolajczak, Pawel; Keeve, Erwin

    2002-05-01

    Bone graft surgery is often necessary for reconstruction of craniofacial defects after trauma, tumor, infection or congenital malformation. In this operative technique the removed or missing bone segment is filled with a bone graft. The mainstay of the craniofacial reconstruction rests with the replacement of the defected bone by autogeneous bone grafts. To achieve sufficient incorporation of the autograft into the host bone, precise planning and simulation of the surgical intervention is required. The major problem is to determine as accurately as possible the donor site where the graft should be dissected from and to define the shape of the desired transplant. A computer-aided method for semi-automatic selection of optimal donor sites for autografts in craniofacial reconstructive surgery has been developed. The non-automatic step of graft design and constraint setting is followed by a fully automatic procedure to find the best fitting position. In extension to preceding work, a new optimization approach based on the Levenberg-Marquardt method has been implemented and embedded into our computer-based surgical planning system. This new technique enables, once the pre-processing step has been performed, selection of the optimal donor site in time less than one minute. The method has been applied during surgery planning step in more than 20 cases. The postoperative observations have shown that functional results, such as speech and chewing ability as well as restoration of bony continuity were clearly better compared to conventionally planned operations. Moreover, in most cases the duration of the surgical interventions has been distinctly reduced.

  4. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  5. The Potential of Automatic Word Comparison for Historical Linguistics.

    PubMed

    List, Johann-Mattis; Greenhill, Simon J; Gray, Russell D

    2017-01-01

    The amount of data from languages spoken all over the world is rapidly increasing. Traditional manual methods in historical linguistics need to face the challenges brought by this influx of data. Automatic approaches to word comparison could provide invaluable help to pre-analyze data which can be later enhanced by experts. In this way, computational approaches can take care of the repetitive and schematic tasks leaving experts to concentrate on answering interesting questions. Here we test the potential of automatic methods to detect etymologically related words (cognates) in cross-linguistic data. Using a newly compiled database of expert cognate judgments across five different language families, we compare how well different automatic approaches distinguish related from unrelated words. Our results show that automatic methods can identify cognates with a very high degree of accuracy, reaching 89% for the best-performing method Infomap. We identify the specific strengths and weaknesses of these different methods and point to major challenges for future approaches. Current automatic approaches for cognate detection-although not perfect-could become an important component of future research in historical linguistics.

  6. Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Marghany, Maged

    2016-10-01

    In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.

  7. [A wavelet-transform-based method for the automatic detection of late-type stars].

    PubMed

    Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao

    2005-07-01

    The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.

  8. Method and apparatus for detecting flaws and defects in heat seals

    NASA Technical Reports Server (NTRS)

    Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)

    1993-01-01

    Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.

  9. Evaluation of an automatic MR-based gold fiducial marker localisation method for MR-only prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Maspero, Matteo; van den Berg, Cornelis A. T.; Zijlstra, Frank; Sikkes, Gonda G.; de Boer, Hans C. J.; Meijer, Gert J.; Kerkmeijer, Linda G. W.; Viergever, Max A.; Lagendijk, Jan J. W.; Seevinck, Peter R.

