Wireless sensor network effectively controls center pivot irrigation of sorghum
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
Performance of a wireless sensor network for crop monitoring and irrigation control
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
Integration of wireless sensor networks into automatic irrigation scheduling of a center pivot
USDA-ARS?s Scientific Manuscript database
A six-span center pivot system was used as a platform for testing two wireless sensor networks (WSN) of infrared thermometers. The cropped field was a semi-circle, divided into six pie shaped sections of which three were irrigated manually and three were irrigated automatically based on the time tem...
NASA Astrophysics Data System (ADS)
Al-Ghobari, Hussein M.; Mohammad, Fawzi S.
2011-12-01
Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in controlling irrigation water and has been proven to be a good mean to determine the water requirements for crops and to schedule irrigation automatically.
Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture
Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz
2014-01-01
We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178
Lama, Daniel J; Owyong, Michael; Parkhomenko, Egor; Patel, Roshan M; Landman, Jaime; Clayman, Ralph V
2018-05-01
To evaluate the flow characteristics produced by a manual and automated-pump irrigation system connected to a flexible ureteroscope. An in vitro analysis of a manual hand-pump infuser (HP) and the UROMAT Endoscopic Automatic System for Irrigation ® (E.A.S.I.) pump was performed. Standard irrigation tubing was used to connect a three-way valve to a flexible ureteroscope, the irrigation system, and a digital manometer. Flow rate and irrigation pressure measurements were recorded over a 15-minute period using pressure settings of 150 and 200 mm Hg for both irrigation pump systems. Once the HP was inflated to the initial pressure, it was not reinflated over the course of the trial. Data were collected with the working channel unoccupied and with placement of a 200 μm (0.6F) holmium laser fiber, 1.7F nitinol stone retrieval basket, or 2.67F guidewire. The difference in pressure measured at the site of inflow of irrigation to the ureteroscope was significantly greater using the HP compared to the E.A.S.I. pump at pressure settings of 150 mm Hg with and without the use of ureteroscopic instrumentation (p < 0.001), and at 200 mm Hg with instrumentation in the working channel (p < 0.01). There was no significant difference in the flow rate of irrigation through the open-channel ureteroscope over the course of 5 minutes between the two pump systems. The flow rates of irrigation produced by the HP and the E.A.S.I. pump are similar at pressures of 150 and 200 mm Hg irrespective of the occupancy of a ureteroscope's working channel during the first 5-minutes of irrigation. Irrigation pressure at the entry site of the ureteroscope is subject to significant variability with use of the HP compared to the E.A.S.I. pump irrigation system.
USDA-ARS?s Scientific Manuscript database
Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...
Application of Canal Automation at the Central Arizona Irrigation and Drainage District
USDA-ARS?s Scientific Manuscript database
The Central Arizona Irrigation and Drainage District (CAIDD) began delivering water to users in 1987. Although designed for automatic control, the system was run manually until a homemade SCADA (Supervisory Control and Data Acquisition) system was developed by a district employee. In 2002, problem...
NASA Astrophysics Data System (ADS)
Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.
2018-05-01
Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.
Automatic aeroponic irrigation system based on Arduino’s platform
NASA Astrophysics Data System (ADS)
Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.
2017-06-01
The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.
Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology
NASA Astrophysics Data System (ADS)
Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian
In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.
Wireless sensor networks for irrigation management
USDA-ARS?s Scientific Manuscript database
Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...
Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng
2016-12-01
Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate-related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. A total of 146 patients were randomly divided into 2 groups-the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P < 0.05). Patients treated with automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P < 0.05). There was no significant difference between the 2 groups with regard to irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings.
Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng
2016-01-01
Abstract Background: Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate–related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. Methods: The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. Results: A total of 146 patients were randomly divided into 2 groups—the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P < 0.05). Patients treated with automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P < 0.05). There was no significant difference between the 2 groups with regard to irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). Conclusion: The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings. PMID:28033276
NASA Astrophysics Data System (ADS)
Swiech, Theoclea; Ertsen, Maurits W.; Pererya, Carlos Machicao
The pressure on irrigation is increasing worldwide, not only because of - perceived or real - high water consumption in the irrigated sector, but also because an increased world population puts stress on food production. Numerous irrigated areas around the world face similar issues of water scarcity, disparity in water distribution and deficient infrastructure. As a result, farmers are typically restricted in their production strategies. A general strategy in the irrigation sector is the introduction of so-called modern techniques in existing irrigation systems, with the aim to increase agricultural production. This paper discusses such a modernization effort in the sub-basin of Yarabamba, Arequipa, Peru, in which a reservoir is being constructed to improve water use and stimulate economic development. Based on fieldwork, including interviews and scenario modeling with WEAP, the relationships between water users, their irrigation systems and the water balances in the basin were studied. Scenario studies showed that the reservoir might alleviate the current water shortages in the sub-basin, but that restrictions in the current infrastructure and management of irrigation may be of more importance than the reservoir. Especially existing interests and actions of upstream and downstream areas appear to be important factors; these will not be automatically solved with the new reservoir.
Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model
NASA Technical Reports Server (NTRS)
Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit
2017-01-01
Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in water restricted scenarios. For example, the mean WP across 38 years of maize production was 1.1 kg/cu m for non-optimized irrigation schedules with 50 mm of seasonal available water and 2.1 kg/cu m optimized ion schedules, a 91% improvement in WP with optimized irrigation schedules. The framework described in this work could be used to estimate WP for regional to global assessments, as well as derive location specific irrigation guidance.
Conceptual Analysis of System Average Water Stability
NASA Astrophysics Data System (ADS)
Zhang, H.
2016-12-01
Averaging over time and area, the precipitation in an ecosystem (SAP - system average precipitation) depends on the average surface temperature and relative humidity (RH) in the system if uniform convection is assumed. RH depends on the evapotranspiration of the system (SAE - system average evapotranspiration). There is a non-linear relationship between SAP and SAE. Studying this relationship can lead mechanistic understanding of the ecosystem health status and trend under different setups. If SAP is higher than SAE, the system will have a water runoff which flows out through rivers. If SAP is lower than SAE, irrigation is needed to maintain the vegetation status. This presentation will give a conceptual analysis of the stability in this relationship under different assumed areas, water or forest coverages, elevations and latitudes. This analysis shows that desert is a stable system. Water circulation in basins is also stabilized at a specific SAP based on the basin profile. It further shows that deforestation will reduce SAP, and can flip the system to an irrigation required status. If no irrigation is provided, the system will automatically reduce to its stable point - desert, which is extremely difficult to turn around.
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara
2016-06-01
Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.
USDA-ARS?s Scientific Manuscript database
Water resources are limited in many agricultural areas. One method to improve the effective use of water is to improve delivery service from irrigation canals. This can be done by applying automatic control methods that control the gates in an irrigation canal. The model predictive control MPC is ...
Multivariate time series modeling of short-term system scale irrigation demand
NASA Astrophysics Data System (ADS)
Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara
2015-12-01
Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as changing water policy, continued development of water markets, drought and changing technology.
NASA Astrophysics Data System (ADS)
Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin
2010-09-01
SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged shallow aquifer through canal seepage. The water flowing out of the canal system accounted for approximately 32% of the water in the CIDS canals. The storage capacity of the CIDS canals is negatively correlated to the precipitation. In years with abundant precipitation, the volume of the surface runoff and drainage from the cropland may surpass the storage capacities of the CIDS canals, while in years with less precipitation, partial storage capacity of the CIDS canal may be occupied by the diversion water from the Yellow River. Proper maintenance of the storage capacity of the CIDS has the potential in improving the efficiency of reusing the surface runoff and field drainage for irrigation practices to mitigate the increasing water shortage along the lower Yellow River.
Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options
Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.
2015-01-01
One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty. PMID:25924963
Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.
Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L
2015-05-01
One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.
Distillation irrigation: a low-energy process for coupling water purification and drip irrigation
Constantz, J.
1989-01-01
A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.
NASA Astrophysics Data System (ADS)
Dabach, Sharon; Shani, Uri
2010-05-01
As the population grows, irrigated agriculture is using more water and fertilizers to supply the growing food demand. However, the uptake by various plants is only 30 to 50% of the water applied. The remaining water flows to surface water and groundwater and causes their contamination by fertilizers or other toxins such as herbicides or pesticides. To improve the water use efficiency of crops and decrease the drainage below the root zone, irrigation water should be applied according to the plant demand. The aim of this work is to develop an automated irrigation system based on real-time feedback from an inexpensive and reliable integrated sensing system. This system will supply water to plants according to their demand, without any user interference during the entire growth season. To achieve this goal a sensor (Geo-Tensiometer) was designed and tested. This sensor has better contact with the surrounding soil, is more reliable and much cheaper than the ceramic cup tensiometer. A lysimeter experiment was conducted to evaluate a subsurface drip irrigation regime based on the Geo-Tensiometer and compare it to a daily irrigation regime. All of the drippers were wrapped in Geo-textile. By integrating the Geo-Tensiometer within the Geo-textile which surrounds the drippers, we created a homogenous media in the entire lysimeter in which the reading of the matric potential takes place. This media, the properties of which are set and known to us, encourages root growth therein. Root density in this media is very high; therefore most of the plant water uptake is from this area. The irrigation system in treatment A irrigated when the matric potential reached a threshold which was set every morning automatically by the system. The daily treatment included a single irrigation each morning that was set to return 120% of the evapotranspiration of the previous day. All Geo-Tensiometers were connected to an automated washing system, that flushed air trapped in the Geo-Tensiometers. In treatment A, the system discharge changed according to the plant water demand. The discharge changes followed the water uptake changes during the day and during the entire growth period without any user interference. The integration of Geo-Tensiometer into the emitter system, together with the irrigation regime, maintained high and constant water content in the root zone in comparison to other irrigation methods, such as daily drip irrigation. Reading the matric potential in this media yielded better indication of water availability to the plants than sensors placed 3 cm from the emitters. In addition, the amount of water drainage below the root zone decreased significantly and therefore the threat of polluting groundwater. Furthermore, the automated flushing system eliminated the need for manual maintenance of the tensiometers creating a user friendly system.
Design of an SolidWorks-based household substrate cultivation device
NASA Astrophysics Data System (ADS)
Yi, Guo; Yueying, Wang
2018-03-01
Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.
Irrigation scheduling using soil moisture sensors
USDA-ARS?s Scientific Manuscript database
Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...
70. AVALON DAM Photographic copy of historic photo, August ...
70. AVALON DAM - Photographic copy of historic photo, August 5, 1911 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown AUTOMATIC GATES AT SPILLWAY NO. 1 - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
Mathematical models of water application for a variable rate irrigating hill-seeder
USDA-ARS?s Scientific Manuscript database
A variable rate irrigating hill-seeder can adjust water application automatically according to the difference in soil moisture content in the field to alleviate drought and save water. Two key problems to realize variable rate water application are how to determine the right amount of water for the ...
Mathematic models of water application for a variable rate irrigating hill-seeder
USDA-ARS?s Scientific Manuscript database
A variable rate irrigating hill-seeder can adjust water application automatically according to the difference in soil moisture content in the field to alleviate drought and save water. Two key problems to realize variable rate water application are how to determine the right amount of water for the ...
NASA Astrophysics Data System (ADS)
Li, Dazhi; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Jiménez Bello, Miguel Angel; Martínez Alzamora, Fernando; Vereecken, Harry
2017-04-01
Irrigated agriculture accounts worldwide for 40% of food production and 70% of fresh water withdrawals. Irrigation scheduling aims to minimize water use while maintaining the agricultural production. In this study we were concerned with the real-time automatic control of irrigation, which calculates daily water allocation by combining information from soil moisture sensors and a land surface model. The combination of soil moisture measurements and predictions by the Community Land Model (CLM) using sequential data assimilation (DA) is a promising alternative to improve the estimate of soil and plant water status. The LETKF (Local Ensemble Transform Kalman Filter) was chosen to assimilate soil water content measured by FDR (Frequency Domain Reflectometry) into CLM and improve the initial (soil moisture) conditions for the next model run. In addition, predictions by the GFS (Global Forecast System) atmospheric simulation model were used as atmospheric input data for CLM to predict an ensemble of possible soil moisture evolutions for the next days. The difference between predicted and target soil water content is defined as the water deficit, and the irrigation amount was calculated by the integrated water deficit over the root zone. The corresponding irrigation time to apply the required water was introduced in SCADA (supervisory control and data acquisition system) for each citrus field. In total 6 fields were irrigated according our optimization approach including data assimilation (CLM-DA) and there were also 2 fields following the FAO (Food and Agriculture Organization) water balance method and 4 fields controlled by farmers as reference. During the real-time irrigation campaign in Valencia from July to October in 2015 and June to October in 2016, the applied irrigation amount, stem water potential and soil moisture content were recorded. The data indicated that 5% 20% less irrigation water was needed for the CLM-DA scheduled fields than for the other fields following the FAO or farmers' method. Stem water potential data indicated that the CLM-DA fields were not suffering from water stress during most of the irrigation period. Even though the CLM-DA fields received the least irrigation water, the orange production was not suppressed either. Our results show the water saving potential of the CLM-DA method compared to other traditional irrigation methods.
East Europe Report, Economic and Industrial Affairs, No. 2431
1983-08-03
of automatic control systems in this branch of transportation, as well as in reservations and ticket sales. An agreement on research is...cooperative, the labor is organized in common and the remuneration is done in relation to the quantity and quality of the labor performed, the output...use in the state supply; f) The rational and efficient exploitation of the irrigation facilities, the drainage facilities and those for control of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Gary; Wilcox, Edmund; Olsen, Daniel
California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agriculturalmore » irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as conducting a more comprehensive survey of California growers.« less
NASA Astrophysics Data System (ADS)
Kersebaum, K. C.; Gandorfer, M.; Wegehenkel, M.
2012-04-01
The study shows climate change impacts on wheat production in selected regions across Germany. To estimate yield and economic effects the agro-ecosystem model HERMES was used. The model performed runs using 2 different releases of the model WETTREG providing statistically downscaled climate change scenarios for the weather station network of the German Weather Service. Simulations were done using intersected GIS information on soil types and land use identifying the most relevant sites for wheat production. The production risks for wheat yields at the middle of this century were compared to a reference of the present climate. The irrigation demand was determined by the model using an automatic irrigation mode. Production risks with and without irrigation were assessed and the economic feasibility to reduce production risks by irrigation was evaluated. Costs and benefits were compared. Additionally, environmental effects, e.g. groundwater recharge and nitrogen emissions were assessed for irrigated and rain fed systems. Results show that positive and negative effects of climate change occur within most regions depending on the site conditions. Water holding capacity and groundwater distance were the most important factors which determined the vulnerability of sites. Under climate change condition in the middle of the next century we can expect especially at sites with low water holding capacity decreasing average gross margins, higher production risks and a reduced nitrogen use efficiency under rainfed conditions. Irrigation seems to be profitable and risk reducing at those sites, provided that water for irrigation is available. Additionally, the use of irrigation can also increase nitrogen use efficiency which reduced emissions by leaching. Despite the site conditions results depend strongly on the used regional climate scenario and the model approach to consider the effect of elevated CO2 in the atmosphere.
Fu, Tong-Jen; Reineke, Karl F; Chirtel, Stuart; VanPelt, Olif M
2008-05-01
In this study, the factors that affect Salmonella growth during sprouting of naturally contaminated alfalfa seeds associated with two previous outbreaks of salmonellosis were examined. A minidrum sprouter equipped with automatic irrigation and rotation systems was built to allow sprouting to be conducted under conditions similar to those used commercially. The growth of Salmonella during sprouting in the minidrum was compared with that observed in sprouts grown in glass jars under conditions commonly used at home. The level of Salmonella increased by as much as 4 log units after 48 h of sprouting in jars but remained constant during the entire sprouting period in the minidrum. The effect of temperature and irrigation frequency on Salmonella growth was examined. Increasing the sprouting temperature from 20 to 30 degrees C increased the Salmonella counts by as much as 2 log units on sprouts grown both in the minidrum and in the glass jars. Decreasing the irrigation frequency from every 20 min to every 2 h during sprouting in the minidrum or from every 4 h to every 24 h during sprouting in the glass jars resulted in an approximately 2-log increase in Salmonella counts. The levels of total aerobic mesophilic bacteria, coliforms, and Salmonella in spent irrigation water closely reflected those found in sprouts, confirming that monitoring of spent irrigation water is a good way to monitor pathogen levels during sprouting.
Moving Stormwater Infrastructure from Real-time Control to Smart Systems
NASA Astrophysics Data System (ADS)
Wadzuk, B.; Bryant, S.; Lewellyn, C.; Zaremba, G.; Traver, R.
2017-12-01
Urban areas, especially combined sewer communities, are using green infrastructure (GI) systems (e.g. rain gardens, green roofs) to mitigate stormwater runoff volume, rate, and quality issues. Most municipal guidance and regulation limits these systems to static, passive designs that neither fully utilize the active hydrology of a GI system during and after a rainfall event, nor enable dynamic operational control. Real-time control (RTC) applied to GI is emerging, and under ideal model conditions has shown improved performance (i.e., greater volumes managed while minimizing downstream impact). There are a few RTC pilot field projects with promising results, such as on a cistern - green roof system there were only 30 overflow events out of 126 rain events and at a rain garden - cistern system only 1 of 81 events resulted in overflow. However, RTC does not get to a fully dynamic system as the initiation and consequent action is preset and static. In stormwater RTC systems, the initiation is typically a rain forecast or a sensor reading. At a rain garden - cistern system, a cistern that fills when raining is hard set to pump water to the rain garden 24 hours after the predicted rain ends. There have been instances where there is rain occurring or only a minimal amount of dry time for the rain garden to reestablish capacity for the pumped stored water. There is also no mechanism to automatically change the pump initiation time based on season or ambient conditions. A cistern - green roof system that uses stored water in an upstream cistern for green roof irrigation is initiated on a set soil moisture reading or a set irrigation volume daily. The soil moisture reading was rarely reached, so irrigation was often not initiated and the set daily irrigation volume did not vary over season. Moving from RTC to a smart system uses longer term and/or historical data to inform decisions beyond what a short-term forecast or real-time sensor can provide to give more context and flexibility in the initiation - consequent action logic. The use of the Standardized Precipitation Evapotranspiration Index as a back-cast and forecast tool to calculate an appropriate irrigation volume based on what rainfall is pending and whether the system is in drought state is used and discussed to move the GI systems into smart control.
Water management in Egypt for facing the future challenges
Omar, Mohie El Din M.; Moussa, Ahmed M.A.
2016-01-01
The current water shortage in Egypt is 13.5 Billion cubic meter per year (BCM/yr) and is expected to continuously increase. Currently, this water shortage is compensated by drainage reuse which consequently deteriorates the water quality. Therefore, this research was commenced with the objective of assessing different scenarios for 2025 using the Water Evaluation and Planning (WEAP) model and by implementing different water sufficiency measures. Field data were assembled and analyzed, and different planning alternatives were proposed and tested in order to design three future scenarios. The findings indicated that water shortage in 2025 would be 26 BCM/yr in case of continuation of current policies. Planning alternatives were proposed to the irrigation canals, land irrigation timing, aquatic weeds in waterways and sugarcane areas in old agricultural lands. Other measures were suggested to pumping rates of deep groundwater, sprinkler and drip irrigation systems in new agricultural lands. Further measures were also suggested to automatic daily surveying for distribution leak and managing the pressure effectively in the domestic and industrial water distribution systems. Finally, extra measures for water supply were proposed including raising the permitted withdrawal limit from deep groundwater and the Nubian aquifer and developing the desalination resource. The proposed planning alternatives would completely eliminate the water shortage in 2025. PMID:27222745
Water management in Egypt for facing the future challenges.
Omar, Mohie El Din M; Moussa, Ahmed M A
2016-05-01
The current water shortage in Egypt is 13.5 Billion cubic meter per year (BCM/yr) and is expected to continuously increase. Currently, this water shortage is compensated by drainage reuse which consequently deteriorates the water quality. Therefore, this research was commenced with the objective of assessing different scenarios for 2025 using the Water Evaluation and Planning (WEAP) model and by implementing different water sufficiency measures. Field data were assembled and analyzed, and different planning alternatives were proposed and tested in order to design three future scenarios. The findings indicated that water shortage in 2025 would be 26 BCM/yr in case of continuation of current policies. Planning alternatives were proposed to the irrigation canals, land irrigation timing, aquatic weeds in waterways and sugarcane areas in old agricultural lands. Other measures were suggested to pumping rates of deep groundwater, sprinkler and drip irrigation systems in new agricultural lands. Further measures were also suggested to automatic daily surveying for distribution leak and managing the pressure effectively in the domestic and industrial water distribution systems. Finally, extra measures for water supply were proposed including raising the permitted withdrawal limit from deep groundwater and the Nubian aquifer and developing the desalination resource. The proposed planning alternatives would completely eliminate the water shortage in 2025.
Three-Loop Automatic of Control System the Landfill of Household Solid Waste
NASA Astrophysics Data System (ADS)
Sereda, T. G.; Kostarev, S. N.
2017-05-01
The analysis of models of governance ground municipal solid waste (MSW). Considered a distributed circuit (spatio-temporal) ground control model. Developed a dynamic model of multicontour control landfill. Adjustable parameters are defined (the ratio of CH4 CO2 emission/fluxes, concentrations of heavy metals ions) and control (purging array, irrigation, adding reagents). Based on laboratory studies carried out with the analysis of equity flows and procedures developed by the transferring matrix that takes into account the relationship control loops. A system of differential equations in the frequency and time domains. Given the numerical approaches solving systems of differential equations in finite differential form.
Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.
Fiebig, Antje; Dodd, Ian C
2016-01-01
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.
Water balance and soil losses in an irrigated catchment under conservation tillage in Southern Spain
NASA Astrophysics Data System (ADS)
Cid, Patricio; Mateos, Luciano; Taguas, Encarnación V.; Gómez-Macpherson, Helena
2013-04-01
Conservation tillage based on permanent beds with crop-residue retention and controlled traffic has been recently introduced in irrigated annual crops in Southern Spain as one way to improve water infiltration, reduce soil losses, and save energy. The water balance and soil losses in water runoff have been monitored during 4 years in a 28-ha catchment within a production farm where this kind of soil conservation practice was established in 2004 for a maize-cotton-wheat rotation. The catchment average slope is 6 %. Soils are Typic Calcixerept and Typic Haploxerert. The water balance components that were measured include: applied irrigation water, rainfall, and runoff. Runoff was measured at the outlet of the catchment by means of a hydrological station that consisted of long-throated flume, ultrasonic water level sensor, automatic water sampler, data logger and transmission system, weather station, and ancillary equipment. We present here results from three hydrological seasons (October to September): 2009-10, 2010-11, and 2011-12. The first season the catchment was grown with wheat, thus the irrigation depth was small (25 mm); rainfall above average, 1103 mm; and the runoff coefficient was 26 %. In the season 2010-11, the catchment was grown with cotton, the irrigation depth was 503 mm, rainfall was 999 mm, and the seasonal runoff coefficient was 7 %. The last season, the crop was maize, rainfall was below average (368 mm), irrigation 590 mm, and the runoff coefficient as the previous year, 7 %. Soil losses were very small: 0.05, 1.26, and 1.33 t per ha and year, the first, second, and third monitored seasons, respectively. A simple water balance model allowed simulating evapotranspiration, deep percolation and runoff. The Curve Number for the catchment was calibrated using the balance model.
Montesano, Francesco F.; Serio, Francesco; Mininni, Carlo; Signore, Angelo; Parente, Angelo; Santamaria, Pietro
2015-01-01
Automatic irrigation scheduling based on real-time measurement of soilless substrate water status has been recognized as a promising approach for efficient greenhouse irrigation management. Identification of proper irrigation set points is crucial for optimal crop performance, both in terms of yield and quality, and optimal use of water resources. The objective of the present study was to determine the effects of irrigation management based on matric potential control on growth, plant–water relations, yield, fruit quality traits, and water-use efficiency of subirrigated (through bench system) soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, “Kabiria” (cocktail type) and “Diana” (intermediate type), and substrate water potential set-points (−30 and −60 hPa, for “Diana,” and −30, −60, and −90 hPa for “Kabiria”), were compared. Compared with −30 hPa, water stress (corresponding to a −60 hPa irrigation set-point) reduced water consumption (14%), leaf area (18%), specific leaf area (19%), total yield (10%), and mean fruit weight (13%), irrespective of the cultivars. At −60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water, and osmotic potential decreased linearly when −30, −60, and −90 hPa irrigation set-points were used in “Kabiria.” Unmarketable yield in “Diana” increased when water stress was imposed (187 vs. 349 g·plant−1, respectively, at −30 and −60 hPa), whereas the opposite effect was observed in “Kabiria,” where marketable yield loss decreased linearly [by 1.05 g·plant−1 per unit of substrate water potential (in the tested range from −30 to −90 hPa)]. In the second cluster, total soluble solids of the fruit and dry matter increased irrespective of the cultivars. In the seventh cluster, in “Diana,” only a slight increase was observed from −30 vs. −60 hPa (3.3 and 1.3%, respectively, for TSS and dry matter), whereas in “Kabiria,” the increase was more pronounced (8.7 and 12.0%, respectively, for TSS and dry matter), and further reduction in matric potential from −60 to −90 hPa confirmed the linear increase for both parameters. Both glucose and fructose concentrations increased linearly in “Kabiria” fruits on decreasing the substrate matric potential, whereas in “Diana,” there was no increase. It is feasible to act on matric potential irrigation set-points to control plant response in terms of fruit quality parameters. Precise control of substrate water status may offer the possibility to steer crop response by enhancing different crop-performance components, namely yield and fruit quality, in subirrigated tomato. Small-sized fruit varieties benefit more from controlled water stress in terms of reduced unmarketable yield loss and fruit quality improvements. PMID:26779189
Satellite Estimation of Fractional Cover in Several California Specialty Crops
NASA Technical Reports Server (NTRS)
Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.
2016-01-01
Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.
Satellite Estimation of Fractional Cover in Several California Specialty Crops
NASA Astrophysics Data System (ADS)
Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.
2016-12-01
Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.
Energy requirements in pressure irrigation systems
NASA Astrophysics Data System (ADS)
Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.
2012-04-01
Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...
81. AVALON DAM Photographic copy of construction drawing c1908 ...
81. AVALON DAM - Photographic copy of construction drawing c1908 (from aperture card located at Bureau of Reclamation, Salt Lake City) UNTITLED DRAWING OF AUTOMATIC FLOOD GATES. GATE DETAILS - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
80. AVALON DAM Photographic copy of construction drawing c1908 ...
80. AVALON DAM - Photographic copy of construction drawing c1908 (from aperture card located at Bureau of Reclamation, Salt Lake City). UNTITLED DRAWING OF AUTOMATIC FLOOD GATES. PARTIAL PLAN AND ELEVATION - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
Shetty, Vidhi Prabhakar; Naik, Balaram Damodar; Pachlag, Amit Kashinath; Yeli, Mahantesh Mrityunjay
2017-01-01
Aim: The aim of this study is to compare the effects of conventional syringe, passive ultrasonic irrigation (PUI), and EndoIrrigator Plus on the amount of apically extruded debris. Materials and Methods: Thirty extracted human mandibular premolars were selected and randomly assigned to three groups (n = 10). The root canals were irrigated with conventional syringe, PUI, and EndoIrrigator Plus. Sodium hypochlorite was used as an irrigant, and debris was collected in a previously described experimental model (Myers and Montgomery 1991). It was then stored in an incubator at 37°C for 10 days to evaporate the irrigant before weighing the dry debris. The mean weight of debris was assessed, one-way analysis of variance was used for comparison of values, and post hoc Tukey's test was used between groups (P = 0.05). Results: The EndoIrrigator Plus group extruded significantly less debris than PUI and conventional syringe groups (P < 0.05). Furthermore, PUI group extruded significantly less debris than conventional syringe irrigation group (P < 0.05). Conclusions: 1. All the three irrigation systems were associated with apical extrusion of debris, 2. EndoIrrigator Plus system extruded significantly less debris than the PUI system and the conventional syringe irrigation system, 3. PUI system extruded significantly less debris than the conventional syringe irrigation system. PMID:29430092
Variable rate irrigation (VRI)
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...
Development and Application of a Process-based River System Model at a Continental Scale
NASA Astrophysics Data System (ADS)
Kim, S. S. H.; Dutta, D.; Vaze, J.; Hughes, J. D.; Yang, A.; Teng, J.
2014-12-01
Existing global and continental scale river models, mainly designed for integrating with global climate model, are of very course spatial resolutions and they lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing streamflow forecast at fine spatial resolution and water accounts at sub-catchment levels, which are important for water resources planning and management at regional and national scale. A large-scale river system model has been developed and implemented for water accounting in Australia as part of the Water Information Research and Development Alliance between Australia's Bureau of Meteorology (BoM) and CSIRO. The model, developed using node-link architecture, includes all major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. It includes an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. An auto-calibration tool has been built within the modelling system to automatically calibrate the model in large river systems using Shuffled Complex Evolution optimiser and user-defined objective functions. The auto-calibration tool makes the model computationally efficient and practical for large basin applications. The model has been implemented in several large basins in Australia including the Murray-Darling Basin, covering more than 2 million km2. The results of calibration and validation of the model shows highly satisfactory performance. The model has been operalisationalised in BoM for producing various fluxes and stores for national water accounting. This paper introduces this newly developed river system model describing the conceptual hydrological framework, methods used for representing different hydrological processes in the model and the results and evaluation of the model performance. The operational implementation of the model for water accounting is discussed.
2014-01-01
Background Root canal irrigation carries a risk of extrusion of irrigant into the periapical tissues which can be associated with pain, swelling, and tissue damage. Studies have shown less extrusion with sonic or apical negative pressure devices compared with syringe and side-port needle or passive ultrasonic irrigation with continuous irrigant flow. This study aimed to evaluate the effectiveness of the EndoVac irrigation system, regarding 1) debris removal and 2) the control of apically extruded irrigating solution. Methods Fifty extracted human single-rooted teeth were used in this study. The teeth were then randomly divided into three experimental groups according to the type of irrigation used and one control group. In group 1, irrigation was performed using the EndoVac irrigation system. In group 2, irrigation was performed using a 30-gauge, tip-vented irrigation needle. In group 3, irrigation was performed using a 30-gauge, side-vented irrigation needle. The control group received instrumentation with no irrigation to serve as a control for cleaning efficiency. Root canal instrumentation was performed using the Profile NiTi rotary system with a crown-down technique. All of the experimental teeth were irrigated with the same amount of 5.25% sodium hypochlorite. The amount of extruded irrigating solution was then measured by subtracting the post-instrumentation weight from the pre-instrumentation weight using an electronic balance. The cleanliness of debris removal was evaluated using scanning electron microscopy. Results EndoVac irrigation had the least amount of extrusion followed by the side-vented and tip-vented method. The difference between the groups was statistically significant (P <0.01). As for the cleaning results, the debris collection in the EndoVac and tip-vented groups was the least in the apical third. In the control and the side-vented groups, the debris was the greatest in the apical third, but this difference was not significant among the three experimental groups. Conclusions The EndoVac irrigation system extruded significantly less irrigant solution than either needle irrigation system. Debris collection was the least in the apical third for the EndoVac irrigation system. No significant difference was found in the cleaning efficiency among the three irrigation systems. PMID:24512441
ERIC Educational Resources Information Center
Salazar, LeRoy; And Others
This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…
Site-specific variable rate irrigation a means to enhance water use efficiency
USDA-ARS?s Scientific Manuscript database
The majority of irrigated cropland in the US is watered with sprinkler irrigation systems. These systems are inherently more efficient in distributing water than furrow or flood irrigation. Appropriate system design of sprinkler irrigation equipment, application methods, and farming practices (e.g. ...
Site-specific variable rate irrigation as a means to enhance water use efficiency
USDA-ARS?s Scientific Manuscript database
The majority of irrigated cropland in the US is watered with sprinkler irrigation systems. These systems are inherently more efficient in distributing water than furrow or flood irrigation. Appropriate system design of sprinkler irrigation equipment, application methods, and farming practices (e.g. ...
Bastakoti, Ram C; Shivakoti, Ganesh P; Lebel, Louis
2010-09-01
This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal's new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people's participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.
Karade, Priyatam; Chopade, Rutuja; Patil, Suvarna; Hoshing, Upendra; Rao, Madhukar; Rane, Neha; Chopade, Aditi; Kulkarni, Anish
2017-01-01
This in vitro study was designed to evaluate and compare different endodontic irrigation and activation systems for removal of the intracanal smear layer. Forty recently extracted, non-carious human intact single rooted premolars were selected and divided into five groups ( n =10) according to the root canal irrigation systems; syringe and needle irrigation (CTR), sonic irrigation, passive ultrasonic irrigation (PUI) and EndoVac irrigation system. All groups were prepared to #40 apical size with K-files. Each sample was subjected to final irrigation by using four different irrigation/activation systems. After splitting the samples, one half of each root was selected for examination under scanning electron microscope (SEM). The irrigation systems were compared using the Fisher's exact test with the level of significance set at 0.05. The four groups did not differ from each other in the coronal and mid-root parts of the canal. In the apical part of the canal none of the methods could completely remove all the smear layer but EndoVac system showed significantly better removal of smear layer and debris than the other methods. Within the limitations of the present study, the EndoVac system cleaned the apical part of the canal more efficiently than sonic, ultrasonic and syringe and needle irrigation.
NASA Astrophysics Data System (ADS)
Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley
2010-05-01
Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip systems, one microirrigation system and three center pivots schemes. Field evaluations used the method advocated by Keller and Bliesner and conducted during farmer scheduled irrigation. Soil samples were taken before irrigations to investigate adequacy of water applied. Since the irrigation water management and the uniformity of water distribution are the two major factors used to define the quality of irrigation, the following criteria for uniformity was used: i) Localized irrigations (distribution uniformity - UD) - excellent (90% < UD), acceptable (70% < UD < 90%), not acceptable (UD < 70); ii) Center pivots and conventional sprinkler irrigations (Christiansen coefficient - UC) - excellent (85% < UC), acceptable (85% < UC < 75%), not acceptable (UC < 75%). The water stored in the root zone after an irrigation event was compared with the real necessity. The results showed that: i) Localized irrigations - Three systems had UD < 70% and all systems presented deficit or excess of irrigation; ii) Conventional sprinkler system - Three system had UD smaller than 75% and all systems applied less water than the minimum necessary to keep an amount of water in the soil that don't cause plant stress; iii) Center pivot - In two system were observed UC < 75%. In one of the center pivots the depth applied was about 42% higher than the required and in the other two it was 39% and 47% lower. The study demonstrated the importance of adopting irrigation management criteria, in agricultural basins, once irrigation water becomes limiting and reduces basin water productivity.
Ustun, Y; Düzgün, S; Aslan, T; Aktı, A
2018-03-01
The purpose of this study was to evaluate the efficiencies of different irrigation protocols in the removal of triple antibiotic paste (TAP) from root canals. A total of 127 extracted human maxillary incisor teeth were prepared. Then, root-end resection of 3 mm was accomplished to simulate immature apex model. The root canals were filled with TAP, after 21 days, randomly divided into nine groups according to irrigation systems and solutions (n = 13). Conventional irrigation (CI) groups - Group 1: Root canal irrigation was performed with CI by Peracetic acid (PAA) solution, Group 2: Root canal irrigation was performed with CI by etidronic acid 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) + sodium hypochlorite (NaOCl) solution, Group 3: Root canal irrigation was performed with CI by ethylenediaminetetraacetic acid (EDTA)/NaOCl solutions. Vibringe system groups - Group 4: Root canal irrigation was performed with Vibringe system by PAA solution, Group 5: Root canal irrigation was performed with Vibringe system by HEBP + NaOCl solution, Group 6: Root canal irrigation was performed with Vibringe system by EDTA/NaOCl solution. EndoVac system groups - Group 7: Root canal irrigation was performed with EndoVac system by PAA solution, Group 8: Root canal irrigation was performed with EndoVac system by HEBP + NaOCl solution, Group 9: Root canal irrigation was performed with EndoVac system by EDTA/NaOCl solution. Control Group: (n = 0). Samples were sectioned vertically, and the amount of remaining medicament was scored for each root half and data were statistically analyzed. Among the irrigation systems, CI groups showed the highest scores at both apical and coronal parts (P < 0.05). In comparisons among the solutions, at the apical part, PAA groups showed the highest scores (P < 0.05). At the coronal part, EDTA + NaOCl groups showed the lowest score values (P < 0.05). The use of irrigation systems improved the removal of TAP from the simulated immature root canals. Also, as an irrigation solution EDTA gives more promising results than PAA and HEBP solutions.
Size and stochasticity in irrigated social-ecological systems
NASA Astrophysics Data System (ADS)
Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.
2017-03-01
This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.
NASA Astrophysics Data System (ADS)
Huang, C.; LI, Y.
2017-12-01
Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.
NASA Astrophysics Data System (ADS)
Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo
2013-04-01
In a study presented in the EGU assembly 2012, it was analysed how yield and irrigation water use efficiency (IWUE) in chufa (Cyperus esculentus L. var. sativus), crop, were affected by planting strategy (ridges and flat raised beds, with two and three plant rows along them) and irrigation system [furrow (FI) and drip irrigation (DI)]. Each irrigation session started when the Volumetric Soil Water Content (VSWC) in ridges dropped to 80% of field capacity; beds were irrigated simultaneously with ridges and with the same irrigation duration. R produced lower yield than the two types of beds, and yields in DI were higher than those FI. Ridges led to the highest IWUE with DI, and to the lowest with FI. Then, it was decided to analyse, in DI, how yield and IWUE responded to start each irrigation session when the VSWC in the central point of different planting strategies [ridges (R), and flat raised beds with two (b) and three (B) plant rows along them] dropped to 80% of field capacity. In R and b, plants were irrigated by a single dripline per plant row, while in B two irrigation layouts were assayed: a single dripline per plant row (B3) and two driplines per bed (B2), placing each dripline between two planting rows. Irrigation session stop was also automated as a function of the VSWC. Results show that yield was affected (P˜0.01) by planting strategy; the greatest yield was obtained in b (2.4 kgm-2), differing (P˜0.05) from that obtained in R (2.1 kgm-2), with intermediate yields in B2 (2.3 kgm-2) and B3 (2.3 kgm-2). Yield was not affected (P˜0.05) by the utilisation of two or three driplines in B. Considerably less irrigation water was applied (IWA) in R (376 mm) than in B3 (465 mm), B2 (475 mm) and b (502 mm). This automatic irrigation management, as a function of the VSWC in each planting strategy, lead to adjust the IWA to the plant water requirements, which were similar in all three flat raised beds, since they correspond to the same planting density, that was, in turn, higher than in R. IWUE was affected (P˜0.01) by the planting strategy, obtaining greater (P˜0.05) values in R (5.54 kgm-3) than in B3 (4.84 kgm-3), B2 (4.76 kgm-3), and b (4.73 kgm-3). With the herein presented irrigation management, IWUE in flat raised beds considerably increased in relation to the previous experiments (automated as a function of the VSWC in R), although they resulted in lower values (P˜0.05) than in R. When comparing the different planting rows, neither the yield nor the average tuber weight was affected by their position. b leaded to the highest yield, while R resulted in the lowest yield, but with the highest IWUE. Considering the current prices of both tubers and irrigation water, the profit obtained by the increase in yield reached with b is greater than the cost that supposes its greater IWA. Nevertheless, if there were water delivery restrictions or price increases, R would represent a recommendable strategy.
Online decision support system for surface irrigation management
NASA Astrophysics Data System (ADS)
Wang, Wenchao; Cui, Yuanlai
2017-04-01
Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in Zhanghe Irrigation District (Center China) to manage the required irrigation deliveries. Two years' application indicates that the proposed OIDSS can achieve promising performance for surface irrigation. Historical data of rice growing period in 2014 has been applied to test the OIDSS: it gives out 3 irrigation decisions, which is consistent with actual irrigation times and the forecast irrigation dates are well fit with the actual situations; the corresponding amount of total irrigation decreases by 15.13% compared to those without using the OIDSS.
NASA Astrophysics Data System (ADS)
Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis
2010-09-01
This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.
Irrigation trends in Kansas, 1991-2011
Kenny, Joan F.; Juracek, Kyle E.
2013-01-01
This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for the years 1991 through 2011. During the 21-year period, total reported irrigation water diversions varied substantially from year to year as affected primarily by climatic fluctuations. Total reported acres irrigated remained comparatively constant during this time, although acreages of irrigated corn increased and center pivots with drop nozzles became the dominant system type used for irrigation.
Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.
Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun
2013-09-01
To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P < .001). With NaCl, ultrasonic activated irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P < .001), but hydrodynamic irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Drip irrigation research update at NPRL
USDA-ARS?s Scientific Manuscript database
Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...
Effect of irrigation and silicon fertilizer on total rice grain arsenic content and yield
USDA-ARS?s Scientific Manuscript database
Field tests were conducted for two years with rice grown with different irrigation systems and rates of calcium silicate fertilizer to determine the effects on brown rice arsenic (As) levels and rough rice yields. Irrigation systems were sprinkler irrigation using a center pivot system, intermitten...
Giovannelli, Alessio; Deslauriers, Annie; Fragnelli, Giuseppe; Scaletti, Luciano; Castro, Gaetano; Rossi, Sergio; Crivellaro, Alan
2007-01-01
Different irrigation effects on stem radius variation (DeltaR) and maximum daily shrinkage (MDS) in Populus deltoides 'Dvina' and Populusxcanadensis 'I-214' were studied to assess differences in drought tolerance between clones. One-year-old trees growing in concrete tanks were submitted to two irrigation regimes (natural rainfall and irrigation) from 24 June to 10 August, and DeltaR was monitored by automatic point dendrometers. Independently of the irrigation regime, 'Dvina' showed a higher stem radial increment than 'I-214'. In both clones, the first response to changed soil water content was a significant increase in MDS, whilst DeltaR decreased about 20 d later when pre-dawn leaf water potential (Psipd) dropped below -0.4 MPa. However, they displayed different strategies to overcome drought. 'Dvina' maintained a positive DeltaR for longer than 'I-214', which had lower leaf Psipd and greater leaf abscission at the end of the drought period. After irrigation resumed, 'Dvina' showed a higher capacity to restore stem growth. 'I-214' was probably unable to recover secondary growth because of higher leaf abscission during drought stress and the production of newly expanded leaves during recovery. It is concluded that the larger radial growth of 'Dvina' derived from a better water use (carbon uptake versus water loss) than 'I-214' under limited water availability.
Perry, Charles A.
2006-01-01
Data compiled for the High Plains region of Kansas that includes five Groundwater Management Districts (GMDs) were analyzed for trends in irrigation water use, acres irrigated, precipitation, irrigation system types, and irrigated crop types to determine the effects of irrigation practices on water use over time. For the study period 1991 through 2003, precipitation decreased significantly (with 95-percent confidence) in northwestern and west-central Kansas but not in the southwestern and south-central parts of the State. Irrigation water use had no statistically significant trend during this period. There was a good (R= -0.77) relation between average regional precipitation and total GMD irrigation water use. When irrigation water use was adjusted for this relation, there was a positive trend (90-percent confidence level) in the adjusted irrigation water use. Another adjustment to water use was made using the ratio of annual precipitation to 1991-2005 average precipitation, which resulted in a negative trend (95-percent confidence level) in irrigation water use. This demonstrated the contradictory nature of precipitation adjustments to water use, making their utility somewhat suspect. GMD 3 in southwestern Kansas used 63 percent of the total acre-feet of irrigation water within all the GMDs. When all GMDs are considered, the number of irrigated acres for flood and center pivot systems without drop nozzles decreased significantly during the study period. At the same time the number of drop nozzle irrigated acres increased significantly. The number of irrigated acres of water-intensive crops (corn, alfalfa, and soybeans) also increased significantly, whereas the number of less- or non-water-intensive crops (grain sorghum and wheat), and multiple crop type acres decreased. Drop nozzle irrigation systems used approximately 2 percent less water in a year-by-year comparison than center pivot systems and 8 to 11 percent less water than flood irrigation. The best estimator of irrigation water use incorporated total acres irrigated and annual average or March-October regional precipitation. A conclusion that can be drawn from the trend analyses described in this report is that, although irrigation water use for all GMDs showed no statistically significant trend, an apparent increased efficiency of center pivots irrigation systems with drop nozzles has allowed more water-intensive crops to be grown on more irrigated acres.
NASA Astrophysics Data System (ADS)
Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.
2016-10-01
The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.
Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges
NASA Astrophysics Data System (ADS)
Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.
It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in selected distributary commands combined with longitudinal studies based on available long- term data from the full command. The reliability and duration of flows and/or storages represent a constraint to effective integration of aquaculture within the case-study sys- tems. Although fish production is non-consumptive and can be seen as a complemen- tary use of irrigation water, the challenge is to devise operating procedures that will 1 guarantee reliability and duration of flows and/or storages for fish production without increasing total water-use within the system. This is a particular problem during the rainy season when irrigation demand fluctuates widely and rapidly. The problem is ex- acerbated by deficient information systems, which constrain the scope for responsive management in these extensive canal systems. 2
Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.
Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F
2012-02-01
The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.
An improved delivery system for bladder irrigation
Moslemi, Mohammad K; Rajaei, Mojtaba
2010-01-01
Introduction Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. Materials and methods In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. Results In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse effects such as bladder perforation due to our high-pressure, high-flow system. Conclusion A pressurized irrigant system has better visualization during endourologic procedures, and prevents clot formation after open prostatectomy, TURP, and TURB without any adverse effects. PMID:20957138
An improved delivery system for bladder irrigation.
Moslemi, Mohammad K; Rajaei, Mojtaba
2010-10-05
Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse effects such as bladder perforation due to our high-pressure, high-flow system. A pressurized irrigant system has better visualization during endourologic procedures, and prevents clot formation after open prostatectomy, TURP, and TURB without any adverse effects.
NASA Astrophysics Data System (ADS)
Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang
2014-09-01
Emergy theory and method are used to evaluate the contribution of irrigation water, and the process of its utilization, in three agricultural systems. The agricultural systems evaluated in this study were rice, wheat, and oilseed rape productions in an irrigation pumping district of China. A corresponding framework for emergy evaluation and sensitivity analysis methods was proposed. Two new indices, the fraction of irrigation water ( FIW), and the irrigation intensity of agriculture ( IIA), were developed to depict the contribution of irrigation water. The calculated FIW indicated that irrigation water used for the rice production system (34.7%) contributed more than irrigation water used for wheat (5.3%) and oilseed rape (11.2%) production systems in a typical dry year. The wheat production with an IIA of 19.0 had the highest net benefit from irrigation compared to the rice (2.9) and oilseed rape (8.9) productions. The transformities of the systems' products represented different energy efficiencies for rice (2.50E + 05 sej·J-1), wheat (1.66E + 05 sej·J-1) and oilseed rape (2.14E + 05 sej·J-1) production systems. According to several emergy indices, of the three systems evaluated, the rice system had the greatest level of sustainability. However, all of them were less sustainable than the ecological agricultural systems. A sensitivity analysis showed that the emergy inputs of irrigation water and nitrogenous fertilizer were the highest sensitivity factors influencing the emergy ratios. Best Management Practices, and other agroecological strategies, could be implemented to make further improvements in the sustainability of the three systems.
Cleaning of Root Canal System by Different Irrigation Methods.
Tanomaru-Filho, Mário; Miano, Lucas Martinati; Chávez-Andrade, Gisselle Moraima; Torres, Fernanda Ferrari Esteves; Leonardo, Renato de Toledo; Guerreiro-Tanomaru, Juliane Maria
2015-11-01
The aim of this study was to compare the cleaning of main and lateral canals using the irrigation methods: negative pressure irrigation (EndoVac system), passive ultrasonic irrigation (PUI) and manual irrigation (MI). Resin teeth were used. After root canal preparation, four lateral canals were made at 2 and 7 mm from the apex. Root canals were filled with contrast solution and radiographed pre- and post-irrigation using digital radiographic system [radiovisiography (RVG)]. The irrigation protocols were: MI1-manual irrigation [22 G needle at 5 mm short of working length-WL]; MI2-manual irrigation (30G needle at 2 mm short of WL); PUI; EV1-EndoVac (microcannula at 1 mm short of WL); EV2-Endovac (microcannula at 3 mm short of WL). The obtained images, initial (filled with contrast solution) and final (after irrigation) were analyzed by using image tool 3.0 software. Statistical analysis was performed by analysis of variance (ANOVA) and Tukey tests (5% significance level). EV1 and EV2, followed by PUI showed better cleaning capacity than manual irrigation (MI1 and MI2) (p < 0.05). Negative pressure irrigation and PUI promoted better cleaning of main and simulated lateral canals. Conventional manual irrigation technique may promote less root canal cleaning in the apical third. For this reason, the search for other irrigation protocols is important, and EndoVac and PUI are alternatives to contribute to irrigation effectiveness.
R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell
2015-01-01
The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...
IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.
Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier
2017-04-05
To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.
Zhao, Ye; Han, Sha-Sha; Chen, Zhi-Fan; Liu, Jing; Hu, Honq-Xia
2015-01-01
After years of irrigating farmland with wastewater, concern is increasing about health risks from heavy metals contaminating wheat grown in sewage-irrigated soils in suburban areas of Beijing, China. The study discussed in this article aimed to compare the characteristics of heavy metal distribution in a sewage-irrigated "soil-wheat" system with those from a clean-water-irrigated area by collecting and analyzing samples from both areas. The results indicated that the average concentrations of copper, chromium, lead, and zinc in sewage-irrigated soil were higher than the values in the clean-water-irrigated region. Irrigation with wastewater could lead to increased bioconcentration factors. Therefore, issues of food contamination caused by sewage irrigation deserve more attention.
Design and implementation of expert decision system in Yellow River Irrigation
NASA Astrophysics Data System (ADS)
Fuping, Wang; Bingbing, Lei; Jie, Pan
2018-03-01
How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.
Space Archaeology for military-agricultural colonies (tuntian) on the ancient Silk Road, NW China
NASA Astrophysics Data System (ADS)
Luo, Lei; Wang, Xinyuan; Guo, Huadong; Liu, Chuansheng
2017-04-01
The ancient Silk Road, a pioneering work in the history of human civilization, contributed greatly to the cultural exchange between China and the West. It is the precious cultural heritage should be shared by the whole humanity. Although there were countless archaeological sites along the ancient Silk Road, most of the existing researches just focused on the sites, lacking the overall understanding of the relationships between sites and their supporting environment. Space archaeology provides a new viewpoint for investigating, discovering, reconstructing and documenting the archaeological sites under different scales. The tuntian system was a state-promoted system of military-agricultural colonies, which originated in the Western Han dynasty (206 BC-9 AD). All the imperial dynasties in Chinese history adopted the practice of tuntian to cultivate and guard frontier areas as an important state policy for developing border areas and consolidating frontier defence. This study describes the use of Chinese GF-1 imagery, LS-7 ETM+ data and ASTER GDEMV2 products to uncover an ancient irrigated canal-based tuntian system located in Milan oasis adjacent to the ancient Kingdom of Loulan at the southern margin of the Tarim Basin. The GF-1 and LS-7 data were first processed following atmospheric and geometric correction and enhanced by Gram Schmidt pansharpening. The linear archaeological traces of tuntian irrigation canals were extracted from the morphologically enhanced GF-1 PAN imagery using our proposed automatic method which adopts mathematical morphological processing and Canny edge operator. Compared with the manual extractions, the overall detection accuracy was better than 90%. In addition, the functions of the trunk, primary, secondary and tertiary canals were each analyzed and the spatial extent of Milan's tuntian landscape were analyzed with the help of the NDVI derived from the GF-1 multispectral imagery. The effective irrigated tuntian area was estimated to be 2, 800 ha and the maximum irrigated tuntian area was found to be more than 8, 000 ha during the area's most prosperous period. The overall spatial pattern of Milan's tuntian landscape was explored using the patch-corridor-matrix model. The features and functions of tuntian landscape elements in Mountain-Oasis-Desert Ecosystem (MODES) were discussed in detail. By detailed analysis of satellite remote sensing data, this study reconstructed a 3D view of Milan's tuntian agricultural landscape in a GIS. Milan's tuntian system reveals the basic organization pattern of the ancient tuntian system in Xinjiang, and provides a solid foundation for understanding the military, cultural, economic and geopolitical values of ancient tuntian system for China frontiers.
Evaluation of potential water conservation using site-specific irrigation
USDA-ARS?s Scientific Manuscript database
With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...
Limited irrigation research and infrared thermometry for detecting water stress
USDA-ARS?s Scientific Manuscript database
The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...
NASA Astrophysics Data System (ADS)
Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah
2017-01-01
Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.
Allaire, S E; Yates, S R; Ernst, F F; Gan, J
2002-01-01
There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.
Measuring Evapotranspiration in Urban Irrigated Lawns in Two Kansas Cities
NASA Astrophysics Data System (ADS)
Shonkwiler, K. B.; Bremer, D.; Ham, J. M.
2011-12-01
Conservation of water is becoming increasingly critical in many metropolitan areas. The use of automated irrigation systems for the maintenance of lawns and landscapes is rising and these systems are typically maladjusted to apply more water than necessary, resulting in water wastage. Provision of accurate estimates of actual lawn water use may assist urbanites in conserving water through better adjustment of automatic irrigation systems. Micrometeorological methods may help determine actual lawn water use by measuring evapotranspiration (ET) from urban lawns. From April - August of 2011, four small tripod-mounted weather stations (tripods, five total) were deployed in twelve residential landscapes in the Kansas cities of Manhattan (MHK) and Wichita (ICT) in the USA (six properties in each city). Each tripod was instrumented to estimate reference crop evapotranspiration (ETo) via the FAO-56 method. During tripod deployment in residential lawns, actual evapotranspiration (ETactual) was measured nearby using a stationary, trailer-mounted eddy covariance (EC) station. The EC station sampled well-watered turf at the K-State Rocky Ford Turfgrass Center within 5 km of the study properties in MHK, and was also deployed at a commercial sod farm 15 - 40 km from the study residences in the greater ICT metro area. The fifth tripod was deployed in the source area of the EC station to estimate ETo in conjunction with tripods in the lawns (i.e., to serve as a reference). Data from EC allowed for computation of a so-called lawn coefficient (Kc) by determining the ratio of ETo from the tripods in residential lawns to ETo from the EC station (ETo,EC); hence, Kc = ETo,tripod / ETo,EC. Using this method, ETactual can be estimated for individual tripods within a lawn. Data suggests that it may be more accurate to quantify ET within individual lawns by microclimate (i.e., determine coefficients for "shaded" and "open/unshaded" portions of a lawn). By finding microclimate coefficients, estimates of ETactual for individual lawns can be tailored to the specific characteristics of each property.
Agricultural irrigated land-use inventory for Osceola County, Florida, October 2013-April 2014
Marella, Richard L.; Dixon, Joann F.
2014-01-01
A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to increase the accuracy of current water-use estimates or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas within Osceola County for the agricultural growing period October 2013–April 2014. The irrigated areas were first delineated using land-use data and satellite imagery and then field verified between February and April 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 27,450 acres were irrigated during the study period. This includes 4,370 acres of vegetables, 10,970 acres of orchard crops, 1,620 acres of field crops, and 10,490 acres of ornamentals and grasses. Specifically, irrigated acreage included citrus (10,860 acres), sod (5,640 acres), pasture (4,580 acres), and potatoes (3,320 acres). Overall, groundwater was used to irrigate 18,350 acres (67 percent of the total acreage), and surface water was used to irrigate the remaining 9,100 acres (33 percent). Microirrigation systems accounted for 45 percent of the total acreage irrigated, flood systems 30 percent, and sprinkler systems the remaining 25 percent. An accurate, detailed, spatially referenced, and field-verified inventory of irrigated crop acreage can be used to assist resource managers making current and future county-level water-use estimates in Osceola County.
Welborn, Toby L.; Moreo, Michael T.
2007-01-01
Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range carbonate-rock aquifer system (BARCAS) study. Irrigated acreage is estimated routinely for only a few basins in the study area. Satellite imagery from the Landsat Thematic Mapper and Enhanced Thematic Mapper platforms were used to delineate irrigated acreage on a field-by-field basis for the entire study area. Six hundred and forty-three fields were delineated. The water source, irrigation system, crop type, and field activity for 2005 were identified and verified through field reconnaissance. These data were integrated in a geodatabase and analyzed to develop estimates of irrigated acreage for the 2000, 2002, and 2005 growing seasons by hydrographic area and subbasin. Estimated average annual potential evapotranspiration and average annual precipitation also were estimated for each field.The geodatabase was analyzed to determine the spatial distribution of field locations, the total amount of irrigated acreage by potential irrigation water source, by irrigation system, and by crop type. Irrigated acreage in 2005 totaled nearly 32,000 acres ranging from less than 200 acres in Butte, Cave, Jakes, Long, and Tippett Valleys to 9,300 acres in Snake Valley. Irrigated acreage increased about 20 percent between 2000 and 2005 and increased the most in Snake and White River Valleys. Ground-water supplies as much as 80 percent of irrigation water during dry years. Almost 90 percent of the irrigated acreage was planted with alfalfa.
Torak, Lynn J.; Painter, Jaime A.
2011-01-01
Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity between volumes of applied irrigation derived from groundwater and surface water. Analysis of per-acre irrigation depths provided a commonality for comparing irrigation practices across the entire range of field sizes in southern Georgia and indicated underreporting of irrigated acres for some systems. Well-to-pond systems supplied irrigation at depths similar to groundwater and can be combined with groundwater irrigation data for subsequent analyses. Average irrigation depths during 2010 indicated an increase from average irrigation depths during 2008 and 2009, most likely the result of relatively dry conditions during 2010 compared to conditions in 2008 and 2009. Geostatistical models facilitated estimation of irrigation water use for unmetered systems and demonstrated usefulness in redesigning the telemetry network. Geospatial analysis evaluated the ability of the telemetry network to represent annually reported water-meter data and presented an objective, unbiased method for revising the network.
Kara Tuncer, Aysun; Unal, Bayram
2014-05-01
The aim of this study was to compare the effect of the EndoVac irrigation system (SybronEndo, Orange, CA) and conventional endodontic needle irrigation on sealer penetration into dentinal tubules. Forty single-rooted, recently extracted human maxillary central incisors were randomly divided into 2 groups according to the irrigation technique used: conventional endodontic needle irrigation and EndoVac irrigation. All teeth were instrumented using the ProFile rotary system (Dentsply Maillefer, Ballaigues, Switzerland) and obturated with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) labeled with fluorescent dye. Transverse sections at 1, 3, and 5 mm from the root apex were examined using confocal laser scanning microscopy. The total percentage and maximum depth of sealer penetration were then measured. Mann-Whitney test results showed that EndoVac irrigation resulted in a significantly higher percentage of sealer penetration than conventional irrigation at both the 1- and 3-mm levels (P < .05). However, no difference was found at the 5-mm level. The 5-mm sections in each group showed a significantly higher percentage and maximum depth of sealer penetration than did the 1- and 3-mm sections (P < .05). The EndoVac irrigation system significantly improved the sealer penetration at the 1- to 3-mm level over that of conventional endodontic needle irrigation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Irrigation in endodontic treatment.
Basrani, Bettina
2011-01-01
The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.
Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources
NASA Astrophysics Data System (ADS)
Handyside, C. T.; Cruise, J.
2017-12-01
A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.
A preliminary study of a new endodontic irrigation system: Clean Jet Endo.
Nouioua, F; Slimani, A; Levallois, B; Camps, J; Tassery, H; Cuisinier, F; Bukiet, F
2015-03-01
The purpose of the present study was to assess the irrigant penetration and cleaning ability of a new irrigation system, the Clean Jet Endo (Produits Dentaires SA, Switzerland) in comparison to conventional irrigation followed or not by sonic activation. Irrigant penetration was evaluated on resin blocks simulators by measuring the methylene blue absorbance thanks to a UV/visible spectrophotometer and cleaning ability was assessed in an ex vivo experiment according to the debris score in an artificial canal extension before and after the final irrigation protocol. A statistical analysis was carried out in order to highlight the significant differences between the irrigation techniques. Clean Jet Endo permitted to better eliminate the methylene blue into the simulated canals. A significant difference between the 2 techniques was observed in the middle third (p = 0.005) as well as in the apical third (p < 0.2). An additional microscope observation (16X) confirmed that Clean Jet Endo@ usage led to a better penetration of irrigant within the lateral canals of the simulators. Likewise, this irrigating system permitted to better eliminate the debris in the lateral groove than the other techniques. In conclusion, our findings implied the potential of this new irrigation system to enhance root canal debridement and disinfection.
Erdemir, A; Eldeniz, A U; Ari, H; Belli, S; Esener, T
2007-05-01
To determine the influence of various irrigating solutions on the accuracy of the electronic apex locator facility in the Tri Auto ZX handpiece. One hundred and forty teeth with single canals and mature apices, scheduled for extraction for either periodontal or prosthetic reasons in 76 patients were used. Following informed written consent local anaesthesia was administered, access cavities were prepared and pulp tissue removed. The teeth were then randomly divided into seven groups according to the irrigating solutions used. The root canal length measurements were completed using the Tri Auto ZX handpiece with automatic reverse function in the presence of one or other of the following solutions: 0.9% saline, 2.5% NaOCl, 3% H(2)O(2), 0.2% chlorhexidine, 17% EDTA, Ultracaine D-S or in the absence of an irrigating solution (control). Files were immobilized in the access cavity with composite resin. After extraction, the apical regions of the teeth were exposed and the file tips examined under a stereomicroscope. Distances between the file tips and the apical constriction were measured (mm) and analysed using a one-way anova and post hoc Tukey test. Mean distances from the apical constriction to the file tip were longer in the 0.9% saline group (P<0.05). There was no statistically significant difference on file tip position between the other solutions. Tri Auto ZX gave reliable results with all irrigating solutions apart from in the presence of 0.9% saline.
Munoz, Hugo Roberto; Camacho-Cuadra, Karla
2012-04-01
Many in vitro studies have debated over the ability of different irrigant delivery and/or agitation systems to reach the apical third of curved root canals; however, little is known about irrigant penetration in vivo. Therefore, the purpose of this study was to compare the efficacy of the conventional endodontic irrigation needle, passive ultrasonic irrigation (PUI), and a negative pressure system for irrigant delivery to working length (WL) of mesial canals of mandibular molars. Thirty mesial canals of 30 vital mandibular first or second molars were randomly assigned into 3 groups (n = 10): (1) Monoject syringe with 27-gauge needle; (2) PUI with IrriSafe tip; and (3) EndoVac system. All canals were treated following the same preparation protocol to size 35/0.04 by using 5.25% NaOCl as irrigant during preparation procedure. Before obturation, canals were irrigated with 1 mL of a radiopaque solution by using the assigned irrigation system, and a digital radiograph was taken by using a parallel technique. With the aid of image editing software the distance between WL and maximum irrigant penetration was measured. Mean distances for Monoject, PUI, and EndoVac groups were 1.51 mm, 0.21 mm, and 0.42 mm, respectively. Analysis of variance test showed statistically significant differences between groups (P < .001). Tukey honestly significant difference test showed statistically significant differences between the Monoject group and the other 2 groups (P < .001) but no significant differences between PUI and EndoVac groups (P = .06). PUI and EndoVac are more effective than the conventional endodontic needle in delivering irrigant to WL of root canals. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Solar-powered irrigation systems. Technical progress report, July 1977--January 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1978-02-28
Dispersed solar thermal power systems applied to farm irrigation energy needs are analyzed. The 17 western states, containing 84% of nationwide irrigated croplands and consuming 93% of nationwide irrigation energy, have been selected to determine were solar irrigation systems can compete most favorably with conventional energy sources. Financial analysis of farms, according to size and ownership, was accomplished to permit realistic comparative analyses of system lifetime costs. Market potential of optimized systems has been estimated for the 17-state region for near-term (1985) and intermediate-term (2000) applications. Technical, economic, and institutional factors bearing on penetration and capture of this market aremore » being identified.« less
NASA Astrophysics Data System (ADS)
Torres-Rua, A. F.; Walker, W. R.; McKee, M.
2013-12-01
The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of this DSS implementation is to provide continuous and personalized information to farmers and water managers regarding crops in fields and the irrigation delivery system throughout the irrigation season so that decisions related to agricultural water use can result in water savings while not diminishing crop yields.
NASA Astrophysics Data System (ADS)
Khaddam, Issam; Schuetze, Niels
2017-04-01
The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.
Fertigation - Injecting soluble fertilizers into the irrigation system
Thomas D. Landis; Jeremy R. Pinto; Anthony S. Davis
2009-01-01
Fertigation (fertilization + irrigation) is the newest way for nursery managers to apply fertilizer, and has become a standard practice in container nurseries. Because of the inherent inefficient water distribution patterns in field irrigation systems, fertigation has not been widely used in bareroot nurseries. However, a bareroot nursery with a center-pivot irrigation...
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
USDA-ARS?s Scientific Manuscript database
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...
USDA-ARS?s Scientific Manuscript database
Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...
Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya
2014-05-01
Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. The Reciproc file system produced significantly more debris compared with OneShape file system (P<0.05), but no statistically significant difference was obtained between the two reciprocating instruments (P>0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.
Improving irrigation management in L'Horta Nord (Valencia, Spain)
NASA Astrophysics Data System (ADS)
Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo
2014-05-01
L'Horta Nord is an important irrigation district in Valencia (Spain), especially for vegetable crops. The traditional cropping pattern in the region consists of a rotation of chufa with crops such as potato, onion, lettuce, escarole and red cabbage, being all these crops furrow irrigated. Currently, the quality of the water used is acceptable, water is not expensive and there are no limitations on supply. Consequently, growers are not aware of the volumes of water used, application efficiencies, nor water productivity for any of the crops cited. The European Framework Directive 2000/60, based on the precautionary principle, considers preventive action for measures to be taken; moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. Thus, water use is an issue to improve. In this sense, the current situation of the irrigation in the area is analysed using chufa (Cyperus esculentus L. var. sativus Boeck.) as representative of the crops, since most of the crops in the area have shallow root systems, as chufa, which are irrigated in similar patterns. In order to analyse the irrigation performance of the traditional chufa crop as well as to achieve more sustainable results, different studies have been carried out, during the last decade. Efforts have been directed to increase water productivity, increasing yield and minimising the volumes of water applied. Different planting configurations and different irrigation thresholds, not only in furrow irrigation but also in drip irrigation, are examples of how the irrigation performance could be improved. Herein is presented a two-year study, comparing, in both furrow and drip irrigation, two irrigation schedules based on the volumetric soil water content, which was continuously monitored using capacitance sensors. Yield was significantly affected by the growing season, the irrigation system and by the irrigation schedule, and by the second order interactions of the irrigation system with the other studied variables. Greater yields (p≤0.01) were obtained in the first growing season, drip irrigation and maintaining a higher soil moisture level. When considering the irrigation water use efficiency, the irrigation system showed significant differences (p≤0.01) with greater efficiencies for drip irrigation. Considering the homogeneity of the plots in the area and the similarities of the irrigation managements of chufa with the other crops, the results could be extended to most of the plots and crops in the area.
NASA Astrophysics Data System (ADS)
Etchanchu, J.; Delogu, E.; Saadi, S.; Chebbi, W.; Trapon, D.; Rivalland, V.; Boulet, G.; Boone, A. A.; Fanise, P.; Mougenot, B.; LE Dantec, V.
2017-12-01
Evapotranspiration and sensible-latent heat flux partition are important decision critera to manage crops, detect water stress and plan irrigation, particularly in a semi-arid context. Nowadays, remote sensing information (at medium -MODIS- and high resolution -LANDSAT, SPOT-) allows us to spatially estimate the different terms of the energy balance at daily and infra-daily time step through various approaches, either by forcing data in an energy balance model (EVASPA, Gallego-Elvira et al., 2013, and SPARSE, Boulet et al., 2015) or data assimilation in coupled water/energy balance models (SURFEX-ISBA, Noilhan et Planton, 1989). However, these different methods of flux estimations still require an evaluation through comparison to in-situ measurements and inter-comparison.The area selected for this study is the Kairouan agricultural plain, a semi-arid region in central Tunisia. Different flux datasets were acquired over two years, on an extensive rainfed oliveyard with very low vegetation cover, and on irrigated and rainfed wheat plots. In the same time, a third dataset has been acquired over a complex agricultural landscape with an eXtra-Large Aperture Scintillometer (XLAS) set-up on a 4 km transect.First, EC fluxes from towers are compared to the different model simulations at plot scale. Then a spatial comparison with retrievals of sensible and latent heat fluxes from XLAS is performed which allows to take into account the heterogeneity of the landscape (mix of wheat, irrigated oliveyards and bare soil). Effects on irrigation scenarios, through an automatic irrigation triggering method are tested and discussed. Finally, we cross-compare the different modeling approaches.We tackle the various issues: the accuracy of the measurements, the temporal frequency of remote sensing data, and the difficulty to calibrate the models.
In vitro Comparison of Debris Removal Using Various Adjunct Irrigation Devices
2016-06-09
either by activating standing irrigant or by concurrently activating and delivering a volume of irrigant. The amount of residual bacteria is a...Thus, adjuncts which deliver irrigants as they are ultrasonically activated may be more effective at removing debris and bacteria than those which...do not. Two systems which activate standing sodium hypochlorite are the EndoActivator system (Dentsply, Tulsa, OK) and the EndoUltra system (Vista
NASA Astrophysics Data System (ADS)
Seidel, Sabine J.; Werisch, Stefan; Barfus, Klemens; