Sample records for automatic human body

  1. Research into automatic recognition of joints in human symmetrical movements

    NASA Astrophysics Data System (ADS)

    Fan, Yifang; Li, Zhiyu

    2008-03-01

    High speed photography is a major means of collecting data from human body movement. It enables the automatic identification of joints, which brings great significance to the research, treatment and recovery of injuries, the analysis to the diagnosis of sport techniques and the ergonomics. According to the features that when the adjacent joints of human body are in planetary motion, their distance remains the same, and according to the human body joint movement laws (such as the territory of the articular anatomy and the kinematic features), a new approach is introduced to process the image thresholding of joints filmed by the high speed camera, to automatically identify the joints and to automatically trace the joint points (by labeling markers at the joints). Based upon the closure of marking points, automatic identification can be achieved through thresholding treatment. Due to the screening frequency and the laws of human segment movement, when the marking points have been initialized, their automatic tracking can be achieved with the progressive sequential images.Then the testing results, the data from three-dimensional force platform and the characteristics that human body segment will only rotate around the closer ending segment when the segment has no boding force and only valid to the conservative force all tell that after being analyzed kinematically, the approach is approved to be valid.

  2. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  3. Automatic human body modeling for vision-based motion capture system using B-spline parameterization of the silhouette

    NASA Astrophysics Data System (ADS)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.

    2012-02-01

    Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.

  4. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  5. Dynamic Human Body Modeling Using a Single RGB Camera.

    PubMed

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  6. Dynamic Human Body Modeling Using a Single RGB Camera

    PubMed Central

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-01-01

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones. PMID:26999159

  7. Automatic identification of inertial sensor placement on human body segments during walking

    PubMed Central

    2013-01-01

    Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757

  8. Automatic identification of inertial sensor placement on human body segments during walking.

    PubMed

    Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H

    2013-03-21

    Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.

  9. Parametric Human Body Reconstruction Based on Sparse Key Points.

    PubMed

    Cheng, Ke-Li; Tong, Ruo-Feng; Tang, Min; Qian, Jing-Ye; Sarkis, Michel

    2016-11-01

    We propose an automatic parametric human body reconstruction algorithm which can efficiently construct a model using a single Kinect sensor. A user needs to stand still in front of the sensor for a couple of seconds to measure the range data. The user's body shape and pose will then be automatically constructed in several seconds. Traditional methods optimize dense correspondences between range data and meshes. In contrast, our proposed scheme relies on sparse key points for the reconstruction. It employs regression to find the corresponding key points between the scanned range data and some annotated training data. We design two kinds of feature descriptors as well as corresponding regression stages to make the regression robust and accurate. Our scheme follows with dense refinement where a pre-factorization method is applied to improve the computational efficiency. Compared with other methods, our scheme achieves similar reconstruction accuracy but significantly reduces runtime.

  10. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model.

    PubMed

    Voelker, C; Alsaad, H

    2018-05-01

    This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Esfandiari, Nina; Baracos, Vickie; Jägersand, Martin

    2016-02-01

    The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.

  12. Machine learning methods for classifying human physical activity from on-body accelerometers.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.

  13. A New Tool For The Hospital Lab

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The multi-module AutoMicrobic System (AMS), whose development stemmed from space-biomedical research, is an automatic, time-saving system for detecting and identifying disease-producing microorganisms in the human body.

  14. Segmenting human from photo images based on a coarse-to-fine scheme.

    PubMed

    Lu, Huchuan; Fang, Guoliang; Shao, Xinqing; Li, Xuelong

    2012-06-01

    Human segmentation in photo images is a challenging and important problem that finds numerous applications ranging from album making and photo classification to image retrieval. Previous works on human segmentation usually demand a time-consuming training phase for complex shape-matching processes. In this paper, we propose a straightforward framework to automatically recover human bodies from color photos. Employing a coarse-to-fine strategy, we first detect a coarse torso (CT) using the multicue CT detection algorithm and then extract the accurate region of the upper body. Then, an iterative multiple oblique histogram algorithm is presented to accurately recover the lower body based on human kinematics. The performance of our algorithm is evaluated on our own data set (contains 197 images with human body region ground truth data), VOC 2006, and the 2010 data set. Experimental results demonstrate the merits of the proposed method in segmenting a person with various poses.

  15. Automatic Gait Recognition for Human ID at a Distance

    DTIC Science & Technology

    2004-11-01

    at the modeling and understanding of human movement through image sequences. The ongoing interest in gait in a biometric is in a large part the wider...2.2 Model -Based Approaches...with Canonical Analysis (CA) [11]. At that stage, only one approach had used a model to analyze leg movement [12] as opposed to using human body shape

  16. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  17. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Łukasz; Barba, Paolo Di; Hausman, Sławomir

    2017-12-01

    In this paper the problem of optimization design of a microwave wearable antenna is investigated. Reference is made to a specific antenna design that is a wideband Vee antenna the geometry of which is characterized by 6 parameters. These parameters were automatically adjusted with an evolution strategy based algorithm EStra to obtain the impedance matching of the antenna located in the proximity of the human body. The antenna was designed to operate in the ISM (industrial, scientific, medical) band which covers the frequency range of 2.4 GHz up to 2.5 GHz. The optimization procedure used the finite-difference time-domain method based full-wave simulator with a simplified human body model. In the optimization procedure small movements of antenna towards or away of the human body that are likely to happen during real use were considered. The stability of the antenna parameters irrespective of the movements of the user's body is an important factor in wearable antenna design. The optimization procedure allowed obtaining good impedance matching for a given range of antenna distances with respect to the human body.

  18. Human Activity Recognition in AAL Environments Using Random Projections.

    PubMed

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.

  19. Human Activity Recognition in AAL Environments Using Random Projections

    PubMed Central

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented. PMID:27413392

  20. A functional-based segmentation of human body scans in arbitrary postures.

    PubMed

    Werghi, Naoufel; Xiao, Yijun; Siebert, Jan Paul

    2006-02-01

    This paper presents a general framework that aims to address the task of segmenting three-dimensional (3-D) scan data representing the human form into subsets which correspond to functional human body parts. Such a task is challenging due to the articulated and deformable nature of the human body. A salient feature of this framework is that it is able to cope with various body postures and is in addition robust to noise, holes, irregular sampling and rigid transformations. Although whole human body scanners are now capable of routinely capturing the shape of the whole body in machine readable format, they have not yet realized their potential to provide automatic extraction of key body measurements. Automated production of anthropometric databases is a prerequisite to satisfying the needs of certain industrial sectors (e.g., the clothing industry). This implies that in order to extract specific measurements of interest, whole body 3-D scan data must be segmented by machine into subsets corresponding to functional human body parts. However, previously reported attempts at automating the segmentation process suffer from various limitations, such as being restricted to a standard specific posture and being vulnerable to scan data artifacts. Our human body segmentation algorithm advances the state of the art to overcome the above limitations and we present experimental results obtained using both real and synthetic data that confirm the validity, effectiveness, and robustness of our approach.

  1. A functional magnetic resonance imaging study of the body schema using full human line-drawing figures in an on-line verbal naming and localization task of single body part words.

    PubMed

    McCrea, Simon M

    2007-06-18

    Naming and localization of individual body part words to a high-resolution line drawing of a full human figure was tested in a mixed-sex sample of nine right handed subjects. Activation within the superior medial left parietal cortex and bilateral dorsolateral cortex was consistent with involvement of the body schema which is a dynamic postural self-representation coding and combining sensory afference and motor efference inputs/outputs that is automatic and nonconscious. Additional activation of the left rostral occipitotemporal cortex was consistent with involvement of the neural correlates of the verbalizable body structural description that encodes semantic and categorical representations to animate objects such as full human figures. The results point to a highly distributed cortical representation for the encoding and manipulation of body part information and highlight the need for the incorporation of more ecologically valid measures of body schema coding in future functional neuroimaging studies.

  2. Mental rotation and the motor system: embodiment head over heels.

    PubMed

    Krüger, Markus; Amorim, Michel-Ange; Ebersbach, Mirjam

    2014-01-01

    We examined whether body parts attached to abstract stimuli automatically force embodiment in a mental rotation task. In Experiment 1, standard cube combinations reflecting a human pose were added with (1) body parts on anatomically possible locations, (2) body parts on anatomically impossible locations, (3) colored end cubes, and (4) simple end cubes. Participants (N=30) had to decide whether two simultaneously presented stimuli, rotated in the picture plane, were identical or not. They were fastest and made less errors in the possible-body condition, but were slowest and least accurate in the impossible-body condition. A second experiment (N=32) replicated the results and ruled out that the poor performance in the impossible-body condition was due to the specific stimulus material. The findings of both experiments suggest that body parts automatically trigger embodiment, even when it is counterproductive and dramatically impairs performance, as in the impossible-body condition. It can furthermore be concluded that body parts cannot be used flexibly for spatial orientation in mental rotation tasks, compared to colored end cubes. Thus, embodiment appears to be a strong and inflexible mechanism that may, under certain conditions, even impede performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  4. Height and body mass influence on human body outlines: a quantitative approach using an elliptic Fourier analysis.

    PubMed

    Courtiol, Alexandre; Ferdy, Jean Baptiste; Godelle, Bernard; Raymond, Michel; Claude, Julien

    2010-05-01

    Many studies use representations of human body outlines to study how individual characteristics, such as height and body mass, affect perception of body shape. These typically involve reality-based stimuli (e.g., pictures) or manipulated stimuli (e.g., drawings). These two classes of stimuli have important drawbacks that limit result interpretations. Realistic stimuli vary in terms of traits that are correlated, which makes it impossible to assess the effect of a single trait independently. In addition, manipulated stimuli usually do not represent realistic morphologies. We describe and examine a method based on elliptic Fourier descriptors to automatically predict and represent body outlines for a given set of predicted variables (e.g., sex, height, and body mass). We first estimate whether these predictive variables are significantly related to human outlines. We find that height and body mass significantly influence body shape. Unlike height, the effect of body mass on shape differs between sexes. Then, we show that we can easily build a regression model that creates hypothetical outlines for an arbitrary set of covariates. These statistically computed outlines are quite realistic and may be used as stimuli in future studies.

  5. Accelerometry-based classification of human activities using Markov modeling.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2011-01-01

    Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

  6. Human abdomen recognition using camera and force sensor in medical robot system for automatic ultrasound scan.

    PubMed

    Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo

    2013-01-01

    Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.

  7. Human Activity Recognition from Body Sensor Data using Deep Learning.

    PubMed

    Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed

    2018-04-16

    In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.

  8. Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model.

    PubMed

    Mazzurana, M; Sandrini, L; Vaccari, A; Malacarne, C; Cristoforetti, L; Pontalti, R

    2004-01-01

    Numerical human models for electromagnetic dosimetry are commonly obtained by segmentation of CT or MRI images and complex permittivity values are ascribed to each issue according to literature values. The aim of this study is to provide an alternative semi-automatic method by which non-segmented images, obtained by a MRI tomographer, can be automatically related to the complex permittivity values through two frequency dependent transfer functions. In this way permittivity and conductivity vary with continuity--even in the same tissue--reflecting the intrinsic realistic spatial dispersion of such parameters. A female human model impinged by a plane wave is tested using finite-difference time-domain algorithm and the results of the total body and layer-averaged specific absorption rate are reported.

  9. Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*

    PubMed Central

    Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui

    2013-01-01

    Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700

  10. Automatic creation of three-dimensional avatars

    NASA Astrophysics Data System (ADS)

    Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader

    2003-01-01

    Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.

  11. An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications.

    PubMed

    Khaleghi, A; Chávez-Santiago, R; Balasingham, I

    2012-01-01

    Ultra wideband (UWB) technology has big potential for applications in wireless body area networks (WBANs). The inherent characteristics of UWB signals make them suitable for the wireless interface of medical sensors. In particular, implanted medical wireless sensors for monitoring physiological parameters, automatic drug provision, etc. can benefit greatly from this ultra low power (ULP) interface. As with any other wireless technology, accurate knowledge of the channel is necessary for the proper design of communication systems. Only a few models that describe the radio propagation inside the human body have been published. Moreover, there is no comprehensive UWB in-body propagation model that includes the frequency-dependent attenuation. Hence, this paper extends a statistical model for UWB propagation channels inside the human chest in the 1-6 GHz frequency range by including the frequency-dependent attenuation. This is done by modeling the spectrum shape of distorted pulses at different depths inside the human chest. The distortion of the pulse was obtained through numerical simulations using a voxel representation of the human body. We propose a mathematical expression for the spectrum shape of the distorted pulses that act as a window function to reproduce the effects of frequency-dependent attenuation.

  12. Automatic user customization for improving the performance of a self-paced brain interface system.

    PubMed

    Fatourechi, Mehrdad; Bashashati, Ali; Birch, Gary E; Ward, Rabab K

    2006-12-01

    Customizing the parameter values of brain interface (BI) systems by a human expert has the advantage of being fast and computationally efficient. However, as the number of users and EEG channels grows, this process becomes increasingly time consuming and exhausting. Manual customization also introduces inaccuracies in the estimation of the parameter values. In this paper, the performance of a self-paced BI system whose design parameter values were automatically user customized using a genetic algorithm (GA) is studied. The GA automatically estimates the shapes of movement-related potentials (MRPs), whose features are then extracted to drive the BI. Offline analysis of the data of eight subjects revealed that automatic user customization improved the true positive (TP) rate of the system by an average of 6.68% over that whose customization was carried out by a human expert, i.e., by visually inspecting the MRP templates. On average, the best improvement in the TP rate (an average of 9.82%) was achieved for four individuals with spinal cord injury. In this case, the visual estimation of the parameter values of the MRP templates was very difficult because of the highly noisy nature of the EEG signals. For four able-bodied subjects, for which the MRP templates were less noisy, the automatic user customization led to an average improvement of 3.58% in the TP rate. The results also show that the inter-subject variability of the TP rate is also reduced compared to the case when user customization is carried out by a human expert. These findings provide some primary evidence that automatic user customization leads to beneficial results in the design of a self-paced BI for individuals with spinal cord injury.

  13. a Novel Method for Automation of 3d Hydro Break Line Generation from LIDAR Data Using Matlab

    NASA Astrophysics Data System (ADS)

    Toscano, G. J.; Gopalam, U.; Devarajan, V.

    2013-08-01

    Water body detection is necessary to generate hydro break lines, which are in turn useful in creating deliverables such as TINs, contours, DEMs from LiDAR data. Hydro flattening follows the detection and delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.) with hydro break lines. Manual hydro break line generation is time consuming and expensive. Accuracy and processing time depend on the number of vertices marked for delineation of break lines. Automation with minimal human intervention is desired for this operation. This paper proposes using a novel histogram analysis of LiDAR elevation data and LiDAR intensity data to automatically detect water bodies. Detection of water bodies using elevation information was verified by checking against LiDAR intensity data since the spectral reflectance of water bodies is very small compared with that of land and vegetation in near infra-red wavelength range. Detection of water bodies using LiDAR intensity data was also verified by checking against LiDAR elevation data. False detections were removed using morphological operations and 3D break lines were generated. Finally, a comparison of automatically generated break lines with their semi-automated/manual counterparts was performed to assess the accuracy of the proposed method and the results were discussed.

  14. inertial orientation tracker having automatic drift compensation using an at rest sensor for tracking parts of a human body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2004-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive sate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  15. Inertial orientation tracker having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2000-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  16. Inertial orientation tracker having gradual automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2002-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  17. Inertial orientation tracker apparatus method having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1998-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  18. Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1997-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  19. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  20. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  1. Quantification of human body fat tissue percentage by MRI.

    PubMed

    Müller, Hans-Peter; Raudies, Florian; Unrath, Alexander; Neumann, Heiko; Ludolph, Albert C; Kassubek, Jan

    2011-01-01

    The MRI-based evaluation of the quantity and regional distribution of adipose tissue is one objective measure in the investigation of obesity. The aim of this article was to report a comprehensive and automatic analytical method for the determination of the volumes of subcutaneous fat tissue (SFT) and visceral fat tissue (VFT) in either the whole human body or selected slices or regions of interest. Using an MRI protocol in an examination position that was convenient for volunteers and patients with severe diseases, 22 healthy subjects were examined. The software platform was able to merge MRI scans of several body regions acquired in separate acquisitions. Through a cascade of image processing steps, SFT and VFT volumes were calculated. Whole-body SFT and VFT distributions, as well as fat distributions of defined body slices, were analysed in detail. Complete three-dimensional datasets were analysed in a reproducible manner with as few operator-dependent interventions as possible. In order to determine the SFT volume, the ARTIS (Adapted Rendering for Tissue Intensity Segmentation) algorithm was introduced. The advantage of the ARTIS algorithm was the delineation of SFT volumes in regions in which standard region grow techniques fail. Using the ARTIS algorithm, an automatic SFT volume detection was feasible. MRI data analysis was able to determine SFT and VFT volume percentages using new analytical strategies. With the techniques described, it was possible to detect changes in SFT and VFT percentages of the whole body and selected regions. The techniques presented in this study are likely to be of use in obesity-related investigations, as well as in the examination of longitudinal changes in weight during various medical conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Machine learning for the automatic localisation of foetal body parts in cine-MRI scans

    NASA Astrophysics Data System (ADS)

    Bowles, Christopher; Nowlan, Niamh C.; Hayat, Tayyib T. A.; Malamateniou, Christina; Rutherford, Mary; Hajnal, Joseph V.; Rueckert, Daniel; Kainz, Bernhard

    2015-03-01

    Being able to automate the location of individual foetal body parts has the potential to dramatically reduce the work required to analyse time resolved foetal Magnetic Resonance Imaging (cine-MRI) scans, for example, for use in the automatic evaluation of the foetal development. Currently, manual preprocessing of every scan is required to locate body parts before analysis can be performed, leading to a significant time overhead. With the volume of scans becoming available set to increase as cine-MRI scans become more prevalent in clinical practice, this stage of manual preprocessing is a bottleneck, limiting the data available for further analysis. Any tools which can automate this process will therefore save many hours of research time and increase the rate of new discoveries in what is a key area in understanding early human development. Here we present a series of techniques which can be applied to foetal cine-MRI scans in order to first locate and then differentiate between individual body parts. A novel approach to maternal movement suppression and segmentation using Fourier transforms is put forward as a preprocessing step, allowing for easy extraction of short movements of individual foetal body parts via the clustering of optical flow vector fields. These body part movements are compared to a labelled database and probabilistically classified before being spatially and temporally combined to give a final estimate for the location of each body part.

  3. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    PubMed

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features

    PubMed Central

    Toews, Matthew; Wells, William M.

    2013-01-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. PMID:23265799

  5. A principal component analysis of the relationship between the external body shape and internal skeleton for the upper body.

    PubMed

    Nerot, A; Skalli, W; Wang, X

    2016-10-03

    Recent progress in 3D scanning technologies allows easy access to 3D human body envelope. To create personalized human models with an articulated linkage for realistic re-posturing and motion analyses, an accurate estimation of internal skeleton points, including joint centers, from the external envelope is required. For this research project, 3D reconstructions of both internal skeleton and external envelope from low dose biplanar X-rays of 40 male adults were obtained. Using principal component analysis technique (PCA), a low-dimensional dataset was used to predict internal points of the upper body from the trunk envelope. A least squares method was used to find PC scores that fit the PCA-based model to the envelope of a new subject. To validate the proposed approach, estimated internal points were evaluated using a leave-one-out (LOO) procedure, i.e. successively considering each individual from our dataset as an extra-subject. In addition, different methods were proposed to reduce the variability in data and improve the performance of the PCA-based prediction. The best method was considered as the one providing the smallest errors between estimated and reference internal points with an average error of 8.3mm anterior-posteriorly, 6.7mm laterally and 6.5mm vertically. As the proposed approach relies on few or no bony landmarks, it could be easily applicable and generalizable to surface scans from any devices. Combined with automatic body scanning techniques, this study could potentially constitute a new step towards automatic generation of external/internal subject-specific manikins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Significant Change Spotting for Periodic Human Motion Segmentation of Cleaning Tasks Using Wearable Sensors

    PubMed Central

    Liu, Kai-Chun; Chan, Chia-Tai

    2017-01-01

    The proportion of the aging population is rapidly increasing around the world, which will cause stress on society and healthcare systems. In recent years, advances in technology have created new opportunities for automatic activities of daily living (ADL) monitoring to improve the quality of life and provide adequate medical service for the elderly. Such automatic ADL monitoring requires reliable ADL information on a fine-grained level, especially for the status of interaction between body gestures and the environment in the real-world. In this work, we propose a significant change spotting mechanism for periodic human motion segmentation during cleaning task performance. A novel approach is proposed based on the search for a significant change of gestures, which can manage critical technical issues in activity recognition, such as continuous data segmentation, individual variance, and category ambiguity. Three typical machine learning classification algorithms are utilized for the identification of the significant change candidate, including a Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Naive Bayesian (NB) algorithm. Overall, the proposed approach achieves 96.41% in the F1-score by using the SVM classifier. The results show that the proposed approach can fulfill the requirement of fine-grained human motion segmentation for automatic ADL monitoring. PMID:28106853

  7. Automatic techniques for 3D reconstruction of critical workplace body postures from range imaging data

    NASA Astrophysics Data System (ADS)

    Westfeld, Patrick; Maas, Hans-Gerd; Bringmann, Oliver; Gröllich, Daniel; Schmauder, Martin

    2013-11-01

    The paper shows techniques for the determination of structured motion parameters from range camera image sequences. The core contribution of the work presented here is the development of an integrated least squares 3D tracking approach based on amplitude and range image sequences to calculate dense 3D motion vector fields. Geometric primitives of a human body model are fitted to time series of range camera point clouds using these vector fields as additional information. Body poses and motion information for individual body parts are derived from the model fit. On the basis of these pose and motion parameters, critical body postures are detected. The primary aim of the study is to automate ergonomic studies for risk assessments regulated by law, identifying harmful movements and awkward body postures in a workplace.

  8. Using Bond Graphs for Articulated, Flexible Multi-bodies, Sensors, Actuators, and Controllers with Application to the International Space Station

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Granda, Jose J.

    2003-01-01

    Conceptually, modeling of flexible, multi-body systems involves a formulation as a set of time-dependent partial differential equations. However, for practical, engineering purposes, this modeling is usually done using the method of Finite Elements, which approximates the set of partial differential equations, thus generalizing the approach to all continuous media. This research investigates the links between the Bond Graph method and the classical methods used to develop system models and advocates the Bond Graph Methodology and current bond graph tools as alternate approaches that will lead to a quick and precise understanding of a flexible multi-body system under automatic control. For long endurance, complex spacecraft, because of articulation and mission evolution the model of the physical system may change frequently. So a method of automatic generation and regeneration of system models that does not lead to implicit equations, as does the Lagrange equation approach, is desirable. The bond graph method has been shown to be amenable to automatic generation of equations with appropriate consideration of causality. Indeed human-interactive software now exists that automatically generates both symbolic and numeric system models and evaluates causality as the user develops the model, e.g. the CAMP-G software package. In this paper the CAMP-G package is used to generate a bond graph model of the International Space Station (ISS) at an early stage in its assembly, Zvezda. The ISS is an ideal example because it is a collection of bodies that are articulated, many of which are highly flexible. Also many reaction jets are used to control translation and attitude, and many electric motors are used to articulate appendages, which consist of photovoltaic arrays and composite assemblies. The Zvezda bond graph model is compared to an existing model, which was generated by the NASA Johnson Space Center during the Verification and Analysis Cycle of Zvezda.

  9. Mind as Space

    NASA Astrophysics Data System (ADS)

    McKinstry, Chris

    The present article describes a possible method for the automatic discovery of a universal human semantic-affective hyperspatial approximation of the human subcognitive substrate - the associative network which French (1990) asserts is the ultimate foundation of the human ability to pass the Turing Test - that does not require a machine to have direct human experience or a physical human body. This method involves automatic programming - such as Koza's genetic programming (1992) - guided in the discovery of the proposed universal hypergeometry by feedback from a Minimum Intelligent Signal Test or MIST (McKinstry, 1997) constructed from a very large number of human validated probabilistic propositions collected from a large population of Internet users. It will be argued that though a lifetime of human experience is required to pass a rigorous Turing Test, a probabilistic propositional approximation of this experience can be constructed via public participation on the Internet, and then used as a fitness function to direct the artificial evolution of a universal hypergeometry capable of classifying arbitrary propositions. A model of this hypergeometry will be presented; it predicts Miller's "Magical Number Seven" (1956) as the size of human short-term memory from fundamental hypergeometric properties. A system that can lead to the generation of novel propositions or "artificial thoughts" will also be described.

  10. A Model of Human Orientation and Self Motion Perception during Body Acceleration: The Orientation Modeling System

    DTIC Science & Technology

    2016-09-28

    previous research and modeling results. The OMS and Perception Toolbox were used to perform a case study of an F18 mishap. Model results imply that...request documents from DTIC. Change of Address Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic...54  Coriolis head movement during a coordinated turn. .............................................55  Case Study

  11. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  12. Egocentric Mapping of Body Surface Constraints.

    PubMed

    Molla, Eray; Debarba, Henrique Galvan; Boulic, Ronan

    2018-07-01

    The relative location of human body parts often materializes the semantics of on-going actions, intentions and even emotions expressed, or performed, by a human being. However, traditional methods of performance animation fail to correctly and automatically map the semantics of performer postures involving self-body contacts onto characters with different sizes and proportions. Our method proposes an egocentric normalization of the body-part relative distances to preserve the consistency of self contacts for a large variety of human-like target characters. Egocentric coordinates are character independent and encode the whole posture space, i.e., it ensures the continuity of the motion with and without self-contacts. We can transfer classes of complex postures involving multiple interacting limb segments by preserving their spatial order without depending on temporal coherence. The mapping process exploits a low-cost constraint relaxation technique relying on analytic inverse kinematics; thus, we can achieve online performance animation. We demonstrate our approach on a variety of characters and compare it with the state of the art in online retargeting with a user study. Overall, our method performs better than the state of the art, especially when the proportions of the animated character deviate from those of the performer.

  13. Investigation of possible causes for human-performance degradation during microgravity flight

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.; Tuttle, Megan L.

    1992-01-01

    The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior.

  14. Identification of Cichlid Fishes from Lake Malawi Using Computer Vision

    PubMed Central

    Joo, Deokjin; Kwan, Ye-seul; Song, Jongwoo; Pinho, Catarina; Hey, Jody; Won, Yong-Jin

    2013-01-01

    Background The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of species identification of cichlids. Methodology/Principal Finding Here we demonstrate a method for automatic classification of the Lake Malawi cichlids based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple image processing tools to automatically extract informative features of color and stripe patterns from a large set of photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that contributed most to the accuracy were body height and the hue of the most frequent color. Conclusions Computer vision showed a notable performance in extracting information from the color and stripe patterns of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short divergence times and gene flow between closely related species. PMID:24204918

  15. Isomap transform for segmenting human body shapes.

    PubMed

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  16. High-powered automatic latching device

    NASA Technical Reports Server (NTRS)

    Cobin, J. C.; Rhodes, L. L.

    1970-01-01

    Latches automatically lock together two remotely controlled bodies when their triggers are engaged by the docking ring of the lesser body. Latches are disengaged by manual actuation of the handle of each latch through two complete cycles. Emergency locking by manual actuation is also provided.

  17. Acoustic Event Detection and Classification

    NASA Astrophysics Data System (ADS)

    Temko, Andrey; Nadeu, Climent; Macho, Dušan; Malkin, Robert; Zieger, Christian; Omologo, Maurizio

    The human activity that takes place in meeting rooms or classrooms is reflected in a rich variety of acoustic events (AE), produced either by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity. Indeed, speech is usually the most informative sound, but other kinds of AEs may also carry useful information, for example, clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving or a door slam when the meeting has just started. Additionally, detection and classification of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition.

  18. Apparatus enables automatic microanalysis of body fluids

    NASA Technical Reports Server (NTRS)

    Soffen, G. A.; Stuart, J. L.

    1966-01-01

    Apparatus will automatically and quantitatively determine body fluid constituents which are amenable to analysis by fluorometry or colorimetry. The results of the tests are displayed as percentages of full scale deflection on a strip-chart recorder. The apparatus can also be adapted for microanalysis of various other fluids.

  19. 2D Automatic body-fitted structured mesh generation using advancing extraction method

    USDA-ARS?s Scientific Manuscript database

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...

  20. 2D automatic body-fitted structured mesh generation using advancing extraction method

    USDA-ARS?s Scientific Manuscript database

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...

  1. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  2. Accelerometer-based on-body sensor localization for health and medical monitoring applications

    PubMed Central

    Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid

    2011-01-01

    In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840

  3. Automatic Assembly of Combined Checkingfixture for Auto-Body Components Based Onfixture Elements Libraries

    NASA Astrophysics Data System (ADS)

    Jiang, Jingtao; Sui, Rendong; Shi, Yan; Li, Furong; Hu, Caiqi

    In this paper 3-D models of combined fixture elements are designed, classified by their functions, and saved in computer as supporting elements library, jointing elements library, basic elements library, localization elements library, clamping elements library, and adjusting elements library etc. Then automatic assembly of 3-D combined checking fixture for auto-body part is presented based on modularization theory. And in virtual auto-body assembly space, Locating constraint mapping technique and assembly rule-based reasoning technique are used to calculate the position of modular elements according to localization points and clamp points of auto-body part. Auto-body part model is transformed from itself coordinate system space to virtual assembly space by homogeneous transformation matrix. Automatic assembly of different functional fixture elements and auto-body part is implemented with API function based on the second development of UG. It is proven in practice that the method in this paper is feasible and high efficiency.

  4. Control Algorithms For Liquid-Cooled Garments

    NASA Technical Reports Server (NTRS)

    Drew, B.; Harner, K.; Hodgson, E.; Homa, J.; Jennings, D.; Yanosy, J.

    1988-01-01

    Three algorithms developed for control of cooling in protective garments. Metabolic rate inferred from temperatures of cooling liquid outlet and inlet, suitably filtered to account for thermal lag of human body. Temperature at inlet adjusted to value giving maximum comfort at inferred metabolic rate. Applicable to space suits, used for automatic control of cooling in suits worn by workers in radioactive, polluted, or otherwise hazardous environments. More effective than manual control, subject to frequent, overcompensated adjustments as level of activity varies.

  5. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  6. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  7. Measuring cues for stand-off deception detection based on full-body nonverbal features in body-worn cameras

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Burghouts, Gertjan; den Hollander, Richard; van der Zee, Sophie; Baan, Jan; ten Hove, Johan-Martijn; van Diepen, Sjaak; van den Haak, Paul; van Rest, Jeroen

    2016-10-01

    Deception detection is valuable in the security domain to distinguish truth from lies. It is desirable in many security applications, such as suspect and witness interviews and airport passenger screening. Interviewers are constantly trying to assess the credibility of a statement, usually based on intuition without objective technical support. However, psychological research has shown that humans can hardly perform better than random guessing. Deception detection is a multi-disciplinary research area with an interest from different fields, such as psychology and computer science. In the last decade, several developments have helped to improve the accuracy of lie detection (e.g., with a concealed information test, increasing the cognitive load, or measurements with motion capture suits) and relevant cues have been discovered (e.g., eye blinking or fiddling with the fingers). With an increasing presence of mobile phones and bodycams in society, a mobile, stand-off, automatic deception detection methodology based on various cues from the whole body would create new application opportunities. In this paper, we study the feasibility of measuring these visual cues automatically on different parts of the body, laying the groundwork for stand-off deception detection in more flexible and mobile deployable sensors, such as body-worn cameras. We give an extensive overview of recent developments in two communities: in the behavioral-science community the developments that improve deception detection with a special attention to the observed relevant non-verbal cues, and in the computer-vision community the recent methods that are able to measure these cues. The cues are extracted from several body parts: the eyes, the mouth, the head and the fullbody pose. We performed an experiment using several state-of-the-art video-content-analysis (VCA) techniques to assess the quality of robustly measuring these visual cues.

  8. Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors.

    PubMed

    Bercovich, A; Edan, Y; Alchanatis, V; Moallem, U; Parmet, Y; Honig, H; Maltz, E; Antler, A; Halachmi, I

    2013-01-01

    Body condition evaluation is a common tool to assess energy reserves of dairy cows and to estimate their fatness or thinness. This study presents a computer-vision tool that automatically estimates cow's body condition score. Top-view images of 151 cows were collected on an Israeli research dairy farm using a digital still camera located at the entrance to the milking parlor. The cow's tailhead area and its contour were segmented and extracted automatically. Two types of features of the tailhead contour were extracted: (1) the angles and distances between 5 anatomical points; and (2) the cow signature, which is a 1-dimensional vector of the Euclidean distances from each point in the normalized tailhead contour to the shape center. Two methods were applied to describe the cow's signature and to reduce its dimension: (1) partial least squares regression, and (2) Fourier descriptors of the cow signature. Three prediction models were compared with manual scores of an expert. Results indicate that (1) it is possible to automatically extract and predict body condition from color images without any manual interference; and (2) Fourier descriptors of the cow's signature result in improved performance (R(2)=0.77). Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Holographic radar imaging privacy techniques utilizing dual-frequency implementation

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

    2008-04-01

    Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhance the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.

  10. Holographic Radar Imaging Privacy Techniques Utilizing Dual-Frequency Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.

    2008-04-18

    Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhancemore » the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.« less

  11. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    NASA Astrophysics Data System (ADS)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  12. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  13. Whole vertebral bone segmentation method with a statistical intensity-shape model based approach

    NASA Astrophysics Data System (ADS)

    Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer

    2011-03-01

    An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.

  14. Understanding Cognitive Development: Automaticity and the Early Years Child

    ERIC Educational Resources Information Center

    Gray, Colette

    2004-01-01

    In recent years a growing body of evidence has implicated deficits in the automaticity of fundamental facts such as word and number recognition in a range of disorders: including attention deficit hyperactivity disorder, dyslexia, apraxia and autism. Variously described as habits, fluency, chunking and over learning, automatic processes are best…

  15. Predictive value of plasma β2-microglobulin on human body function and senescence.

    PubMed

    Dong, X-M; Cai, R; Yang, F; Zhang, Y-Y; Wang, X-G; Fu, S-L; Zhang, J-R

    2016-06-01

    To explore the correlation between plasma β2-microglobulin (β2-MG) as senescence factor with age, heart, liver and kidney function as well as the predictive value of β2-MG in human metabolism function and senescence. 387 cases of healthy people of different ages were selected and the automatic biochemical analyzer was used to test β2-MG in plasma based on immunoturbidimetry and also all biochemical indexes. The correlation between β2-MG and age, gender and all biochemical indexes was analyzed. β2-MG was positively correlated to age, r = 0.373; and the difference was of statistical significance (p < 0.010). It was significantly negative correlated to HDL-C but positively correlated to LP (a), BUN, CREA, UA, CYS-C, LDH, CK-MB, HBDH, AST, GLB and HCY. β2-MG was closely correlated to age, heart, kidney and liver biochemical indexes, which can be taken as an important biomarker for human body function and anti-senescence and have significant basic research and clinical guidance values.

  16. 3D Product Development for Loose-Fitting Garments Based on Parametric Human Models

    NASA Astrophysics Data System (ADS)

    Krzywinski, S.; Siegmund, J.

    2017-10-01

    Researchers and commercial suppliers worldwide pursue the objective of achieving a more transparent garment construction process that is computationally linked to a virtual body, in order to save development costs over the long term. The current aim is not to transfer the complete pattern making step to a 3D design environment but to work out basic constructions in 3D that provide excellent fit due to their accurate construction and morphological pattern grading (automatic change of sizes in 3D) in respect of sizes and body types. After a computer-aided derivation of 2D pattern parts, these can be made available to the industry as a basis on which to create more fashionable variations.

  17. 3D body scanning technology for fashion and apparel industry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2007-01-01

    This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their differences and characteristics and expresses clues for the selection of the adequate method. A special interest is given to practical examples of the commercial exploitation of human body digitization with applications to the fashion and apparel industry.

  18. Two-dimensional PCA-based human gait identification

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Wu, Rongteng

    2012-11-01

    It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.

  19. Motor Skills, Automaticity and Developmental Dyslexia: A Review of the Research Literature

    ERIC Educational Resources Information Center

    Savage, Robert

    2004-01-01

    This paper reviews a body of prominent theories of automaticity in developmental dyslexia. The first part of the review considers the relationship between dyslexia and rapid automatic naming and fluency. Additional theoretical and empirical advances are suggested to this already strong research base. In particular, there is a need is for…

  20. Neuropathological aspects of conservative treatment of scoliosis. A theoretical view point.

    PubMed

    Czupryna, Krzysztof; Nowotny-Czupryna, Olga; Nowotny, Janusz

    2012-01-01

    An upright body posture cannot be maintained passively for reasons including a high location of the centre of gravity (COG) and a small support area. Proper alignment of body parts is maintained automatically, tending towards a pattern encoded in the CNS. A particularly important role in posture regulation is played by the short muscles of the back, which respond to being stretched with a contraction. During the early phase of scoliosis, the CNS automatically corrects abnormalities, but over time habituation occurs and the CNS treats them as something normal. Any attempt to restore proper body alignment is treated as an error and CNS automatically restores this abnormal pattern. With a prolonged deviation in body part alignment, CNS treats it as a defect and runs compensatory mechanisms to restore the balance of the body as a whole. Balance is ensured by postural compensation, but this does not restore proper body part alignment. In the treatment of scoliosis, it is important both to slow down progression and to prevent the development of abnormal postural habits, which are part of a vicious circle even without progression. Secondary prevention is therefore needed in all patients. Passive observation limits the possibilities for prevention and contradicts the principle of early implementation of rehabilitation. Depending on the size of the angle of curvature, recommended treatments of scoliosis comprise observation, corset bracing, and surgery. Physiotherapy is often treated as an unconventional and ineffective treatment. Often, the biggest problem is transferring the resulting correction to automatic maintenance of a correct posture in the vertical position. The aim of this paper was to discuss the conservative treatment of scoliosis with regard to difficulties maintaining the correct alignment of the body parts in the vertical position that accompany scoliosis.

  1. What do firefighters desire from the next generation of personal protective equipment? Outcomes from an international survey

    PubMed Central

    LEE, Joo-Young; PARK, Joonhee; PARK, Huiju; COCA, Aitor; KIM, Jung-Hyun; TAYLOR, Nigel A.S.; SON, Su-Young; TOCHIHARA, Yutaka

    2015-01-01

    The purpose of this study was to investigate smart features required for the next generation of personal protective equipment (PPE) for firefighters in Australia, Korea, Japan, and the USA. Questionnaire responses were obtained from 167 Australian, 351 Japanese, 413 Korean, and 763 U.S. firefighters (1,611 males and 61 females). Preferences concerning smart features varied among countries, with 27% of Korean and 30% of U.S. firefighters identifying ‘a location monitoring system’ as the most important element. On the other hand, 43% of Japanese firefighters preferred ‘an automatic body cooling system’ while 21% of the Australian firefighters selected equally ‘an automatic body cooling system’ and ‘a wireless communication system’. When asked to rank these elements in descending priority, responses across these countries were very similar with the following items ranked highest: ‘a location monitoring system’, ‘an automatic body cooling system’, ‘a wireless communication system’, and ‘a vision support system’. The least preferred elements were ‘an automatic body warming system’ and ‘a voice recording system’. No preferential relationship was apparent for age, work experience, gender or anthropometric characteristics. These results have implications for the development of the next generation of PPE along with the international standardisation of the smart PPE. PMID:26027710

  2. Automatic and strategic measures as predictors of mirror gazing among individuals with body dysmorphic disorder symptoms.

    PubMed

    Clerkin, Elise M; Teachman, Bethany A

    2009-08-01

    The current study tests cognitive-behavioral models of body dysmorphic disorder (BDD) by examining the relationship between cognitive biases and correlates of mirror gazing. To provide a more comprehensive picture, we investigated both relatively strategic (i.e., available for conscious introspection) and automatic (i.e., outside conscious control) measures of cognitive biases in a sample with either high (n = 32) or low (n = 31) BDD symptoms. Specifically, we examined the extent that (1) explicit interpretations tied to appearance, as well as (2) automatic associations and (3) strategic evaluations of the importance of attractiveness predict anxiety and avoidance associated with mirror gazing. Results indicated that interpretations tied to appearance uniquely predicted self-reported desire to avoid, whereas strategic evaluations of appearance uniquely predicted peak anxiety associated with mirror gazing, and automatic appearance associations uniquely predicted behavioral avoidance. These results offer considerable support for cognitive models of BDD, and suggest a dissociation between automatic and strategic measures.

  3. [Comparison of different types automatic water-supply system for mouse rearing (author's transl)].

    PubMed

    Kikuchi, S; Suzuki, M; Tagashira, Y

    1979-04-01

    Rearing and breeding scores were compared between groups of mice (JCL : ICR and ddN strains) raised with two different types of automatic water-supply systems; the Japanese type and the American type, using manual water-supply system as control. The mice raised with the manual water-supply system were superior in body weight gain as compared to those with two automatic water-supply systems. As to the survival rate, however, the m; anual water-supply system and the Japanese type gave better results than the American type. As to weanling rate in the breeding test, the manual water-supply system gave somewhat better result than either of the two automatic types. Accidental water leaks, which are serious problems of automatic systems, occurred frequently only when the American type was used. Only one defect of the Japanese type revealed was that it was unfavorable for mice with smaller size (e.g., young ddN mice), resulting in lower body weight gain as well as lower breeding scores.

  4. Automatic and Strategic Measures as Predictors of Mirror Gazing Among Individuals with Body Dysmorphic Disorder Symptoms

    PubMed Central

    Clerkin, Elise M.; Teachman, Bethany A.

    2011-01-01

    The current study tests cognitive-behavioral models of body dysmorphic disorder (BDD) by examining the relationship between cognitive biases and correlates of mirror gazing. To provide a more comprehensive picture, we investigated both relatively strategic (i.e., available for conscious introspection) and automatic (i.e., outside conscious control) measures of cognitive biases in a sample with either high (n=32) or low (n=31) BDD symptoms. Specifically, we examined the extent that 1) explicit interpretations tied to appearance, as well as 2) automatic associations and 3) strategic evaluations of the importance of attractiveness predict anxiety and avoidance associated with mirror gazing. Results indicated that interpretations tied to appearance uniquely predicted self-reported desire to avoid, while strategic evaluations of appearance uniquely predicted peak anxiety associated with mirror gazing, and automatic appearance associations uniquely predicted behavioral avoidance. These results offer considerable support for cognitive models of BDD, and suggest a dissociation between automatic and strategic measures. PMID:19684496

  5. SYMBOD - A computer program for the automatic generation of symbolic equations of motion for systems of hinge-connected rigid bodies

    NASA Technical Reports Server (NTRS)

    Macala, G. A.

    1983-01-01

    A computer program is described that can automatically generate symbolic equations of motion for systems of hinge-connected rigid bodies with tree topologies. The dynamical formulation underlying the program is outlined, and examples are given to show how a symbolic language is used to code the formulation. The program is applied to generate the equations of motion for a four-body model of the Galileo spacecraft. The resulting equations are shown to be a factor of three faster in execution time than conventional numerical subroutines.

  6. Automatic speech recognition (ASR) based approach for speech therapy of aphasic patients: A review

    NASA Astrophysics Data System (ADS)

    Jamal, Norezmi; Shanta, Shahnoor; Mahmud, Farhanahani; Sha'abani, MNAH

    2017-09-01

    This paper reviews the state-of-the-art an automatic speech recognition (ASR) based approach for speech therapy of aphasic patients. Aphasia is a condition in which the affected person suffers from speech and language disorder resulting from a stroke or brain injury. Since there is a growing body of evidence indicating the possibility of improving the symptoms at an early stage, ASR based solutions are increasingly being researched for speech and language therapy. ASR is a technology that transfers human speech into transcript text by matching with the system's library. This is particularly useful in speech rehabilitation therapies as they provide accurate, real-time evaluation for speech input from an individual with speech disorder. ASR based approaches for speech therapy recognize the speech input from the aphasic patient and provide real-time feedback response to their mistakes. However, the accuracy of ASR is dependent on many factors such as, phoneme recognition, speech continuity, speaker and environmental differences as well as our depth of knowledge on human language understanding. Hence, the review examines recent development of ASR technologies and its performance for individuals with speech and language disorders.

  7. Unification of automatic target tracking and automatic target recognition

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2014-06-01

    The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.

  8. Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity.

    PubMed

    Janssen, Lieneke K; Duif, Iris; van Loon, Ilke; Wegman, Joost; de Vries, Jeanne H M; Cools, Roshan; Aarts, Esther

    2017-02-01

    Loss of lateral prefrontal cortex (lPFC)-mediated attentional control may explain the automatic tendency to eat in the face of food. Here, we investigate the neurocognitive mechanism underlying attentional bias to food words and its association with obesity using a food Stroop task. We tested 76 healthy human subjects with a wide body mass index (BMI) range (19-35kg/m 2 ) using fMRI. As a measure of obesity we calculated individual obesity scores based on BMI, waist circumference and waist-to-hip ratio using principal component analyses. To investigate the automatic tendency to overeat directly, the same subjects performed a separate behavioral outcome devaluation task measuring the degree of goal-directed versus automatic food choices. We observed that increased obesity scores were associated with diminished lPFC responses during food attentional bias. This was accompanied by decreased goal-directed control of food choices following outcome devaluation. Together these findings suggest that deficient control of both food-directed attention and choice may contribute to obesity, particularly given our obesogenic environment with food cues everywhere, and the choice to ignore or indulge despite satiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  10. Using Automatic Speech Recognition to Dictate Mathematical Expressions: The Development of the "TalkMaths" Application at Kingston University

    ERIC Educational Resources Information Center

    Wigmore, Angela; Hunter, Gordon; Pflugel, Eckhard; Denholm-Price, James; Binelli, Vincent

    2009-01-01

    Speech technology--especially automatic speech recognition--has now advanced to a level where it can be of great benefit both to able-bodied people and those with various disabilities. In this paper we describe an application "TalkMaths" which, using the output from a commonly-used conventional automatic speech recognition system,…

  11. Development of automatic visceral fat volume calculation software for CT volume data.

    PubMed

    Nemoto, Mitsutaka; Yeernuer, Tusufuhan; Masutani, Yoshitaka; Nomura, Yukihiro; Hanaoka, Shouhei; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni

    2014-01-01

    To develop automatic visceral fat volume calculation software for computed tomography (CT) volume data and to evaluate its feasibility. A total of 24 sets of whole-body CT volume data and anthropometric measurements were obtained, with three sets for each of four BMI categories (under 20, 20 to 25, 25 to 30, and over 30) in both sexes. True visceral fat volumes were defined on the basis of manual segmentation of the whole-body CT volume data by an experienced radiologist. Software to automatically calculate visceral fat volumes was developed using a region segmentation technique based on morphological analysis with CT value threshold. Automatically calculated visceral fat volumes were evaluated in terms of the correlation coefficient with the true volumes and the error relative to the true volume. Automatic visceral fat volume calculation results of all 24 data sets were obtained successfully and the average calculation time was 252.7 seconds/case. The correlation coefficients between the true visceral fat volume and the automatically calculated visceral fat volume were over 0.999. The newly developed software is feasible for calculating visceral fat volumes in a reasonable time and was proved to have high accuracy.

  12. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki

    2015-01-01

    Active safety devices such as automatic emergency brake (AEB) and precrash seat belt have the potential to accomplish further reduction in the number of the fatalities due to automotive accidents. However, their effectiveness should be investigated by more accurate estimations of their interaction with human bodies. Computational human body models are suitable for investigation, especially considering muscular tone effects on occupant motions and injury outcomes. However, the conventional modeling approaches such as multibody models and detailed finite element (FE) models have advantages and disadvantages in computational costs and injury predictions considering muscular tone effects. The objective of this study is to develop and validate a human body FE model with whole body muscles, which can be used for the detailed investigation of interaction between human bodies and vehicular structures including some safety devices precrash and during a crash with relatively low computational costs. In this study, we developed a human body FE model called THUMS (Total HUman Model for Safety) with a body size of 50th percentile adult male (AM50) and a sitting posture. The model has anatomical structures of bones, ligaments, muscles, brain, and internal organs. The total number of elements is 281,260, which would realize relatively low computational costs. Deformable material models were assigned to all body parts. The muscle-tendon complexes were modeled by truss elements with Hill-type muscle material and seat belt elements with tension-only material. The THUMS was validated against 35 series of cadaver or volunteer test data on frontal, lateral, and rear impacts. Model validations for 15 series of cadaver test data associated with frontal impacts are presented in this article. The THUMS with a vehicle sled model was applied to investigate effects of muscle activations on occupant kinematics and injury outcomes in specific frontal impact situations with AEB. In the validations using 5 series of cadaver test data, force-time curves predicted by the THUMS were quantitatively evaluated using correlation and analysis (CORA), which showed good or acceptable agreement with cadaver test data in most cases. The investigation of muscular effects showed that muscle activation levels and timing had significant effects on occupant kinematics and injury outcomes. Although further studies on accident injury reconstruction are needed, the THUMS has the potential for predictions of occupant kinematics and injury outcomes considering muscular tone effects with relatively low computational costs.

  13. Using Transom Jack in the Human Engineering Analysis of the Materials Science Research Rack-1 and Quench Module Insert

    NASA Technical Reports Server (NTRS)

    Dunn, Mariea C.; Alves, Jeffrey R.; Hutchinson, Sonya L.

    1999-01-01

    This paper describes the human engineering analysis performed on the Materials Science Research Rack-1 and Quench Module Insert (MSRR-1/QMI) using Transom Jack (Jack) software. The Jack software was used to model a virtual environment consisting of the MSRR-1/QMI hardware configuration and human figures representing the 95th percentile male and 5th percentile female. The purpose of the simulation was to assess the human interfaces in the design for their ability to meet the requirements of the Pressurized Payloads Interface Requirements Document - International Space Program, Revision C (SSP 57000). Jack was used in the evaluation because of its ability to correctly model anthropometric body measurements and the physical behavior of astronauts working in microgravity, which is referred to as the neutral body posture. The Jack model allows evaluation of crewmember interaction with hardware through task simulation including but not limited to collision avoidance behaviors, hand/eye coordination, reach path planning, and automatic grasping to part contours. Specifically, this virtual simulation depicts the human figures performing the QMI installation and check-out, sample cartridge insertion and removal, and gas bottle drawer removal. These tasks were evaluated in terms of adequate clearance in reach envelopes, adequate accessibility in work envelopes, appropriate line of sight in visual envelopes, and accommodation of full size range for male and female stature maneuverability. The results of the human engineering analysis virtual simulation indicate that most of the associated requirements of SSP 57000 were met. However, some hardware design considerations and crew procedures modifications are recommended to improve accessibility, provide an adequate work envelope, reduce awkward body posture, and eliminate permanent protrusions.

  14. Markerless identification of key events in gait cycle using image flow.

    PubMed

    Vishnoi, Nalini; Duric, Zoran; Gerber, Naomi Lynn

    2012-01-01

    Gait analysis has been an interesting area of research for several decades. In this paper, we propose image-flow-based methods to compute the motion and velocities of different body segments automatically, using a single inexpensive video camera. We then identify and extract different events of the gait cycle (double-support, mid-swing, toe-off and heel-strike) from video images. Experiments were conducted in which four walking subjects were captured from the sagittal plane. Automatic segmentation was performed to isolate the moving body from the background. The head excursion and the shank motion were then computed to identify the key frames corresponding to different events in the gait cycle. Our approach does not require calibrated cameras or special markers to capture movement. We have also compared our method with the Optotrak 3D motion capture system and found our results in good agreement with the Optotrak results. The development of our method has potential use in the markerless and unencumbered video capture of human locomotion. Monitoring gait in homes and communities provides a useful application for the aged and the disabled. Our method could potentially be used as an assessment tool to determine gait symmetry or to establish the normal gait pattern of an individual.

  15. Tools for Protecting the Privacy of Specific Individuals in Video

    NASA Astrophysics Data System (ADS)

    Chen, Datong; Chang, Yi; Yan, Rong; Yang, Jie

    2007-12-01

    This paper presents a system for protecting the privacy of specific individuals in video recordings. We address the following two problems: automatic people identification with limited labeled data, and human body obscuring with preserved structure and motion information. In order to address the first problem, we propose a new discriminative learning algorithm to improve people identification accuracy using limited training data labeled from the original video and imperfect pairwise constraints labeled from face obscured video data. We employ a robust face detection and tracking algorithm to obscure human faces in the video. Our experiments in a nursing home environment show that the system can obtain a high accuracy of people identification using limited labeled data and noisy pairwise constraints. The study result indicates that human subjects can perform reasonably well in labeling pairwise constraints with the face masked data. For the second problem, we propose a novel method of body obscuring, which removes the appearance information of the people while preserving rich structure and motion information. The proposed approach provides a way to minimize the risk of exposing the identities of the protected people while maximizing the use of the captured data for activity/behavior analysis.

  16. High-resolution motion-compensated imaging photoplethysmography for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Chung, Audrey; Wang, Xiao Yu; Amelard, Robert; Scharfenberger, Christian; Leong, Joanne; Kulinski, Jan; Wong, Alexander; Clausi, David A.

    2015-03-01

    We present a novel non-contact photoplethysmographic (PPG) imaging system based on high-resolution video recordings of ambient reflectance of human bodies that compensates for body motion and takes advantage of skin erythema fluctuations to improve measurement reliability for the purpose of remote heart rate monitoring. A single measurement location for recording the ambient reflectance is automatically identified on an individual, and the motion for the location is determined over time via measurement location tracking. Based on the determined motion information motion-compensated reflectance measurements at different wavelengths for the measurement location can be acquired, thus providing more reliable measurements for the same location on the human over time. The reflectance measurement is used to determine skin erythema fluctuations over time, resulting in the capture of a PPG signal with a high signal-to-noise ratio. To test the efficacy of the proposed system, a set of experiments involving human motion in a front-facing position were performed under natural ambient light. The experimental results demonstrated that skin erythema fluctuations can achieve noticeably improved average accuracy in heart rate measurement when compared to previously proposed non-contact PPG imaging systems.

  17. Computerized method for automatic evaluation of lean body mass from PET/CT: comparison with predictive equations.

    PubMed

    Chan, Tao

    2012-01-01

    CT has become an established method for calculating body composition, but it requires data from the whole body, which are not typically obtained in routine PET/CT examinations. A computerized scheme that evaluates whole-body lean body mass (LBM) based on CT data from limited-whole-body coverage was developed. The LBM so obtained was compared with results from conventional predictive equations. LBM can be obtained automatically from limited-whole-body CT data by 3 means: quantification of body composition from CT images in the limited-whole-body scan, based on thresholding of CT attenuation; determination of the range of coverage based on a characteristic trend of changing composition across different levels and pattern recognition of specific features at strategic positions; and estimation of the LBM of the whole body on the basis of a predetermined relationship between proportion of fat mass and extent of coverage. This scheme was validated using 18 whole-body PET/CT examinations truncated at different lengths to emulate limited-whole-body data. LBM was also calculated using predictive equations that had been reported for use in SUV normalization. LBM derived from limited-whole-body data using the proposed method correlated strongly with LBM derived from whole-body CT data, with correlation coefficients ranging from 0.991 (shorter coverage) to 0.998 (longer coverage) and SEMs of LBM ranging from 0.14 to 0.33 kg. These were more accurate than results from different predictive equations, which ranged in correlation coefficient from 0.635 to 0.970 and in SEM from 0.64 to 2.40 kg. LBM of the whole body could be automatically estimated from CT data of limited-whole-body coverage typically acquired in PET/CT examinations. This estimation allows more accurate and consistent quantification of metabolic activity of tumors based on LBM-normalized standardized uptake value.

  18. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1992-01-01

    A rotor assembly for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water, includes a rotor body for rotation about an axis and including a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses.

  19. 2D automatic body-fitted structured mesh generation using advancing extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoxin; Jia, Yafei

    2018-01-01

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.

  20. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    PubMed

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  1. A novel approach for baseline correction in 1H-MRS signals based on ensemble empirical mode decomposition.

    PubMed

    Parto Dezfouli, Mohammad Ali; Dezfouli, Mohsen Parto; Rad, Hamidreza Saligheh

    2014-01-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) is a non-invasive diagnostic tool for measuring biochemical changes in the human body. Acquired (1)H-MRS signals may be corrupted due to a wideband baseline signal generated by macromolecules. Recently, several methods have been developed for the correction of such baseline signals, however most of them are not able to estimate baseline in complex overlapped signal. In this study, a novel automatic baseline correction method is proposed for (1)H-MRS spectra based on ensemble empirical mode decomposition (EEMD). This investigation was applied on both the simulated data and the in-vivo (1)H-MRS of human brain signals. Results justify the efficiency of the proposed method to remove the baseline from (1)H-MRS signals.

  2. Evidence of Big Five and Aggressive Personalities in Gait Biomechanics.

    PubMed

    Satchell, Liam; Morris, Paul; Mills, Chris; O'Reilly, Liam; Marshman, Paul; Akehurst, Lucy

    2017-01-01

    Behavioral observation techniques which relate action to personality have long been neglected (Furr and Funder in Handbook of research methods in personality psychology, The Guilford Press, New York, 2007) and, when employed, often use human judges to code behavior. In the current study we used an alternative to human coding (biomechanical research techniques) to investigate how personality traits are manifest in gait. We used motion capture technology to record 29 participants walking on a treadmill at their natural speed. We analyzed their thorax and pelvis movements, as well as speed of gait. Participants completed personality questionnaires, including a Big Five measure and a trait aggression questionnaire. We found that gait related to several of our personality measures. The magnitude of upper body movement, lower body movement, and walking speed, were related to Big Five personality traits and aggression. Here, we present evidence that some gait measures can relate to Big Five and aggressive personalities. We know of no other examples of research where gait has been shown to correlate with self-reported measures of personality and suggest that more research should be conducted between largely automatic movement and personality.

  3. Determination of land use in Minnesota by automatic interpretation of ERTS MSS data

    NASA Technical Reports Server (NTRS)

    Zirkle, R. E.; Pile, D. R.

    1973-01-01

    This program aims to determine the feasibility of identifying land use in Minnesota by automatic interpretation of ERTS-MSS data. Ultimate objectives include establishment of land use delineation and quantification by computer processing with a minimum of human operator interaction. This implies not only that reflectivity as a function of calendar time can be catalogued effectively, but also that the effects of uncontrolled variables can be identified and compensated. Clouds are the major uncontrollable data pollutant, so part of the initial effort is devoted to determining their effect and the construction of a model to help correct or justifiably ignore affected data. Other short range objectives are to identify and verify measurements giving results of importance to land managers. Lake-counting is a prominent example. Open water is easily detected in band 7 data with some support from either band 4 or band 5 to remove ambiguities. Land managers and conservationists commission studies periodically to measure water bodies and total water count within specified areas.

  4. Automatic categorization of anatomical landmark-local appearances based on diffeomorphic demons and spectral clustering for constructing detector ensembles.

    PubMed

    Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    A method for categorizing landmark-local appearances extracted from computed tomography (CT) datasets is presented. Anatomical landmarks in the human body inevitably have inter-individual variations that cause difficulty in automatic landmark detection processes. The goal of this study is to categorize subjects (i.e., training datasets) according to local shape variations of such a landmark so that each subgroup has less shape variation and thus the machine learning of each landmark detector is much easier. The similarity between each subject pair is measured based on the non-rigid registration result between them. These similarities are used by the spectral clustering process. After the clustering, all training datasets in each cluster, as well as synthesized intermediate images calculated from all subject-pairs in the cluster, are used to train the corresponding subgroup detector. All of these trained detectors compose a detector ensemble to detect the target landmark. Evaluation with clinical CT datasets showed great improvement in the detection performance.

  5. Noncontact respiration-monitoring system using fiber grating sensor

    NASA Astrophysics Data System (ADS)

    Sato, Isao; Nakajima, Masato

    2004-10-01

    In this research, the new non-contact breathing motion monitoring system using Fiber Grating 3-dimension Sensor is used to measure the respiratory movement of the chest and the abdomen and the shape of the human body simultaneously. Respiratory trouble during sleep brings about various kinds of diseases. Particularly, Sleep Apnea Syndrome (SAS), which restricts respiration during sleep, has been in the spotlight in recent years. However, present equipment for analyzing the blessing motion requires attaching various sensors on the patient's body. This system adopted two CCD cameras to measure the movements of projected infrared bright spots on the patient's body which measure the body form, breathing motion of the chest and breathing motion of the abdomen in detail. Since the equipment does not contact the patient's body, the patient feels incompatibility, and there is no necessity to worry about the equipment coming off. Sleep Apnea Syndrome is classified into three types by their respiratory pattern-Obstructive, Central and Mixed SAS based on the characteristic. This paper reports the method of diagnosing SAS automatically. It is thought that this method will be helpful not only for the diagnosis of SAS but also for the diagnosis of other kinds of complicated respiratory disease.

  6. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  7. Development of an automatic rotational orthosis for walking with arm swing.

    PubMed

    Fang, Juan; Yang, Guo-Yuan; Xie, Le

    2017-07-01

    Interlimb neural coupling is often observed during normal gait and is postulated to be important for gait restoration. In order to provide a testbed for investigation of interlimb neural coupling, we previously developed a rotational orthosis for walking with arm swing (ROWAS). The present study aimed to develop and evaluate the feasibility of a new system, viz. an automatic ROWAS (aROWAS). We developed the mechanical structures of aROWAS in SolidWorks, and implemented the concept in a prototype. Normal gait data from walking at various speeds were used as reference trajectories of the shoulder, hip, knee and ankle joints. The aROWAS prototype was tested in three able-bodied subjects. The prototype could automatically adjust to size and height, and automatically produced adaptable coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported better acceptance in aROWAS than in ROWAS. The aROWAS system was deemed feasible among able-bodied subjects.

  8. A Bayesian framework for extracting human gait using strong prior knowledge.

    PubMed

    Zhou, Ziheng; Prügel-Bennett, Adam; Damper, Robert I

    2006-11-01

    Extracting full-body motion of walking people from monocular video sequences in complex, real-world environments is an important and difficult problem, going beyond simple tracking, whose satisfactory solution demands an appropriate balance between use of prior knowledge and learning from data. We propose a consistent Bayesian framework for introducing strong prior knowledge into a system for extracting human gait. In this work, the strong prior is built from a simple articulated model having both time-invariant (static) and time-variant (dynamic) parameters. The model is easily modified to cater to situations such as walkers wearing clothing that obscures the limbs. The statistics of the parameters are learned from high-quality (indoor laboratory) data and the Bayesian framework then allows us to "bootstrap" to accurate gait extraction on the noisy images typical of cluttered, outdoor scenes. To achieve automatic fitting, we use a hidden Markov model to detect the phases of images in a walking cycle. We demonstrate our approach on silhouettes extracted from fronto-parallel ("sideways on") sequences of walkers under both high-quality indoor and noisy outdoor conditions. As well as high-quality data with synthetic noise and occlusions added, we also test walkers with rucksacks, skirts, and trench coats. Results are quantified in terms of chamfer distance and average pixel error between automatically extracted body points and corresponding hand-labeled points. No one part of the system is novel in itself, but the overall framework makes it feasible to extract gait from very much poorer quality image sequences than hitherto. This is confirmed by comparing person identification by gait using our method and a well-established baseline recognition algorithm.

  9. Attention biases in preoccupation with body image: An ERP study of the role of social comparison and automaticity when processing body size.

    PubMed

    Uusberg, Helen; Peet, Krista; Uusberg, Andero; Akkermann, Kirsti

    2018-03-17

    Appearance-related attention biases are thought to contribute to body image disturbances. We investigated how preoccupation with body image is associated with attention biases to body size, focusing on the role of social comparison processes and automaticity. Thirty-six women varying on self-reported preoccupation compared their actual body size to size-modified images of either themselves or a figure-matched peer. Amplification of earlier (N170, P2) and later (P3, LPP) ERP components recorded under low vs. high concurrent working memory load were analyzed. Women with high preoccupation exhibited an earlier bias to larger bodies of both self and peer. During later processing stages, they exhibited a stronger bias to enlarged as well as reduced self-images and a lack of sensitivity to size-modifications of the peer-image. Working memory load did not affect these biases systematically. Current findings suggest that preoccupation with body image involves an earlier attention bias to weight increase cues and later over-engagement with own figure. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. An automatic approach for 3D registration of CT scans

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas

    2012-03-01

    CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.

  11. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A container for storage of radioactive material comprising a container body nd a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  12. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, J.E.

    A container for storage of radioactive material comprises a container body and a closure member. The closure member is coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  13. 21 CFR 211.68 - Automatic, mechanical, and electronic equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Automatic, mechanical, and electronic equipment. 211.68 Section 211.68 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Equipment § 211.68 Automatic, mechanical, and electronic equipment. (a) Automatic, mechanical, or electronic...

  14. 21 CFR 211.68 - Automatic, mechanical, and electronic equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Automatic, mechanical, and electronic equipment. 211.68 Section 211.68 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Equipment § 211.68 Automatic, mechanical, and electronic equipment. (a) Automatic, mechanical, or electronic...

  15. To do it or to let an automatic tool do it? The priority of control over effort.

    PubMed

    Osiurak, François; Wagner, Clara; Djerbi, Sara; Navarro, Jordan

    2013-01-01

    The aim of the present study is to provide experimental data relevant to the issue of what leads humans to use automatic tools. Two answers can be offered. The first is that humans strive to minimize physical and/or cognitive effort (principle of least effort). The second is that humans tend to keep their perceived control over the environment (principle of more control). These two factors certainly play a role, but the question raised here is to what do people give priority in situations wherein both manual and automatic actions take the same time - minimizing effort or keeping perceived control? To answer that question, we built four experiments in which participants were confronted with a recurring choice between performing a task manually (physical effort) or in a semi-automatic way (cognitive effort) versus using an automatic tool that completes the task for them (no effort). In this latter condition, participants were required to follow the progression of the automatic tool step by step. Our results showed that participants favored the manual or semi-automatic condition over the automatic condition. However, when they were offered the opportunity to perform recreational tasks in parallel, the shift toward manual condition disappeared. The findings give support to the idea that people give priority to keeping control over minimizing effort.

  16. The Nature of Indexing: How Humans and Machines Analyze Messages and Texts for Retrieval. Part II: Machine Indexing, and the Allocation of Human versus Machine Effort.

    ERIC Educational Resources Information Center

    Anderson, James D.; Perez-Carballo, Jose

    2001-01-01

    Discussion of human intellectual indexing versus automatic indexing focuses on automatic indexing. Topics include keyword indexing; negative vocabulary control; counting words; comparative counting and weighting; stemming; words versus phrases; clustering; latent semantic indexing; citation indexes; bibliographic coupling; co-citation; relevance…

  17. Eliminating the Simon Effect by Instruction

    ERIC Educational Resources Information Center

    Theeuwes, Marijke; Liefooghe, Baptist; De Houwer, Jan

    2014-01-01

    A growing body of research demonstrates that instructions can elicit automatic response activations. The results of the present study indicate that instruction-based response activations can also counteract automatic response activations based on long-term associations. To this end, we focused on the Simon effect, which is the observation that…

  18. [Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].

    PubMed

    Ruan, Chao; Guo, Xudong; Yang, Fei

    2015-08-01

    The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.

  19. A computer vision-based system for monitoring Vojta therapy.

    PubMed

    Khan, Muhammad Hassan; Helsper, Julien; Farid, Muhammad Shahid; Grzegorzek, Marcin

    2018-05-01

    A neurological illness is t he disorder in human nervous system that can result in various diseases including the motor disabilities. Neurological disorders may affect the motor neurons, which are associated with skeletal muscles and control the body movement. Consequently, they introduce some diseases in the human e.g. cerebral palsy, spinal scoliosis, peripheral paralysis of arms/legs, hip joint dysplasia and various myopathies. Vojta therapy is considered a useful technique to treat the motor disabilities. In Vojta therapy, a specific stimulation is given to the patient's body to perform certain reflexive pattern movements which the patient is unable to perform in a normal manner. The repetition of stimulation ultimately brings forth the previously blocked connections between the spinal cord and the brain. After few therapy sessions, the patient can perform these movements without external stimulation. In this paper, we propose a computer vision-based system to monitor the correct movements of the patient during the therapy treatment using the RGBD data. The proposed framework works in three steps. In the first step, patient's body is automatically detected and segmented and two novel techniques are proposed for this purpose. In the second step, a multi-dimensional feature vector is computed to define various movements of patient's body during the therapy. In the final step, a multi-class support vector machine is used to classify these movements. The experimental evaluation carried out on the large captured dataset shows that the proposed system is highly useful in monitoring the patient's body movements during Vojta therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Detection and identification of concealed weapons using matrix pencil

    NASA Astrophysics Data System (ADS)

    Adve, Raviraj S.; Thayaparan, Thayananthan

    2011-06-01

    The detection and identification of concealed weapons is an extremely hard problem due to the weak signature of the target buried within the much stronger signal from the human body. This paper furthers the automatic detection and identification of concealed weapons by proposing the use of an effective approach to obtain the resonant frequencies in a measurement. The technique, based on Matrix Pencil, a scheme for model based parameter estimation also provides amplitude information, hence providing a level of confidence in the results. Of specific interest is the fact that Matrix Pencil is based on a singular value decomposition, making the scheme robust against noise.

  1. Surface analysis by laser beam scanning and stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    Aliverti, Andrea; Ferrigno, Giancarlo; Pedotti, Antonio

    1993-10-01

    The possibility to describe mathematically the body surfaces could improve diagnosis and objective evaluation of deformities, the follow up of progressive diseases and could represent a useful tool for other medical sectors as prosthetic and plastic surgery as well as for industrial applications where a real shape needs to be digitized and analyzed or modified mathematically. The approach here presented is based on the acquisition of a surface scanned by a laser beam. The 3D coordinates of the spot generated on the surface by the beam are obtained by an automatic image analyzer (ELITE system), originally developed for human motion analysis. The 3D coordinates are obtained by stereo-photogrammetry starting from at least two different view of the subject. A software package for graphic representation of the obtained surfaces has been developed and some preliminary results about some body shapes will be presented.

  2. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, J.E.

    1984-10-16

    A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

  3. Generating Concise Rules for Human Motion Retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru

    This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.

  4. Differential reliance of chimpanzees and humans on automatic and deliberate control of motor actions.

    PubMed

    Kaneko, Takaaki; Tomonaga, Masaki

    2014-06-01

    Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific case of vertebral labeling, since any structure defined in pre-operative (or intra-operative) CT or cone-beam CT can be automatically registered to the fluoroscopic scene. PMID:22864366

  6. Definition and automatic anatomy recognition of lymph node zones in the pelvis on CT images

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Guo, Shuxu; Attor, Rosemary; Reinicke, Danica; Torigian, Drew A.

    2016-03-01

    Currently, unlike IALSC-defined thoracic lymph node zones, no explicitly provided definitions for lymph nodes in other body regions are available. Yet, definitions are critical for standardizing the recognition, delineation, quantification, and reporting of lymphadenopathy in other body regions. Continuing from our previous work in the thorax, this paper proposes a standardized definition of the grouping of pelvic lymph nodes into 10 zones. We subsequently employ our earlier Automatic Anatomy Recognition (AAR) framework designed for body-wide organ modeling, recognition, and delineation to actually implement these zonal definitions where the zones are treated as anatomic objects. First, all 10 zones and key anatomic organs used as anchors are manually delineated under expert supervision for constructing fuzzy anatomy models of the assembly of organs together with the zones. Then, optimal hierarchical arrangement of these objects is constructed for the purpose of achieving the best zonal recognition. For actual localization of the objects, two strategies are used -- optimal thresholded search for organs and one-shot method for the zones where the known relationship of the zones to key organs is exploited. Based on 50 computed tomography (CT) image data sets for the pelvic body region and an equal division into training and test subsets, automatic zonal localization within 1-3 voxels is achieved.

  7. Basic instinct undressed: early spatiotemporal processing for primary sexual characteristics.

    PubMed

    Legrand, Lore B; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J

    2013-01-01

    This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success.

  8. The Origins of Belief Representation: Monkeys Fail to Automatically Represent Others’ Beliefs

    PubMed Central

    Martin, Alia; Santos, Laurie R.

    2014-01-01

    Young infants’ successful performance on false belief tasks has led several researchers to argue that there may be a core knowledge system for representing the beliefs of other agents, emerging early in human development and constraining automatic belief processing into adulthood. One way to investigate this purported core belief representation system is to examine whether non-human primates share such a system. Although non-human primates have historically performed poorly on false belief tasks that require executive function capacities, little work has explored how primates perform on more automatic measures of belief processing. To get at this issue, we modified Kovács et al. (2010)’s test of automatic belief representation to examine whether one non-human primate species—the rhesus macaque (Macaca mulatta)—is automatically influenced by another agent’s beliefs when tracking an object’s location. Monkeys saw an event in which a human agent watched an apple move back and forth between two boxes and an outcome in which one box was revealed to be empty. By occluding segments of the apple’s movement from either the monkey or the agent, we manipulated both the monkeys’ belief (true or false) and agent’s belief (true or false) about the final location of the apple. We found that monkeys looked longer at events that violated their own beliefs than at events that were consistent with their beliefs. In contrast to human infants, however, monkeys’ expectations were not influenced by another agent’s beliefs, suggesting that belief representation may be an aspect of core knowledge unique to humans. PMID:24374209

  9. The origins of belief representation: monkeys fail to automatically represent others' beliefs.

    PubMed

    Martin, Alia; Santos, Laurie R

    2014-03-01

    Young infants' successful performance on false belief tasks has led several researchers to argue that there may be a core knowledge system for representing the beliefs of other agents, emerging early in human development and constraining automatic belief processing into adulthood. One way to investigate this purported core belief representation system is to examine whether non-human primates share such a system. Although non-human primates have historically performed poorly on false belief tasks that require executive function capacities, little work has explored how primates perform on more automatic measures of belief processing. To get at this issue, we modified Kovács et al. (2010)'s test of automatic belief representation to examine whether one non-human primate species--the rhesus macaque (Macaca mulatta)--is automatically influenced by another agent's beliefs when tracking an object's location. Monkeys saw an event in which a human agent watched an apple move back and forth between two boxes and an outcome in which one box was revealed to be empty. By occluding segments of the apple's movement from either the monkey or the agent, we manipulated both the monkeys' belief (true or false) and agent's belief (true or false) about the final location of the apple. We found that monkeys looked longer at events that violated their own beliefs than at events that were consistent with their beliefs. In contrast to human infants, however, monkeys' expectations were not influenced by another agent's beliefs, suggesting that belief representation may be an aspect of core knowledge unique to humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Automatic Identification and Organization of Index Terms for Interactive Browsing.

    ERIC Educational Resources Information Center

    Wacholder, Nina; Evans, David K.; Klavans, Judith L.

    The potential of automatically generated indexes for information access has been recognized for several decades, but the quantity of text and the ambiguity of natural language processing have made progress at this task more difficult than was originally foreseen. Recently, a body of work on development of interactive systems to support phrase…

  11. Identification of human-generated forces on wheelchairs during total-body extensor thrusts.

    PubMed

    Hong, Seong-Wook; Patrangenaru, Vlad; Singhose, William; Sprigle, Stephen

    2006-10-01

    Involuntary extensor thrust experienced by wheelchair users with neurological disorders may cause injuries via impact with the wheelchair, lead to the occupant sliding out of the seat, and also damage the wheelchair. The concept of a dynamic seat, which allows movement of a seat with respect to the wheelchair frame, has been suggested as a potential solution to provide greater freedom and safety. Knowledge of the human-generated motion and forces during unconstrained extensor thrust events is of great importance in developing more comfortable and effective dynamic seats. The objective of this study was to develop a method to identify human-generated motions and forces during extensor thrust events. This information can be used to design the triggering system for a dynamic seat. An experimental system was developed to automatically track the motions of the wheelchair user using a video camera and also measure the forces at the footrest. An inverse dynamic approach was employed along with a three-link human body model and the experimental data to predict the human-generated forces. Two kinds of experiments were performed: the first experiment validated the proposed model and the second experiment showed the effects of the extensor thrust speed, the footrest angle, and the seatback angle. The proposed method was tested using a sensitivity analysis, from which a performance index was deduced to help indicate the robust region of the force identification. A system to determine human-generated motions and forces during unconstrained extensor thrusts was developed. Through experiments and simulations, the effectiveness and reliability of the developed system was established.

  12. Segmenting breast cancerous regions in thermal images using fuzzy active contours

    PubMed Central

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710 ± 0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically. PMID:28096784

  13. Body odors promote automatic imitation in autism.

    PubMed

    Parma, Valentina; Bulgheroni, Maria; Tirindelli, Roberto; Castiello, Umberto

    2013-08-01

    Autism spectrum disorders comprise a range of neurodevelopmental pathologies characterized, among other symptoms, by impaired social interactions. Individuals with this diagnosis are reported to often identify people by repetitively sniffing pieces of clothing or the body odor of family members. Since body odors are known to initiate and mediate many different social behaviors, smelling the body odor of a family member might constitute a sensory-based action promoting social contact. In light of this, we hypothesized that the body odor of a family member would facilitate the appearance of automatic imitation, an essential social skill known to be impaired in autism. We recruited 20 autistic and 20 typically developing children. Body odors were collected from the children's mothers' axillae. A child observed a model (their mother or a stranger mother) execute (or not) a reach-to-grasp action toward an object. Subsequently, she performed the same action. The object was imbued with the child's mother's odor, a stranger mother's odor, or no odor. The actions were videotaped, and movement time was calculated post hoc via a digitalization technique. Automatic imitation effects-expressed in terms of total movement time reduction-appear in autistic children only when exposed to objects paired with their own mother's odor. The maternal odor, which conveys a social message otherwise neglected, helps autistic children to covertly imitate the actions of others. Our results represent a starting point holding theoretical and practical relevance for the development of new strategies to enhance communication and social behavior among autistic individuals. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. G-DYN Multibody Dynamics Engine

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, James C.; Broderick, Daniel

    2011-01-01

    G-DYN is a multi-body dynamic simulation software engine that automatically assembles and integrates equations of motion for arbitrarily connected multibody dynamic systems. The algorithm behind G-DYN is based on a primal-dual formulation of the dynamics that captures the position and velocity vectors (primal variables) of each body and the interaction forces (dual variables) between bodies, which are particularly useful for control and estimation analysis and synthesis. It also takes full advantage of the spare matrix structure resulting from the system dynamics to numerically integrate the equations of motion efficiently. Furthermore, the dynamic model for each body can easily be replaced without re-deriving the overall equations of motion, and the assembly of the equations of motion is done automatically. G-DYN proved an essential software tool in the simulation of spacecraft systems used for small celestial body surface sampling, specifically in simulating touch-and-go (TAG) maneuvers of a robotic sampling system from a comet and asteroid. It is used extensively in validating mission concepts for small body sample return, such as Comet Odyssey and Galahad New Frontiers proposals.

  15. Illusory body-ownership entails automatic compensative movement: for the unified representation between body and action.

    PubMed

    Asai, Tomohisa

    2015-03-01

    The sense of body-ownership involves the integration of vision and somatosensation. In the rubber hand illusion (RHI), watching a rubber hand being stroked for a short time synchronously as one's own unseen hand is also stroked causes the observers to attribute the rubber hand to their own body. The RHI may elicit proprioceptive drift: The observers' sense of their own hand's location drifts toward the external proxy hand. The current experiments examined the possibility of observing, not the proprioceptive drift, but the actual drift "movement" during RHI induction. The participants' hand, located on horizontally movable board, tended to move toward the rubber hand only while they observed synchronous visuo-tactile stimulation. Furthermore, even when the participants' hand was located on a fixed, unmovable board (that is, the conventional RHI paradigm), participants automatically administered the force toward the rubber hand. These findings suggest that since awareness of our own body and action are fundamental to self-consciousness, these components of "minimal self" are closely related and integrated into "one agent" with a unified awareness of the body and action.

  16. Trust, control strategies and allocation of function in human-machine systems.

    PubMed

    Lee, J; Moray, N

    1992-10-01

    As automated controllers supplant human intervention in controlling complex systems, the operators' role often changes from that of an active controller to that of a supervisory controller. Acting as supervisors, operators can choose between automatic and manual control. Improperly allocating function between automatic and manual control can have negative consequences for the performance of a system. Previous research suggests that the decision to perform the job manually or automatically depends, in part, upon the trust the operators invest in the automatic controllers. This paper reports an experiment to characterize the changes in operators' trust during an interaction with a semi-automatic pasteurization plant, and investigates the relationship between changes in operators' control strategies and trust. A regression model identifies the causes of changes in trust, and a 'trust transfer function' is developed using time series analysis to describe the dynamics of trust. Based on a detailed analysis of operators' strategies in response to system faults we suggest a model for the choice between manual and automatic control, based on trust in automatic controllers and self-confidence in the ability to control the system manually.

  17. Quantification of regional fat volume in rat MRI

    NASA Astrophysics Data System (ADS)

    Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren

    2003-05-01

    Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.

  18. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  19. Traumatic asphyxia--fatal accident in an automatic revolving door.

    PubMed

    Cortis, J; Falk, J; Rothschild, M A

    2015-09-01

    Due to continuing modernisation, the number of automatic doors in routine use, including powered revolving doors, has increased in recent years. Automatic revolving doors are found mostly in department stores, airports, railway stations and hospitals. Although safety arrangements and guidelines concerning the installation of automatic doors are in existence, their disregard in conjunction with obsolete or incorrect installation can lead to fatal accidents. In this report, a 19-month-old boy is described whose right arm was caught between the elements of an automatic revolving door. As a direct result of rescue attempts, the child's body was drawn further into the narrow gap between elements of the door. To get the boy's body out of the 4-cm-wide gap between the fixed outer wall of the revolving door and the revolving inner, back-up batteries had to be disconnected so as to stop the electrical motor powering the door. Cardiopulmonary resuscitation was begun immediately after the rescue but was unsuccessful; the child was declared dead at the hospital he was taken to. The cause of death was a combination of compression-related skull and brain injury together with thoracic compression. This case shows an outstanding example of the preventive aspect as a special task of forensic medicine. Additionally, it serves as a warning for the correct installation and use of automatic revolving doors. Even so, small children should not use these doors on their own, but only with an alert companion, so as to prevent further fatal accidents of this sort.

  20. Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.

  1. A novel yet effective motion artefact reduction method for continuous physiological monitoring

    NASA Astrophysics Data System (ADS)

    Alzahrani, A.; Hu, S.; Azorin-Peris, V.; Kalawsky, R.; Zhang, X.; Liu, C.

    2014-03-01

    This study presents a non-invasive and wearable optical technique to continuously monitor vital human signs as required for personal healthcare in today's increasing ageing population. The study has researched an effective way to capture human critical physiological parameters, i.e., oxygen saturation (SaO2%), heart rate, respiration rate, body temperature, heart rate variability by a closely coupled wearable opto-electronic patch sensor (OEPS) together with real-time and secure wireless communication functionalities. The work presents the first step of this research; an automatic noise cancellation method using a 3-axes MEMS accelerometer to recover signals corrupted by body movement which is one of the biggest sources of motion artefacts. The effects of these motion artefacts have been reduced by an enhanced electronic design and development of self-cancellation of noise and stability of the sensor. The signals from the acceleration and the opto-electronic sensor are highly correlated thus leading to the desired pulse waveform with rich bioinformatics signals to be retrieved with reduced motion artefacts. The preliminary results from the bench tests and the laboratory setup demonstrate that the goal of the high performance wearable opto-electronics is viable and feasible.

  2. Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.

    PubMed

    Frieauff, W; Martus, H J; Suter, W; Elhajouji, A

    2013-01-01

    The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.

  3. Bridging automatic speech recognition and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition (L)

    NASA Astrophysics Data System (ADS)

    Scharenborg, Odette; ten Bosch, Louis; Boves, Lou; Norris, Dennis

    2003-12-01

    This letter evaluates potential benefits of combining human speech recognition (HSR) and automatic speech recognition by building a joint model of an automatic phone recognizer (APR) and a computational model of HSR, viz., Shortlist [Norris, Cognition 52, 189-234 (1994)]. Experiments based on ``real-life'' speech highlight critical limitations posed by some of the simplifying assumptions made in models of human speech recognition. These limitations could be overcome by avoiding hard phone decisions at the output side of the APR, and by using a match between the input and the internal lexicon that flexibly copes with deviations from canonical phonemic representations.

  4. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies

    PubMed Central

    Romano, Joseph D.; Tatonetti, Nicholas P.

    2015-01-01

    Animal venoms have been used for therapeutic purposes since the dawn of recorded history. Only a small fraction, however, have been tested for pharmaceutical utility. Modern computational methods enable the systematic exploration of novel therapeutic uses for venom compounds. Unfortunately, there is currently no comprehensive resource describing the clinical effects of venoms to support this computational analysis. We present VenomKB, a new publicly accessible knowledge base and website that aims to act as a repository for emerging and putative venom therapies. Presently, it consists of three database tables: (1) Manually curated records of putative venom therapies supported by scientific literature, (2) automatically parsed MEDLINE articles describing compounds that may be venom derived, and their effects on the human body, and (3) automatically retrieved records from the new Semantic Medline resource that describe the effects of venom compounds on mammalian anatomy. Data from VenomKB may be selectively retrieved in a variety of popular data formats, are open-source, and will be continually updated as venom therapies become better understood. PMID:26601758

  5. Postural Control and Automaticity in Dyslexic Children: The Relationship between Visual Information and Body Sway

    ERIC Educational Resources Information Center

    Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.

    2011-01-01

    Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…

  6. Evaluation of automatic exposure control system chamber for the dose optimization when examining pelvic in digital radiography.

    PubMed

    Kim, Sung-Chul; Lee, Hae-Kag; Lee, Yang-Sub; Cho, Jae-Hwan

    2015-01-01

    We found a way to optimize the image quality and reduce the exposure dose of patients through the proper activity combination of the automatic exposure control system chamber for the dose optimization when examining the pelvic anteroposterior side using the phantom of the human body standard model. We set 7 combinations of the chamber of automatic exposure control system. The effective dose was yielded by measuring five times for each according to the activity combination of the chamber for the dose measurement. Five radiologists with more than five years of experience evaluated the image through picture archiving and communication system using double blind test while classifying the 6 anatomical sites into 3-point level (improper, proper, perfect). When only one central chamber was activated, the effective dose was found to be the highest level, 0.287 mSv; and lowest when only the top left chamber was used, 0.165 mSv. After the subjective evaluation by five panel members on the pelvic image was completed, there was no statistically meaningful difference between the 7 chamber combinations, and all had good image quality. When testing the pelvic anteroposterior side with digital radiography, we were able to reduce the exposure dose of patients using the combination of the top right side of or the top two of the chamber.

  7. Sensible organizations: technology and methodology for automatically measuring organizational behavior.

    PubMed

    Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex

    2009-02-01

    We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

  8. Drinking behavior in nursery pigs: Determining the accuracy between an automatic water meter versus human observers

    USDA-ARS?s Scientific Manuscript database

    Assimilating accurate behavioral events over a long period can be labor intensive and relatively expensive. If an automatic device could accurately record the duration and frequency for a given behavioral event, it would be a valuable alternative to the traditional use of human observers for behavio...

  9. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere, a global (volumetric) fields evaluation allowed for identification of locations of errors due to staircasing, and the singularities responsible for them. In evaluation of safety of cellular telephones and similar devices, the specific absorption rate (SAR) averaged over a 1 g (in North America) or 10 g (in Europe) cube is used. A new algorithm has been developed and tested, which allows for automatic and reliable identification of the maximum value with a user-selected inclusion of air (if required). This algorithm and the verified code have been used to model performance of a commercial telephone in the proximity of head, and to model EMI of this phone with a hearing aid placed in the ear canal. The modeling results, which relied on a proper representation of the antenna consisting of two helices and complex shape and structure of the telephone case, have been confirmed by measurements performed in another laboratory. Similarly, the EMI modeling has been in agreement with acoustic measurements (performed elsewhere). The latter comparison has allowed to confirm anticipated mechanism of the EMI.

  10. [Design of High Frequency Signal Detecting Circuit of Human Body Impedance Used for Ultrashort Wave Diathermy Apparatus].

    PubMed

    Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen

    2016-02-01

    The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.

  11. The use of a digital computer for investigation of the dynamic characteristics of a man while pressing vertically downward with the straight arm on the handle of a vibrator (instrument)

    NASA Technical Reports Server (NTRS)

    Zazhivikhina, A. I.; Rosin, G. S.; Ryzhov, Y. I.

    1973-01-01

    The dynamic characteristics of a man were investigated by the resonance method, by means of recordings of the amplitude-frequency characteristics of a vibrator straight arm human body system on a standard automatic recorder. Experiments were carried out with a specially constructed vibrator, the moving system of which was fastened to a bronze suspension with small losses. Vibrations of the handle, fastened to the moving system, were recorded with an accelerometer. The mass of the moving system m, rigidity of the suspension k and friction coefficient r of the vibrator (calibration) were determined by exact formulas.

  12. Automated Tracking and Quantification of Autistic Behavioral Symptoms Using Microsoft Kinect.

    PubMed

    Kang, Joon Young; Kim, Ryunhyung; Kim, Hyunsun; Kang, Yeonjune; Hahn, Susan; Fu, Zhengrui; Khalid, Mamoon I; Schenck, Enja; Thesen, Thomas

    2016-01-01

    The prevalence of autism spectrum disorder (ASD) has risen significantly in the last ten years, and today, roughly 1 in 68 children has been diagnosed. One hallmark set of symptoms in this disorder are stereotypical motor movements. These repetitive movements may include spinning, body-rocking, or hand-flapping, amongst others. Despite the growing number of individuals affected by autism, an effective, accurate method of automatically quantifying such movements remains unavailable. This has negative implications for assessing the outcome of ASD intervention and drug studies. Here we present a novel approach to detecting autistic symptoms using the Microsoft Kinect v.2 to objectively and automatically quantify autistic body movements. The Kinect camera was used to film 12 actors performing three separate stereotypical motor movements each. Visual Gesture Builder (VGB) was implemented to analyze the skeletal structures in these recordings using a machine learning approach. In addition, movement detection was hard-coded in Matlab. Manual grading was used to confirm the validity and reliability of VGB and Matlab analysis. We found that both methods were able to detect autistic body movements with high probability. The machine learning approach yielded highest detection rates, supporting its use in automatically quantifying complex autistic behaviors with multi-dimensional input.

  13. Review of automatic detection of pig behaviours by using image analysis

    NASA Astrophysics Data System (ADS)

    Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Kong, Fantao

    2017-06-01

    Automatic detection of lying, moving, feeding, drinking, and aggressive behaviours of pigs by means of image analysis can save observation input by staff. It would help staff make early detection of diseases or injuries of pigs during breeding and improve management efficiency of swine industry. This study describes the progress of pig behaviour detection based on image analysis and advancement in image segmentation of pig body, segmentation of pig adhesion and extraction of pig behaviour characteristic parameters. Challenges for achieving automatic detection of pig behaviours were summarized.

  14. Routine human-competitive machine intelligence by means of genetic programming

    NASA Astrophysics Data System (ADS)

    Koza, John R.; Streeter, Matthew J.; Keane, Martin

    2004-01-01

    Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.

  15. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  16. Do bodily expressions compete with facial expressions? Time course of integration of emotional signals from the face and the body.

    PubMed

    Gu, Yuanyuan; Mai, Xiaoqin; Luo, Yue-jia

    2013-01-01

    The decoding of social signals from nonverbal cues plays a vital role in the social interactions of socially gregarious animals such as humans. Because nonverbal emotional signals from the face and body are normally seen together, it is important to investigate the mechanism underlying the integration of emotional signals from these two sources. We conducted a study in which the time course of the integration of facial and bodily expressions was examined via analysis of event-related potentials (ERPs) while the focus of attention was manipulated. Distinctive integrating features were found during multiple stages of processing. In the first stage, threatening information from the body was extracted automatically and rapidly, as evidenced by enhanced P1 amplitudes when the subjects viewed compound face-body images with fearful bodies compared with happy bodies. In the second stage, incongruency between emotional information from the face and the body was detected and captured by N2. Incongruent compound images elicited larger N2s than did congruent compound images. The focus of attention modulated the third stage of integration. When the subjects' attention was focused on the face, images with congruent emotional signals elicited larger P3s than did images with incongruent signals, suggesting more sustained attention and elaboration of congruent emotional information extracted from the face and body. On the other hand, when the subjects' attention was focused on the body, images with fearful bodies elicited larger P3s than did images with happy bodies, indicating more sustained attention and elaboration of threatening information from the body during evaluative processes.

  17. Do Bodily Expressions Compete with Facial Expressions? Time Course of Integration of Emotional Signals from the Face and the Body

    PubMed Central

    Gu, Yuanyuan; Mai, Xiaoqin; Luo, Yue-jia

    2013-01-01

    The decoding of social signals from nonverbal cues plays a vital role in the social interactions of socially gregarious animals such as humans. Because nonverbal emotional signals from the face and body are normally seen together, it is important to investigate the mechanism underlying the integration of emotional signals from these two sources. We conducted a study in which the time course of the integration of facial and bodily expressions was examined via analysis of event-related potentials (ERPs) while the focus of attention was manipulated. Distinctive integrating features were found during multiple stages of processing. In the first stage, threatening information from the body was extracted automatically and rapidly, as evidenced by enhanced P1 amplitudes when the subjects viewed compound face-body images with fearful bodies compared with happy bodies. In the second stage, incongruency between emotional information from the face and the body was detected and captured by N2. Incongruent compound images elicited larger N2s than did congruent compound images. The focus of attention modulated the third stage of integration. When the subjects' attention was focused on the face, images with congruent emotional signals elicited larger P3s than did images with incongruent signals, suggesting more sustained attention and elaboration of congruent emotional information extracted from the face and body. On the other hand, when the subjects' attention was focused on the body, images with fearful bodies elicited larger P3s than did images with happy bodies, indicating more sustained attention and elaboration of threatening information from the body during evaluative processes. PMID:23935825

  18. The control of automatic imitation based on bottom-up and top-down cues to animacy: insights from brain and behavior.

    PubMed

    Klapper, André; Ramsey, Richard; Wigboldus, Daniël; Cross, Emily S

    2014-11-01

    Humans automatically imitate other people's actions during social interactions, building rapport and social closeness in the process. Although the behavioral consequences and neural correlates of imitation have been studied extensively, little is known about the neural mechanisms that control imitative tendencies. For example, the degree to which an agent is perceived as human-like influences automatic imitation, but it is not known how perception of animacy influences brain circuits that control imitation. In the current fMRI study, we examined how the perception and belief of animacy influence the control of automatic imitation. Using an imitation-inhibition paradigm that involves suppressing the tendency to imitate an observed action, we manipulated both bottom-up (visual input) and top-down (belief) cues to animacy. Results show divergent patterns of behavioral and neural responses. Behavioral analyses show that automatic imitation is equivalent when one or both cues to animacy are present but reduces when both are absent. By contrast, right TPJ showed sensitivity to the presence of both animacy cues. Thus, we demonstrate that right TPJ is biologically tuned to control imitative tendencies when the observed agent both looks like and is believed to be human. The results suggest that right TPJ may be involved in a specialized capacity to control automatic imitation of human agents, rather than a universal process of conflict management, which would be more consistent with generalist theories of imitative control. Evidence for specialized neural circuitry that "controls" imitation offers new insight into developmental disorders that involve atypical processing of social information, such as autism spectrum disorders.

  19. Basic Instinct Undressed: Early Spatiotemporal Processing for Primary Sexual Characteristics

    PubMed Central

    Legrand, Lore B.; Del Zotto, Marzia; Tyrand, Rémi; Pegna, Alan J.

    2013-01-01

    This study investigates the spatiotemporal dynamics associated with conscious and non-conscious processing of naked and dressed human bodies. To this effect, stimuli of naked men and women with visible primary sexual characteristics, as well as dressed bodies, were presented to 20 heterosexual male and female participants while acquiring high resolution EEG data. The stimuli were either consciously detectable (supraliminal presentations) or were rendered non-conscious through backward masking (subliminal presentations). The N1 event-related potential component was significantly enhanced in participants when they viewed naked compared to dressed bodies under supraliminal viewing conditions. More importantly, naked bodies of the opposite sex produced a significantly greater N1 component compared to dressed bodies during subliminal presentations, when participants were not aware of the stimulus presented. A source localization algorithm computed on the N1 showed that the response for naked bodies in the supraliminal viewing condition was stronger in body processing areas, primary visual areas and additional structures related to emotion processing. By contrast, in the subliminal viewing condition, only visual and body processing areas were found to be activated. These results suggest that naked bodies and primary sexual characteristics are processed early in time (i.e., <200 ms) and activate key brain structures even when they are not consciously detected. It appears that, similarly to what has been reported for emotional faces, sexual features benefit from automatic and rapid processing, most likely due to their high relevance for the individual and their importance for the species in terms of reproductive success. PMID:23894532

  20. 42 CFR 435.909 - Automatic entitlement to Medicaid following a determination of eligibility under other programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Automatic entitlement to Medicaid following a... & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS... in the States and District of Columbia Applications § 435.909 Automatic entitlement to Medicaid...

  1. 42 CFR 436.909 - Automatic entitlement to Medicaid following a determination of eligibility under other programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Automatic entitlement to Medicaid following a... & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS... Islands § 436.909 Automatic entitlement to Medicaid following a determination of eligibility under other...

  2. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  3. Detection of Multiple Stationary Humans Using UWB MIMO Radar.

    PubMed

    Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi

    2016-11-16

    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.

  4. Detection of Multiple Stationary Humans Using UWB MIMO Radar

    PubMed Central

    Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi

    2016-01-01

    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls. PMID:27854356

  5. Automatic detection of confusion in elderly users of a web-based health instruction video.

    PubMed

    Postma-Nilsenová, Marie; Postma, Eric; Tates, Kiek

    2015-06-01

    Because of cognitive limitations and lower health literacy, many elderly patients have difficulty understanding verbal medical instructions. Automatic detection of facial movements provides a nonintrusive basis for building technological tools supporting confusion detection in healthcare delivery applications on the Internet. Twenty-four elderly participants (70-90 years old) were recorded while watching Web-based health instruction videos involving easy and complex medical terminology. Relevant fragments of the participants' facial expressions were rated by 40 medical students for perceived level of confusion and analyzed with automatic software for facial movement recognition. A computer classification of the automatically detected facial features performed more accurately and with a higher sensitivity than the human observers (automatic detection and classification, 64% accuracy, 0.64 sensitivity; human observers, 41% accuracy, 0.43 sensitivity). A drill-down analysis of cues to confusion indicated the importance of the eye and eyebrow region. Confusion caused by misunderstanding of medical terminology is signaled by facial cues that can be automatically detected with currently available facial expression detection technology. The findings are relevant for the development of Web-based services for healthcare consumers.

  6. Turning Microscopy in the Medical Curriculum Digital: Experiences from The Faculty of Health and Medical Sciences at University of Copenhagen

    PubMed Central

    Vainer, Ben; Mortensen, Niels Werner; Poulsen, Steen Seier; Sørensen, Allan Have; Olsen, Jørgen; Saxild, Hans Henrik; Johansen, Flemming Fryd

    2017-01-01

    Familiarity with the structure and composition of normal tissue and an understanding of the changes that occur during disease is pivotal to the study of the human body. For decades, microscope slides have been central to teaching pathology in medical courses and related subjects at the University of Copenhagen. Students had to learn how to use a microscope and envisage three-dimensional processes that occur in the body from two-dimensional glass slides. Here, we describe how a PathXL virtual microscopy system for teaching pathology and histology at the Faculty has recently been implemented, from an administrative, an economic, and a teaching perspective. This fully automatic digital microscopy system has been received positively by both teachers and students, and a decision was made to convert all courses involving microscopy to the virtual microscopy format. As a result, conventional analog microscopy will be phased out from the fall of 2016. PMID:28382225

  7. COED Transactions, Vol. X, No. 1, January 1978. Design and Simulation of an Automobile Guidance Control System.

    ERIC Educational Resources Information Center

    Stefani, R. T.

    This document describes the design of an automatic guidance and control system for a passenger car. A simulation of that system is presented. Analog outputs are provided which compare human operator control to automatic control. One human control possibility is to provide the operator with sufficient feedback information that resulting performance…

  8. A Survey of MAC Protocols for Cognitive Radio Body Area Networks.

    PubMed

    Bhandari, Sabin; Moh, Sangman

    2015-04-20

    The advancement in electronics, wireless communications and integrated circuits has enabled the development of small low-power sensors and actuators that can be placed on, in or around the human body. A wireless body area network (WBAN) can be effectively used to deliver the sensory data to a central server, where it can be monitored, stored and analyzed. For more than a decade, cognitive radio (CR) technology has been widely adopted in wireless networks, as it utilizes the available spectra of licensed, as well as unlicensed bands. A cognitive radio body area network (CRBAN) is a CR-enabled WBAN. Unlike other wireless networks, CRBANs have specific requirements, such as being able to automatically sense their environments and to utilize unused, licensed spectra without interfering with licensed users, but existing protocols cannot fulfill them. In particular, the medium access control (MAC) layer plays a key role in cognitive radio functions, such as channel sensing, resource allocation, spectrum mobility and spectrum sharing. To address various application-specific requirements in CRBANs, several MAC protocols have been proposed in the literature. In this paper, we survey MAC protocols for CRBANs. We then compare the different MAC protocols with one another and discuss challenging open issues in the relevant research.

  9. Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts.

    PubMed

    Diego-Mas, Jose Antonio; Poveda-Bautista, Rocio; Garzon-Leal, Diana

    2017-11-01

    RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Thermographic techniques and adapted algorithms for automatic detection of foreign bodies in food

    NASA Astrophysics Data System (ADS)

    Meinlschmidt, Peter; Maergner, Volker

    2003-04-01

    At the moment foreign substances in food are detected mainly by using mechanical and optical methods as well as ultrasonic technique and than they are removed from the further process. These techniques detect a large portion of the foreign substances due to their different mass (mechanical sieving), their different colour (optical method) and their different surface density (ultrasonic detection). Despite the numerous different methods a considerable portion of the foreign substances remain undetected. In order to recognise materials still undetected, a complementary detection method would be desirable removing the foreign substances not registered by the a.m. methods from the production process. In a project with 13 partner from the food industry, the Fraunhofer - Institut für Holzforschung (WKI) and the Technische Unsiversität are trying to adapt thermography for the detection of foreign bodies in the food industry. After the initial tests turned out to be very promising for the differentiation of food stuffs and foreign substances, more and detailed investigation were carried out to develop suitable algorithms for automatic detection of foreign bodies. In order to achieve -besides the mere visual detection of foreign substances- also an automatic detection under production conditions, numerous experiences in image processing and pattern recognition are exploited. Results for the detection of foreign bodies will be presented at the conference showing the different advantages and disadvantages of using grey - level, statistical and morphological image processing techniques.

  11. Design of underwater robot lines based on a hybrid automatic optimization strategy

    NASA Astrophysics Data System (ADS)

    Lyu, Wenjing; Luo, Weilin

    2014-09-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal; the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  12. Computational Modeling of Emotions and Affect in Social-Cultural Interaction

    DTIC Science & Technology

    2013-10-02

    acoustic and textual information sources. Second, a cross-lingual study was performed that shed light on how human perception and automatic recognition...speech is produced, a speaker’s pitch and intonational pattern, and word usage. Better feature representation and advanced approaches were used to...recognition performance, and improved our understanding of language/cultural impact on human perception of emotion and automatic classification. • Units

  13. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  14. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards

    PubMed Central

    Hikosaka, Okihide

    2015-01-01

    The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders. PMID:25981958

  15. Within-step modulation of leg muscle activity by afferent feedback in human walking

    PubMed Central

    Klint, Richard af; Nielsen, Jens Bo; Cole, Jonathan; Sinkjaer, Thomas; Grey, Michael J

    2008-01-01

    To maintain smooth and efficient gait the motor system must adjust for changes in the ground on a step-to-step basis. In the present study we investigated the role of sensory feedback as 19 able-bodied human subjects walked over a platform that mimicked an uneven supporting surface. Triceps surae muscle activation was assessed during stance as the platform was set to different inclinations (±3 deg, ±2 deg and 0 deg rotation in a parasagittal plane about the ankle). Normalized triceps surae muscle activity was significantly increased when the platform was inclined (2 deg: 0.153 ± 0.051; 3 deg: 0.156 ± 0.053) and significantly decreased when the platform was declined (−3 deg: 0.133 ± 0.048; −2 deg: 0.132 ± 0.049) compared with level walking (0.141 ± 0.048) for the able-bodied subjects. A similar experiment was performed with a subject who lacked proprioception and touch sensation from the neck down. In contrast with healthy subjects, no muscle activation changes were observed in the deafferented subject. Our results demonstrate that the ability to compensate for small irregularities in the ground surface relies on automatic within-step sensory feedback regulation rather than conscious predictive control. PMID:18669536

  16. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  17. Exogean: a framework for annotating protein-coding genes in eukaryotic genomic DNA

    PubMed Central

    Djebali, Sarah; Delaplace, Franck; Crollius, Hugues Roest

    2006-01-01

    Background Accurate and automatic gene identification in eukaryotic genomic DNA is more than ever of crucial importance to efficiently exploit the large volume of assembled genome sequences available to the community. Automatic methods have always been considered less reliable than human expertise. This is illustrated in the EGASP project, where reference annotations against which all automatic methods are measured are generated by human annotators and experimentally verified. We hypothesized that replicating the accuracy of human annotators in an automatic method could be achieved by formalizing the rules and decisions that they use, in a mathematical formalism. Results We have developed Exogean, a flexible framework based on directed acyclic colored multigraphs (DACMs) that can represent biological objects (for example, mRNA, ESTs, protein alignments, exons) and relationships between them. Graphs are analyzed to process the information according to rules that replicate those used by human annotators. Simple individual starting objects given as input to Exogean are thus combined and synthesized into complex objects such as protein coding transcripts. Conclusion We show here, in the context of the EGASP project, that Exogean is currently the method that best reproduces protein coding gene annotations from human experts, in terms of identifying at least one exact coding sequence per gene. We discuss current limitations of the method and several avenues for improvement. PMID:16925841

  18. Potential roles of force cues in human stance control.

    PubMed

    Cnyrim, Christian; Mergner, Thomas; Maurer, Christoph

    2009-04-01

    Human stance is inherently unstable. A small deviation from upright body orientation is enough to yield a gravitational component in the ankle joint torque, which tends to accelerate the body further away from upright ('gravitational torque'; magnitude is related to body-space lean angle). Therefore, to maintain a given body lean position, a corresponding compensatory torque must be generated. It is well known that subjects use kinematic sensory information on body-space lean from the vestibular system for this purpose. Less is known about kinetic cues from force/torque receptors. Previous work indicated that they are involved in compensating external contact forces such as a pull or push having impact on the body. In this study, we hypothesized that they play, in addition, a role when the vestibular estimate of the gravitational torque becomes erroneous. Reasons may be sudden changes in body mass, for instance by a load, or an impairment of the vestibular system. To test this hypothesis, we mimicked load effects on the gravitational torque in normal subjects and in patients with chronic bilateral vestibular loss (VL) with eyes closed. We added/subtracted extra torque to the gravitational torque by applying an external contact force (via cable winches and a body harness). The extra torque was referenced to body-space lean, using different proportionality factors. We investigated how it affected body-space lean responses that we evoked using sinusoidal tilts of the support surface (motion platform) with different amplitudes and frequencies (normals +/-1 degrees, +/-2 degrees, and +/-4 degrees at 0.05, 0.1, 0.2, and 0.4 Hz; patients +/-1 degrees and +/-2 degrees at 0.05 and 0.1 Hz). We found that added/subtracted extra torque scales the lean response in a systematic way, leading to increase/decrease in lean excursion. Expressing the responses in terms of gain and phase curves, we compared the experimental findings to predictions obtained from a recently published sensory feedback model. For the trials in which the extra torque tended to endanger stance control, predictions in normals were better when the model included force cues than without these cues. This supports our notion that force cues provide an automatic 'gravitational load compensation' upon changes in body mass in normals. The findings in the patients support our notion that the presumed force cue mechanism provides furthermore vestibular loss compensation. Patients showed a body-space stabilization that cannot be explained by ankle angle proprioception, but must involve graviception, most likely by force cues. Our findings suggest that force cues contribute considerably to the redundancy and robustness of the human stance control system.

  19. Three-dimensional computer-assisted dissection of pancreatic lymphatic anatomy on human fetuses: a step toward automatic image alignment.

    PubMed

    Bardol, T; Subsol, G; Perez, M-J; Genevieve, D; Lamouroux, A; Antoine, B; Captier, G; Prudhomme, M; Bertrand, M M

    2018-05-01

    Pancreatic cancer is the fourth cause of death by cancer worldwide. Lymph node (LN) involvement is known to be the main prognostic factor. However, lymphatic anatomy is complex and only partially characterized. The aim of the study was to study the pancreatic lymphatic system using computer-assisted anatomic dissection (CAAD) technique and also to update CAAD technique by automatizing slice alignment. We dissected three human fetuses aged from 18 to 34 WA. 5-µm serial sections of duodeno-pancreas and spleen blocks were stained (hematoxylin-eosin, hematoxylin of Mayer and Masson trichrome), scanned, aligned and modeled in three dimensions. We observed a rich, diffuse but not systematized lymphatic network in the peri-pancreatic region. There was an equal distribution of LNs between the cephalic and body-tail portions. The lymphatic vascularization appeared in continuity from the celiac trunk to the distal ends of its hepatic and splenic arterial branches parallel to the nerve ramifications of the celiac plexus. We also observed a continuity between the drainage of the pancreatic head and the para-aortic region posteriorly. In view of the wealth of peri-pancreatic LNs, the number of LNs to harvest could be increased to improve nodal staging and prognostic evaluation. Pancreatic anatomy as described does not seem to be compatible with the sentinel LN procedure in pancreatic surgery. Finally, we are now able to offer an alternative to manual alignment with a semi-automated alignment.

  20. Application of computer vision to automatic prescription verification in pharmaceutical mail order

    NASA Astrophysics Data System (ADS)

    Alouani, Ali T.

    2005-05-01

    In large volume pharmaceutical mail order, before shipping out prescriptions, licensed pharmacists ensure that the drug in the bottle matches the information provided in the patient prescription. Typically, the pharmacist has about 2 sec to complete the prescription verification process of one prescription. Performing about 1800 prescription verification per hour is tedious and can generate human errors as a result of visual and brain fatigue. Available automatic drug verification systems are limited to a single pill at a time. This is not suitable for large volume pharmaceutical mail order, where a prescription can have as many as 60 pills and where thousands of prescriptions are filled every day. In an attempt to reduce human fatigue, cost, and limit human error, the automatic prescription verification system (APVS) was invented to meet the need of large scale pharmaceutical mail order. This paper deals with the design and implementation of the first prototype online automatic prescription verification machine to perform the same task currently done by a pharmacist. The emphasis here is on the visual aspects of the machine. The system has been successfully tested on 43,000 prescriptions.

  1. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    PubMed

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  2. Evolutionary game dynamics of controlled and automatic decision-making

    NASA Astrophysics Data System (ADS)

    Toupo, Danielle F. P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  3. Evolutionary game dynamics of controlled and automatic decision-making.

    PubMed

    Toupo, Danielle F P; Strogatz, Steven H; Cohen, Jonathan D; Rand, David G

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  4. Usefulness of model-based iterative reconstruction in semi-automatic volumetry for ground-glass nodules at ultra-low-dose CT: a phantom study.

    PubMed

    Maruyama, Shuki; Fukushima, Yasuhiro; Miyamae, Yuta; Koizumi, Koji

    2018-06-01

    This study aimed to investigate the effects of parameter presets of the forward projected model-based iterative reconstruction solution (FIRST) on the accuracy of pulmonary nodule volume measurement. A torso phantom with simulated nodules [diameter: 5, 8, 10, and 12 mm; computed tomography (CT) density: - 630 HU] was scanned with a multi-detector CT at tube currents of 10 mA (ultra-low-dose: UL-dose) and 270 mA (standard-dose: Std-dose). Images were reconstructed with filtered back projection [FBP; standard (Std-FBP), ultra-low-dose (UL-FBP)], FIRST Lung (UL-Lung), and FIRST Body (UL-Body), and analyzed with a semi-automatic software. The error in the volume measurement was determined. The errors with UL-Lung and UL-Body were smaller than that with UL-FBP. The smallest error was 5.8% ± 0.3 for the 12-mm nodule with UL-Body (middle lung). Our results indicated that FIRST Body would be superior to FIRST Lung in terms of accuracy of nodule measurement with UL-dose CT.

  5. [Experimental study of PVPP/silicone composite automatic expanded material as implants].

    PubMed

    Yin, Wei-min; Gao, Jian-hua; Yang, Qing-fang; Lu, Feng; Ye, Jia-jia

    2009-03-01

    To study the feasibility of Polyvinylpolypyrrolidone (PVPP)/silicone composite automatic expanded material as implants. The PVPP hydrogel was mixed with silicone through the location at the high temperature. Implants with different ratio of PVPP to silicone were placed under the back and nose skin in 24 New Zealand rabbits. The surrounding tissue reaction, material and skin expansion were observed and compared with those with pure silicone implants. The study lasted for 200 days. Compared with pure silicone implants, the composite material could expand automatically and stop expanding at about 2 weeks after implantation. Histological study showed similar inflectional and foreign body reaction around the composite material and the pure silicone. Compared with pure silicone, the PVPP/silicone composite implant has the advantage of automatic expansion, so as to expand the soft tissue.

  6. Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images

    NASA Astrophysics Data System (ADS)

    Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2016-03-01

    Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.

  7. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed. PMID:27415814

  8. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  9. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed.

  10. Mobile sailing robot for automatic estimation of fish density and monitoring water quality

    PubMed Central

    2013-01-01

    Introduction The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. Material and method The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Results Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Summary Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health. PMID:23815984

  11. Mobile sailing robot for automatic estimation of fish density and monitoring water quality.

    PubMed

    Koprowski, Robert; Wróbel, Zygmunt; Kleszcz, Agnieszka; Wilczyński, Sławomir; Woźnica, Andrzej; Łozowski, Bartosz; Pilarczyk, Maciej; Karczewski, Jerzy; Migula, Paweł

    2013-07-01

    The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.

  12. Fat or Fit: Is There a Correlation?

    DTIC Science & Technology

    1990-04-18

    Body Composition/Weight Control Program, 9 except for the exercise programs prescribed to assist soldiers with weight control problems. It is intended...more exercise will automatically result in decreased body fat. A soldier who exceeds body fat standards may be able to pass the Army Physical Fitness...have attitude problems toward physical exercise .(8) The results of AR 350-15 defining physical fitness as having the appropriate amounts of fat and

  13. Human factors process failure modes and effects analysis (HF PFMEA) software tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)

    2011-01-01

    Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.

  14. New auto-segment method of cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Weijiang; Shen, Tingzhi; Dang, Hua

    2007-12-01

    A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.

  15. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.

    PubMed

    Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin

    2017-04-01

    To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.

  16. Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study

    NASA Astrophysics Data System (ADS)

    Kamiya, Naoki; Ieda, Kosuke; Zhou, Xiangrong; Yamada, Megumi; Kato, Hiroki; Muramatsu, Chisako; Hara, Takeshi; Miyoshi, Toshiharu; Inuzuka, Takashi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    Amyotrophic lateral sclerosis (ALS) causes functional disorders such as difficulty in breathing and swallowing through the atrophy of voluntary muscles. ALS in its early stages is difficult to diagnose because of the difficulty in differentiating it from other muscular diseases. In addition, image inspection methods for aggressive diagnosis for ALS have not yet been established. The purpose of this study is to develop an automatic analysis system of the whole skeletal muscle to support the early differential diagnosis of ALS using whole-body CT images. In this study, the muscular atrophy parts including ALS patients are automatically identified by recognizing and segmenting whole skeletal muscle in the preliminary steps. First, the skeleton is identified by its gray value information. Second, the initial area of the body cavity is recognized by the deformation of the thoracic cavity based on the anatomical segmented skeleton. Third, the abdominal cavity boundary is recognized using ABM for precisely recognizing the body cavity. The body cavity is precisely recognized by non-rigid registration method based on the reference points of the abdominal cavity boundary. Fourth, the whole skeletal muscle is recognized by excluding the skeleton, the body cavity, and the subcutaneous fat. Additionally, the areas of muscular atrophy including ALS patients are automatically identified by comparison of the muscle mass. The experiments were carried out for ten cases with abnormality in the skeletal muscle. Global recognition and segmentation of the whole skeletal muscle were well realized in eight cases. Moreover, the areas of muscular atrophy including ALS patients were well identified in the lower limbs. As a result, this study indicated the basic technology to detect the muscle atrophy including ALS. In the future, it will be necessary to consider methods to differentiate other kinds of muscular atrophy as well as the clinical application of this detection method for early ALS detection and examine a large number of cases with stage and disease type.

  17. Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.

  18. The neuroscience of observing consciousness & mirror neurons in therapeutic hypnosis.

    PubMed

    Rossi, Ernest L; Rossi, Kathryn L

    2006-04-01

    Neuroscience documents the activity of "mirror neurons" in the human brain as a mechanism whereby we experience empathy and recognize the intentions of others by observing their behavior and automatically matching their brain activity. This neural basis of empathy finds support in research on dysfunctions in the mirror systems of humans with autism and fMRI research on normal subjects designed to assess intentionality, emotions, and complex cognition. Such empathy research now appears to be consistent with the historical and research literature on hypnotic induction, rapport, and many of the classical phenomena of suggestion. A preliminary outline of how mirror neurons may function as a rapport zone mediating between observing consciousness, the gene expression/protein synthesis cycle, and brain plasticity in therapeutic hypnosis and psychosomatic medicine is proposed. Brain plasticity is generalized in the theory, research, and practice of utilizing mirror neurons as an explanatory framework in developing and training new skill sets for facilitating an activity-dependent approach to creative problem solving, mind-body healing, and rehabilitation with therapeutic hypnosis.

  19. HOLA: Human-like Orthogonal Network Layout.

    PubMed

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  20. Automatic RBG-depth-pressure anthropometric analysis and individualised sleep solution prescription.

    PubMed

    Esquirol Caussa, Jordi; Palmero Cantariño, Cristina; Bayo Tallón, Vanessa; Cos Morera, Miquel Àngel; Escalera, Sergio; Sánchez, David; Sánchez Padilla, Maider; Serrano Domínguez, Noelia; Relats Vilageliu, Mireia

    2017-08-01

    Sleep surfaces must adapt to individual somatotypic features to maintain a comfortable, convenient and healthy sleep, preventing diseases and injuries. Individually determining the most adequate rest surface can often be a complex and subjective question. To design and validate an automatic multimodal somatotype determination model to automatically recommend an individually designed mattress-topper-pillow combination. Design and validation of an automated prescription model for an individualised sleep system is performed through a single-image 2 D-3 D analysis and body pressure distribution, to objectively determine optimal individual sleep surfaces combining five different mattress densities, three different toppers and three cervical pillows. A final study (n = 151) and re-analysis (n = 117) defined and validated the model, showing high correlations between calculated and real data (>85% in height and body circumferences, 89.9% in weight, 80.4% in body mass index and more than 70% in morphotype categorisation). Somatotype determination model can accurately prescribe an individualised sleep solution. This can be useful for healthy people and for health centres that need to adapt sleep surfaces to people with special needs. Next steps will increase model's accuracy and analise, if this prescribed individualised sleep solution can improve sleep quantity and quality; additionally, future studies will adapt the model to mattresses with technological improvements, tailor-made production and will define interfaces for people with special needs.

  1. Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson's disease.

    PubMed

    Bloem, B R; Beckley, D J; van Dijk, J G; Zwinderman, A H; Remler, M P; Roos, R A

    1996-09-01

    It is still unclear why balance impairment in Parkinson's disease (PD) often responds insufficiently to dopaminergic medication. We have studied this issue in 23 patients with idiopathic PD and 24 healthy controls. Our specific purposes were (a) to investigate the contribution of abnormal automatic postural responses to balance impairment in PD and (b) to assess the influence of dopaminergic medication on abnormal automatic postural responses and balance impairment. Standing subjects received 4 degrees "toe-up" rotational perturbations of a supporting forceplate. We bilaterally recorded posturally destabilizing medium latency (ML) responses from the stretched gastrocnemius muscles and functionally corrective long latency (LL) responses from the shortened tibialis anterior (TA) muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). All patients were tested in the "off" and "on" phases. All controls were tested and retested after 1 h. During the off phase, we found enlarged ML amplitudes and diminished LL amplitudes in patients, together with a markedly increased posterior displacement of the COG. The abnormal ML and LL responses were partially responsible for the increased body sway in patients because the initial forward (destabilizing) displacement of the CFP was increased, while the subsequent backward displacement of the CFP (a measure of the corrective braking action of LL responses) was delayed. Abnormal late automatic or possibly more voluntary postural corrections also contributed substantially to the increased body sway. During the on phase, ML amplitudes were reduced in patients but remained increased compared with controls. LL amplitudes no longer differed between both groups due to a modest, possibly dopamine-related increase in patients and a simultaneous decrease in controls. The abnormal CFP displacement was only partially improved by dopaminergic medication. The later postural corrections were not improved at all. Consequently, the increased posterior COG displacement was not ameliorated during the on phase. We conclude that (a) a combination of abnormal automatic and perhaps more voluntary postural corrections contributes to increased body sway in PD and (b) dopaminergic medication fails to improve balance impairment in PD because early automatic postural responses are only partially corrected, while later occurring postural corrections are not improved at all. These electrophysiological results support clinical observations and suggest that nondopaminergic lesions play a significant role in the pathophysiology of postural abnormalities in PD.

  2. Very Large Scale Integrated Circuits for Military Systems.

    DTIC Science & Technology

    1981-01-01

    ABBREVIATIONS A/D Analog-to-digital C AGC Automatic Gain Control A A/J Anti-jam ASP Advanced Signal Processor AU Arithmetic Units C.AD Computer-Aided...ESM) equipments (Ref. 23); in lieu of an adequate automatic proces- sing capability, the function is now performed manually (Ref. 24), which involves...a human operator, displays, etc., and a sacrifice in performance (acquisition speed, saturation signal density). Various automatic processing

  3. Denver RTD's computer aided dispatch/automatic vehicle location system : the human factors consequences

    DOT National Transportation Integrated Search

    1999-09-01

    This report documents what happened to employees' work procedures when their employer when their employer installed Computer Aided Disptach/Automatic Vehicle Locator (CAD/AVL) technology to provide real-time surveillance of vehicles and to upgrade ra...

  4. An Evaluation of Automatic Terminal Information Service (ATIS) Flight Deck Display Presentation Options

    DOT National Transportation Integrated Search

    1994-04-01

    This document describes the first of three studies relating to human factors : aspects in the flight desk display of Automatic Terminal Information Servies : (ATIS). This research is being conducted by the Federal Aviation Administration : (FAA) Tech...

  5. [Vojta's method as the early neurodevelopmental diagnosis and therapy concept].

    PubMed

    Banaszek, Grazyna

    2010-01-01

    Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.

  6. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.

    PubMed

    Jastorff, Jan; Orban, Guy A

    2009-06-03

    In a series of human functional magnetic resonance imaging experiments, we systematically manipulated point-light stimuli to identify the contributions of the various areas implicated in biological motion processing (for review, see Giese and Poggio, 2003). The first experiment consisted of a 2 x 2 factorial design with global shape and kinematics as factors. In two additional experiments, we investigated the contributions of local opponent motion, the complexity of the portrayed movement and a one-back task to the activation pattern. Experiment 1 revealed a clear separation between shape and motion processing, resulting in two branches of activation. A ventral region, extending from the lateral occipital sulcus to the posterior inferior temporal gyrus, showed a main effect of shape and its extension into the fusiform gyrus also an interaction. The dorsal region, including the posterior inferior temporal sulcus and the posterior superior temporal sulcus (pSTS), showed a main effect of kinematics together with an interaction. Region of interest analysis identified these interaction sites as the extrastriate and fusiform body areas (EBA and FBA). The local opponent motion cue yielded only little activation, limited to the ventral region (experiment 3). Our results suggest that the EBA and the FBA correspond to the initial stages in visual action analysis, in which the performed action is linked to the body of the actor. Moreover, experiment 2 indicates that the body areas are activated automatically even in the absence of a task, whereas other cortical areas like pSTS or frontal regions depend on the complexity of movements or task instructions for their activation.

  7. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  8. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  9. Development of a digital guidance and control law for steep approach automatic landings using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1979-01-01

    The development of a digital automatic control law for a small jet transport to perform a steep final approach in automatic landings is reported along with the development of a steady-state Kalman filter used to provide smooth estimates to the control law. The control law performs the functions of localizer and glides capture, localizer and glideslope track, decrab, and place. The control law uses the microwave landing system position data, and aircraft body-mounted accelerators, attitude and attitude rate information. The results obtained from a digital simulation of the aircraft dynamics, wind conditions, and sensor noises using the control law and filter developed are described.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov

    Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

  11. Automatic optometer operates with infrared test pattern

    NASA Technical Reports Server (NTRS)

    Cornsweet, T. N.; Crane, H. D.

    1970-01-01

    Refractive strength of human eye is monitored by optometer that automatically and continuously images infrared test pattern onto the retina. Condition of focus of the eye at any instant is determined from optometer settings needed to maintain focus of the pattern on the retina.

  12. Cognitive Factors in Hypnotic Susceptibility

    ERIC Educational Resources Information Center

    Palmer, Robert D.; Field, Peter B.

    1971-01-01

    This research explored the influence of cognitive variables on susceptibility to hypnosis. The three variables of concern in the present study are automatization, attention, and body experience. The results are summarized. (Author)

  13. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception

    PubMed Central

    Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S.

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master–slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor–transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  14. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  15. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.

    2016-02-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  16. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  17. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated good repeatability, with all standard deviations under 0.33. The algorithm is independent of the background and requires 10 cows for training with approximately 30 movies of 4 s each. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Automatic imitation in a strategic context: players of rock–paper–scissors imitate opponents' gestures†

    PubMed Central

    Cook, Richard; Bird, Geoffrey; Lünser, Gabriele; Huck, Steffen; Heyes, Cecilia

    2012-01-01

    A compelling body of evidence indicates that observing a task-irrelevant action makes the execution of that action more likely. However, it remains unclear whether this ‘automatic imitation’ effect is indeed automatic or whether the imitative action is voluntary. The present study tested the automaticity of automatic imitation by asking whether it occurs in a strategic context where it reduces payoffs. Participants were required to play rock–paper–scissors, with the aim of achieving as many wins as possible, while either one or both players were blindfolded. While the frequency of draws in the blind–blind condition was precisely that expected at chance, the frequency of draws in the blind–sighted condition was significantly elevated. Specifically, the execution of either a rock or scissors gesture by the blind player was predictive of an imitative response by the sighted player. That automatic imitation emerges in a context where imitation reduces payoffs accords with its ‘automatic’ description, and implies that these effects are more akin to involuntary than to voluntary actions. These data represent the first evidence of automatic imitation in a strategic context, and challenge the abstraction from physical aspects of social interaction typical in economic and game theory. PMID:21775334

  19. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.

    PubMed

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-06-24

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  20. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  1. [Realization of an adaptive method of simulating the process of temperature change of a cadaver on a microcomputer].

    PubMed

    Shved, E F; Novikov, P I; Vlasov, A Iu

    1989-01-01

    Programme based on mathematical model of the process of dead body temperature changing was developed for estimation of postmortem interval. Automatic retrieval of problem solution was performed on programmable microcalculators of "Electronica MK-61" type using adaptive approach. Diagnostical accuracy in case of dead body being preserved in permanent cooling conditions is +/- 3%.

  2. Studies in automatic speech recognition and its application in aerospace

    NASA Astrophysics Data System (ADS)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  3. Development of an Automatic Testing Platform for Aviator's Night Vision Goggle Honeycomb Defect Inspection.

    PubMed

    Jian, Bo-Lin; Peng, Chao-Chung

    2017-06-15

    Due to the direct influence of night vision equipment availability on the safety of night-time aerial reconnaissance, maintenance needs to be carried out regularly. Unfortunately, some defects are not easy to observe or are not even detectable by human eyes. As a consequence, this study proposed a novel automatic defect detection system for aviator's night vision imaging systems AN/AVS-6(V)1 and AN/AVS-6(V)2. An auto-focusing process consisting of a sharpness calculation and a gradient-based variable step search method is applied to achieve an automatic detection system for honeycomb defects. This work also developed a test platform for sharpness measurement. It demonstrates that the honeycomb defects can be precisely recognized and the number of the defects can also be determined automatically during the inspection. Most importantly, the proposed approach significantly reduces the time consumption, as well as human assessment error during the night vision goggle inspection procedures.

  4. Automatic processing of pragmatic information in the human brain: a mismatch negativity study.

    PubMed

    Zhao, Ming; Liu, Tao; Chen, Feiyan

    2018-05-23

    Language comprehension involves pragmatic information processing, which allows world knowledge to influence the interpretation of a sentence. This study explored whether pragmatic information can be automatically processed during spoken sentence comprehension. The experiment adopted the mismatch negativity (MMN) paradigm to capture the neurophysiological indicators of automatic processing of spoken sentences. Pragmatically incorrect ('Foxes have wings') and correct ('Butterflies have wings') sentences were used as the experimental stimuli. In condition 1, the pragmatically correct sentence was the deviant and the pragmatically incorrect sentence was the standard stimulus, whereas the opposite case was presented in condition 2. The experimental results showed that, compared with the condition that the pragmatically correct sentence is the deviant stimulus, when the condition that the pragmatically incorrect sentence is the deviant stimulus MMN effects were induced within 60-120 and 220-260 ms. The results indicated that the human brain can monitor for incorrect pragmatic information in the inattentive state and can automatically process pragmatic information at the beginning of spoken sentence comprehension.

  5. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    NASA Astrophysics Data System (ADS)

    Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine

    2009-12-01

    This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  6. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Yang, D

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less

  7. Oxytocin administration enhances controlled social cognition in patients with schizophrenia

    PubMed Central

    Woolley, J.D.; Chuang, B.; Lam, O.; Lai, W.; O’Donovan, A.; Rankin, K.P.; Mathalon, D.H.; Vinogradov, S.

    2014-01-01

    Summary Background Individuals with schizophrenia have functionally significant deficits in automatic and controlled social cognition, but no currently available pharmacologic treatments reduce these deficits. The neuropeptide oxytocin has multiple prosocial effects when administered intranasally in humans and there is growing interest in its therapeutic potential in schizophrenia. Methods We administered 40 IU of oxytocin and saline placebo intranasally to 29 male subjects with schizophrenia and 31 age-matched, healthy controls in a randomized, double-blind, placebo-controlled, cross-over study. Social cognition was assessed with The Awareness of Social Inference Test (TASIT) and the Reading the Mind in the Eyes Test (RMET). We examined the effects of oxytocin administration on automatic social cognition (the ability to rapidly interpret and understand emotional cues from the voice, face, and body); controlled social cognition (the ability to comprehend indirectly expressed emotions, thoughts, and intentions through complex deliberations over longer time periods); and a control task (the ability to comprehend truthful dialog and perform general task procedures) in individuals with and without schizophrenia using mixed factorial analysis of variance models. Results Patients with schizophrenia showed significant impairments in automatic and controlled social cognition compared to healthy controls, and administration of oxytocin significantly improved their controlled, but not automatic, social cognition, F(1, 58) = 8.75; p = 0.004. Conversely, oxytocin administration had limited effects on social cognition in healthy participants. Patients and controls performed equally well and there were no effects of oxytocin administration on the control task. Discussion Intact social cognitive abilities are associated with better functional outcomes in individuals with schizophrenia. Our data highlight the potentially complex effects of oxytocin on some but not all aspects of social cognition, and support the exploration of intranasal oxytocin as a potential adjunct treatment to improve controlled social cognition in schizophrenia. Published by Elsevier Ltd. PMID:25001961

  8. Automatic anatomy partitioning of the torso region on CT images by using multiple organ localizations with a group-wise calibration technique

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Morita, Syoichi; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2015-03-01

    This paper describes an automatic approach for anatomy partitioning on three-dimensional (3D) computedtomography (CT) images that divide the human torso into several volume-of-interesting (VOI) images based on anatomical definition. The proposed approach combines several individual detections of organ-location with a groupwise organ-location calibration and correction to achieve an automatic and robust multiple-organ localization task. The essence of the proposed method is to jointly detect the 3D minimum bounding box for each type of organ shown on CT images based on intra-organ-image-textures and inter-organ-spatial-relationship in the anatomy. Machine-learning-based template matching and generalized Hough transform-based point-distribution estimation are used in the detection and calibration processes. We apply this approach to the automatic partitioning of a torso region on CT images, which are divided into 35 VOIs presenting major organ regions and tissues required by routine diagnosis in clinical medicine. A database containing 4,300 patient cases of high-resolution 3D torso CT images is used for training and performance evaluations. We confirmed that the proposed method was successful in target organ localization on more than 95% of CT cases. Only two organs (gallbladder and pancreas) showed a lower success rate: 71 and 78% respectively. In addition, we applied this approach to another database that included 287 patient cases of whole-body CT images scanned for positron emission tomography (PET) studies and used for additional performance evaluation. The experimental results showed that no significant difference between the anatomy partitioning results from those two databases except regarding the spleen. All experimental results showed that the proposed approach was efficient and useful in accomplishing localization tasks for major organs and tissues on CT images scanned using different protocols.

  9. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  10. On the dependence of information display quality requirements upon human characteristics and pilot/automatics relations

    NASA Technical Reports Server (NTRS)

    Wilckens, V.

    1972-01-01

    Present information display concepts for pilot landing guidance are outlined considering manual control as well as substitution of man by fully competent automatics. Display improvements are achieved by compressing the distributed indicators into an accumulative display and thus reducing information scanning. Complete integration of quantitative indications, outer loop information, and real world display in a pictorial information channel geometry constitutes an interface with human ability to differentiate and integrate for optimal manual control of the aircraft.

  11. Predicting human activities in sequences of actions in RGB-D videos

    NASA Astrophysics Data System (ADS)

    Jardim, David; Nunes, Luís.; Dias, Miguel

    2017-03-01

    In our daily activities we perform prediction or anticipation when interacting with other humans or with objects. Prediction of human activity made by computers has several potential applications: surveillance systems, human computer interfaces, sports video analysis, human-robot-collaboration, games and health-care. We propose a system capable of recognizing and predicting human actions using supervised classifiers trained with automatically labeled data evaluated in our human activity RGB-D dataset (recorded with a Kinect sensor) and using only the position of the main skeleton joints to extract features. Using conditional random fields (CRFs) to model the sequential nature of actions in a sequence has been used before, but where other approaches try to predict an outcome or anticipate ahead in time (seconds), we try to predict what will be the next action of a subject. Our results show an activity prediction accuracy of 89.9% using an automatically labeled dataset.

  12. Evaluation of a commercial automatic treatment planning system for liver stereotactic body radiation therapy treatments.

    PubMed

    Gallio, Elena; Giglioli, Francesca Romana; Girardi, Andrea; Guarneri, Alessia; Ricardi, Umberto; Ropolo, Roberto; Ragona, Riccardo; Fiandra, Christian

    2018-02-01

    Automated treatment planning is a new frontier in radiotherapy. The Auto-Planning module of the Pinnacle 3 treatment planning system (TPS) was evaluated for liver stereotactic body radiation therapy treatments. Ten cases were included in the study. Six plans were generated for each case by four medical physics experts. The first two planned with Pinnacle TPS, both with manual module (MP) and Auto-Planning one (AP). The other two physicists generated two plans with Monaco TPS (VM). Treatment plan comparisons were then carried on the various dosimetric parameters of target and organs at risk, monitor units, number of segments, plan complexity metrics and human resource planning time. The user dependency of Auto-Planning was also tested and the plans were evaluated by a trained physician. Statistically significant differences (Anova test) were observed for spinal cord doses, plan average beam irregularity, number of segments, monitor units and human planning time. The Fisher-Hayter test applied to these parameters showed significant statistical differences between AP e MP for spinal cord doses and human planning time; between MP and VM for monitor units, number of segments and plan irregularity; for all those between AP and VM. The two plans created by different planners with AP were similar to each other. The plans created with Auto-Planning were comparable to the manually generated plans. The time saved in planning enables the planner to commit more resources to more complex cases. The independence of the planner enables to standardize plan quality. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Automatic food detection in egocentric images using artificial intelligence technology

    USDA-ARS?s Scientific Manuscript database

    Our objective was to develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable devic...

  14. [The development of the multifunctional automatic rotating bed with process-monitoring].

    PubMed

    Geng, Hongzhu; Hu, Monong; Cheng, Ping; Dong, Kejiang; Zhang, Jiaxia; Sun, Juefei

    2013-04-01

    We have developed a new rotating bed for the old and the paralised people. This rotating bed is composed of two bed heads at front and at end, bed boards, guardrails, an electric motor, a reducer, an induction locator and a set of electronic controls. With the preestablished program, the angle between the left/right bed board and the middle board is changed by rotating the left/right board around the rotation axis, and the gravity direction between the human body and the ground is changed by the rotation of the middle board as a whole, so that the middle bed board and the left and right ones will act respectively as supporters of weight of the person who is lying on his back or on his side. In this way, a person can turn over automatically, comfortably and naturally when he/she is asleep. This rotating bed meets the physiological needs of a sleeping person, and people with turning over problems can turn over in a comfortable and natural way by means of biotechnology. It can also improve the quality of sleep and help avoid decubitus. In addition, it can be used to promote the rehabilitation of those who are paralysed by reason of its passive exercising function.

  15. Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification

    NASA Astrophysics Data System (ADS)

    Charfi, Imen; Miteran, Johel; Dubois, Julien; Atri, Mohamed; Tourki, Rached

    2013-10-01

    We propose a supervised approach to detect falls in a home environment using an optimized descriptor adapted to real-time tasks. We introduce a realistic dataset of 222 videos, a new metric allowing evaluation of fall detection performance in a video stream, and an automatically optimized set of spatio-temporal descriptors which fed a supervised classifier. We build the initial spatio-temporal descriptor named STHF using several combinations of transformations of geometrical features (height and width of human body bounding box, the user's trajectory with her/his orientation, projection histograms, and moments of orders 0, 1, and 2). We study the combinations of usual transformations of the features (Fourier transform, wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using support vector machine and Adaboost classifiers. Automatic feature selection allows to show that the best tradeoff between classification performance and processing time is obtained by combining the original low-level features with their first derivative. Hence, we evaluate the robustness of the fall detection regarding location changes. We propose a realistic and pragmatic protocol that enables performance to be improved by updating the training in the current location with normal activities records.

  16. An Exoskeleton Robot for Human Forearm and Wrist Motion Assist

    NASA Astrophysics Data System (ADS)

    Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo

    The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.

  17. Micro-Doppler analysis of multiple frequency continuous wave radar signatures

    NASA Astrophysics Data System (ADS)

    Anderson, Michael G.; Rogers, Robert L.

    2007-04-01

    Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.

  18. Tomographic brain imaging with nucleolar detail and automatic cell counting

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  19. Automatic thoracic body region localization

    NASA Astrophysics Data System (ADS)

    Bai, PeiRui; Udupa, Jayaram K.; Tong, YuBing; Xie, ShiPeng; Torigian, Drew A.

    2017-03-01

    Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in automated image and object analytics is to automatically trim the given image stack into image volumes exactly satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the craniocaudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of slices (slice spacing ≍ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 (using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm (using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual landmarks and other object analytics applications are currently being pursued. and the skeleton and pleural spaces used as a reference objects

  20. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).

  1. Brief Report: Attentional Cueing to Images of Social Interactions is Automatic for Neurotypical Individuals But Not Those with ASC.

    PubMed

    Morrisey, Marcus Neil; Reed, Catherine L; McIntosh, Daniel N; Rutherford, M D

    2018-04-25

    Human actions induce attentional orienting toward the target of the action. We examined the influence of action cueing in social (man throwing toward a human) and non-social (man throwing toward a tree) contexts in observers with and without autism spectrum condition (ASC). Results suggested that a social interaction enhanced the cueing effect for neurotypical participants. Participants with ASC did not benefit from non-predictive cues and were slower in social contexts, although they benefitted from reliably predictive cues. Social orienting appears to be automatic in the context of an implied social interaction for neurotypical observers, but not those with ASC. Neurotypical participants' behavior may be driven by automatic processing, while participants with ASC use an alternative, effortful strategy.

  2. Automatic Term Class Construction Using Relevance--A Summary of Work in Automatic Pseudoclassification.

    ERIC Educational Resources Information Center

    Salton, G.

    1980-01-01

    Summarizes studies of pseudoclassification, a process of utilizing user relevance assessments of certain documents with respect to certain queries to build term classes designed to retrieve relevant documents. Conclusions are reached concerning the effectiveness and feasibility of constructing term classifications based on human relevance…

  3. Information Robots and Manipulators.

    ERIC Educational Resources Information Center

    Katys, G. P.; And Others

    In the modern concept a robot is a complex automatic cybernetics system capable of executing various operations in the sphere of human activity and in various respects combining the imitative capacity of the physical and mental activity of man. They are a class of automatic information systems intended for search, collection, processing, and…

  4. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  5. Automatic Certification of Kalman Filters for Reliable Code Generation

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd; Schumann, Johann; Richardson, Julian

    2005-01-01

    AUTOFILTER is a tool for automatically deriving Kalman filter code from high-level declarative specifications of state estimation problems. It can generate code with a range of algorithmic characteristics and for several target platforms. The tool has been designed with reliability of the generated code in mind and is able to automatically certify that the code it generates is free from various error classes. Since documentation is an important part of software assurance, AUTOFILTER can also automatically generate various human-readable documents, containing both design and safety related information. We discuss how these features address software assurance standards such as DO-178B.

  6. Design of automatic mobile trolley using ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Dodi Suryanto, Eka; Siagian, Hendrik; Perangin-Angin, Despaleri; Sashanti, Rahayu; Yogen, Suthes

    2018-04-01

    An automatic mobile trolley was a prototype of wheel robot that serves as a trolley or shopping cart. This paper proposed an automatic mobile trolley using ultrasonic sensors. It can follow human movement automatically. It did not need to be encouraged or withdrawn. It would make an easier shopping for people as customers. The trolley controlled by a microcontroller module unit. It can stop, turn right, turn left, forward and backward. It can follow wherever they go, during they were in range. Based on the test results, the trolley succeeded to move forward by 80%, move backward 80%, turn left, 70%, turn right 70%, and stop 80%.

  7. Impact of translation on named-entity recognition in radiology texts

    PubMed Central

    Pedro, Vasco

    2017-01-01

    Abstract Radiology reports describe the results of radiography procedures and have the potential of being a useful source of information which can bring benefits to health care systems around the world. One way to automatically extract information from the reports is by using Text Mining tools. The problem is that these tools are mostly developed for English and reports are usually written in the native language of the radiologist, which is not necessarily English. This creates an obstacle to the sharing of Radiology information between different communities. This work explores the solution of translating the reports to English before applying the Text Mining tools, probing the question of what translation approach should be used. We created MRRAD (Multilingual Radiology Research Articles Dataset), a parallel corpus of Portuguese research articles related to Radiology and a number of alternative translations (human, automatic and semi-automatic) to English. This is a novel corpus which can be used to move forward the research on this topic. Using MRRAD we studied which kind of automatic or semi-automatic translation approach is more effective on the Named-entity recognition task of finding RadLex terms in the English version of the articles. Considering the terms extracted from human translations as our gold standard, we calculated how similar to this standard were the terms extracted using other translations. We found that a completely automatic translation approach using Google leads to F-scores (between 0.861 and 0.868, depending on the extraction approach) similar to the ones obtained through a more expensive semi-automatic translation approach using Unbabel (between 0.862 and 0.870). To better understand the results we also performed a qualitative analysis of the type of errors found in the automatic and semi-automatic translations. Database URL: https://github.com/lasigeBioTM/MRRAD PMID:29220455

  8. Design of Automatic Intensity Varying Smart Street Lighting System

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Gupta, Shipra

    2017-08-01

    The paper is proposed with an aim of power conservation. In this era of development, it is essential to develop a streetlight that turns on and off automatically without human interference. To achieve this light sensor have been placed in each panel which turns the street light on and off automatically. For energy conservation cool-white LED’s have been used in street light panel and dimmer modules have been installed which changes the intensity of the streetlight depending on the darkness.

  9. Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma.

    PubMed

    Meier, Raphael; Porz, Nicole; Knecht, Urspeter; Loosli, Tina; Schucht, Philippe; Beck, Jürgen; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2017-10-01

    OBJECTIVE In the treatment of glioblastoma, residual tumor burden is the only prognostic factor that can be actively influenced by therapy. Therefore, an accurate, reproducible, and objective measurement of residual tumor burden is necessary. This study aimed to evaluate the use of a fully automatic segmentation method-brain tumor image analysis (BraTumIA)-for estimating the extent of resection (EOR) and residual tumor volume (RTV) of contrast-enhancing tumor after surgery. METHODS The imaging data of 19 patients who underwent primary resection of histologically confirmed supratentorial glioblastoma were retrospectively reviewed. Contrast-enhancing tumors apparent on structural preoperative and immediate postoperative MR imaging in this patient cohort were segmented by 4 different raters and the automatic segmentation BraTumIA software. The manual and automatic results were quantitatively compared. RESULTS First, the interrater variabilities in the estimates of EOR and RTV were assessed for all human raters. Interrater agreement in terms of the coefficient of concordance (W) was higher for RTV (W = 0.812; p < 0.001) than for EOR (W = 0.775; p < 0.001). Second, the volumetric estimates of BraTumIA for all 19 patients were compared with the estimates of the human raters, which showed that for both EOR (W = 0.713; p < 0.001) and RTV (W = 0.693; p < 0.001) the estimates of BraTumIA were generally located close to or between the estimates of the human raters. No statistically significant differences were detected between the manual and automatic estimates. BraTumIA showed a tendency to overestimate contrast-enhancing tumors, leading to moderate agreement with expert raters with respect to the literature-based, survival-relevant threshold values for EOR. CONCLUSIONS BraTumIA can generate volumetric estimates of EOR and RTV, in a fully automatic fashion, which are comparable to the estimates of human experts. However, automated analysis showed a tendency to overestimate the volume of a contrast-enhancing tumor, whereas manual analysis is prone to subjectivity, thereby causing considerable interrater variability.

  10. Automatic blood pressure measuring system (M091)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Leg Volume Measuring System is used to measure leg calf girth changes that occur during exposure to lower body negative pressure as a result of pooling of blood and other fluids in the lower extremities.

  11. Comparison of Body Weight Trend Algorithms for Prediction of Heart Failure Related Events in Home Care Setting.

    PubMed

    Eggerth, Alphons; Modre-Osprian, Robert; Hayn, Dieter; Kastner, Peter; Pölzl, Gerhard; Schreier, Günter

    2017-01-01

    Automatic event detection is used in telemedicine based heart failure disease management programs supporting physicians and nurses in monitoring of patients' health data. Analysis of the performance of automatic event detection algorithms for prediction of HF related hospitalisations or diuretic dose increases. Rule-Of-Thumb and Moving Average Convergence Divergence (MACD) algorithm were applied to body weight data from 106 heart failure patients of the HerzMobil-Tirol disease management program. The evaluation criteria were based on Youden index and ROC curves. Analysis of data from 1460 monitoring weeks with 54 events showed a maximum Youden index of 0.19 for MACD and RoT with a specificity > 0.90. Comparison of the two algorithms for real-world monitoring data showed similar results regarding total and limited AUC. An improvement of the sensitivity might be possible by including additional health data (e.g. vital signs and self-reported well-being) because body weight variations obviously are not the only cause of HF related hospitalisations or diuretic dose increases.

  12. Automatic Human Movement Assessment With Switching Linear Dynamic System: Motion Segmentation and Motor Performance.

    PubMed

    de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro

    2017-06-01

    Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).

  13. Excess of Radiation Burden for Young Testicular Cancer Patients using Automatic Exposure Control and Contrast Agent on Whole-body Computed Tomography Imaging.

    PubMed

    Niiniviita, Hannele; Kulmala, Jarmo; Pölönen, Tuukka; Määttänen, Heli; Järvinen, Hannu; Salminen, Eeva

    2017-06-01

    The aim of the study was to assess patient dose from whole-body computed tomography (CT) in association with patient size, automatic exposure control (AEC) and intravenous (IV) contrast agent. Sixty-five testicular cancer patients (mean age 28 years) underwent altogether 279 whole-body CT scans from April 2000 to April 2011. The mean number of repeated examinations was 4.3. The GE LightSpeed 16 equipped with AEC and the Siemens Plus 4 CT scanners were used for imaging. Whole-body scans were performed with (216) and without (63) IV contrast. The ImPACT software was used to determine the effective and organ doses. Patient doses were independent (p < 0.41) of patient size when the Plus 4 device (mean 7.4 mSv, SD 1.7 mSv) was used, but with the LightSpeed 16 AEC device, the dose (mean 14 mSv, SD 4.6 mSv) increased significantly (p < 0.001) with waist cirfumference. Imaging with the IV contrast agent caused significantly higher (13% Plus 4, 35% LightSpeed 16) exposure than non-contrast imaging (p < 0.001). Great caution on the use of IV contrast agent and careful set-up of the AEC modulation parameters is recommended to avoid excessive radiation exposure on the whole-body CT imaging of young patients.

  14. Automatic anatomy recognition on CT images with pathology

    NASA Astrophysics Data System (ADS)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  15. Nonrational processes in ethical decision making.

    PubMed

    Rogerson, Mark D; Gottlieb, Michael C; Handelsman, Mitchell M; Knapp, Samuel; Younggren, Jeffrey

    2011-10-01

    Most current ethical decision-making models provide a logical and reasoned process for making ethical judgments, but these models are empirically unproven and rely upon assumptions of rational, conscious, and quasilegal reasoning. Such models predominate despite the fact that many nonrational factors influence ethical thought and behavior, including context, perceptions, relationships, emotions, and heuristics. For example, a large body of behavioral research has demonstrated the importance of automatic intuitive and affective processes in decision making and judgment. These processes profoundly affect human behavior and lead to systematic biases and departures from normative theories of rationality. Their influence represents an important but largely unrecognized component of ethical decision making. We selectively review this work; provide various illustrations; and make recommendations for scientists, trainers, and practitioners to aid them in integrating the understanding of nonrational processes with ethical decision making.

  16. Attendance fingerprint identification system using arduino and single board computer

    NASA Astrophysics Data System (ADS)

    Muchtar, M. A.; Seniman; Arisandi, D.; Hasanah, S.

    2018-03-01

    Fingerprint is one of the most unique parts of the human body that distinguishes one person from others and is easily accessed. This uniqueness is supported by technology that can automatically identify or recognize a person called fingerprint sensor. Yet, the existing Fingerprint Sensor can only do fingerprint identification on one machine. For the mentioned reason, we need a method to be able to recognize each user in a different fingerprint sensor. The purpose of this research is to build fingerprint sensor system for fingerprint data management to be centralized so identification can be done in each Fingerprint Sensor. The result of this research shows that by using Arduino and Raspberry Pi, data processing can be centralized so that fingerprint identification can be done in each fingerprint sensor with 98.5 % success rate of centralized server recording.

  17. Design of a portable dose rate detector based on a double Geiger-Mueller counter

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Xiao-Bin; Gong, Pin; Huang, Xi; Wen, Liang-Sheng; Han, Zhen-Yang; He, Jian-Ping

    2018-01-01

    A portable dose rate detector was designed to monitor radioactive pollution and radioactive environments. The portable dose detector can measure background radiation levels (0.1 μSv/h) to nuclear accident radiation levels (>10 Sv/h). Both automatic switch technology of a double Geiger-Mueller counter and time-to-count technology were adopted to broaden the measurement range of the instrument. Global positioning systems and the 3G telecommunication protocol were installed to prevent radiation damage to the human body. In addition, the Monte Carlo N-Particle code was used to design the thin layer of metal for energy compensation, which was used to flatten energy response The portable dose rate detector has been calibrated by the standard radiation field method, and it can be used alone or in combination with additional radiation detectors.

  18. Evaluation of automatic image quality assessment in chest CT - A human cadaver study.

    PubMed

    Franck, Caro; De Crop, An; De Roo, Bieke; Smeets, Peter; Vergauwen, Merel; Dewaele, Tom; Van Borsel, Mathias; Achten, Eric; Van Hoof, Tom; Bacher, Klaus

    2017-04-01

    The evaluation of clinical image quality (IQ) is important to optimize CT protocols and to keep patient doses as low as reasonably achievable. Considering the significant amount of effort needed for human observer studies, automatic IQ tools are a promising alternative. The purpose of this study was to evaluate automatic IQ assessment in chest CT using Thiel embalmed cadavers. Chest CT's of Thiel embalmed cadavers were acquired at different exposures. Clinical IQ was determined by performing a visual grading analysis. Physical-technical IQ (noise, contrast-to-noise and contrast-detail) was assessed in a Catphan phantom. Soft and sharp reconstructions were made with filtered back projection and two strengths of iterative reconstruction. In addition to the classical IQ metrics, an automatic algorithm was used to calculate image quality scores (IQs). To be able to compare datasets reconstructed with different kernels, the IQs values were normalized. Good correlations were found between IQs and the measured physical-technical image quality: noise (ρ=-1.00), contrast-to-noise (ρ=1.00) and contrast-detail (ρ=0.96). The correlation coefficients between IQs and the observed clinical image quality of soft and sharp reconstructions were 0.88 and 0.93, respectively. The automatic scoring algorithm is a promising tool for the evaluation of thoracic CT scans in daily clinical practice. It allows monitoring of the image quality of a chest protocol over time, without human intervention. Different reconstruction kernels can be compared after normalization of the IQs. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    NASA Astrophysics Data System (ADS)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  20. Directional MAC approach for wireless body area networks.

    PubMed

    Hussain, Md Asdaque; Alam, Md Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol.

  1. Paleoneurology: neurodegenerative diseases are age-related diseases of specific brain regions recently developed by Homo sapiens.

    PubMed

    Ghika, J

    2008-11-01

    Bipedal locomotion and fine motility of hand and larynx of humans introduced musculoskeletal adaptations, new pyramidal, corticostriatal, corticobulbar, nigrostriatal, and cerebellar pathways and expansions of prefrontal, cingular, parieto-temporal and occipital cortices with derived new brain capabilities. All selectively degenerate in aged homo sapiens following 16 syndromic presentations: (1) Parkinsonism: nigrostriatal control for fast automatic movements of hand, larynx, bipedal posture and gait ("simian gait and hand"). (2) Frontal (highest level) gait disorders (lower body parkinsonism, gait apraxia, retropulsion): prefrontostriatal executive control of bipedal locomotion. (3) ataxia: new synergistic coordination of bipedal gait and fine motility. (4) Dyskinesias (chorea, dystonia, tremor...): intrusions of simian basal ganglia motor subroutines. (5) motoneuron diseases: new proximo-distal and bulbar motoneurones, preserving older ones (oculomotor, abdominal...). (6) Archaic reflexes: prefrontal disinhibition of old mother/tree-climbing-oriented reflexes (sucking, grasping, Babinski/triple retraction, gegenhalten), group alarms (laughter, crying, yawning, grunting...) or grooming (tremor=scratching). (7) Dysautonomia: contextual regulation (orthostatism...). (8) REM sleep disorders of new cortical functions. (9) Corticobasal syndrome: melokinetic control of hand prehension-manipulation and language (retrocession to simian patterns). (10) Frontal/temporal lobe degeneration: medial-orbitofrontal behavioural variant: self monitoring of internal needs and social context: apathy, loss of personal hygiene, stereotypia, disinhibition, loss of concern for consequences of acts, social rules, danger and empathy; dorsolateral executive variant: inadequacy to the context of action (goal, environmental changes...); progressive non-fluent aphasia: executive and praxic processing of speech; temporal variant: abstract concepts for speech, gestures and vision (semantic dementia, progressive nonfluent aphasia) (11) Temporomesial-limbic-paralimbic-associative cortical dementias (Alzheimer's disease, Lewy body, progressive amnesia): processing of explicit cognition: amnesic syndrome, processing of hand, larynx and eye: disorientation, ideomotor apraxia, agnosia, visuospatial processing, transcortical aphasia. (12) Focal posterior atrophy (Benson, progressive apraxia): visuomotor processing of what and where. (13) Macular degeneration: retinal "spot" for explicit symbols. (14) "Psychiatric syndromes": metacognition, self monitoring and regulation of hierarchical processing of metacognition: hallucinations, delusions, magic and mystic logic, delusions, confabulations; drive: impulsivity, obsessive-compulsive disorders, mental automatisms; social interactions: theory of mind, autism, Asperger. (15) Mood disorders: control on emotions: anxio-depressive and bipolar disorders, moria, emotional lability. (16) Musculoskeletal: inclusion body myositis: muscles for bipedal gait and fine motility. Paget's disease: bones for bipedal gait and cranium. Understanding of the genetic mechanisms underlying the evolution of these recent human brain regions and paleoneurology my be the key to the focal, asymmetrical or systemic character of neurodegeneration, the pathologic heterogeneity/overlap of syndromic presentations associating gait, hand, language, cognition, mood and behaviour disorders.

  2. Development and evaluation of an automatic labeling technique for spring small grains

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Malila, W. A. (Principal Investigator)

    1981-01-01

    A labeling technique is described which seeks to associate a sampling entity with a particular crop or crop group based on similarity of growing season and temporal-spectral patterns of development. Human analyst provide contextual information, after which labeling decisions are made automatically. Results of a test of the technique on a large, multi-year data set are reported. Grain labeling accuracies are similar to those achieved by human analysis techniques, while non-grain accuracies are lower. Recommendations for improvments and implications of the test results are discussed.

  3. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    PubMed

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  4. The Accuracy of GBM GRB Localizations

    NASA Astrophysics Data System (ADS)

    Briggs, Michael Stephen; Connaughton, V.; Meegan, C.; Hurley, K.

    2010-03-01

    We report an study of the accuracy of GBM GRB localizations, analyzing three types of localizations: those produced automatically by the GBM Flight Software on board GBM, those produced automatically with ground software in near real time, and localizations produced with human guidance. The two types of automatic locations are distributed in near real-time via GCN Notices; the human-guided locations are distributed on timescale of many minutes or hours using GCN Circulars. This work uses a Bayesian analysis that models the distribution of the GBM total location error by comparing GBM locations to more accurate locations obtained with other instruments. Reference locations are obtained from Swift, Super-AGILE, the LAT, and with the IPN. We model the GBM total location errors as having systematic errors in addition to the statistical errors and use the Bayesian analysis to constrain the systematic errors.

  5. Automatic Boosted Flood Mapping from Satellite Data

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence

    2016-01-01

    Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.

  6. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    PubMed Central

    Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960

  7. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    PubMed

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  8. The Role of Intuition and Deliberative Thinking in Experts' Superior Tactical Decision-Making

    ERIC Educational Resources Information Center

    Moxley, Jerad H.; Ericsson, K. Anders; Charness, Neil; Krampe, Ralf T.

    2012-01-01

    Current theories argue that human decision making is largely based on quick, automatic, and intuitive processes that are occasionally supplemented by slow controlled deliberation. Researchers, therefore, predominantly studied the heuristics of the automatic system in everyday decision making. Our study examines the role of slow deliberation for…

  9. Syntax as a Reflex: Neurophysiological Evidence for Early Automaticity of Grammatical Processing

    ERIC Educational Resources Information Center

    Pulvermuller, Friedemann; Shtyrov, Yury; Hasting, Anna S.; Carlyon, Robert P.

    2008-01-01

    It has been a matter of debate whether the specifically human capacity to process syntactic information draws on attentional resources or is automatic. To address this issue, we recorded neurophysiological indicators of syntactic processing to spoken sentences while subjects were distracted to different degrees from language processing. Subjects…

  10. Exploration of Web Users' Search Interests through Automatic Subject Categorization of Query Terms.

    ERIC Educational Resources Information Center

    Pu, Hsiao-tieh; Yang, Chyan; Chuang, Shui-Lung

    2001-01-01

    Proposes a mechanism that carefully integrates human and machine efforts to explore Web users' search interests. The approach consists of a four-step process: extraction of core terms; construction of subject taxonomy; automatic subject categorization of query terms; and observation of users' search interests. Research findings are proved valuable…

  11. Alleviating Search Uncertainty through Concept Associations: Automatic Indexing, Co-Occurrence Analysis, and Parallel Computing.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Martinez, Joanne; Kirchhoff, Amy; Ng, Tobun D.; Schatz, Bruce R.

    1998-01-01

    Grounded on object filtering, automatic indexing, and co-occurrence analysis, an experiment was performed using a parallel supercomputer to analyze over 400,000 abstracts in an INSPEC computer engineering collection. A user evaluation revealed that system-generated thesauri were better than the human-generated INSPEC subject thesaurus in concept…

  12. Dynamic simulation of train derailments

    DOT National Transportation Integrated Search

    2006-11-05

    This paper describes a planar rigid-body model to examine the gross motions of rail cars in a train derailment. The model is implemented using a commercial software package called ADAMS (Automatic Dynamic Analysis of Mechanical Systems). The results ...

  13. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    PubMed Central

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-01-01

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware. PMID:28208736

  14. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    PubMed

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  15. Funnel traps capture a higher proportion of juvenile Great Tits Parus major than automatic traps

    USGS Publications Warehouse

    Senar, J.C.; Domenech, J.; Conroy, M.J.

    1999-01-01

    We compared capture rates of Great Tits at funnel traps, where several birds can be captured at once so that some decoy effect may appear, to those obtained at automatic traps, where only one bird can be trapped at a time, at trapping stations in northeastern Spain. Juvenile birds were mainly captured at funnel traps (79% of juvenile captures), whereas adult plumaged birds were captured at both types of traps (51% of captures were at the funnel traps) (test between ages, P<0.001). Juvenile Great Tits had lower body condition as measured by ptilochronology (P<0.01). These birds are more easily trapped in funnel traps, which may be acting as decoy traps, and thus are vulnerable to the same kinds of biases (eg age or body condition) that have been previously documented for decoy traps.

  16. Towards the neurobiology of emotional body language.

    PubMed

    de Gelder, Beatrice

    2006-03-01

    People's faces show fear in many different circumstances. However, when people are terrified, as well as showing emotion, they run for cover. When we see a bodily expression of emotion, we immediately know what specific action is associated with a particular emotion, leaving little need for interpretation of the signal, as is the case for facial expressions. Research on emotional body language is rapidly emerging as a new field in cognitive and affective neuroscience. This article reviews how whole-body signals are automatically perceived and understood, and their role in emotional communication and decision-making.

  17. Automatic anatomy recognition in whole-body PET/CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huiqian; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity ofmore » anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process, to bring performance to the level achieved on diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT and other derived images, thus truly separating the modality-independent object assembly anatomy from modality-specific tissue property portrayal in the image. Results: Key ways of combining the above three basic ideas lead them to 15 different strategies for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors compare the recognition performance among these 15 strategies on 18 objects from the thorax, abdomen, and pelvis in object localization error and size estimation error. Particularly on texture membership images, object localization is within three voxels on whole-body low-dose CT images and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on direct body-region-wise PET images, localization error within 3 voxels seems possible. Conclusions: The previous body-region-wise approach can be extended to whole-body torso with similar object localization performance. Combined use of image texture and intensity property yields the best object localization accuracy. In both body-region-wise and whole-body approaches, recognition performance on low-dose CT images reaches levels previously achieved on diagnostic CT images. The best object recognition strategy varies among objects; the proposed framework however allows employing a strategy that is optimal for each object.« less

  18. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    PubMed Central

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species. PMID:26089780

  19. Intrinsic group behaviour: Dependence of pedestrian dyad dynamics on principal social and personal features

    PubMed Central

    Yücel, Zeynep; Brščić, Dražen; Kanda, Takayuki; Hagita, Norihiro

    2017-01-01

    Being determined by human social behaviour, pedestrian group dynamics may depend on “intrinsic properties” such as the purpose of the pedestrians, their personal relation, gender, age, and body size. In this work we investigate the dynamical properties of pedestrian dyads (distance, spatial formation and velocity) by analysing a large data set of automatically tracked pedestrian trajectories in an unconstrained “ecological” setting (a shopping mall), whose apparent physical and social group properties have been analysed by three different human coders. We observed that females walk slower and closer than males, that workers walk faster, at a larger distance and more abreast than leisure oriented people, and that inter-group relation has a strong effect on group structure, with couples walking very close and abreast, colleagues walking at a larger distance, and friends walking more abreast than family members. Pedestrian height (obtained automatically through our tracking system) influences velocity and abreast distance, both growing functions of the average group height. Results regarding pedestrian age show that elderly people walk slowly, while active age adults walk at the maximum velocity. Groups with children have a strong tendency to walk in a non-abreast formation, with a large distance (despite a low abreast distance). A cross-analysis of the interplay between these intrinsic features, taking in account also the effect of an “extrinsic property” such as crowd density, confirms these major results but reveals also a richer structure. An interesting and unexpected result, for example, is that the velocity of groups with children increases with density, at least in the low-medium density range found under normal conditions in shopping malls. Children also appear to behave differently according to the gender of the parent. PMID:29095913

  20. Intrinsic group behaviour: Dependence of pedestrian dyad dynamics on principal social and personal features.

    PubMed

    Zanlungo, Francesco; Yücel, Zeynep; Brščić, Dražen; Kanda, Takayuki; Hagita, Norihiro

    2017-01-01

    Being determined by human social behaviour, pedestrian group dynamics may depend on "intrinsic properties" such as the purpose of the pedestrians, their personal relation, gender, age, and body size. In this work we investigate the dynamical properties of pedestrian dyads (distance, spatial formation and velocity) by analysing a large data set of automatically tracked pedestrian trajectories in an unconstrained "ecological" setting (a shopping mall), whose apparent physical and social group properties have been analysed by three different human coders. We observed that females walk slower and closer than males, that workers walk faster, at a larger distance and more abreast than leisure oriented people, and that inter-group relation has a strong effect on group structure, with couples walking very close and abreast, colleagues walking at a larger distance, and friends walking more abreast than family members. Pedestrian height (obtained automatically through our tracking system) influences velocity and abreast distance, both growing functions of the average group height. Results regarding pedestrian age show that elderly people walk slowly, while active age adults walk at the maximum velocity. Groups with children have a strong tendency to walk in a non-abreast formation, with a large distance (despite a low abreast distance). A cross-analysis of the interplay between these intrinsic features, taking in account also the effect of an "extrinsic property" such as crowd density, confirms these major results but reveals also a richer structure. An interesting and unexpected result, for example, is that the velocity of groups with children increases with density, at least in the low-medium density range found under normal conditions in shopping malls. Children also appear to behave differently according to the gender of the parent.

  1. Automatic blood pressure measuring system (M092)

    NASA Technical Reports Server (NTRS)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  2. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.

    PubMed

    Geraghty, John P; Grogan, Garry; Ebert, Martin A

    2013-04-30

    This study investigates the variation in segmentation of several pelvic anatomical structures on computed tomography (CT) between multiple observers and a commercial automatic segmentation method, in the context of quality assurance and evaluation during a multicentre clinical trial. CT scans of two prostate cancer patients ('benchmarking cases'), one high risk (HR) and one intermediate risk (IR), were sent to multiple radiotherapy centres for segmentation of prostate, rectum and bladder structures according to the TROG 03.04 "RADAR" trial protocol definitions. The same structures were automatically segmented using iPlan software for the same two patients, allowing structures defined by automatic segmentation to be quantitatively compared with those defined by multiple observers. A sample of twenty trial patient datasets were also used to automatically generate anatomical structures for quantitative comparison with structures defined by individual observers for the same datasets. There was considerable agreement amongst all observers and automatic segmentation of the benchmarking cases for bladder (mean spatial variations < 0.4 cm across the majority of image slices). Although there was some variation in interpretation of the superior-inferior (cranio-caudal) extent of rectum, human-observer contours were typically within a mean 0.6 cm of automatically-defined contours. Prostate structures were more consistent for the HR case than the IR case with all human observers segmenting a prostate with considerably more volume (mean +113.3%) than that automatically segmented. Similar results were seen across the twenty sample datasets, with disagreement between iPlan and observers dominant at the prostatic apex and superior part of the rectum, which is consistent with observations made during quality assurance reviews during the trial. This study has demonstrated quantitative analysis for comparison of multi-observer segmentation studies. For automatic segmentation algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered.

  3. Automatic assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.

    1996-12-01

    Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.

  4. Segmentation of vessels: the corkscrew algorithm

    NASA Astrophysics Data System (ADS)

    Wesarg, Stefan; Firle, Evelyn A.

    2004-05-01

    Medical imaging is nowadays much more than only providing data for diagnosis. It also links 'classical' diagnosis to modern forms of treatment such as image guided surgery. Those systems require the identification of organs, anatomical regions of the human body etc., i. e. the segmentation of structures from medical data sets. The algorithms used for these segmentation tasks strongly depend on the object to be segmented. One structure which plays an important role in surgery planning are vessels that are found everywhere in the human body. Several approaches for their extraction already exist. However, there is no general one which is suitable for all types of data or all sorts of vascular structures. This work presents a new algorithm for the segmentation of vessels. It can be classified as a skeleton-based approach working on 3D data sets, and has been designed for a reliable segmentation of coronary arteries. The algorithm is a semi-automatic extraction technique requiring the definition of the start and end the point of the (centerline) path to be found. A first estimation of the vessel's centerline is calculated and then corrected iteratively by detecting the vessel's border perpendicular to the centerline. We used contrast enhanced CT data sets of the thorax for testing our approach. Coronary arteries have been extracted from the data sets using the 'corkscrew algorithm' presented in this work. The segmentation turned out to be robust even if moderate breathing artifacts were present in the data sets.

  5. Biomechanics-based active control of bedding support properties and its influence on sleep.

    PubMed

    Van Deun, D; Verhaert, V; Willemen, T; Wuyts, J; Verbraecken, J; Exadaktylos, V; Haex, B; Vander Sloten, J

    2012-01-01

    Proper body support plays an import role in the recuperation of our body during sleep. Therefore, this study uses an automatically adapting bedding system that optimises spinal alignment throughout the night by altering the stiffness of eight comfort zones. The aim is to investigate the influence of such a dynamic sleep environment on objective and subjective sleep parameters. The bedding system contains 165 sensors that measure mattress indentation. It also includes eight actuators that control the comfort zones. Based on the measured mattress indentation, body movements and posture changes are detected. Control of spinal alignment is established by fitting personalized human models in the measured indentation. A total of 11 normal sleepers participated in this study. Sleep experiments were performed in a sleep laboratory where subjects slept three nights: a first night for adaptation, a reference night and an active support night (in counterbalanced order). Polysomnographic measurements were recorded during the nights, combined with questionnaires aiming at assessing subjective information. Subjective information on sleep quality, daytime quality and perceived number of awakenings shows significant improvements during the active support (ACS) night. Objective results showed a trend towards increased slow wave sleep. On the other hand, it was noticed that % N1-sleep was significantly increased during ACS night, while % N2-sleep was significantly decreased. No prolonged N1 periods were found during or immediately after steering.

  6. Sexual Modes Questionnaire (SMQ): Translation and Psychometric Properties of the Italian Version of the Automatic Thought Scale.

    PubMed

    Nimbi, Filippo Maria; Tripodi, Francesca; Simonelli, Chiara; Nobre, Pedro

    2018-03-01

    The Sexual Modes Questionnaire (SMQ) is a validated and widespread used tool to assess the association among negative automatic thoughts, emotions, and sexual response during sexual activity in men and women. To test the psychometric characteristics of the Italian version of the SMQ focusing on the Automatic Thoughts subscale (SMQ-AT). After linguistic translation, the psychometric properties (internal consistency, construct, and discriminant validity) were evaluated. 1,051 participants (425 men and 626 women, 776 healthy and 275 clinical groups complaining about sexual problems) participated in the present study. 2 confirmatory factor analyses were conducted to test the fit of the original factor structures of the SMQ versions. In addition, 2 principal component analyses were performed to highlight 2 new factorial structures that were further validated with confirmatory factor analyses. Cronbach α and composite reliability were used as internal consistency measures and differences between clinical and control groups were run to test the discriminant validity for the male and female versions. The associations with emotions and sexual functioning measures also are reported. Principal component analyses identified 5 factors in the male version: erection concerns thoughts, lack of erotic thoughts, age- and body-related thoughts, negative thoughts toward sex, and worries about partner's evaluation and failure anticipation thoughts. In the female version 6 factors were found: sexual abuse thoughts, lack of erotic thoughts, low self-body image thoughts, failure and disengagement thoughts, sexual passivity and control, and partner's lack of affection. Confirmatory factor analysis supported the adequacy of the factor structure for men and women. Moreover, the SMQ showed a strong association with emotional response and sexual functioning, differentiating between clinical and control groups. This measure is useful to evaluate patients and design interventions focused on negative automatic thoughts during sexual activity and to develop multicultural research. This study reports on the translation and validation of the Italian version of a clinically useful and widely used measure (assessing automatic thoughts during sexual activity). Limits regarding sampling technique and use of the Automatic Thoughts subscale are discussed in the article. The present findings support the validity and the internal consistency of the Italian version of the SMQ-AT and allow the assessment of negative automatic thoughts during sexual activity for clinical and research purposes. Nimbi FM, Tripodi F, Simonelli C, Nobre P. Sexual Modes Questionnaire (SMQ): Translation and Psychometric Properties of the Italian Version of the Automatic Thought Scale. J Sex Med 2018;15:396-409. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  7. Terminal area automatic navigation, guidance and control research using the Microwave Landing System (MLS). Part 5: Design and development of a Digital Integrated Automatic Landing System (DIALS) for steep final approach using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1983-01-01

    The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.

  8. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume I. Model Development.

    ERIC Educational Resources Information Center

    Connelly, Edward A.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…

  9. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume II. Appendices. Final Report.

    ERIC Educational Resources Information Center

    Connelly, E. M.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is described. Ultimately, this approach will allow automatic measurement of pilot performance in a flight simulator or from recorded in-flight data. An efficient method of representing performance data within a computer is…

  10. When the Social Mirror Breaks: Deficits in Automatic, but Not Voluntary, Mimicry of Emotional Facial Expressions in Autism

    ERIC Educational Resources Information Center

    McIntosh, Daniel N.; Reichmann-Decker, Aimee; Winkielman, Piotr; Wilbarger, Julia L.

    2006-01-01

    Humans, infants and adults alike, automatically mimic a variety of behaviors. Such mimicry facilitates social functioning, including establishment of interpersonal rapport and understanding of other minds. This fundamental social process may thus be impaired in disorders such as autism characterized by socio-emotional and communicative deficits.…

  11. Children's and Adults' Automatic Processing of Proportion in a Stroop-Like Task

    ERIC Educational Resources Information Center

    Yang, Ying; Hu, Qingfen; Wu, Di; Yang, Shuqi

    2015-01-01

    This current study examined human children's and adults' automatic processing of proportion using a Stroop-like paradigm. Preschool children and university students compared the areas of two sectors that varied not only in absolute areas but also in the proportions they occupied in their original rounds. A congruity effect was found in both age…

  12. THE APPLICATION OF ENGLISH-WORD MORPHOLOGY TO AUTOMATIC INDEXING AND EXTRACTING. ANNUAL SUMMARY REPORT.

    ERIC Educational Resources Information Center

    DOLBY, J.L.; AND OTHERS

    THE STUDY IS CONCERNED WITH THE LINGUISTIC PROBLEM INVOLVED IN TEXT COMPRESSION--EXTRACTING, INDEXING, AND THE AUTOMATIC CREATION OF SPECIAL-PURPOSE CITATION DICTIONARIES. IN SPITE OF EARLY SUCCESS IN USING LARGE-SCALE COMPUTERS TO AUTOMATE CERTAIN HUMAN TASKS, THESE PROBLEMS REMAIN AMONG THE MOST DIFFICULT TO SOLVE. ESSENTIALLY, THE PROBLEM IS TO…

  13. Feasibility Study on Fully Automatic High Quality Translation: Volume I. Final Technical Report.

    ERIC Educational Resources Information Center

    Lehmann, Winifred P.; Stachowitz, Rolf

    The object of this theoretical inquiry is to examine the controversial issue of a fully automatic high quality translation (FAHQT) in the light of past and projected advances in linguistic theory and hardware/software capability. This first volume of a two-volume report discusses the requirements of translation and aspects of human and machine…

  14. Automatic analysis of medical dialogue in the home hemodialysis domain: structure induction and summarization.

    PubMed

    Lacson, Ronilda C; Barzilay, Regina; Long, William J

    2006-10-01

    Spoken medical dialogue is a valuable source of information for patients and caregivers. This work presents a first step towards automatic analysis and summarization of spoken medical dialogue. We first abstract a dialogue into a sequence of semantic categories using linguistic and contextual features integrated in a supervised machine-learning framework. Our model has a classification accuracy of 73%, compared to 33% achieved by a majority baseline (p<0.01). We then describe and implement a summarizer that utilizes this automatically induced structure. Our evaluation results indicate that automatically generated summaries exhibit high resemblance to summaries written by humans. In addition, task-based evaluation shows that physicians can reasonably answer questions related to patient care by looking at the automatically generated summaries alone, in contrast to the physicians' performance when they were given summaries from a naïve summarizer (p<0.05). This work demonstrates the feasibility of automatically structuring and summarizing spoken medical dialogue.

  15. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  16. Using automatic generation of Labanotation to protect folk dance

    NASA Astrophysics Data System (ADS)

    Wang, Jiaji; Miao, Zhenjiang; Guo, Hao; Zhou, Ziming; Wu, Hao

    2017-01-01

    Labanotation uses symbols to describe human motion and is an effective means of protecting folk dance. We use motion capture data to automatically generate Labanotation. First, we convert the motion capture data of the biovision hierarchy file into three-dimensional coordinate data. Second, we divide human motion into element movements. Finally, we analyze each movement and find the corresponding notation. Our work has been supervised by an expert in Labanotation to ensure the correctness of the results. At present, the work deals with a subset of symbols in Labanotation that correspond to several basic movements. Labanotation contains many symbols and several new symbols may be introduced for improvement in the future. We will refine our work to handle more symbols. The automatic generation of Labanotation can greatly improve the work efficiency of documenting movements. Thus, our work will significantly contribute to the protection of folk dance and other action arts.

  17. Refining Automatically Extracted Knowledge Bases Using Crowdsourcing.

    PubMed

    Li, Chunhua; Zhao, Pengpeng; Sheng, Victor S; Xian, Xuefeng; Wu, Jian; Cui, Zhiming

    2017-01-01

    Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far from perfect. In this paper, we leverage crowdsourcing to improve the quality of automatically extracted knowledge bases. As human labelling is costly, an important research challenge is how we can use limited human resources to maximize the quality improvement for a knowledge base. To address this problem, we first introduce a concept of semantic constraints that can be used to detect potential errors and do inference among candidate facts. Then, based on semantic constraints, we propose rank-based and graph-based algorithms for crowdsourced knowledge refining, which judiciously select the most beneficial candidate facts to conduct crowdsourcing and prune unnecessary questions. Our experiments show that our method improves the quality of knowledge bases significantly and outperforms state-of-the-art automatic methods under a reasonable crowdsourcing cost.

  18. New horizons for orthotic and prosthetic technology: artificial muscle for ambulation

    NASA Astrophysics Data System (ADS)

    Herr, Hugh M.; Kornbluh, Roy D.

    2004-07-01

    The rehabilitation community is at the threshold of a new age in which orthotic and prosthetic devices will no longer be separate, lifeless mechanisms, but intimate extensions of the human body-structurally, neurologically, and dynamically. In this paper we discuss scientific and technological advances that promise to accelerate the merging of body and machine, including the development of actuator technologies that behave like muscle and control methodologies that exploit principles of biological movement. We present a state-of-the-art device for leg rehabilitation: a powered ankle-foot orthosis for stroke, cerebral palsy, or multiple sclerosis patients. The device employs a forcecontrollable actuator and a biomimetic control scheme that automatically modulates ankle impedance and motive torque to satisfy patient-specific gait requirements. Although the device has some clinical benefits, problems still remain. The force-controllable actuator comprises an electric motor and a mechanical transmission, resulting in a heavy, bulky, and noisy mechanism. As a resolution of this difficulty, we argue that electroactive polymer-based artificial muscle technologies may offer considerable advantages to the physically challenged, allowing for joint impedance and motive force controllability, noise-free operation, and anthropomorphic device morphologies.

  19. Development of Vision Based Multiview Gait Recognition System with MMUGait Database

    PubMed Central

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee

    2014-01-01

    This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases. PMID:25143972

  20. Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study.

    PubMed

    Montagnani, Federico; Controzzi, Marco; Cipriani, Christian

    2015-01-01

    Although significant technological advances have been made in the last forty years, natural and effortless control of upper limb prostheses is still an open issue. Commercially available myoelectric prostheses present limited Degrees of Freedom (DoF) mainly because of the lack of available and reliable independent control signals from the human body. Thus, despite the crucial role that an actuated wrist could play in a transradial prosthesis in terms of avoiding compensatory movements, commercial hand prostheses present only manually adjustable passive wrists or actuated rotators controlled by (unnatural) sequential control strategies. In the present study we investigated the synergies between the humeral orientation with respect to the trunk and the forearm pronation/supination angles during the execution of a wide range of activities of daily living, in healthy subjects. Our results showed consistent postural synergies between the two selected body segments for almost the totality of the activities of daily living under investigation. This is a promising result because these postural synergies could be exploited to automatically control the wrist rotator unit in transradial prostheses improving the fluency and the dexterity of the amputee.

  1. Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan

    Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.

  2. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    NASA Astrophysics Data System (ADS)

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  3. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.

    PubMed

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-22

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  4. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    PubMed Central

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-01-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047

  5. 32 CFR 2001.26 - Automatic declassification exemption markings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... international organization, or a non-human intelligence source; or impair the effectiveness of an intelligence...

  6. Exploiting the systematic review protocol for classification of medical abstracts.

    PubMed

    Frunza, Oana; Inkpen, Diana; Matwin, Stan; Klement, William; O'Blenis, Peter

    2011-01-01

    To determine whether the automatic classification of documents can be useful in systematic reviews on medical topics, and specifically if the performance of the automatic classification can be enhanced by using the particular protocol of questions employed by the human reviewers to create multiple classifiers. The test collection is the data used in large-scale systematic review on the topic of the dissemination strategy of health care services for elderly people. From a group of 47,274 abstracts marked by human reviewers to be included in or excluded from further screening, we randomly selected 20,000 as a training set, with the remaining 27,274 becoming a separate test set. As a machine learning algorithm we used complement naïve Bayes. We tested both a global classification method, where a single classifier is trained on instances of abstracts and their classification (i.e., included or excluded), and a novel per-question classification method that trains multiple classifiers for each abstract, exploiting the specific protocol (questions) of the systematic review. For the per-question method we tested four ways of combining the results of the classifiers trained for the individual questions. As evaluation measures, we calculated precision and recall for several settings of the two methods. It is most important not to exclude any relevant documents (i.e., to attain high recall for the class of interest) but also desirable to exclude most of the non-relevant documents (i.e., to attain high precision on the class of interest) in order to reduce human workload. For the global method, the highest recall was 67.8% and the highest precision was 37.9%. For the per-question method, the highest recall was 99.2%, and the highest precision was 63%. The human-machine workflow proposed in this paper achieved a recall value of 99.6%, and a precision value of 17.8%. The per-question method that combines classifiers following the specific protocol of the review leads to better results than the global method in terms of recall. Because neither method is efficient enough to classify abstracts reliably by itself, the technology should be applied in a semi-automatic way, with a human expert still involved. When the workflow includes one human expert and the trained automatic classifier, recall improves to an acceptable level, showing that automatic classification techniques can reduce the human workload in the process of building a systematic review. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Miniature sonar fish tag

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1975-01-01

    Self-powered sonar device may be implanted in body of fish. It transmits signal that can be detected with portable tracking gear or by automatic detection-and-tracking system. Operating life of over 4000 hours may be expected. Device itself may be used almost indefinitely.

  8. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.

  9. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  10. Three experiments to support the design of lightweight comfortable vehicle seats.

    PubMed

    Vink, P; Franz, M; Kamp, I; Zenk, R

    2012-01-01

    Seats need to be more lightweight for airplanes, cars, busses and even trains to contribute to a better environment and to reduce energy consumption. However, a reduction in comfort due to weight reduction is not preferable, which opens a new area of research: improving comfort with a minimum of material or with lightweight materials and systems. In this paper three experiments are performed to test the effects of light weight seats and parts of a seat on comfort. The first experiment shows that a new developed light weight massage system improves comfort and reduces muscle activity. The second experiment shows that the automatic seat adjustment without motors improves the comfort as well. The third experiment showed that a light weight seat following closely the human body contour is experienced on many aspects in the same way as current more heavy seats. More research and models will be needed in this ergonomic field which needs more attention.

  11. Calcification detection of abdominal aorta in CT images and 3D visualization in VR devices.

    PubMed

    Garcia-Berna, Jose A; Sanchez-Gomez, Juan M; Hermanns, Judith; Garcia-Mateos, Gines; Fernandez-Aleman, Jose L

    2016-08-01

    Automatic calcification detection in abdominal aorta consists of a set of computer vision techniques to quantify the amount of calcium that is found around this artery. Knowing that information, it is possible to perform statistical studies that relate vascular diseases with the presence of calcium in these structures. To facilitate the detection in CT images, a contrast is usually injected into the circulatory system of the patients to distinguish the aorta from other body tissues and organs. This contrast increases the absorption of X-rays by human blood, making it easier the measurement of calcifications. Based on this idea, a new system capable of detecting and tracking the aorta artery has been developed with an estimation of the calcium found surrounding the aorta. Besides, the system is complemented with a 3D visualization mode of the image set which is designed for the new generation of immersive VR devices.

  12. Automatic specular reflections removal for endoscopic images

    NASA Astrophysics Data System (ADS)

    Tan, Ke; Wang, Bin; Gao, Yuan

    2017-07-01

    Endoscopy imaging is utilized to provide a realistic view about the surfaces of organs inside the human body. Owing to the damp internal environment, these surfaces usually have a glossy appearance showing specular reflections. For many computer vision algorithms, the highlights created by specular reflections may become a significant source of error. In this paper, we present a novel method for restoration of the specular reflection regions from a single image. Specular restoration process starts with generating a substitute specular-free image with RPCA method. Then the specular removed image was obtained by taking the binary weighting template of highlight regions as the weighting for merging the original specular image and the substitute image. The modified template was furthermore discussed for the concealment of artificial effects in the edge of specular regions. Experimental results on the removal of the endoscopic image with specular reflections demonstrate the efficiency of the proposed method comparing to the existing methods.

  13. Tissue artifact removal from respiratory signals based on empirical mode decomposition.

    PubMed

    Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John; Freedson, Patty

    2013-05-01

    On-line measurement of respiration plays an important role in monitoring human physical activities. Such measurement commonly employs sensing belts secured around the rib cage and abdomen of the test object. Affected by the movement of body tissues, respiratory signals typically have a low signal-to-noise ratio. Removing tissue artifacts therefore is critical to ensuring effective respiration analysis. This paper presents a signal decomposition technique for tissue artifact removal from respiratory signals, based on the empirical mode decomposition (EMD). An algorithm based on the mutual information and power criteria was devised to automatically select appropriate intrinsic mode functions for tissue artifact removal and respiratory signal reconstruction. Performance of the EMD-algorithm was evaluated through simulations and real-life experiments (N = 105). Comparison with low-pass filtering that has been conventionally applied confirmed the effectiveness of the technique in tissue artifacts removal.

  14. Human primary motor cortex is both activated and stabilized during observation of other person's phasic motor actions.

    PubMed

    Hari, Riitta; Bourguignon, Mathieu; Piitulainen, Harri; Smeds, Eero; De Tiège, Xavier; Jousmäki, Veikko

    2014-01-01

    When your favourite athlete flops over the high-jump bar, you may twist your body in front of the TV screen. Such automatic motor facilitation, 'mirroring' or even overt imitation is not always appropriate. Here, we show, by monitoring motor-cortex brain rhythms with magnetoencephalography (MEG) in healthy adults, that viewing intermittent hand actions of another person, in addition to activation, phasically stabilizes the viewer's primary motor cortex, with the maximum of half a second after the onset of the seen movement. Such a stabilization was evident as enhanced cortex-muscle coherence at 16-20 Hz, despite signs of almost simultaneous suppression of rolandic rhythms of approximately 7 and 15 Hz as a sign of activation of the sensorimotor cortex. These findings suggest that inhibition suppresses motor output during viewing another person's actions, thereby withholding unintentional imitation.

  15. Flow diagram analysis of electrical fatalities in construction industry.

    PubMed

    Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad

    2012-01-01

    The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.

  16. Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.

    2017-05-01

    Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.

  17. Electric Commerce

    DTIC Science & Technology

    1989-10-01

    risk management, such as the coordination of letters of credit, shipping, payments, delivery, and insurance. All of these necessary steps require...vendor to conduct business with a human customer 6, at a dumb terminal7. In contrast, we want to computerize both. ATMs (Automatic Teller Machines) and...entered the store. Distributers with physical showrooms will always cater to the impulse buyer. Many supermarket items could be automatically procured 20

  18. Assessing Children's Home Language Environments Using Automatic Speech Recognition Technology

    ERIC Educational Resources Information Center

    Greenwood, Charles R.; Thiemann-Bourque, Kathy; Walker, Dale; Buzhardt, Jay; Gilkerson, Jill

    2011-01-01

    The purpose of this research was to replicate and extend some of the findings of Hart and Risley using automatic speech processing instead of human transcription of language samples. The long-term goal of this work is to make the current approach to speech processing possible by researchers and clinicians working on a daily basis with families and…

  19. Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.

    DTIC Science & Technology

    1984-06-01

    other automatic machinery such as presses, molding machines , and numerically-controlled machine tools, just as people do. A-36...Robotics Technologies 3 B. Relevant AI Technologies 4 1. Expert Systems 4 2. Automatic Planning 4 3. Natural Language 5 4. Machine Vision...building machines that imitate human behavior. Artificial intelligence is concerned with the functions of the brain, whereas robotics include, in

  20. Collaborative human-machine analysis to disambiguate entities in unstructured text and structured datasets

    NASA Astrophysics Data System (ADS)

    Davenport, Jack H.

    2016-05-01

    Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.

  1. [Survival Strategies of Aspergillus in the Human Body].

    PubMed

    Tashiro, Masato; Izumikawa, Koichi

    2017-01-01

     The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.

  2. Three-dimensional body scanning system for apparel mass-customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Huang, Yaxiong; Yu, Weiping; Chen, Tong

    2002-07-01

    Mass customization is a new manufacturing trend in which mass-market products (e.g., apparel) are quickly modified one at a time based on customers' needs. It is an effective competing strategy for maximizing customers' satisfaction and minimizing inventory costs. An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body scanning system, body size extraction methods, and body modeling algorithms. The scanning system utilizes the multiline triangulation technique to rapidly acquire surface data on a body, and provides accurate body measurements, many of which are not available with conventional methods. Cubic B-spline curves are used to connect and smooth body curves. From the scanned data, a body form can be constructed using linear Coons surfaces. The body form can be used as a digital model of the body for 3-D garment design and for virtual try-on of a designed garment. This scanning system and its application software enable apparel manufacturers to provide custom design services to consumers seeking personal-fit garments.

  3. Getting in shape: Reconstructing three-dimensional long-track speed skating kinematics by comparing several body pose reconstruction techniques.

    PubMed

    van der Kruk, E; Schwab, A L; van der Helm, F C T; Veeger, H E J

    2018-03-01

    In gait studies body pose reconstruction (BPR) techniques have been widely explored, but no previous protocols have been developed for speed skating, while the peculiarities of the skating posture and technique do not automatically allow for the transfer of the results of those explorations to kinematic skating data. The aim of this paper is to determine the best procedure for body pose reconstruction and inverse dynamics of speed skating, and to what extend this choice influences the estimation of joint power. The results show that an eight body segment model together with a global optimization method with revolute joint in the knee and in the lumbosacral joint, while keeping the other joints spherical, would be the most realistic model to use for the inverse kinematics in speed skating. To determine joint power, this method should be combined with a least-square error method for the inverse dynamics. Reporting on the BPR technique and the inverse dynamic method is crucial to enable comparison between studies. Our data showed an underestimation of up to 74% in mean joint power when no optimization procedure was applied for BPR and an underestimation of up to 31% in mean joint power when a bottom-up inverse dynamics method was chosen instead of a least square error approach. Although these results are aimed at speed skating, reporting on the BPR procedure and the inverse dynamics method, together with setting a golden standard should be common practice in all human movement research to allow comparison between studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software.

    PubMed

    Alziar, I; Bonniaud, G; Couanet, D; Ruaud, J B; Vicente, C; Giordana, G; Ben-Harrath, O; Diaz, J C; Grandjean, P; Kafrouni, H; Chavaudra, J; Lefkopoulos, D; de Vathaire, F; Diallo, I

    2009-09-07

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies.

  5. NOTE: Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software

    NASA Astrophysics Data System (ADS)

    Alziar, I.; Bonniaud, G.; Couanet, D.; Ruaud, J. B.; Vicente, C.; Giordana, G.; Ben-Harrath, O.; Diaz, J. C.; Grandjean, P.; Kafrouni, H.; Chavaudra, J.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2009-09-01

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies.

  6. Automatic bio-sample bacteria detection system

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Colburn, M.; Kelbaugh, B. N.; Picciolo, G. L.

    1971-01-01

    Electromechanical device analyzes urine specimens in 15 minutes and processes one sample per minute. Instrument utilizes bioluminescent reaction between luciferase-luciferin mixture and adenosine triphosphate (ATP) to determine number of bacteria present in the sample. Device has potential application to analysis of other body fluids.

  7. Production Engineering Program to Develop Improved Mass-Production Process for M42/M46 Grenade Bodies

    DTIC Science & Technology

    1978-03-01

    J16 Photograph 3 Knurling Tool Installed in Machine . . ....... 16 Photograph 4 Shrapnel Pattern Being Knurled Into M42 Grenade Cylinder...body Fenn mill embossing rolls. Roehlen was awarded a cuxiu**L am’i labricated a knurling tool for use in the modified Tesker thread-rolling machine ...automatic grinding machine . IKratz-Wilde was not successful in developing tooling to produce domes to the inertia-welded assembly design. (See Figure

  8. [Cartesian misunderstanding as a cause of therapeutic failure].

    PubMed

    Isler, H

    1986-01-01

    Headache patients disassociate themselves from their own automatic responses, relying on the traditional separation of body and mind. On the other hand, patients who obtain voluntary control of automatic functions by biofeedback training modify not only vegetative but also voluntary behaviour patterns, losing "neurotic" traits. The basic misconception of the separation of body and mind, Cartesian dualism, is now ingrained in our culture. In the 17th century Descartes asserted that concepts applied to the soul must be entirely different from those used for the body in order to improve comprehension of the immortality of the soul. This dualism also led to "enlightenment" and to many later social and philosophical developments. But his basic neurophysiology was obsolete when he wrote it down. Other models from mainstream natural philosophy were better compatible with observation and experiments. Gassendi assumed a "body soul" consisting of energy as the functional principle of the nervous system, and Willis accommodated a series of anticipations of 19th century discoveries within this model. No comparable progress resulted from Descartes' own medieval model. Cartesian dualism has become untenable in view of recent neuropsychology but it still obstructs our management of functional patients. Instead of reinforcing the delusion of separation of psyche and soma, we ought to encourage patients to understand that their malfunctioning organs are on-line with their emotions, and with their mind.

  9. Functional Neuroanatomy for Posture and Gait Control

    PubMed Central

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432

  10. Automatic 3D segmentation of multiphoton images: a key step for the quantification of human skin.

    PubMed

    Decencière, Etienne; Tancrède-Bohin, Emmanuelle; Dokládal, Petr; Koudoro, Serge; Pena, Ana-Maria; Baldeweck, Thérèse

    2013-05-01

    Multiphoton microscopy has emerged in the past decade as a useful noninvasive imaging technique for in vivo human skin characterization. However, it has not been used until now in evaluation clinical trials, mainly because of the lack of specific image processing tools that would allow the investigator to extract pertinent quantitative three-dimensional (3D) information from the different skin components. We propose a 3D automatic segmentation method of multiphoton images which is a key step for epidermis and dermis quantification. This method, based on the morphological watershed and graph cuts algorithms, takes into account the real shape of the skin surface and of the dermal-epidermal junction, and allows separating in 3D the epidermis and the superficial dermis. The automatic segmentation method and the associated quantitative measurements have been developed and validated on a clinical database designed for aging characterization. The segmentation achieves its goals for epidermis-dermis separation and allows quantitative measurements inside the different skin compartments with sufficient relevance. This study shows that multiphoton microscopy associated with specific image processing tools provides access to new quantitative measurements on the various skin components. The proposed 3D automatic segmentation method will contribute to build a powerful tool for characterizing human skin condition. To our knowledge, this is the first 3D approach to the segmentation and quantification of these original images. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  11. Controlled versus automatic processes: which is dominant to safety? The moderating effect of inhibitory control.

    PubMed

    Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan

    2014-01-01

    This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end.

  12. Controlled versus Automatic Processes: Which Is Dominant to Safety? The Moderating Effect of Inhibitory Control

    PubMed Central

    Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan

    2014-01-01

    This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end. PMID:24520338

  13. GAFFE: a gaze-attentive fixation finding engine.

    PubMed

    Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K

    2008-04-01

    The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.

  14. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  15. A new machine classification method applied to human peripheral blood leukocytes

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.; Fitzpatrick, Steven J.; Vitthal, Sanjay; Ladoulis, Charles T.

    1994-01-01

    Human beings judge images by complex mental processes, whereas computing machines extract features. By reducing scaled human judgments and machine extracted features to a common metric space and fitting them by regression, the judgments of human experts rendered on a sample of images may be imposed on an image population to provide automatic classification.

  16. Smart-card-based automatic meal record system intervention tool for analysis using data mining approach.

    PubMed

    Zenitani, Satoko; Nishiuchi, Hiromu; Kiuchi, Takahiro

    2010-04-01

    The Smart-card-based Automatic Meal Record system for company cafeterias (AutoMealRecord system) was recently developed and used to monitor employee eating habits. The system could be a unique nutrition assessment tool for automatically monitoring the meal purchases of all employees, although it only focuses on company cafeterias and has never been validated. Before starting an interventional study, we tested the reliability of the data collected by the system using the data mining approach. The AutoMealRecord data were examined to determine if it could predict current obesity. All data used in this study (n = 899) were collected by a major electric company based in Tokyo, which has been operating the AutoMealRecord system for several years. We analyzed dietary patterns by principal component analysis using data from the system and extracted 5 major dietary patterns: healthy, traditional Japanese, Chinese, Japanese noodles, and pasta. The ability to predict current body mass index (BMI) with dietary preference was assessed with multiple linear regression analyses, and in the current study, BMI was positively correlated with male gender, preference for "Japanese noodles," mean energy intake, protein content, and frequency of body measurement at a body measurement booth in the cafeteria. There was a negative correlation with age, dietary fiber, and lunchtime cafeteria use (R(2) = 0.22). This regression model predicted "would-be obese" participants (BMI >or= 23) with 68.8% accuracy by leave-one-out cross validation. This shows that there was sufficient predictability of BMI based on data from the AutoMealRecord System. We conclude that the AutoMealRecord system is valuable for further consideration as a health care intervention tool. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Group Dynamics in Automatic Imitation

    PubMed Central

    Wilson, Neil; Reddy, Geetha; Catmur, Caroline

    2016-01-01

    Imitation–matching the configural body movements of another individual–plays a crucial part in social interaction. We investigated whether automatic imitation is not only influenced by who we imitate (ingroup vs. outgroup member) but also by the nature of an expected interaction situation (competitive vs. cooperative). In line with assumptions from Social Identity Theory), we predicted that both social group membership and the expected situation impact on the level of automatic imitation. We adopted a 2 (group membership target: ingroup, outgroup) x 2 (situation: cooperative, competitive) design. The dependent variable was the degree to which participants imitated the target in a reaction time automatic imitation task. 99 female students from two British Universities participated. We found a significant two-way interaction on the imitation effect. When interacting in expectation of cooperation, imitation was stronger for an ingroup target compared to an outgroup target. However, this was not the case in the competitive condition where imitation did not differ between ingroup and outgroup target. This demonstrates that the goal structure of an expected interaction will determine the extent to which intergroup relations influence imitation, supporting a social identity approach. PMID:27657926

  18. Group Dynamics in Automatic Imitation.

    PubMed

    Gleibs, Ilka H; Wilson, Neil; Reddy, Geetha; Catmur, Caroline

    Imitation-matching the configural body movements of another individual-plays a crucial part in social interaction. We investigated whether automatic imitation is not only influenced by who we imitate (ingroup vs. outgroup member) but also by the nature of an expected interaction situation (competitive vs. cooperative). In line with assumptions from Social Identity Theory), we predicted that both social group membership and the expected situation impact on the level of automatic imitation. We adopted a 2 (group membership target: ingroup, outgroup) x 2 (situation: cooperative, competitive) design. The dependent variable was the degree to which participants imitated the target in a reaction time automatic imitation task. 99 female students from two British Universities participated. We found a significant two-way interaction on the imitation effect. When interacting in expectation of cooperation, imitation was stronger for an ingroup target compared to an outgroup target. However, this was not the case in the competitive condition where imitation did not differ between ingroup and outgroup target. This demonstrates that the goal structure of an expected interaction will determine the extent to which intergroup relations influence imitation, supporting a social identity approach.

  19. Human image tracking technique applied to remote collaborative environments

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Suzuki, Gen

    1993-10-01

    To support various kinds of collaborations over long distances by using visual telecommunication, it is necessary to transmit visual information related to the participants and topical materials. When people collaborate in the same workspace, they use visual cues such as facial expressions and eye movement. The realization of coexistence in a collaborative workspace requires the support of these visual cues. Therefore, it is important that the facial images be large enough to be useful. During collaborations, especially dynamic collaborative activities such as equipment operation or lectures, the participants often move within the workspace. When the people move frequently or over a wide area, the necessity for automatic human tracking increases. Using the movement area of the human being or the resolution of the extracted area, we have developed a memory tracking method and a camera tracking method for automatic human tracking. Experimental results using a real-time tracking system show that the extracted area fairly moves according to the movement of the human head.

  20. Control Automation in Undersea Search and Manipulation

    NASA Technical Reports Server (NTRS)

    Weltman, Gershon; Freedy, Amos

    1974-01-01

    Automatic decision making and control mechanisms of the type termed "adaptive" or "intelligent" offer unique advantages for exploration and manipulation of the undersea environment, particularly at great depths. Because they are able to carry out human-like functions autonomously, such mechanisms can aid and extend the capabilities of the human operator. This paper reviews past and present work in the areas of adaptive control and robotics with the purpose of establishing logical guidelines for the application of automatic techniques underwater. Experimental research data are used to illustrate the importance of information feedback, personnel training, and methods of control allocation in the interaction between operator and intelligent machine.

  1. A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.

    2014-08-01

    Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.

  2. Image acquisition device of inspection robot based on adaptive rotation regulation of polarizer

    NASA Astrophysics Data System (ADS)

    Dong, Maoqi; Wang, Xingguang; Liang, Tao; Yang, Guoqing; Zhang, Chuangyou; Gao, Faqin

    2017-12-01

    An image processing device of inspection robot with adaptive polarization adjustment is proposed, that the device includes the inspection robot body, the image collecting mechanism, the polarizer and the polarizer automatic actuating device. Where, the image acquisition mechanism is arranged at the front of the inspection robot body for collecting equipment image data in the substation. Polarizer is fixed on the automatic actuating device of polarizer, and installed in front of the image acquisition mechanism, and that the optical axis of the camera vertically goes through the polarizer and the polarizer rotates with the optical axis of the visible camera as the central axis. The simulation results show that the system solves the fuzzy problems of the equipment that are caused by glare, reflection of light and shadow, and the robot can observe details of the running status of electrical equipment. And the full coverage of the substation equipment inspection robot observation target is achieved, which ensures the safe operation of the substation equipment.

  3. Automatic Segmentation of the Cortical Grey and White Matter in MRI Using a Region-Growing Approach Based on Anatomical Knowledge

    NASA Astrophysics Data System (ADS)

    Wasserthal, Christian; Engel, Karin; Rink, Karsten; Brechmann, Andr'e.

    We propose an automatic procedure for the correct segmentation of grey and white matter in MR data sets of the human brain. Our method exploits general anatomical knowledge for the initial segmentation and for the subsequent refinement of the estimation of the cortical grey matter. Our results are comparable to manual segmentations.

  4. Automatic Barometric Updates from Ground-Based Navigational Aids

    DTIC Science & Technology

    1990-03-12

    ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John

  5. Understanding and shifting drug-related decisions: Contributions of automatic decision-making processes

    PubMed Central

    Carpenter, Kenneth M.; Bedi, Gillinder; Vadhan, Nehal P.

    2015-01-01

    While substance use is common, only a minority of individuals who use drugs or alcohol develop problematic use. An understanding of the factors underlying the transition from substance use to misuse may improve prevention and intervention efforts. A key feature of substance misuse is ongoing decisions to use drugs or alcohol despite escalating negative consequences. Research findings highlight the importance of both relatively automatic, associative cognitive processes and relatively controlled, deliberative, and rational-analytic cognitive processes, for understanding situational decisions to use drugs. In this review, we discuss several cognitive component processes that may contribute to decision-making that promotes substance use and misuse, with a focus on more automatic processes. A growing body of evidence indicates that relative differences in the strength of these component processes can account for individual differences in the transition from substance use to misuse, and may offer important avenues for developing novel intervention strategies. PMID:26084667

  6. Automatic detection and severity measurement of eczema using image processing.

    PubMed

    Alam, Md Nafiul; Munia, Tamanna Tabassum Khan; Tavakolian, Kouhyar; Vasefi, Fartash; MacKinnon, Nick; Fazel-Rezai, Reza

    2016-08-01

    Chronic skin diseases like eczema may lead to severe health and financial consequences for patients if not detected and controlled early. Early measurement of disease severity, combined with a recommendation for skin protection and use of appropriate medication can prevent the disease from worsening. Current diagnosis can be costly and time-consuming. In this paper, an automatic eczema detection and severity measurement model are presented using modern image processing and computer algorithm. The system can successfully detect regions of eczema and classify the identified region as mild or severe based on image color and texture feature. Then the model automatically measures skin parameters used in the most common assessment tool called "Eczema Area and Severity Index (EASI)," by computing eczema affected area score, eczema intensity score, and body region score of eczema allowing both patients and physicians to accurately assess the affected skin.

  7. Understanding and shifting drug-related decisions: contributions of automatic decision-making processes.

    PubMed

    Carpenter, Kenneth M; Bedi, Gillinder; Vadhan, Nehal P

    2015-08-01

    While substance use is common, only a minority of individuals who use drugs or alcohol develop problematic use. An understanding of the factors underlying the transition from substance use to misuse may improve prevention and intervention efforts. A key feature of substance misuse is ongoing decisions to use drugs or alcohol despite escalating negative consequences. Research findings highlight the importance of both relatively automatic, associative cognitive processes and relatively controlled, deliberative, and rational-analytic cognitive processes, for understanding situational decisions to use drugs. In this review, we discuss several cognitive component processes that may contribute to decision-making that promotes substance use and misuse, with a focus on more automatic processes. A growing body of evidence indicates that relative differences in the strength of these component processes can account for individual differences in the transition from substance use to misuse and may offer important avenues for developing novel intervention strategies.

  8. Automatic limb identification and sleeping parameters assessment for pressure ulcer prevention.

    PubMed

    Baran Pouyan, Maziyar; Birjandtalab, Javad; Nourani, Mehrdad; Matthew Pompeo, M D

    2016-08-01

    Pressure ulcers (PUs) are common among vulnerable patients such as elderly, bedridden and diabetic. PUs are very painful for patients and costly for hospitals and nursing homes. Assessment of sleeping parameters on at-risk limbs is critical for ulcer prevention. An effective assessment depends on automatic identification and tracking of at-risk limbs. An accurate limb identification can be used to analyze the pressure distribution and assess risk for each limb. In this paper, we propose a graph-based clustering approach to extract the body limbs from the pressure data collected by a commercial pressure map system. A robust signature-based technique is employed to automatically label each limb. Finally, an assessment technique is applied to evaluate the experienced stress by each limb over time. The experimental results indicate high performance and more than 94% average accuracy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method

    PubMed Central

    Veta, Mitko; van Diest, Paul J.; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P. W.

    2016-01-01

    Background Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. Methods The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an “external” dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. Results The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial agreement with human experts. PMID:27529701

  10. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method.

    PubMed

    Veta, Mitko; van Diest, Paul J; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P W

    2016-01-01

    Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an "external" dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial agreement with human experts.

  11. A Test of Multisession Automatic Action Tendency Retraining to Reduce Alcohol Consumption Among Young Adults in the Context of a Human Laboratory Paradigm.

    PubMed

    Leeman, Robert F; Nogueira, Christine; Wiers, Reinout W; Cousijn, Janna; Serafini, Kelly; DeMartini, Kelly S; Bargh, John A; O'Malley, Stephanie S

    2018-04-01

    Young adult heavy drinking is an important public health concern. Current interventions have efficacy but with only modest effects, and thus, novel interventions are needed. In prior studies, heavy drinkers, including young adults, have demonstrated stronger automatically triggered approach tendencies to alcohol-related stimuli than lighter drinkers. Automatic action tendency retraining has been developed to correct this tendency and consequently reduce alcohol consumption. This study is the first to test multiple iterations of automatic action tendency retraining, followed by laboratory alcohol self-administration. A total of 72 nontreatment-seeking, heavy drinking young adults ages 21 to 25 were randomized to automatic action tendency retraining or a control condition (i.e., "sham training"). Of these, 69 (54% male) completed 4 iterations of retraining or the control condition over 5 days with an alcohol drinking session on Day 5. Self-administration was conducted according to a human laboratory paradigm designed to model individual differences in impaired control (i.e., difficulty adhering to limits on alcohol consumption). Automatic action tendency retraining was not associated with greater reduction in alcohol approach tendency or less alcohol self-administration than the control condition. The laboratory paradigm was probably sufficiently sensitive to detect an effect of an experimental manipulation given the range of self-administration behavior observed, both in terms of number of alcoholic and nonalcoholic drinks and measures of drinking topography. Automatic action tendency retraining was ineffective among heavy drinking young adults without motivation to change their drinking. Details of the retraining procedure may have contributed to the lack of a significant effect. Despite null primary findings, the impaired control laboratory paradigm is a valid laboratory-based measure of young adult alcohol consumption that provides the opportunity to observe drinking topography and self-administration of nonalcoholic beverages (i.e., protective behavioral strategies directly related to alcohol use). Copyright © 2018 by the Research Society on Alcoholism.

  12. An Application of Cartesian-Grid and Volume-of-Fluid Methods to Numerical Ship Hydrodynamics

    DTIC Science & Technology

    2007-10-01

    water-particle ve- locity is discontinuous across the air-water interface, and where CiEA is the Levi - Civita function. rj is the moment the vertical...methods and volume-of- immersed- body and volume-of-fluid (VOF) methods. fluid methods is used to simulate breaking waves around The governing equations are...of a ship hull is used as input to automat- body -fitted grids. The sole geometric input into NFA ically generate an immersed-boundary representation of

  13. An analysis of general chain systems

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Huston, R. L.

    1972-01-01

    A general analysis of dynamic systems consisting of connected rigid bodies is presented. The number of bodies and their manner of connection is arbitrary so long as no closed loops are formed. The analysis represents a dynamic finite element method, which is computer-oriented and designed so that nonworking, interval constraint forces are automatically eliminated. The method is based upon Lagrange's form of d'Alembert's principle. Shifter matrix transformations are used with the geometrical aspects of the analysis. The method is illustrated with a space manipulator.

  14. Drag and drop simulation: from pictures to full three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Iollo, Angelo

    2014-11-01

    We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.

  15. Automatically quantifying the scientific quality and sensationalism of news records mentioning pandemics: validating a maximum entropy machine-learning model.

    PubMed

    Hoffman, Steven J; Justicz, Victoria

    2016-07-01

    To develop and validate a method for automatically quantifying the scientific quality and sensationalism of individual news records. After retrieving 163,433 news records mentioning the Severe Acute Respiratory Syndrome (SARS) and H1N1 pandemics, a maximum entropy model for inductive machine learning was used to identify relationships among 500 randomly sampled news records that correlated with systematic human assessments of their scientific quality and sensationalism. These relationships were then computationally applied to automatically classify 10,000 additional randomly sampled news records. The model was validated by randomly sampling 200 records and comparing human assessments of them to the computer assessments. The computer model correctly assessed the relevance of 86% of news records, the quality of 65% of records, and the sensationalism of 73% of records, as compared to human assessments. Overall, the scientific quality of SARS and H1N1 news media coverage had potentially important shortcomings, but coverage was not too sensationalizing. Coverage slightly improved between the two pandemics. Automated methods can evaluate news records faster, cheaper, and possibly better than humans. The specific procedure implemented in this study can at the very least identify subsets of news records that are far more likely to have particular scientific and discursive qualities. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of single cortisol administrations on human affect reviewed: Coping with stress through adaptive regulation of automatic cognitive processing.

    PubMed

    Putman, Peter; Roelofs, Karin

    2011-05-01

    The human stress hormone cortisol may facilitate effective coping after psychological stress. In apparent agreement, administration of cortisol has been demonstrated to reduce fear in response to stressors. For anxious patients with phobias or posttraumatic stress disorder this has been ascribed to hypothetical inhibition of retrieval of traumatic memories. However, such stress-protective effects may also work via adaptive regulation of early cognitive processing of threatening information from the environment. This paper selectively reviews the available literature on effects of single cortisol administrations on affect and early cognitive processing of affectively significant information. The concluded working hypothesis is that immediate effects of high concentration of cortisol may facilitate stress-coping via inhibition of automatic processing of goal-irrelevant threatening information and through increased automatic approach-avoidance responses in early emotional processing. Limitations in the existing literature and suggestions for future directions are briefly discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Visual mismatch negativity indicates automatic, task-independent detection of artistic image composition in abstract artworks.

    PubMed

    Menzel, Claudia; Kovács, Gyula; Amado, Catarina; Hayn-Leichsenring, Gregor U; Redies, Christoph

    2018-05-06

    In complex abstract art, image composition (i.e., the artist's deliberate arrangement of pictorial elements) is an important aesthetic feature. We investigated whether the human brain detects image composition in abstract artworks automatically (i.e., independently of the experimental task). To this aim, we studied whether a group of 20 original artworks elicited a visual mismatch negativity when contrasted with a group of 20 images that were composed of the same pictorial elements as the originals, but in shuffled arrangements, which destroy artistic composition. We used a passive oddball paradigm with parallel electroencephalogram recordings to investigate the detection of image type-specific properties. We observed significant deviant-standard differences for the shuffled and original images, respectively. Furthermore, for both types of images, differences in amplitudes correlated with the behavioral ratings of the images. In conclusion, we show that the human brain can detect composition-related image properties in visual artworks in an automatic fashion. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Refining Automatically Extracted Knowledge Bases Using Crowdsourcing

    PubMed Central

    Xian, Xuefeng; Cui, Zhiming

    2017-01-01

    Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far from perfect. In this paper, we leverage crowdsourcing to improve the quality of automatically extracted knowledge bases. As human labelling is costly, an important research challenge is how we can use limited human resources to maximize the quality improvement for a knowledge base. To address this problem, we first introduce a concept of semantic constraints that can be used to detect potential errors and do inference among candidate facts. Then, based on semantic constraints, we propose rank-based and graph-based algorithms for crowdsourced knowledge refining, which judiciously select the most beneficial candidate facts to conduct crowdsourcing and prune unnecessary questions. Our experiments show that our method improves the quality of knowledge bases significantly and outperforms state-of-the-art automatic methods under a reasonable crowdsourcing cost. PMID:28588611

  19. Human body region enhancement method based on Kinect infrared imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  20. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  1. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  2. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  3. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  4. Automated Detection of Stereotypical Motor Movements

    ERIC Educational Resources Information Center

    Goodwin, Matthew S.; Intille, Stephen S.; Albinali, Fahd; Velicer, Wayne F.

    2011-01-01

    To overcome problems with traditional methods for measuring stereotypical motor movements in persons with Autism Spectrum Disorders (ASD), we evaluated the use of wireless three-axis accelerometers and pattern recognition algorithms to automatically detect body rocking and hand flapping in children with ASD. Findings revealed that, on average,…

  5. Automatic procedures generator for orbital rendezvous maneuver

    NASA Technical Reports Server (NTRS)

    Kohn, W.; Van Valkenburg, J. A.; Dunn, C. K.

    1985-01-01

    This paper describes the development of an expert system for defining and dynamically updating procedures for an orbital rendezvous maneuver. The product of the expert system is a procedure represented by a Moore automaton. The construction is recursive and driven by a simulation of the rendezvousing bodies.

  6. Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality.

    PubMed

    Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque; Javaid, Ahmad Y

    2018-02-01

    Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human-Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam.

  7. Development of an optimal automatic control law and filter algorithm for steep glideslope capture and glideslope tracking

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1976-01-01

    A digital automatic control law to capture a steep glideslope and track the glideslope to a specified altitude is developed for the longitudinal/vertical dynamics of a CTOL aircraft using modern estimation and control techniques. The control law uses a constant gain Kalman filter to process guidance information from the microwave landing system, and acceleration from body mounted accelerometer data. The filter outputs navigation data and wind velocity estimates which are used in controlling the aircraft. Results from a digital simulation of the aircraft dynamics and the control law are presented for various wind conditions.

  8. Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.

    1982-01-01

    A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.

  9. An on-the-road experiment into the thermal comfort of car seats.

    PubMed

    Cengiz, Tülin Gündüz; Babalik, Fatih C

    2007-05-01

    This paper presents an evaluation of thermal comfort in an extended road trial study. Automobile seats play an important role in improving the thermal comfort. In the assessment of thermal comfort in autos, in general subjective and objective measurements are used. Testing on the road is very difficult but real traffic conditions affect the comfort level directly, as well as the driver's experience to real conditions. Thus, for such cases real traffic situations should not be neglected in the evaluation of comfort. The aim of this study was to carry out, on an extended road trial study, an evaluation of thermal comfort using human subjects. In the experiments used, the 100% polyester seat cover had three different cover materials, which were velvet, jacquard and micro fiber. All experiments were carried out on a sunny day with ten participants over 1h. They were carried out at air temperatures of 25 degrees C in a Fiat Marea 2004, which had an automatic climate function. Skin temperature at eight points and skin wettedness at two points on the human body were measured during the trials. Participants were required to complete a questionnaire of 15 questions, every 5 min. It can be concluded that there was negligible difference in participants' reported thermal sensation between the three seats. According to objective measurement results, all seat cover materials have the same degree of thermal comfort. On the road the participants feel warmer around their waist than any other area of the body. It was suggested that the effects of real traffic conditions must be accounted for in comfort predictions.

  10. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  11. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Matthies, Larry H.

    1998-01-01

    Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.

  12. Automatic imitation: A meta-analysis.

    PubMed

    Cracco, Emiel; Bardi, Lara; Desmet, Charlotte; Genschow, Oliver; Rigoni, Davide; De Coster, Lize; Radkova, Ina; Deschrijver, Eliane; Brass, Marcel

    2018-05-01

    Automatic imitation is the finding that movement execution is facilitated by compatible and impeded by incompatible observed movements. In the past 15 years, automatic imitation has been studied to understand the relation between perception and action in social interaction. Although research on this topic started in cognitive science, interest quickly spread to related disciplines such as social psychology, clinical psychology, and neuroscience. However, important theoretical questions have remained unanswered. Therefore, in the present meta-analysis, we evaluated seven key questions on automatic imitation. The results, based on 161 studies containing 226 experiments, revealed an overall effect size of g z = 0.95, 95% CI [0.88, 1.02]. Moderator analyses identified automatic imitation as a flexible, largely automatic process that is driven by movement and effector compatibility, but is also influenced by spatial compatibility. Automatic imitation was found to be stronger for forced choice tasks than for simple response tasks, for human agents than for nonhuman agents, and for goalless actions than for goal-directed actions. However, it was not modulated by more subtle factors such as animacy beliefs, motion profiles, or visual perspective. Finally, there was no evidence for a relation between automatic imitation and either empathy or autism. Among other things, these findings point toward actor-imitator similarity as a crucial modulator of automatic imitation and challenge the view that imitative tendencies are an indicator of social functioning. The current meta-analysis has important theoretical implications and sheds light on longstanding controversies in the literature on automatic imitation and related domains. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    PubMed

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  14. Automatically monitoring driftwood in large rivers: preliminary results

    NASA Astrophysics Data System (ADS)

    Piegay, H.; Lemaire, P.; MacVicar, B.; Mouquet-Noppe, C.; Tougne, L.

    2014-12-01

    Driftwood in rivers impact sediment transport, riverine habitat and human infrastructures. Quantifying it, in particular large woods on fairly large rivers where it can move easily, would allow us to improve our knowledge on fluvial transport processes. There are several means of studying this phenomenon, amongst which RFID sensors tracking, photo and video monitoring. In this abstract, we are interested in the latter, being easier and cheaper to deploy. However, video monitoring of driftwood generates a huge amount of images and manually labeling it is tedious. It is essential to automate such a monitoring process, which is a difficult task in the field of computer vision, and more specifically automatic video analysis. Detecting foreground into dynamic background remains an open problem to date. We installed a video camera at the riverside of a gauging station on the Ain River, a 3500 km² Piedmont River in France. Several floods were manually annotated by a human operator. We developed software that automatically extracts and characterizes wood blocks within a video stream. This algorithm is based upon a statistical model and combines static, dynamic and spatial data. Segmented wood objects are further described with the help of a skeleton-based approach that helps us to automatically determine its shape, diameter and length. The first detailed comparisons between manual annotations and automatically extracted data show that we can fairly well detect large wood until a given size (approximately 120 cm in length or 15 cm in diameter) whereas smaller ones are difficult to detect and tend to be missed by either the human operator, either the algorithm. Detection is fairly accurate in high flow conditions where the water channel is usually brown because of suspended sediment transport. In low flow context, our algorithm still needs improvement to reduce the number of false positive so as to better distinguish shadow or turbulence structures from wood pieces.

  15. Haptic exploratory behavior during object discrimination: a novel automatic annotation method.

    PubMed

    Jansen, Sander E M; Bergmann Tiest, Wouter M; Kappers, Astrid M L

    2015-01-01

    In order to acquire information concerning the geometry and material of handheld objects, people tend to execute stereotypical hand movement patterns called haptic Exploratory Procedures (EPs). Manual annotation of haptic exploration trials with these EPs is a laborious task that is affected by subjectivity, attentional lapses, and viewing angle limitations. In this paper we propose an automatic EP annotation method based on position and orientation data from motion tracking sensors placed on both hands and inside a stimulus. A set of kinematic variables is computed from these data and compared to sets of predefined criteria for each of four EPs. Whenever all criteria for a specific EP are met, it is assumed that that particular hand movement pattern was performed. This method is applied to data from an experiment where blindfolded participants haptically discriminated between objects differing in hardness, roughness, volume, and weight. In order to validate the method, its output is compared to manual annotation based on video recordings of the same trials. Although mean pairwise agreement is less between human-automatic pairs than between human-human pairs (55.7% vs 74.5%), the proposed method performs much better than random annotation (2.4%). Furthermore, each EP is linked to a specific object property for which it is optimal (e.g., Lateral Motion for roughness). We found that the percentage of trials where the expected EP was found does not differ between manual and automatic annotation. For now, this method cannot yet completely replace a manual annotation procedure. However, it could be used as a starting point that can be supplemented by manual annotation.

  16. Fully automatic characterization and data collection from crystals of biological macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander

    A fully automatic system has been developed that performs X-ray centring and characterization of, and data collection from, large numbers of cryocooled crystals without human intervention. Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to themore » optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.« less

  17. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

    PubMed

    López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A

    2018-05-01

    Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    PubMed Central

    Peng, Zhenyun; Zhang, Yaohui

    2014-01-01

    Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying. PMID:24592182

  19. Determination of Percent Body Fat Using 3D Whole Body Laser Scanning: A Preliminary Investigation

    DTIC Science & Technology

    2006-11-01

    S.B., Lohman, T.G., Wang, Z., and Going, S.B., 2005: Human body composition: Human Kinetics : Champaign, IL. Heyward, V.H. and Wagner, D.R...2004: Applied body composition assessment: Human Kinetics : Champaign, IL. Hodgdon, J.A., and Beckett, M.B., 1984a: Prediction of percent body fat...ethnicity. In: Human body Composition., Heymsfield, S.B., Lohman, T.G., Wang, Z., and Going, S.B (eds.). Human Kinetics : Champaign, IL. Marriott

  20. A computer program for calculation of doses and prices of injectable medications based on body weight or body surface area

    PubMed Central

    2004-01-01

    Abstract A computer program (CalcAnesth) was developed with Visual Basic for the purpose of calculating the doses and prices of injectable medications on the basis of body weight or body surface area. The drug names, concentrations, and prices are loaded from a drug database. This database is a simple text file, that the user can easily create or modify. The animal names and body weights can be loaded from a similar database. After typing the dose and the units into the user interface, the results will be automatically displayed. The program is able to open and save anesthetic protocols, and export or print the results. This CalcAnesth program can be useful in clinical veterinary anesthesiology and research. The rationale for dosing on the basis of body surface area is also discussed in this article. PMID:14979437

  1. Body metaphors--reading the body in contemporary culture.

    PubMed

    Skara, Danica

    2004-01-01

    This paper addresses the linguistic reframing of the human body in contemporary culture. Our aim is to provide a linguistic description of the ways in which the body is represented in modern English language. First, we will try to focus on body metaphors in general. We have collected a sample of 300 words and phrases functioning as body metaphors in modern English language. Reading the symbolism of the body we are witnessing changes in the basic metaphorical structuring of the human body. The results show that new vocabulary binds different fields of knowledge associated with machines and human beings according to a shared textual frame: human as computer and computer as human metaphor. Humans are almost blended with computers and vice versa. This metaphorical use of the human body and its parts reveals not only currents of unconscious though but also the structures of modern society and culture.

  2. Human body segmentation via data-driven graph cut.

    PubMed

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  3. Automatic Imitation of Intransitive Actions

    ERIC Educational Resources Information Center

    Press, Clare; Bird, Geoffrey; Walsh, Eamonn; Heyes, Cecilia

    2008-01-01

    Previous research has indicated a potential discontinuity between monkey and human ventral premotor-parietal mirror systems, namely that monkey mirror systems process only transitive (object-directed) actions, whereas human mirror systems may also process intransitive (non-object-directed) actions. The present study investigated this discontinuity…

  4. No body is perfect: the significance of habitual negative thinking about appearance for body dissatisfaction, eating disorder propensity, self-esteem and snacking.

    PubMed

    Verplanken, Bas; Tangelder, Yonne

    2011-06-01

    Thinking negatively about one's appearance may be a major source of unhappiness. It was investigated whether the habitual quality of negative body image thinking constitutes an additional vulnerability factor, i.e. when such thinking is repetitive and automatic. The cognitive content of negative body image thinking ('what') was distinguished from the habitual occurrence of such thinking ('how'). The mental habit component uniquely predicted explicit as well as implicit body dissatisfaction (the latter measured by an implicit association test) over and above cognitive content. Mental habit also accounted for eating disturbance propensity, low self-esteem and restrained snacking behaviour over and above cognitive content, even when controlled for body dissatisfaction. The habitual component of negative thinking about appearance thus seems a significant body image construct, has discriminant validity against body dissatisfaction, and constitutes a vulnerability factor for feelings of low self-worth and eating disturbance propensity. Implications for intervention strategies, such as mindfulness-based approaches, are discussed. © 2011 Taylor & Francis

  5. Automatic detection of articulation disorders in children with cleft lip and palate.

    PubMed

    Maier, Andreas; Hönig, Florian; Bocklet, Tobias; Nöth, Elmar; Stelzle, Florian; Nkenke, Emeka; Schuster, Maria

    2009-11-01

    Speech of children with cleft lip and palate (CLP) is sometimes still disordered even after adequate surgical and nonsurgical therapies. Such speech shows complex articulation disorders, which are usually assessed perceptually, consuming time and manpower. Hence, there is a need for an easy to apply and reliable automatic method. To create a reference for an automatic system, speech data of 58 children with CLP were assessed perceptually by experienced speech therapists for characteristic phonetic disorders at the phoneme level. The first part of the article aims to detect such characteristics by a semiautomatic procedure and the second to evaluate a fully automatic, thus simple, procedure. The methods are based on a combination of speech processing algorithms. The semiautomatic method achieves moderate to good agreement (kappa approximately 0.6) for the detection of all phonetic disorders. On a speaker level, significant correlations between the perceptual evaluation and the automatic system of 0.89 are obtained. The fully automatic system yields a correlation on the speaker level of 0.81 to the perceptual evaluation. This correlation is in the range of the inter-rater correlation of the listeners. The automatic speech evaluation is able to detect phonetic disorders at an experts'level without any additional human postprocessing.

  6. Infants' Responses to Real Humans and Representations of Humans

    ERIC Educational Resources Information Center

    Heron, Michelle; Slaughter, Virginia

    2010-01-01

    Infants' responses to typical and scrambled human body shapes were assessed in relation to the realism of the human body stimuli presented. In four separate experiments, infants were familiarized to typical human bodies and then shown a series of scrambled human bodies on the test. Looking behaviour was assessed in response to a range of different…

  7. Pattern-Based Extraction of Argumentation from the Scientific Literature

    ERIC Educational Resources Information Center

    White, Elizabeth K.

    2010-01-01

    As the number of publications in the biomedical field continues its exponential increase, techniques for automatically summarizing information from this body of literature have become more diverse. In addition, the targets of summarization have become more subtle; initial work focused on extracting the factual assertions from full-text papers,…

  8. An efficient method for automatic morphological abnormality detection from human sperm images.

    PubMed

    Ghasemian, Fatemeh; Mirroshandel, Seyed Abolghasem; Monji-Azad, Sara; Azarnia, Mahnaz; Zahiri, Ziba

    2015-12-01

    Sperm morphology analysis (SMA) is an important factor in the diagnosis of human male infertility. This study presents an automatic algorithm for sperm morphology analysis (to detect malformation) using images of human sperm cells. The SMA method was used to detect and analyze different parts of the human sperm. First of all, SMA removes the image noises and enhances the contrast of the image to a great extent. Then it recognizes the different parts of sperm (e.g., head, tail) and analyzes the size and shape of each part. Finally, the algorithm classifies each sperm as normal or abnormal. Malformations in the head, midpiece, and tail of a sperm, can be detected by the SMA method. In contrast to other similar methods, the SMA method can work with low resolution and non-stained images. Furthermore, an image collection created for the SMA, has also been described in this study. This benchmark consists of 1457 sperm images from 235 patients, and is known as human sperm morphology analysis dataset (HSMA-DS). The proposed algorithm was tested on HSMA-DS. The experimental results show the high ability of SMA to detect morphological deformities from sperm images. In this study, the SMA algorithm produced above 90% accuracy in sperm abnormality detection task. Another advantage of the proposed method is its low computation time (that is, less than 9s), as such, the expert can quickly decide to choose the analyzed sperm or select another one. Automatic and fast analysis of human sperm morphology can be useful during intracytoplasmic sperm injection for helping embryologists to select the best sperm in real time. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Quantitative morphometrical characterization of human pronuclear zygotes.

    PubMed

    Beuchat, A; Thévenaz, P; Unser, M; Ebner, T; Senn, A; Urner, F; Germond, M; Sorzano, C O S

    2008-09-01

    Identification of embryos with high implantation potential remains a challenge in in vitro fertilization (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this work was to provide a software tool that enables objective measuring of morphological characteristics of the human PN zygote. A computer program was created to analyse zygote images semi-automatically, providing precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implantation probability by using a linear discriminant analysis. Zygote images coming from the two IVF centres were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Computer-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cytoplasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones (0.393). A precise and objective characterization of the morphology of human PN zygotes can be achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morphological characterization of human zygotes and can be used for classification.

  10. Automated body weight prediction of dairy cows using 3-dimensional vision.

    PubMed

    Song, X; Bokkers, E A M; van der Tol, P P J; Groot Koerkamp, P W G; van Mourik, S

    2018-05-01

    The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  11. Automated assessment and tracking of human body thermal variations using unsupervised clustering.

    PubMed

    Yousefi, Bardia; Fleuret, Julien; Zhang, Hai; Maldague, Xavier P V; Watt, Raymond; Klein, Matthieu

    2016-12-01

    The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subject's body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures.

  12. Evolution of the ischio-iliac lordosis during natural growth and its relation with the pelvic incidence.

    PubMed

    Schlösser, Tom P C; Janssen, Michiel M A; Vrtovec, Tomaž; Pernuš, Franjo; Oner, F Cumhur; Viergever, Max A; Vincken, Koen L; Castelein, René M

    2014-07-01

    Human fully upright ambulation, with fully extended hips and knees, and the body's center of gravity directly above the hips, is unique in nature, and distinguishes humans from all other mammalians. This bipedalism is made possible by the development of a lordosis between the ischium and ilium; it allows to ambulate in this unique bipedal manner, without sacrificing forceful extension of the legs. This configuration in space introduces unique biomechanical forces with relevance for a number of spinal conditions. The aim of this study was to quantify the development of this lordosis between ischium and ilium in the normal growing and adult spine and to evaluate its correlation with the well-known clinical parameter, pelvic incidence. Consecutive series of three-dimensional computed tomography scans of the abdomen of 189 children and 310 adults without spino-pelvic pathologies were used. Scan indications were trauma screening or acute abdominal pathology. Using previously validated image processing techniques, femoral heads, center of the sacral endplate and the axes of the ischial bones were semi-automatically identified. A true sagittal view of the pelvis was automatically reconstructed, on which ischio-iliac angulation and pelvic incidence were calculated. The ischio-iliac angle was defined as the angle between the axes of the ischial bones and the line from the midpoint of the sacral endplate to the center of the femoral heads. A wide natural variation of the ischio-iliac angle (3°-46°) and pelvic incidence (14°-77°) was observed. Pearson's analysis demonstrated a significant correlation between the ischio-iliac angle and pelvic incidence (r = 0.558, P < 0.001). Linear regression analysis revealed that ischio-iliac angle, as well as pelvic incidence, increases during childhood (+7° and +10°, respectively) and becomes constant after adolescence. The development of the ischio-iliac lordosis is unique in nature, is in harmonious continuity with the highly individual lumbar lordosis and defines the way the human spine is biomechanically loaded. The practical parameter that reflects this is the pelvic incidence; both values increase during growth and remain stable in adulthood.

  13. The influence of a bystander agent's beliefs on children's and adults' decision-making process.

    PubMed

    Buttelmann, Frances; Buttelmann, David

    2017-01-01

    The ability to attribute and represent others' mental states (e.g., beliefs; so-called "theory of mind") is essential for participation in human social interaction. Despite a considerable body of research using tasks in which protagonists in the participants' attentional focus held false or true beliefs, the question of automatic belief attribution to bystander agents has received little attention. In the current study, we presented adults and 6-year-olds (N=92) with an implicit computer-based avoidance false-belief task in which participants were asked to place an object into one of three boxes. While doing so, we manipulated the beliefs of an irrelevant human-like or non-human-like bystander agent who was visible on the screen. Importantly, the bystander agent's beliefs were irrelevant for solving the task. Still, children's decision making was significantly influenced by the bystander agent's beliefs even if this was a non-human-like self-propelled object. Such an influence did not become obvious in adults' deliberate decisions but occurred only in their reaction times, which suggests that they also processed the bystander agent's beliefs but were able to suppress the influence of such beliefs on their behavior regulation. The results of a control study (N=53) ruled out low-level explanations and confirmed that self-propelledness of agents is a necessary factor for belief attribution to occur. Thus, not only do humans spontaneously ascribe beliefs to self-propelled bystander agents, but those beliefs even influence meaningful decisions in children. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  15. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  16. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  17. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  18. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  19. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  20. Calibration-free gaze tracking for automatic measurement of visual acuity in human infants.

    PubMed

    Xiong, Chunshui; Huang, Lei; Liu, Changping

    2014-01-01

    Most existing vision-based methods for gaze tracking need a tedious calibration process. In this process, subjects are required to fixate on a specific point or several specific points in space. However, it is hard to cooperate, especially for children and human infants. In this paper, a new calibration-free gaze tracking system and method is presented for automatic measurement of visual acuity in human infants. As far as I know, it is the first time to apply the vision-based gaze tracking in the measurement of visual acuity. Firstly, a polynomial of pupil center-cornea reflections (PCCR) vector is presented to be used as the gaze feature. Then, Gaussian mixture models (GMM) is employed for gaze behavior classification, which is trained offline using labeled data from subjects with healthy eyes. Experimental results on several subjects show that the proposed method is accurate, robust and sufficient for the application of measurement of visual acuity in human infants.

  1. An Automated Classification Technique for Detecting Defects in Battery Cells

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2006-01-01

    Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.

  2. Automated quantification of myocardial infarction from MR images by accounting for partial volume effects: animal, phantom, and human study.

    PubMed

    Heiberg, Einar; Ugander, Martin; Engblom, Henrik; Götberg, Matthias; Olivecrona, Göran K; Erlinge, David; Arheden, Håkan

    2008-02-01

    Ethics committees approved human and animal study components; informed written consent was provided (prospective human study [20 men; mean age, 62 years]) or waived (retrospective human study [16 men, four women; mean age, 59 years]). The purpose of this study was to prospectively evaluate a clinically applicable method, accounting for the partial volume effect, to automatically quantify myocardial infarction from delayed contrast material-enhanced magnetic resonance images. Pixels were weighted according to signal intensity to calculate infarct fraction for each pixel. Mean bias +/- variability (or standard deviation), expressed as percentage left ventricular myocardium (%LVM), were -0.3 +/- 1.3 (animals), -1.2 +/- 1.7 (phantoms), and 0.3 +/- 2.7 (patients), respectively. Algorithm had lower variability than dichotomous approach (2.7 vs 7.7 %LVM, P < .01) and did not differ from interobserver variability for bias (P = .31) or variability (P = .38). The weighted approach provides automatic quantification of myocardial infarction with higher accuracy and lower variability than a dichotomous algorithm. (c) RSNA, 2007.

  3. SU-C-BRB-02: Automatic Planning as a Potential Strategy for Dose Escalation for Pancreas SBRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Zheng, D; Ma, R

    Purpose: Stereotactic body radiation therapy (SBRT) has been suggested to provide high rates of local control for locally advanced pancreatic cancer. However, the close proximity of highly radiosensitive normal tissues usually causes the labor-intensive planning process, and may impede further escalation of the prescription dose. The present study evaluates the potential of an automatic planning system as a dose escalation strategy. Methods: Ten pancreatic cancer patients treated with SBRT were studied retrospectively. SBRT was delivered over 5 consecutive fractions with 6 ∼ 8Gy/fraction. Two plans were generated by Pinnacle Auto-Planning with the original prescription and escalated prescription, respectively. Escalated prescriptionmore » adds 1 Gy/fraction to the original prescription. Manually-created planning volumes were excluded in the optimization goals in order to assess the planning efficiency and quality simultaneously. Critical organs with closest proximity were used to determine the plan normalization to ensure the OAR sparing. Dosimetric parameters including D100, and conformity index (CI) were assessed. Results: Auto-plans directly generate acceptable plans for 70% of the cases without necessity of further improvement, and two more iterations at most are necessary for the rest of the cases. For the pancreas SBRT plans with the original prescription, autoplans resulted in favorable target coverage and PTV conformity (D100 = 96.3% ± 1.48%; CI = 0.88 ± 0.06). For the plans with the escalated prescriptions, no significant target under-dosage was observed, and PTV conformity remains reasonable (D100 = 93.3% ± 3.8%, and CI = 0.84 ± 0.05). Conclusion: Automatic planning, without substantial human-intervention process, results in reasonable PTV coverage and PTV conformity on the premise of adequate OAR sparing for the pancreas SBRT plans with escalated prescription. The results highlight the potential of autoplanning as a dose escalation strategy for pancreas SBRT treatment planning. Further investigations with a larger number of patients are necessary. The project is partially supported by Philips Medical Systems.« less

  4. Individual selection of X-ray tube settings in computed tomography coronary angiography: Reliability of an automated software algorithm to maintain constant image quality.

    PubMed

    Durmus, Tahir; Luhur, Reny; Daqqaq, Tareef; Schwenke, Carsten; Knobloch, Gesine; Huppertz, Alexander; Hamm, Bernd; Lembcke, Alexander

    2016-05-01

    To evaluate a software tool that claims to maintain a constant contrast-to-noise ratio (CNR) in high-pitch dual-source computed tomography coronary angiography (CTCA) by automatically selecting both X-ray tube voltage and current. A total of 302 patients (171 males; age 61±12years; body weight 82±17kg, body mass index 27.3±4.6kg/cm(2)) underwent CTCA with a topogram-based, automatic selection of both tube voltage and current using dedicated software with quality reference values of 100kV and 250mAs/rotation (i.e., standard values for an average adult weighing 75kg) and an injected iodine load of 222mg/kg. The average radiation dose was estimated to be 1.02±0.64mSv. All data sets had adequate contrast enhancement. Average CNR in the aortic root, left ventricle, and left and right coronary artery was 15.7±4.5, 8.3±2.9, 16.1±4.3 and 15.3±3.9 respectively. Individual CNR values were independent of patients' body size and radiation dose. However, individual CNR values may vary considerably between subjects as reflected by interquartile ranges of 12.6-18.6, 6.2-9.9, 12.8-18.9 and 12.5-17.9 respectively. Moreover, average CNR values were significantly lower in males than females (15.1±4.1 vs. 16.6±11.7 and 7.9±2.7 vs. 8.9±3.0, 15.5±3.9 vs. 16.9±4.6 and 14.7±3.6 vs. 16.0±4.1 respectively). A topogram-based automatic selection of X-ray tube settings in CTCA provides diagnostic image quality independent of patients' body size. Nevertheless, considerable variation of individual CNR values between patients and significant differences of CNR values between males and females occur which questions the reliability of this approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. The multisensory body revealed through its cast shadows.

    PubMed

    Pavani, Francesco; Galfano, Giovanni

    2015-01-01

    One key issue when conceiving the body as a multisensory object is how the cognitive system integrates visible instances of the self and other bodies with one's own somatosensory processing, to achieve self-recognition and body ownership. Recent research has strongly suggested that shadows cast by our own body have a special status for cognitive processing, directing attention to the body in a fast and highly specific manner. The aim of the present article is to review the most recent scientific contributions addressing how body shadows affect both sensory/perceptual and attentional processes. The review examines three main points: (1) body shadows as a special window to investigate the construction of multisensory body perception; (2) experimental paradigms and related findings; (3) open questions and future trajectories. The reviewed literature suggests that shadows cast by one's own body promote binding between personal and extrapersonal space and elicit automatic orienting of attention toward the body-part casting the shadow. Future research should address whether the effects exerted by body shadows are similar to those observed when observers are exposed to other visual instances of their body. The results will further clarify the processes underlying the merging of vision and somatosensation when creating body representations.

  6. The multisensory body revealed through its cast shadows

    PubMed Central

    Pavani, Francesco; Galfano, Giovanni

    2015-01-01

    One key issue when conceiving the body as a multisensory object is how the cognitive system integrates visible instances of the self and other bodies with one’s own somatosensory processing, to achieve self-recognition and body ownership. Recent research has strongly suggested that shadows cast by our own body have a special status for cognitive processing, directing attention to the body in a fast and highly specific manner. The aim of the present article is to review the most recent scientific contributions addressing how body shadows affect both sensory/perceptual and attentional processes. The review examines three main points: (1) body shadows as a special window to investigate the construction of multisensory body perception; (2) experimental paradigms and related findings; (3) open questions and future trajectories. The reviewed literature suggests that shadows cast by one’s own body promote binding between personal and extrapersonal space and elicit automatic orienting of attention toward the body-part casting the shadow. Future research should address whether the effects exerted by body shadows are similar to those observed when observers are exposed to other visual instances of their body. The results will further clarify the processes underlying the merging of vision and somatosensation when creating body representations. PMID:26042079

  7. User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.

    PubMed

    Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu

    2016-04-01

    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.

  8. Automating usability of ATLAS Distributed Computing resources

    NASA Astrophysics Data System (ADS)

    Tupputi, S. A.; Di Girolamo, A.; Kouba, T.; Schovancová, J.; Atlas Collaboration

    2014-06-01

    The automation of ATLAS Distributed Computing (ADC) operations is essential to reduce manpower costs and allow performance-enhancing actions, which improve the reliability of the system. In this perspective a crucial case is the automatic handling of outages of ATLAS computing sites storage resources, which are continuously exploited at the edge of their capabilities. It is challenging to adopt unambiguous decision criteria for storage resources of non-homogeneous types, sizes and roles. The recently developed Storage Area Automatic Blacklisting (SAAB) tool has provided a suitable solution, by employing an inference algorithm which processes history of storage monitoring tests outcome. SAAB accomplishes both the tasks of providing global monitoring as well as automatic operations on single sites. The implementation of the SAAB tool has been the first step in a comprehensive review of the storage areas monitoring and central management at all levels. Such review has involved the reordering and optimization of SAM tests deployment and the inclusion of SAAB results in the ATLAS Site Status Board with both dedicated metrics and views. The resulting structure allows monitoring the storage resources status with fine time-granularity and automatic actions to be taken in foreseen cases, like automatic outage handling and notifications to sites. Hence, the human actions are restricted to reporting and following up problems, where and when needed. In this work we show SAAB working principles and features. We present also the decrease of human interactions achieved within the ATLAS Computing Operation team. The automation results in a prompt reaction to failures, which leads to the optimization of resource exploitation.

  9. Initial Experience With Ultra High-Density Mapping of Human Right Atria.

    PubMed

    Bollmann, Andreas; Hilbert, Sebastian; John, Silke; Kosiuk, Jedrzej; Hindricks, Gerhard

    2016-02-01

    Recently, an automatic, high-resolution mapping system has been presented to accurately and quickly identify right atrial geometry and activation patterns in animals, but human data are lacking. This study aims to assess the clinical feasibility and accuracy of high-density electroanatomical mapping of various RA arrhythmias. Electroanatomical maps of the RA (35 partial and 24 complete) were created in 23 patients using a novel mini-basket catheter with 64 electrodes and automatic electrogram annotation. Median acquisition time was 6:43 minutes (0:39-23:05 minutes) with shorter times for partial (4.03 ± 4.13 minutes) than for complete maps (9.41 ± 4.92 minutes). During mapping 3,236 (710-16,306) data points were automatically annotated without manual correction. Maps obtained during sinus rhythm created geometry consistent with CT imaging and demonstrated activation originating at the middle to superior crista terminalis, while maps during CS pacing showed right atrial activation beginning at the infero-septal region. Activation patterns were consistent with cavotricuspid isthmus-dependent atrial flutter (n = 4), complex reentry tachycardia (n = 1), or ectopic atrial tachycardia (n = 2). His bundle and fractionated potentials in the slow pathway region were automatically detected in all patients. Ablation of the cavotricuspid isthmus (n = 9), the atrio-ventricular node (n = 2), atrial ectopy (n = 2), and the slow pathway (n = 3) was successfully and safely performed. RA mapping with this automatic high-density mapping system is fast, feasible, and safe. It is possible to reproducibly identify propagation of atrial activation during sinus rhythm, various tachycardias, and also complex reentrant arrhythmias. © 2015 Wiley Periodicals, Inc.

  10. Task Versus Component Consistency in the Development of Automatic Processes: Consistent Attending Versus Consistent Responding.

    DTIC Science & Technology

    1982-03-01

    are two qualitatively different forms of human information processing (James, 1890; Hasher & Zacks, 1979; LaBerge , 1973, 1975; Logan, 1978, 1979...Kristofferson, M. W. When item recognition and visual search functions are similar. Perception & Psychophysics, 1972, 12, 379-384. LaBerge , D. Attention and...the measurement of perceptual learning. Hemory and3 Conition, 1973, 1, 263-276. LaBerge , D. Acquisition of automatic processing in purceptual and

  11. [A wavelet-transform-based method for the automatic detection of late-type stars].

    PubMed

    Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao

    2005-07-01

    The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.

  12. Automatic Lamp and Fan Control Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Widyaningrum, V. T.; Pramudita, Y. D.

    2018-01-01

    In general, automation can be described as a process following pre-determined sequential steps with a little or without any human exertion. Automation is provided with the use of various sensors suitable to observe the production processes, actuators and different techniques and devices. In this research, the automation system developed is an automatic lamp and an automatic fan on the smart home. Both of these systems will be processed using an Arduino Mega 2560 microcontroller. A microcontroller is used to obtain values of physical conditions through sensors connected to it. In the automatic lamp system required sensors to detect the light of the LDR (Light Dependent Resistor) sensor. While the automatic fan system required sensors to detect the temperature of the DHT11 sensor. In tests that have been done lamps and fans can work properly. The lamp can turn on automatically when the light begins to darken, and the lamp can also turn off automatically when the light begins to bright again. In addition, it can concluded also that the readings of LDR sensors are placed outside the room is different from the readings of LDR sensors placed in the room. This is because the light intensity received by the existing LDR sensor in the room is blocked by the wall of the house or by other objects. Then for the fan, it can also turn on automatically when the temperature is greater than 25°C, and the fan speed can also be adjusted. The fan may also turn off automatically when the temperature is less than equal to 25°C.

  13. Automated measurement of cattle surface temperature and its correlation with rectal temperature

    PubMed Central

    Ren, Kang; Chen, XiaoLi; Lu, YongQiang; Wang, Dong

    2017-01-01

    The body temperature of cattle varies regularly with both the reproductive cycle and disease status. Establishing an automatic method for monitoring body temperature may facilitate better management of reproduction and disease control in cattle. Here, we developed an Automatic Measurement System for Cattle’s Surface Temperature (AMSCST) to measure the temperature of metatarsus by attaching a special shell designed to fit the anatomy of cattle’s hind leg. Using AMSCST, the surface temperature (ST) on the metatarsus of the hind leg was successively measured during 24 hours a day with an interval of one hour in three tested seasons. Based on ST and rectal temperature (RT) detected by AMSCST and mercury thermometer, respectively, a linear mixed model was established, regarding both the time point and seasonal factors as the fixed effects. Unary linear correlation and Bland-Altman analysis results indicated that the temperatures measured by AMSCST were closely correlated to those measured by mercury thermometer (R2 = 0.998), suggesting that the AMSCST is an accurate and reliable way to detect cattle’s body temperature. Statistical analysis showed that the differences of STs among the three seasons, or among the different time points were significant (P<0.05), and the differences of RTs among the different time points were similarly significant (P<0.05). The prediction accuracy of the mixed model was verified by 10-fold cross validation. The average difference between measured RT and predicted RT was about 0.10 ± 0.10°C with the association coefficient of 0.644, indicating the feasibility of this model in measuring cattle body temperature. Therefore, an automated technology for accurately measuring cattle body temperature was accomplished by inventing an optimal device and establishing the AMSCST system. PMID:28426682

  14. [An interactive three-dimensional model of the human body].

    PubMed

    Liem, S L

    2009-01-01

    Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.

  15. Utilization of Automatic Tagging Using Web Information to Datamining

    NASA Astrophysics Data System (ADS)

    Sugimura, Hiroshi; Matsumoto, Kazunori

    This paper proposes a data annotation system using the automatic tagging approach. Although annotations of data are useful for deep analysis and mining of it, the cost of providing them becomes huge in most of the cases. In order to solve this problem, we develop a semi-automatic method that consists of two stages. In the first stage, it searches the Web space for relating information, and discovers candidates of effective annotations. The second stage uses knowledge of a human user. The candidates are investigated and refined by the user, and then they become annotations. We in this paper focus on time-series data, and show effectiveness of a GUI tool that supports the above process.

  16. Auto identification technology and its impact on patient safety in the Operating Room of the Future.

    PubMed

    Egan, Marie T; Sandberg, Warren S

    2007-03-01

    Automatic identification technologies, such as bar coding and radio frequency identification, are ubiquitous in everyday life but virtually nonexistent in the operating room. User expectations, based on everyday experience with automatic identification technologies, have generated much anticipation that these systems will improve readiness, workflow, and safety in the operating room, with minimal training requirements. We report, in narrative form, a multi-year experience with various automatic identification technologies in the Operating Room of the Future Project at Massachusetts General Hospital. In each case, the additional human labor required to make these ;labor-saving' technologies function in the medical environment has proved to be their undoing. We conclude that while automatic identification technologies show promise, significant barriers to realizing their potential still exist. Nevertheless, overcoming these obstacles is necessary if the vision of an operating room of the future in which all processes are monitored, controlled, and optimized is to be achieved.

  17. Bio-robots automatic navigation with electrical reward stimulation.

    PubMed

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  18. Automatic lumbar vertebrae detection based on feature fusion deep learning for partial occluded C-arm X-ray images.

    PubMed

    Yang Li; Wei Liang; Yinlong Zhang; Haibo An; Jindong Tan

    2016-08-01

    Automatic and accurate lumbar vertebrae detection is an essential step of image-guided minimally invasive spine surgery (IG-MISS). However, traditional methods still require human intervention due to the similarity of vertebrae, abnormal pathological conditions and uncertain imaging angle. In this paper, we present a novel convolutional neural network (CNN) model to automatically detect lumbar vertebrae for C-arm X-ray images. Training data is augmented by DRR and automatic segmentation of ROI is able to reduce the computational complexity. Furthermore, a feature fusion deep learning (FFDL) model is introduced to combine two types of features of lumbar vertebrae X-ray images, which uses sobel kernel and Gabor kernel to obtain the contour and texture of lumbar vertebrae, respectively. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model performs more accurate in abnormal cases with pathologies and surgical implants in multi-angle views.

  19. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  20. Overlearned responses hinder S-R binding.

    PubMed

    Moeller, Birte; Frings, Christian

    2017-01-01

    Two mechanisms that are important for human action control are the integration of individual action plans (see Hommel, Müsseler, Aschersleben, & Prinz, 2001) and the automatization of overlearned actions to familiar stimuli (see Logan, 1988). In the present study, we analyzed the influence of automatization on action plan integration. Integration with pronunciation responses were compared for response incompatible word and nonword stimuli. Stimulus-response binding effects were observed for nonwords. In contrast, words that automatically triggered an overlearned pronunciation response were not integrated with pronunciation of a different word. That is, automatized response retrieval hindered binding effects regarding the retrieving stimulus and a new response. The results are a first indication of the way that binding and learning processes interact, and might also be a first step to understanding the more complex interdependency of the processes responsible for stimulus-response binding in action control and stimulus-response associations in learning research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Automatic processing of spoken dialogue in the home hemodialysis domain.

    PubMed

    Lacson, Ronilda; Barzilay, Regina

    2005-01-01

    Spoken medical dialogue is a valuable source of information, and it forms a foundation for diagnosis, prevention and therapeutic management. However, understanding even a perfect transcript of spoken dialogue is challenging for humans because of the lack of structure and the verbosity of dialogues. This work presents a first step towards automatic analysis of spoken medical dialogue. The backbone of our approach is an abstraction of a dialogue into a sequence of semantic categories. This abstraction uncovers structure in informal, verbose conversation between a caregiver and a patient, thereby facilitating automatic processing of dialogue content. Our method induces this structure based on a range of linguistic and contextual features that are integrated in a supervised machine-learning framework. Our model has a classification accuracy of 73%, compared to 33% achieved by a majority baseline (p<0.01). This work demonstrates the feasibility of automatically processing spoken medical dialogue.

  2. Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs

    NASA Astrophysics Data System (ADS)

    Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio

    2017-03-01

    The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.

  3. Automatic Sleep Stage Determination by Multi-Valued Decision Making Based on Conditional Probability with Optimal Parameters

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi

    Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.

  4. Sharing control with haptics: seamless driver support from manual to automatic control.

    PubMed

    Mulder, Mark; Abbink, David A; Boer, Erwin R

    2012-10-01

    Haptic shared control was investigated as a human-machine interface that can intuitively share control between drivers and an automatic controller for curve negotiation. As long as automation systems are not fully reliable, a role remains for the driver to be vigilant to the system and the environment to catch any automation errors. The conventional binary switches between supervisory and manual control has many known issues, and haptic shared control is a promising alternative. A total of 42 respondents of varying age and driving experience participated in a driving experiment in a fixed-base simulator, in which curve negotiation behavior during shared control was compared to during manual control, as well as to three haptic tunings of an automatic controller without driver intervention. Under the experimental conditions studied, the main beneficial effect of haptic shared control compared to manual control was that less control activity (16% in steering wheel reversal rate, 15% in standard deviation of steering wheel angle) was needed for realizing an improved safety performance (e.g., 11% in peak lateral error). Full automation removed the need for any human control activity and improved safety performance (e.g., 35% in peak lateral error) but put the human in a supervisory position. Haptic shared control kept the driver in the loop, with enhanced performance at reduced control activity, mitigating the known issues that plague full automation. Haptic support for vehicular control ultimately seeks to intuitively combine human intelligence and creativity with the benefits of automation systems.

  5. Remote Safety Monitoring for Elderly Persons Based on Omni-Vision Analysis

    PubMed Central

    Xiang, Yun; Tang, Yi-ping; Ma, Bao-qing; Yan, Hang-chen; Jiang, Jun; Tian, Xu-yuan

    2015-01-01

    Remote monitoring service for elderly persons is important as the aged populations in most developed countries continue growing. To monitor the safety and health of the elderly population, we propose a novel omni-directional vision sensor based system, which can detect and track object motion, recognize human posture, and analyze human behavior automatically. In this work, we have made the following contributions: (1) we develop a remote safety monitoring system which can provide real-time and automatic health care for the elderly persons and (2) we design a novel motion history or energy images based algorithm for motion object tracking. Our system can accurately and efficiently collect, analyze, and transfer elderly activity information and provide health care in real-time. Experimental results show that our technique can improve the data analysis efficiency by 58.5% for object tracking. Moreover, for the human posture recognition application, the success rate can reach 98.6% on average. PMID:25978761

  6. Eyes on the bodies: an eye tracking study on deployment of visual attention among females with body dissatisfaction.

    PubMed

    Gao, Xiao; Deng, Xiao; Yang, Jia; Liang, Shuang; Liu, Jie; Chen, Hong

    2014-12-01

    Visual attentional bias has important functions during the appearance social comparisons. However, for the limitations of experimental paradigms or analysis methods in previous studies, the time course of attentional bias to thin and fat body images among women with body dissatisfaction (BD) has still been unclear. In using free reviewing task combined with eye movement tracking, and based on event-related analyses of the critical first eye movement events, as well as epoch-related analyses of gaze durations, the current study investigated different attentional bias components to body shape/part images during 15s presentation time among 34 high BD and 34 non-BD young women. In comparison to the controls, women with BD showed sustained maintenance biases on thin and fat body images during both early automatic and late strategic processing stages. This study highlights a clear need for research on the dynamics of attentional biases related to body image and eating disturbances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Body dissatisfaction and attentional bias to thin bodies.

    PubMed

    Glauert, Rebecca; Rhodes, Gillian; Fink, Bernhard; Grammer, Karl

    2010-01-01

    Evidence for attentional biases to weight- and shape-related information in women with eating concerns is inconclusive. We investigated whether body dissatisfaction is associated with an attentional bias toward thin bodies using a modified dot probe task. In three studies, we found that undergraduate females were faster to discriminate the direction of an arrow cue when it appeared in the location previously occupied by a thin than a fat body. This attentional bias toward thin bodies was found using extreme stimuli (thin and fat bodies) presented for 500 ms (Experiment 1), extreme stimuli presented for 150 ms (Experiment 2), and less extreme stimuli that were equated for perceived extremity, presented for 150 ms (Experiment 3). When the stimuli were equated on perceptual extremity, the more dissatisfied a woman was with her body, and the larger her own BMI, the less of an attentional bias she showed toward thin bodies. Our results indicate that women have an attentional bias to thin bodies, which appears to be automatic. Contrary to prediction, this bias was weaker in women with greater BMI and body dissatisfaction. This result offers no support for the view that selective attention to thin bodies is causally related to body dissatisfaction.

  8. Segmentation and Recognition of Continuous Human Activity

    DTIC Science & Technology

    2001-01-01

    This paper presents a methodology for automatic segmentation and recognition of continuous human activity . We segment a continuous human activity into...commencement or termination. We use single action sequences for the training data set. The test sequences, on the other hand, are continuous sequences of human ... activity that consist of three or more actions in succession. The system has been tested on continuous activity sequences containing actions such as

  9. Research Directory for Manpower, Personnel, Training, and Human Factors.

    DTIC Science & Technology

    1991-01-01

    Enhance Automatic Recognition of Speech in Noisy, Highly Stressful Environments Cofod R* Lica Systems Inc 703-359-0996 Smart Contract Preparation...Lab 301-278-2946 Smart Contract Preparation Expediter Frezell T LTCOL Human Engineering Lab 301-278-5998 Impulse Noise Hazard Information Processing R&D

  10. INTRODUCTION OF MANY-PARTICLE VARIABLES FOR THE TREATMENT OF SPECIAL TRANSLATIONALLY INVARIANT MANY-BODY PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobius, P.

    1960-05-01

    An attempt is raade to treat special translationally invariant many-body problems by coordinate transformations introducing many-particle variables. These are adapted coordinates of such kind that the condition of translational invariance and the Pauli principle can be satisfied automatically. They are homogeneous functions of the particle coordinates obeying certain differential equations. The Schrodinger equation is transformed into these variables. There exist examples of systems of interacting particles which can be separated exactly in the many-particle variables but not in the particle coordinates. (auth)

  11. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  12. From the seat of heat and intelligence to regular heart activity as automatic movement: progress in cardiology up to 1900 from a Dutch perspective.

    PubMed

    van Tellingen, C

    2009-04-01

    The development in cardiovascular anatomy and physiology is described from a Dutch perspective. The newly formed Republic in the 17th century, with its pragmatism and business-like character, became an ideal breeding ground for Descartes' new philosophy. His separation of body and soul provided a mechanistic model of body structure and formed a firm basis for anatomical and physiological research to become catalysts for a tempestuous growth and progress in medicine. (Neth Heart J 2009;17:130-5.).

  13. Automatic detection of measurement points for non-contact vibrometer-based diagnosis of cardiac arrhythmias

    NASA Astrophysics Data System (ADS)

    Metzler, Jürgen; Kroschel, Kristian; Willersinn, Dieter

    2017-03-01

    Monitoring of the heart rhythm is the cornerstone of the diagnosis of cardiac arrhythmias. It is done by means of electrocardiography which relies on electrodes attached to the skin of the patient. We present a new system approach based on the so-called vibrocardiogram that allows an automatic non-contact registration of the heart rhythm. Because of the contactless principle, the technique offers potential application advantages in medical fields like emergency medicine (burn patient) or premature baby care where adhesive electrodes are not easily applicable. A laser-based, mobile, contactless vibrometer for on-site diagnostics that works with the principle of laser Doppler vibrometry allows the acquisition of vital functions in form of a vibrocardiogram. Preliminary clinical studies at the Klinikum Karlsruhe have shown that the region around the carotid artery and the chest region are appropriate therefore. However, the challenge is to find a suitable measurement point in these parts of the body that differs from person to person due to e. g. physiological properties of the skin. Therefore, we propose a new Microsoft Kinect-based approach. When a suitable measurement area on the appropriate parts of the body are detected by processing the Kinect data, the vibrometer is automatically aligned on an initial location within this area. Then, vibrocardiograms on different locations within this area are successively acquired until a sufficient measuring quality is achieved. This optimal location is found by exploiting the autocorrelation function.

  14. Proceeding of human exoskeleton technology and discussions on future research

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Xie, Hanxing; Li, Weilin; Yao, Zheng

    2014-05-01

    After more than half a century of intense efforts, the development of exoskeleton has seen major advances, and several remarkable achievements have been made. Reviews of developing history of exoskeleton are presented, both in active and passive categories. Major models are introduced, and typical technologies are commented on. Difficulties in control algorithm, driver system, power source, and man-machine interface are discussed. Current researching routes and major developing methods are mapped and critically analyzed, and in the process, some key problems are revealed. First, the exoskeleton is totally different from biped robot, and relative studies based on the robot technologies are considerably incorrect. Second, biomechanical studies are only used to track the motion of the human body, the interaction between human and machines are seldom studied. Third, the traditional developing ways which focused on servo-controlling have inborn deficiency from making portable systems. Research attention should be shifted to the human side of the coupling system, and the human ability to learn and adapt should play a more significant role in the control algorithms. Having summarized the major difficulties, possible future works are discussed. It is argued that, since a distinct boundary cannot be drawn in such strong-coupling human-exoskeleton system, the more complex the control system gets, the more difficult it is for the user to learn to use. It is suggested that the exoskeleton should be treated as a simple wearable tool, and downgrading its automatic level may be a change toward a brighter research outlook. This effort at simplification is definitely not easy, as it necessitates theoretical supports from fields such as biomechanics, ergonomics, and bionics.

  15. 39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. THE STAMP AN MORTAR BOX ARE ON THE LEFT AND THE FEEDER WITH ITS FEEDER DISK IS ON THE RIGHT. NOTE THE COLLAR ON THE CENTER STAMP STEM (UPPER LEFT CORNER OF THE IMAGE) THAT ACTIVATES THE LEVER IN THE CENTER OF THE PHOTO. THE COLLAR IS POSITIONED SUCH THAT WHEN THE LEVEL OF THE MATERIAL REACHES A LOW POINT IN THE MORTAR BOX IT PUSHES DOWN ON THE LEVER WHICH IN TURN ACTIVATES THE AUTOMATIC FEEDER DRIVE MECHANISM WHICH THEM DELIVERS ORE INTO THE BACKSIDE OF THE MORTAR BOX. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  16. Dynamics of flexible bodies in tree topology - A computer oriented approach

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Vandervoort, R. J.; Likins, P. W.

    1984-01-01

    An approach suited for automatic generation of the equations of motion for large mechanical systems (i.e., large space structures, mechanisms, robots, etc.) is presented. The system topology is restricted to a tree configuration. The tree is defined as an arbitrary set of rigid and flexible bodies connected by hinges characterizing relative translations and rotations of two adjoining bodies. The equations of motion are derived via Kane's method. The resulting equation set is of minimum dimension. Dynamical equations are imbedded in a computer program called TREETOPS. Extensive control simulation capability is built in the TREETOPS program. The simulation is driven by an interactive set-up program resulting in an easy to use analysis tool.

  17. A square-wave wavelength modulation system for automatic background correction in carbon furnace atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Bezur, L.; Marshall, J.; Ottaway, J. M.

    A square-wave wavelength modulation system, based on a rotating quartz chopper with four quadrants of different thicknesses, has been developed and evaluated as a method for automatic background correction in carbon furnace atomic emission spectrometry. Accurate background correction is achieved for the residual black body radiation (Rayleigh scatter) from the tube wall and Mie scatter from particles generated by a sample matrix and formed by condensation of atoms in the optical path. Intensity modulation caused by overlap at the edges of the quartz plates and by the divergence of the optical beam at the position of the modulation chopper has been investigated and is likely to be small.

  18. Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN

    NASA Technical Reports Server (NTRS)

    Griffis, H.

    1985-01-01

    Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.

  19. [Development of an automatic pneumatic tourniquet system that determines pressures in synchrony with systolic blood pressure].

    PubMed

    Liu, Hongyun; Li, Kaiyuan; Zhang, Zhengbo; Guo, Junyan; Wang, Weidong

    2012-11-01

    The correlation coefficients between arterial occlusion pressure and systolic blood pressure, diastolic blood pressure, limb circumference, body mass etc were obtained through healthy volunteer experiments, in which tourniquet were applied on upper/lower extremities. The prediction equations were derived from the data of experiments by multiple regression analysis. Based on the microprocessor C8051F340, a new pneumatic tourniquet system that can determine tourniquet pressure in synchrony with systolic blood pressure was developed and verified the function and stability of designed system. Results showed that the pneumatic tourniquet which automatically adjusts occlusion pressure in accordance with systolic blood pressure could stop the flow of blood to get a bloodless field.

  20. Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    DTIC Science & Technology

    2016-09-09

    prenticeship Scheduling (COVAS), which performs ma- chine learning using human expert demonstration, in conjunction with optimization, to automatically and ef...ficiently produce optimal solutions to challenging real- world scheduling problems. COVAS first learns a policy from human scheduling demonstration via...apprentice- ship learning , then uses this initial solution to provide a tight bound on the value of the optimal solution, thereby substantially

  1. Evaluation of Propagation Characteristics Using the Human Body as an Antenna

    PubMed Central

    Li, Jingzhen; Liu, Yuhang; Hao, Yang

    2017-01-01

    In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements. PMID:29232905

  2. Evaluation of Propagation Characteristics Using the Human Body as an Antenna.

    PubMed

    Li, Jingzhen; Nie, Zedong; Liu, Yuhang; Wang, Lei; Hao, Yang

    2017-12-11

    In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements.

  3. A hypothetical neurological association between dehumanization and human rights abuses.

    PubMed

    Murrow, Gail B; Murrow, Richard

    2015-07-01

    Dehumanization is anecdotally and historically associated with reduced empathy for the pain of dehumanized individuals and groups and with psychological and legal denial of their human rights and extreme violence against them. We hypothesize that 'empathy' for the pain and suffering of dehumanized social groups is automatically reduced because, as the research we review suggests, an individual's neural mechanisms of pain empathy best respond to (or produce empathy for) the pain of people whom the individual automatically or implicitly associates with her or his own species. This theory has implications for the philosophical conception of 'human' and of 'legal personhood' in human rights jurisprudence. It further has implications for First Amendment free speech jurisprudence, including the doctrine of 'corporate personhood' and consideration of the potential harm caused by dehumanizing hate speech. We suggest that the new, social neuroscience of empathy provides evidence that both the vagaries of the legal definition or legal fiction of 'personhood' and hate speech that explicitly and implicitly dehumanizes may (in their respective capacities to artificially humanize or dehumanize) manipulate the neural mechanisms of pain empathy in ways that could pose more of a true threat to human rights and rights-based democracy than previously appreciated.

  4. Psilocybin-Induced Deficits in Automatic and Controlled Inhibition are Attenuated by Ketanserin in Healthy Human Volunteers

    PubMed Central

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-01-01

    The serotonin-2A receptor (5-HT2AR) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT2AR or 5-HT1AR agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT2A/2CR antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT2AR stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT2AR system. PMID:21956447

  5. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers.

    PubMed

    Quednow, Boris B; Kometer, Michael; Geyer, Mark A; Vollenweider, Franz X

    2012-02-01

    The serotonin-2A receptor (5-HT(2A)R) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and response inhibition in humans, but it is unclear so far whether the 5-HT(2A)R or 5-HT(1A)R agonist properties of its bioactive metabolite psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in healthy humans could be attenuated by the 5-HT(2A/2C)R antagonist ketanserin. A total of 16 healthy participants received placebo, ketanserin (40 mg p.o.), psilocybin (260 μg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are attributable to 5-HT(2A)R stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to changes within the 5-HT(2A)R system.

  6. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  7. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  8. A Measurement Model of Gestures in an Embodied Learning Environment: Accounting for Temporal Dependencies

    ERIC Educational Resources Information Center

    Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V.

    2017-01-01

    Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…

  9. The Links between Handwriting and Composing for Y6 Children

    ERIC Educational Resources Information Center

    Medwell, Jane; Strand, Steve; Wray, David

    2009-01-01

    Although handwriting is often considered a matter of presentation, a substantial body of international research suggests that the role of handwriting in children's composing has been neglected. Automaticity in handwriting is now seen as of key importance in composing but this proposition is relatively untested in the UK and the assumption has been…

  10. Sleepers' Lag: Study on Motion and Attention

    ERIC Educational Resources Information Center

    Raca, Mirko; Tormey, Roland; Dillenbourg, Pierre

    2016-01-01

    Body language is an essential source of information in everyday communication. Low signal-to-noise ratio prevents us from using it in the automatic processing of student behaviour, an obstacle that we are slowly overcoming with advanced statistical methods. Instead of profiling individual behaviour of students in the classroom, the idea is to…

  11. USCG AIS Broadcast

    Science.gov Websites

    these cooler months. Did you know your body can cool 25 times faster in water than in air? That water Traffic Service began broadcasting Automatic Identification System (AIS) test messages to select test participants in the area via standard AIS channels. These broadcasts-originating from MMSI 003660471-are less

  12. Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine

    NASA Astrophysics Data System (ADS)

    Narang, Benjamin; Phillips, Michael; Knapp, Karen; Appelboam, Andy; Reuben, Adam; Slabaugh, Greg

    2015-03-01

    Assessment of the cervical spine using x-ray radiography is an important task when providing emergency room care to trauma patients suspected of a cervical spine injury. In routine clinical practice, a physician will inspect the alignment of the cervical spine vertebrae by mentally tracing three alignment curves along the anterior and posterior sides of the cervical vertebral bodies, as well as one along the spinolaminar junction. In this paper, we propose an algorithm to semi-automatically delineate the spinolaminar junction curve, given a single reference point and the corners of each vertebral body. From the reference point, our method extracts a region of interest, and performs template matching using normalized cross-correlation to find matching regions along the spinolaminar junction. Matching points are then fit to a third order spline, producing an interpolating curve. Experimental results demonstrate promising results, on average producing a modified Hausdorff distance of 1.8 mm, validated on a dataset consisting of 29 patients including those with degenerative change, retrolisthesis, and fracture.

  13. Automatic location of disruption times in JET

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Vega, J.; Murari, A.

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  14. A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation

    PubMed Central

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-01-01

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  15. On the recognition of emotional vocal expressions: motivations for a holistic approach.

    PubMed

    Esposito, Anna; Esposito, Antonietta M

    2012-10-01

    Human beings seem to be able to recognize emotions from speech very well and information communication technology aims to implement machines and agents that can do the same. However, to be able to automatically recognize affective states from speech signals, it is necessary to solve two main technological problems. The former concerns the identification of effective and efficient processing algorithms capable of capturing emotional acoustic features from speech sentences. The latter focuses on finding computational models able to classify, with an approximation as good as human listeners, a given set of emotional states. This paper will survey these topics and provide some insights for a holistic approach to the automatic analysis, recognition and synthesis of affective states.

  16. The virtual craniofacial patient: 3D jaw modeling and animation.

    PubMed

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  17. Real-Time Fall Risk Assessment Using Functional Reach Test.

    PubMed

    Williams, Brian; Allen, Brandon; Hu, Zhen; True, Hanna; Cho, Jin; Harris, Austin; Fell, Nancy; Sartipi, Mina

    2017-01-01

    Falls are common and dangerous for survivors of stroke at all stages of recovery. The widespread need to assess fall risk in real time for individuals after stroke has generated emerging requests for a reliable, inexpensive, quantifiable, and remote clinical measure/tool. In order to meet these requests, we explore the Functional Reach Test (FRT) for real-time fall risk assessment and implement the FRT function in mStroke , a real-time and automatic mobile health system for poststroke recovery and rehabilitation. mStroke is designed, developed, and delivered as an Application (App) running on a hardware platform consisting of an iPad and one or two wireless body motion sensors based on different mobile health functions. The FRT function in mStroke is extensively tested on healthy human subjects to verify its concept and feasibility. Preliminary performance will be presented to justify the further exploration of the FRT function in mStroke through clinical trials on individuals after stroke, which may guide its ubiquitous exploitation in the near future.

  18. Optimizing Automatic Deployment Using Non-functional Requirement Annotations

    NASA Astrophysics Data System (ADS)

    Kugele, Stefan; Haberl, Wolfgang; Tautschnig, Michael; Wechs, Martin

    Model-driven development has become common practice in design of safety-critical real-time systems. High-level modeling constructs help to reduce the overall system complexity apparent to developers. This abstraction caters for fewer implementation errors in the resulting systems. In order to retain correctness of the model down to the software executed on a concrete platform, human faults during implementation must be avoided. This calls for an automatic, unattended deployment process including allocation, scheduling, and platform configuration.

  19. An intelligent system for real time automatic defect inspection on specular coated surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Parker, Johné M.; Hou, Zhen

    2005-07-01

    Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.

  20. 32 CFR 2001.26 - Automatic declassification exemption markings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... exemption. (5) Agencies need not apply a “25X” marking to individual documents contained in a file series...

  1. 32 CFR 2001.26 - Automatic declassification exemption markings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... exemption. (5) Agencies need not apply a “25X” marking to individual documents contained in a file series...

  2. 32 CFR 2001.26 - Automatic declassification exemption markings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... exemption. (5) Agencies need not apply a “25X” marking to individual documents contained in a file series...

  3. 32 CFR 2001.26 - Automatic declassification exemption markings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... human intelligence source, or key design concepts of weapons of mass destruction, the revised... or a human intelligence source, or key design concepts of weapons of mass destruction, are exempt... key design concepts of weapons of mass destruction, the marking shall be “50X2-WMD.” (3) In...

  4. Human body and head characteristics as a communication medium for Body Area Network.

    PubMed

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  5. Sampling theory and automated simulations for vertical sections, applied to human brain.

    PubMed

    Cruz-Orive, L M; Gelšvartas, J; Roberts, N

    2014-02-01

    In recent years, there have been substantial developments in both magnetic resonance imaging techniques and automatic image analysis software. The purpose of this paper is to develop stereological image sampling theory (i.e. unbiased sampling rules) that can be used by image analysts for estimating geometric quantities such as surface area and volume, and to illustrate its implementation. The methods will ideally be applied automatically on segmented, properly sampled 2D images - although convenient manual application is always an option - and they are of wide applicability in many disciplines. In particular, the vertical sections design to estimate surface area is described in detail and applied to estimate the area of the pial surface and of the boundary between cortex and underlying white matter (i.e. subcortical surface area). For completeness, cortical volume and mean cortical thickness are also estimated. The aforementioned surfaces were triangulated in 3D with the aid of FreeSurfer software, which provided accurate surface area measures that served as gold standards. Furthermore, a software was developed to produce digitized trace curves of the triangulated target surfaces automatically from virtual sections. From such traces, a new method (called the 'lambda method') is presented to estimate surface area automatically. In addition, with the new software, intersections could be counted automatically between the relevant surface traces and a cycloid test grid for the classical design. This capability, together with the aforementioned gold standard, enabled us to thoroughly check the performance and the variability of the different estimators by Monte Carlo simulations for studying the human brain. In particular, new methods are offered to split the total error variance into the orientations, sectioning and cycloid components. The latter prediction was hitherto unavailable--one is proposed here and checked by way of simulations on a given set of digitized vertical sections with automatically superimposed cycloid grids of three different sizes. Concrete and detailed recommendations are given to implement the methods. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  6. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  7. HRA Aerospace Challenges

    NASA Technical Reports Server (NTRS)

    DeMott, Diana

    2013-01-01

    Compared to equipment designed to perform the same function over and over, humans are just not as reliable. Computers and machines perform the same action in the same way repeatedly getting the same result, unless equipment fails or a human interferes. Humans who are supposed to perform the same actions repeatedly often perform them incorrectly due to a variety of issues including: stress, fatigue, illness, lack of training, distraction, acting at the wrong time, not acting when they should, not following procedures, misinterpreting information or inattention to detail. Why not use robots and automatic controls exclusively if human error is so common? In an emergency or off normal situation that the computer, robotic element, or automatic control system is not designed to respond to, the result is failure unless a human can intervene. The human in the loop may be more likely to cause an error, but is also more likely to catch the error and correct it. When it comes to unexpected situations, or performing multiple tasks outside the defined mission parameters, humans are the only viable alternative. Human Reliability Assessments (HRA) identifies ways to improve human performance and reliability and can lead to improvements in systems designed to interact with humans. Understanding the context of the situation that can lead to human errors, which include taking the wrong action, no action or making bad decisions provides additional information to mitigate risks. With improved human reliability comes reduced risk for the overall operation or project.

  8. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.

    PubMed

    Meyer, Bernd T; Brand, Thomas; Kollmeier, Birger

    2011-01-01

    The aim of this study is to quantify the gap between the recognition performance of human listeners and an automatic speech recognition (ASR) system with special focus on intrinsic variations of speech, such as speaking rate and effort, altered pitch, and the presence of dialect and accent. Second, it is investigated if the most common ASR features contain all information required to recognize speech in noisy environments by using resynthesized ASR features in listening experiments. For the phoneme recognition task, the ASR system achieved the human performance level only when the signal-to-noise ratio (SNR) was increased by 15 dB, which is an estimate for the human-machine gap in terms of the SNR. The major part of this gap is attributed to the feature extraction stage, since human listeners achieve comparable recognition scores when the SNR difference between unaltered and resynthesized utterances is 10 dB. Intrinsic variabilities result in strong increases of error rates, both in human speech recognition (HSR) and ASR (with a relative increase of up to 120%). An analysis of phoneme duration and recognition rates indicates that human listeners are better able to identify temporal cues than the machine at low SNRs, which suggests incorporating information about the temporal dynamics of speech into ASR systems.

  9. Automatic elastic image registration by interpolation of 3D rotations and translations from discrete rigid-body transformations.

    PubMed

    Walimbe, Vivek; Shekhar, Raj

    2006-12-01

    We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.

  10. CT dose modulation using automatic exposure control in whole-body PET/CT: effects of scout imaging direction and arm positioning.

    PubMed

    Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu

    2018-01-01

    Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.

  11. An Adaptive Monitoring Scheme for Automatic Control of Anaesthesia in dynamic surgical environments based on Bispectral Index and Blood Pressure.

    PubMed

    Yu, Yu-Ning; Doctor, Faiyaz; Fan, Shou-Zen; Shieh, Jiann-Shing

    2018-04-13

    During surgical procedures, bispectral index (BIS) is a well-known measure used to determine the patient's depth of anesthesia (DOA). However, BIS readings can be subject to interference from many factors during surgery, and other parameters such as blood pressure (BP) and heart rate (HR) can provide more stable indicators. However, anesthesiologist still consider BIS as a primary measure to determine if the patient is correctly anaesthetized while relaying on the other physiological parameters to monitor and ensure the patient's status is maintained. The automatic control of administering anesthesia using intelligent control systems has been the subject of recent research in order to alleviate the burden on the anesthetist to manually adjust drug dosage in response physiological changes for sustaining DOA. A system proposed for the automatic control of anesthesia based on type-2 Self Organizing Fuzzy Logic Controllers (T2-SOFLCs) has been shown to be effective in the control of DOA under simulated scenarios while contending with uncertainties due to signal noise and dynamic changes in pharmacodynamics (PD) and pharmacokinetic (PK) effects of the drug on the body. This study considers both BIS and BP as part of an adaptive automatic control scheme, which can adjust to the monitoring of either parameter in response to changes in the availability and reliability of BIS signals during surgery. The simulation of different control schemes using BIS data obtained during real surgical procedures to emulate noise and interference factors have been conducted. The use of either or both combined parameters for controlling the delivery Propofol to maintain safe target set points for DOA are evaluated. The results show that combing BIS and BP based on the proposed adaptive control scheme can ensure the target set points and the correct amount of drug in the body is maintained even with the intermittent loss of BIS signal that could otherwise disrupt an automated control system.

  12. Automatic Detection of Lung and Liver Lesions in 3-D Positron Emission Tomography Images: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy

    2012-02-01

    Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.

  13. Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle

    PubMed Central

    Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.

    2011-01-01

    Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877

  14. Syntax diagrams for body wave nomenclature, with generalizations for terrestrial planets

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.

    2003-04-01

    The Apollo network on the Moon constitutes the beginning of planetary seismology. In the next few decades, we may see seismometers deployed on the Moon again, on Mars, and perhaps on other terrestrial planets or satellites. Any seismological software for computation of body wave travel times on other planets should be highly versatile and be prepared for a huge variety of velocity distributions and internal structures. A suite of trial models for a planet might, for example, contain models with and without solid inner cores. It would then be useful if the software could detect physically meaningless phase names automatically without actually carrying out any computation. It would also be useful if the program were prepared to deal with features like fully solid cores, internal oceans, and varying depths of mineralogical phase changes like the olivine-spinel transition. Syntax diagrams are a standard method to describe the syntax of programming languages. They represent a graphical way to define which letter or phrase is allowed to follow a given sequence of letters. Syntax diagrams may be stored in data structures that allow automatic evaluation of a given letter sequence. Such diagrams are presented here for a generalized body wave nomenclature. Generalizations are made to overcome earth-specific notations which incorporate discontinuity depths into phase names or to distinguish olivine transitions from ice-ice transitions (as expected on the Galilean Satellites).

  15. Movement Contributes to Infants' Recognition of the Human Form

    ERIC Educational Resources Information Center

    Christie, Tamara; Slaughter, Virginia

    2010-01-01

    Three experiments demonstrate that biological movement facilitates young infants' recognition of the whole human form. A body discrimination task was used in which 6-, 9-, and 12-month-old infants were habituated to typical human bodies and then shown scrambled human bodies at the test. Recovery of interest to the scrambled bodies was observed in…

  16. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    PubMed

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  17. Registration uncertainties between 3D cone beam computed tomography and different reference CT datasets in lung stereotactic body radiation therapy.

    PubMed

    Oechsner, Markus; Chizzali, Barbara; Devecka, Michal; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona

    2016-10-26

    The aim of this study was to analyze differences in couch shifts (setup errors) resulting from image registration of different CT datasets with free breathing cone beam CTs (FB-CBCT). As well automatic as manual image registrations were performed and registration results were correlated to tumor characteristics. FB-CBCT image registration was performed for 49 patients with lung lesions using slow planning CT (PCT), average intensity projection (AIP), maximum intensity projection (MIP) and mid-ventilation CTs (MidV) as reference images. Both, automatic and manual image registrations were applied. Shift differences were evaluated between the registered CT datasets for automatic and manual registration, respectively. Furthermore, differences between automatic and manual registration were analyzed for the same CT datasets. The registration results were statistically analyzed and correlated to tumor characteristics (3D tumor motion, tumor volume, superior-inferior (SI) distance, tumor environment). Median 3D shift differences over all patients were between 0.5 mm (AIPvsMIP) and 1.9 mm (MIPvsPCT and MidVvsPCT) for the automatic registration and between 1.8 mm (AIPvsPCT) and 2.8 mm (MIPvsPCT and MidVvsPCT) for the manual registration. For some patients, large shift differences (>5.0 mm) were found (maximum 10.5 mm, automatic registration). Comparing automatic vs manual registrations for the same reference CTs, ∆AIP achieved the smallest (1.1 mm) and ∆MIP the largest (1.9 mm) median 3D shift differences. The standard deviation (variability) for the 3D shift differences was also the smallest for ∆AIP (1.1 mm). Significant correlations (p < 0.01) between 3D shift difference and 3D tumor motion (AIPvsMIP, MIPvsMidV) and SI distance (AIPvsMIP) (automatic) and also for 3D tumor motion (∆PCT, ∆MidV; automatic vs manual) were found. Using different CT datasets for image registration with FB-CBCTs can result in different 3D couch shifts. Manual registrations achieved partly different 3D shifts than automatic registrations. AIP CTs yielded the smallest shift differences and might be the most appropriate CT dataset for registration with 3D FB-CBCTs.

  18. Automatic delineation and 3D visualization of the human ventricular system using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Hatfield, Fraser N.; Dehmeshki, Jamshid

    1998-09-01

    Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.

  19. [Development of automatic urine monitoring system].

    PubMed

    Wei, Liang; Li, Yongqin; Chen, Bihua

    2014-03-01

    An automatic urine monitoring system is presented to replace manual operation. The system is composed of the flow sensor, MSP430f149 single chip microcomputer, human-computer interaction module, LCD module, clock module and memory module. The signal of urine volume is captured when the urine flows through the flow sensor and then displayed on the LCD after data processing. The experiment results suggest that the design of the monitor provides a high stability, accurate measurement and good real-time, and meets the demand of the clinical application.

  20. Automatic control of human thermal comfort with a liquid-cooled garment

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1977-01-01

    Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.

  1. Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration

    NASA Astrophysics Data System (ADS)

    Kamata, M.; Imahoko, T.; Ozono, K.; Obara, M.

    We have developed an automatic pulsewidth-adjustable femtosecond Ti:Sapphire laser system that can generate an output of 50 fs-1 ps in duration, and sub-mJ/pulse at a repetition rate of 1 kpps. The automatic pulse compressor enables one to control the pulsewidth in the range of 50 fs-1 ps by use of a personal computer (PC). The compressor can change the distance in-between and the tilt angle of the grating pairs by use of two stepping motors and two piezo-electric transducer(PZT) driven actuators, respectively. Both are controlled by a PC. Therefore, not only control of the pulsewidth, but also of the optical chirp becomes easy. By use of this femtosecond laser system, we fabricated a waveguide in fused quartz. The numerical aperture is chosen to 0.007 to loosely focus the femtosecond laser. The fabricated waveguides are well controllable by the incident laser pulsewidth. We also demonstrated the ablation processing of hydroxyapatite (Ca10(PO4)6(OH)2), which is a key component of human tooth and human bone for orthopedics and dentistry. With pulsewidth tunable output from 50 fs through 2 ps at 1 kpps, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs-2-ps laser ablation. We also demonstrated the precise ablation processing of human tooth enamel with 2 ps Ti:Sapphire laser.

  2. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    NASA Astrophysics Data System (ADS)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  3. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.

  4. Contributions of visual and embodied expertise to body perception.

    PubMed

    Reed, Catherine L; Nyberg, Andrew A; Grubb, Jefferson D

    2012-01-01

    Recent research has demonstrated that our perception of the human body differs from that of inanimate objects. This study investigated whether the visual perception of the human body differs from that of other animate bodies and, if so, whether that difference could be attributed to visual experience and/or embodied experience. To dissociate differential effects of these two types of expertise, inversion effects (recognition of inverted stimuli is slower and less accurate than recognition of upright stimuli) were compared for two types of bodies in postures that varied in typicality: humans in human postures (human-typical), humans in dog postures (human-atypical), dogs in dog postures (dog-typical), and dogs in human postures (dog-atypical). Inversion disrupts global configural processing. Relative changes in the size and presence of inversion effects reflect changes in visual processing. Both visual and embodiment expertise predict larger inversion effects for human over dog postures because we see humans more and we have experience producing human postures. However, our design that crosses body type and typicality leads to distinct predictions for visual and embodied experience. Visual expertise predicts an interaction between typicality and orientation: greater inversion effects should be found for typical over atypical postures regardless of body type. Alternatively, embodiment expertise predicts a body, typicality, and orientation interaction: larger inversion effects should be found for all human postures but only for atypical dog postures because humans can map their bodily experience onto these postures. Accuracy data supported embodiment expertise with the three-way interaction. However, response-time data supported contributions of visual expertise with larger inversion effects for typical over atypical postures. Thus, both types of expertise affect the visual perception of bodies.

  5. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B. Huston

    1983-01-01

    Two support rings on a rotatable drum respectively engage conically tapered nd surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  6. System for automatically aligning a support roller system under a rotating body

    DOEpatents

    Singletary, B.H.

    1982-07-21

    Two support rings on a rotatable drum respectively engage conically tapered end surfaces of support rollers mounted on pivot universally relative to its axis of rotation and translate therealong. Rotation of the drum on differential conical support roller diameters causes pivotal steering and axial translation of support roller until roller is centered on support rings.

  7. Further Evidence of Complex Motor Dysfunction in Drug Naive Children with Autism Using Automatic Motion Analysis of Gait

    ERIC Educational Resources Information Center

    Nobile, Maria; Perego, Paolo; Piccinini, Luigi; Mani, Elisa; Rossi, Agnese; Bellina, Monica; Molteni, Massimo

    2011-01-01

    In order to increase the knowledge of locomotor disturbances in children with autism, and of the mechanism underlying them, the objective of this exploratory study was to reliably and quantitatively evaluate linear gait parameters (spatio-temporal and kinematic parameters), upper body kinematic parameters, walk orientation and smoothness using an…

  8. Modeling, Simulation, and Flight Test for Automatic Flight Control of the Condor Hybrid-Electric Remote Piloted Aircraft

    DTIC Science & Technology

    2012-03-01

    comprehensive explanations (Yechout, 2003), (Nelson, 1998). Figure 9: USAFA/Brandt Jet5 Aircraft Modeling Program 18 2.5.1 Dynamic Aircraft...16 2.5.1 Dynamic Aircraft Stability Modes .......................................................... 18 2.5.2 State...12 Figure 7: Body-Fixed Reference Frame ........................................................................... 13 Figure 8: Static and Dynamic

  9. [Research progress on free radicals in human body].

    PubMed

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  10. An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device

    USDA-ARS?s Scientific Manuscript database

    Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...

  11. Automatic Control of Robot Motion.

    DTIC Science & Technology

    1987-12-01

    8217It. I II. FUDMWALRBTC A. INTRODUCTION d The word robotics was invented by the Isaac Asimov , one of the best of the science fiction writers, to describe...8217, Asimov propounded the famous Three Laws of Robotics. 1. A robot must not harm a human being or, through inaction, allow human being to come to harm

  12. Using Novel Word Context Measures to Predict Human Ratings of Lexical Proficiency

    ERIC Educational Resources Information Center

    Berger, Cynthia M.; Crossley, Scott A.; Kyle, Kristopher

    2017-01-01

    This study introduces a model of lexical proficiency based on novel computational indices related to word context. The indices come from an updated version of the Tool for the Automatic Analysis of Lexical Sophistication (TAALES) and include associative, lexical, and semantic measures of word context. Human ratings of holistic lexical proficiency…

  13. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    ERIC Educational Resources Information Center

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  14. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels

    PubMed Central

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca2+-activated K+ channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity. PMID:26725737

  15. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    PubMed

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  16. Motion-adaptive model-assisted compatible coding with spatiotemporal scalability

    NASA Astrophysics Data System (ADS)

    Lee, JaeBeom; Eleftheriadis, Alexandros

    1997-01-01

    We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.

  17. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    PubMed

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Microwave non-contact imaging of subcutaneous human body tissues.

    PubMed

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  19. Development of a digital automatic control law for steep glideslope capture and flare

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1977-01-01

    A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.

  20. In-to-out body path loss for wireless radio frequency capsule endoscopy in a human body.

    PubMed

    Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W

    2016-08-01

    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and human body model are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-to-out-body WBAN systems.

Top