    2017-10-01

    An MR-only radiotherapy planning (RTP) workflow would reduce the cost, radiation exposure and uncertainties introduced by CT-MRI registrations. In the case of prostate treatment, one of the remaining challenges currently holding back the implementation of an RTP workflow is the MR-based localisation of intraprostatic gold fiducial markers (FMs), which is crucial for accurate patient positioning. Currently, MR-based FM localisation is clinically performed manually. This is sub-optimal, as manual interaction increases the workload. Attempts to perform automatic FM detection often rely on being able to detect signal voids induced by the FMs in magnitude images. However, signal voids may not always be sufficiently specific, hampering accurate and robust automatic FM localisation. Here, we present an approach that aims at automatic MR-based FM localisation. This method is based on template matching using a library of simulated complex-valued templates, and exploiting the behaviour of the complex MR signal in the vicinity of the FM. Clinical evaluation was performed on seventeen prostate cancer patients undergoing external beam radiotherapy treatment. Automatic MR-based FM localisation was compared to manual MR-based and semi-automatic CT-based localisation (the current gold standard) in terms of detection rate and the spatial accuracy and precision of localisation. The proposed method correctly detected all three FMs in 15/17 patients. The spatial accuracy (mean) and precision (STD) were 0.9 mm and 0.5 mm respectively, which is below the voxel size of 1.1 × 1.1 × 1.2 mm3 and comparable to MR-based manual localisation. FM localisation failed (3/51 FMs) in the presence of bleeding or calcifications in the direct vicinity of the FM. The method was found to be spatially accurate and precise, which is essential for clinical use. To overcome any missed detection, we envision the use of the proposed method along with verification by an observer. This will result in a semi-automatic workflow facilitating the introduction of an MR-only workflow.

  10. Automatic detection and recognition of signs from natural scenes.

    PubMed

    Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex

    2004-01-01

    In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.

  11. SU-G-JeP4-03: Anomaly Detection of Respiratory Motion by Use of Singular Spectrum Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoku, J; Kumagai, S; Nakabayashi, S

    Purpose: The implementation and realization of automatic anomaly detection of respiratory motion is a very important technique to prevent accidental damage during radiation therapy. Here, we propose an automatic anomaly detection method using singular value decomposition analysis. Methods: The anomaly detection procedure consists of four parts:1) measurement of normal respiratory motion data of a patient2) calculation of a trajectory matrix representing normal time-series feature3) real-time monitoring and calculation of a trajectory matrix of real-time data.4) calculation of an anomaly score from the similarity of the two feature matrices. Patient motion was observed by a marker-less tracking system using a depthmore » camera. Results: Two types of motion e.g. cough and sudden stop of breathing were successfully detected in our real-time application. Conclusion: Automatic anomaly detection of respiratory motion using singular spectrum analysis was successful in the cough and sudden stop of breathing. The clinical use of this algorithm will be very hopeful. This work was supported by JSPS KAKENHI Grant Number 15K08703.« less

  12. Quantification of regional fat volume in rat MRI

    NASA Astrophysics Data System (ADS)

    Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren

    2003-05-01

    Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.

  13. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions

    NASA Astrophysics Data System (ADS)

    Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang

    2018-05-01

    Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.

  14. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2004-05-01

    This paper describes an automatic method for measuring the biparietal diameter (BPD) and head circumference (HC) in ultrasound fetal images. A total of 217 ultrasound images were segmented by using a K-Mean classifier, and the head skull was detected in 214 of the 217 cases by an iterative randomized Hough transform developed for detection of incomplete curves in images with strong noise without user intervention. The automatic measurements were compared with conventional manual measurements by sonographers and a trained panel. The inter-run variations and differences between the automatic and conventional measurements were small compared with published inter-observer variations. The results showed that the automated measurements were as reliable as the expert measurements and more consistent. This method has great potential in clinical applications.

  15. Comparing Automatic CME Detections in Multiple LASCO and SECCHI Catalogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Phillip; Colaninno, Robin C., E-mail: phillip.hess.ctr@nrl.navy.mil, E-mail: robin.colaninno@nrl.navy.mil

    With the creation of numerous automatic detection algorithms, a number of different catalogs of coronal mass ejections (CMEs) spanning the entirety of the Solar and Heliospheric Observatory ( SOHO ) Large Angle Spectrometric Coronagraph (LASCO) mission have been created. Some of these catalogs have been further expanded for use on data from the Solar Terrestrial Earth Observatory ( STEREO ) Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) as well. We compare the results from different automatic detection catalogs (Solar Eruption Event Detection System (SEEDS), Computer Aided CME Tracking (CACTus), and Coronal Image Processing (CORIMP)) to ensure the consistency ofmore » detections in each. Over the entire span of the LASCO catalogs, the automatic catalogs are well correlated with one another, to a level greater than 0.88. Focusing on just periods of higher activity, these correlations remain above 0.7. We establish the difficulty in comparing detections over the course of LASCO observations due to the change in the instrument image cadence in 2010. Without adjusting catalogs for the cadence, CME detection rates show a large spike in cycle 24, despite a notable drop in other indices of solar activity. The output from SEEDS, using a consistent image cadence, shows that the CME rate has not significantly changed relative to sunspot number in cycle 24. These data, and mass calculations from CORIMP, lead us to conclude that any apparent increase in CME rate is a result of the change in cadence. We study detection characteristics of CMEs, discussing potential physical changes in events between cycles 23 and 24. We establish that, for detected CMEs, physical parameters can also be sensitive to the cadence.« less

  16. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  17. Detection of small-size solder ball defects through heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan

    2018-02-01

    Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.

  18. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    PubMed

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Computer Vision System For Locating And Identifying Defects In Hardwood Lumber

    NASA Astrophysics Data System (ADS)

    Conners, Richard W.; Ng, Chong T.; Cho, Tai-Hoon; McMillin, Charles W.

    1989-03-01

    This paper describes research aimed at developing an automatic cutup system for use in the rough mills of the hardwood furniture and fixture industry. In particular, this paper describes attempts to create the vision system that will power this automatic cutup system. There are a number of factors that make the development of such a vision system a challenge. First there is the innate variability of the wood material itself. No two species look exactly the same, in fact, they can have a significant visual difference in appearance among species. Yet a truly robust vision system must be able to handle a variety of such species, preferably with no operator intervention required when changing from one species to another. Secondly, there is a good deal of variability in the definition of what constitutes a removable defect. The hardwood furniture and fixture industry is diverse in the nature of the products that it makes. The products range from hardwood flooring to fancy hardwood furniture, from simple mill work to kitchen cabinets. Thus depending on the manufacturer, the product, and the quality of the product the nature of what constitutes a removable defect can and does vary. The vision system must be such that it can be tailored to meet each of these unique needs, preferably without any additional program modifications. This paper will describe the vision system that has been developed. It will assess the current system capabilities, and it will discuss the directions for future research. It will be argued that artificial intelligence methods provide a natural mechanism for attacking this computer vision application.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Jiang, Huaiguang; Tan, Jin

    This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less

  1. Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.

    1996-09-01

    A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.

  2. Programmable Positioner For Spot Welding

    NASA Technical Reports Server (NTRS)

    Roden, William A.

    1989-01-01

    Welding station mechanized by installing preset indexing system and gear drive. Mechanism includes a low-cost, versatile, single-axis motion control and motor drive to provide fully-automatic weld sequencing and spot-to-spot spacing. Welding station relieves operator of some difficult, tedious tasks and increases both productivity and quality of welds. Results in welds of higher quality and greater accuracy, fewer weld defects, and faster welding operation.

  3. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  4. Take a byte out of MEEF: VAMPIRE: Vehicle for Advanced Mask Pattern Inspection Readiness Evaluations

    NASA Astrophysics Data System (ADS)

    Badger, Karen D.; Rankin, Jed; Turley, Christina; Seki, Kazunori; Dechene, Dan J.; Abdelghany, Hesham

    2016-09-01

    MEEF, or Mask Error Enhancement Factor, is simply defined as the ratio of the change in printed wafer feature width to the change in mask feature width scaled to wafer level. It is important in chip manufacturing that leads to the amplification of mask errors, creating challenges with both achieving dimensional control tolerances and ensuring defect free masks, as measured by on-wafer image quality. As lithographic imaging continues to be stressed, using lower and lower k1 factor resolution enhancement techniques, the high MEEF areas present on advanced optical masks creates an environment where the need for increased mask defect sensitivity in high-MEEF areas becomes more and more critical. There are multiple approaches to mask inspection that may or may not provide enough sensitivity to detect all wafer-printable defects; the challenge in the application of these techniques is simultaneously maintaining an acceptable level of mask inspectability. The higher the MEEF, the harder the challenge will be to achieve and appropriate level of sensitivity while maintaining inspectability…and to do so on the geometries that matter. The predominant photomask fabrication inspection approach in use today compares the features on the reticle directly with the design database using high-NA optics. This approach has the ability to detect small defects, however, when inspecting aggressive OPC, it can lead to the over-detection of inconsequential, or nuisance defects. To minimize these nuisance detections, changing the sensitivity of the inspection can improve the inspectability of a mask inspected in high-NA mode, however, it leads to the inability to detect subtle, yet wafer-printable defects in High-MEEF geometry, due to the fact that this `desense' must be applied globally. There are also `lithography-emulating' approaches to inspection that use various means to provide high defect sensitivity and the ability to tolerate inconsequential, non-printing defects by using scanner-like conditions to determine which defects are wafer printable. This inspection technique is commonly referred to as being `lithography plane' or `litho plane,' since it's assessing the mask quality based on how the mask appears to the imaging optics during use, as proposed to traditional `reticle plane' inspection which is comparing the mask only with its target design. Regardless of how the defects are detected, the real question is when should they be detected? For larger technology nodes, defects are considered `statistical risks'…i.e., first they have to occur, and then they have to fall in high-MEEF areas in order to be of concern, and be below the detection limits of traditional reticle-plane inspection. In short, the `perfect storm' has to happen in order to miss printable defects using well-optimized traditional inspection approaches. The introduction of lithographic inspection techniques has revealed this statistical game is a much higher risk than originally estimated, in that very subtle waferprintable CD errors typically fall into the desense band for traditional reticle plane inspection. Because printability is largely influenced by MEEF, designs with high-MEEF values are at greater risk of traditional inspection missing printable CD errors. The question is… how high is high… and at what MEEF is optical inspection at the reticle plane sufficient? This paper will provide evaluation results for both reticle-plane and litho-plane inspections as they pertain to varying degrees of MEEF. A newly designed high-MEEF programmed defect test mask, named VAMPIRE, will be introduced. This test mask is based on 7 nm node technology and contains intentionally varying degrees of MEEF as well as a variety of programmed defects in high-MEEF environments…all of which have been verified for defect lithographic significance on a Zeiss AIMS system.

  5. Automatic food intake detection based on swallowing sounds.

    PubMed

    Makeyev, Oleksandr; Lopez-Meyer, Paulo; Schuckers, Stephanie; Besio, Walter; Sazonov, Edward

    2012-11-01

    This paper presents a novel fully automatic food intake detection methodology, an important step toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our understanding of eating behaviors associated with obesity and eating disorders. The proposed methodology consists of two stages. First, acoustic detection of swallowing instances based on mel-scale Fourier spectrum features and classification using support vector machines is performed. Principal component analysis and a smoothing algorithm are used to improve swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for detection of food intake episodes. The proposed methodology was tested on data collected from 12 subjects with various degrees of adiposity. Average accuracies of >80% and >75% were obtained for intra-subject and inter-subject models correspondingly with a temporal resolution of 30s. Results obtained on 44.1 hours of data with a total of 7305 swallows show that detection accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake detection based on swallowing sounds and potential of the proposed methodology for automatic monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed methodology may potentially be used in free-living conditions.

  6. Automatic food intake detection based on swallowing sounds

    PubMed Central

    Makeyev, Oleksandr; Lopez-Meyer, Paulo; Schuckers, Stephanie; Besio, Walter; Sazonov, Edward

    2012-01-01

    This paper presents a novel fully automatic food intake detection methodology, an important step toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our understanding of eating behaviors associated with obesity and eating disorders. The proposed methodology consists of two stages. First, acoustic detection of swallowing instances based on mel-scale Fourier spectrum features and classification using support vector machines is performed. Principal component analysis and a smoothing algorithm are used to improve swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for detection of food intake episodes. The proposed methodology was tested on data collected from 12 subjects with various degrees of adiposity. Average accuracies of >80% and >75% were obtained for intra-subject and inter-subject models correspondingly with a temporal resolution of 30s. Results obtained on 44.1 hours of data with a total of 7305 swallows show that detection accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake detection based on swallowing sounds and potential of the proposed methodology for automatic monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed methodology may potentially be used in free-living conditions. PMID:23125873

  7. Can three-dimensional high-resolution anorectal manometry detect anal sphincter defects in patients with faecal incontinence?

    PubMed

    Rezaie, A; Iriana, S; Pimentel, M; Murrell, Z; Fleshner, P; Zaghiyan, K

    2017-05-01

    Endoanal ultrasound (EAUS) is the gold standard for detecting anal sphincter defects in patients with faecal incontinence (FI), while anorectal manometry evaluates sphincter function. Three-dimensional high-resolution anorectal manometry (3D HRAM) is a newer modality with the potential to assess both sphincter function and anatomy. The purpose of the present study was to compare 3D HRAM with 3D EAUS for the detection of anal sphincter defects in patients with FI. A linkage analysis was performed between the 3D HRAM and 3D EAUS databases of a tertiary referral centre to identify patients with FI who underwent both 3D EAUS and 3D HRAM. With 3D HRAM, a defect was defined as any pressure measurement below 25 mmHg at rest with at least 18° of continuous expansion. The 3D HRAM findings were compared with those of 3D EAUS. The study cohort included 39 patients with a mean age of 64.7 ± 15.2 years (SD); and 31 (79%) were female. Eight (21%) patients had an anal sphincter defect on EAUS with a median size of 93° (range 40°-136°). Fourteen (36%) had a defect shown by 3D HRAM with a median size of 144° (36°-180°). The sensitivity, specificity and positive and negative predictive values of 3D HRAM in detecting a sphincter defect were 75%, 74%, 43% and 92%, respectively. With a negative predictive value of 92%, 3D HRAM may be a useful screening method for ruling out a sphincter defect in patients with FI, thereby avoiding both EAUS and manometry in selected patients. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  8. Measurement of myocardial perfusion and infarction size using computer-aided diagnosis system for myocardial contrast echocardiography.

    PubMed

    Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei

    2015-09-01

    Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can accurately measure infarct size. On the basis of the results, we believe the CAD method can quickly and automatically measure myocardial perfusion and infarct size and will, it is hoped, be very helpful in clinical therapeutics. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. The use of automatic programming techniques for fault tolerant computing systems

    NASA Technical Reports Server (NTRS)

    Wild, C.

    1985-01-01

    It is conjectured that the production of software for ultra-reliable computing systems such as required by Space Station, aircraft, nuclear power plants and the like will require a high degree of automation as well as fault tolerance. In this paper, the relationship between automatic programming techniques and fault tolerant computing systems is explored. Initial efforts in the automatic synthesis of code from assertions to be used for error detection as well as the automatic generation of assertions and test cases from abstract data type specifications is outlined. Speculation on the ability to generate truly diverse designs capable of recovery from errors by exploring alternate paths in the program synthesis tree is discussed. Some initial thoughts on the use of knowledge based systems for the global detection of abnormal behavior using expectations and the goal-directed reconfiguration of resources to meet critical mission objectives are given. One of the sources of information for these systems would be the knowledge captured during the automatic programming process.

  10. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.

    PubMed

    Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-12-05

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.

  11. Method for automatic detection of wheezing in lung sounds.

    PubMed

    Riella, R J; Nohama, P; Maia, J M

    2009-07-01

    The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.

  12. The verification of printability about marginal defects and the detectability at the inspection tool in sub 50nm node

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Jeong, Goomin; Seo, Kangjun; Kim, Sangchul; kim, changreol

    2008-05-01

    Since mask design rule is smaller and smaller, Defects become one of the issues dropping the mask yield. Furthermore controlled defect size become smaller while masks are manufactured. According to ITRS roadmap on 2007, controlled defect size is 46nm in 57nm node and 36nm in 45nm node on a mask. However the machine development is delayed in contrast with the speed of the photolithography development. Generally mask manufacturing process is divided into 3 parts. First part is patterning on a mask and second part is inspecting the pattern and repairing the defect on the mask. At that time, inspection tools of transmitted light type are normally used and are the most trustful as progressive type in the developed inspection tools until now. Final part is shipping the mask after the qualifying the issue points and weak points. Issue points on a mask are qualified by using the AIMS (Aerial image measurement system). But this system is including the inherent error possibility, which is AIMS measures the issue points based on the inspection results. It means defects printed on a wafer are over the specific size detected by inspection tools and the inspection tool detects the almost defects. Even though there are no tools to detect the 46nm and 36nm defects suggested by ITRS roadmap, this assumption is applied to manufacturing the 57nm and 45nm device. So we make the programmed defect mask consisted with various defect type such as spot, clear extension, dark extension and CD variation on L/S(line and space), C/H(contact hole) and Active pattern in 55nm and 45nm node. And the programmed defect mask was inspected by using the inspection tool of transmitted light type and was measured by using AIMS 45-193i. Then the marginal defects were compared between the inspection tool and AIMS. Accordingly we could verify whether defect size is proper or not, which was suggested to be controlled on a mask by ITRS roadmap. Also this result could suggest appropriate inspection tools for next generation device among the inspection tools of transmitted light type, reflected light type and aerial image type.

  13. [Development of the automatic dental X-ray film processor].

    PubMed

    Bai, J; Chen, H

    1999-07-01

    This paper introduces a multiple-point detecting technique of the density of dental X-ray films. With the infrared ray multiple-point detecting technique, a single-chip microcomputer control system is used to analyze the effectiveness of the film-developing in real time in order to achieve a good image. Based on the new technology, We designed the intelligent automatic dental X-ray film processing.

  14. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  15. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    NASA Astrophysics Data System (ADS)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  16. Evaluation of a Two-Stage Neural Model of Glaucomatous Defect: An Approach to Reduce Test-Retest Variability

    PubMed Central

    PAN, FEI; SWANSON, WILLIAM H.; DUL, MITCHELL W.

    2006-01-01

    Purpose. The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. Methods. The two-stage neural model of Swanson et al.1 was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43° in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco’s areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10° to 21° selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. Results. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Conclusions. Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect. PMID:16840874

  17. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability.

    PubMed

    Pan, Fei; Swanson, William H; Dul, Mitchell W

    2006-07-01

    The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. The two-stage neural model of Swanson et al. was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43 degrees in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco's areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10 degrees to 21 degrees selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect.

  18. Detection of solder bump defects on a flip chip using vibration analysis

    NASA Astrophysics Data System (ADS)

    Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan

    2012-03-01

    Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.

  19. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  20. A geometrical defect detection method for non-silicon MEMS part based on HU moment invariants of skeleton image

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Jin, Xin; Zhang, Zhijing; Lu, Jun

    2014-01-01

    In order to improve the accuracy of geometrical defect detection, this paper presented a method based on HU moment invariants of skeleton image. This method have four steps: first of all, grayscale images of non-silicon MEMS parts are collected and converted into binary images, secondly, skeletons of binary images are extracted using medialaxis- transform method, and then HU moment invariants of skeleton images are calculated, finally, differences of HU moment invariants between measured parts and qualified parts are obtained to determine whether there are geometrical defects. To demonstrate the availability of this method, experiments were carried out between skeleton images and grayscale images, and results show that: when defects of non-silicon MEMS part are the same, HU moment invariants of skeleton images are more sensitive than that of grayscale images, and detection accuracy is higher. Therefore, this method can more accurately determine whether non-silicon MEMS parts qualified or not, and can be applied to nonsilicon MEMS part detection system.

Top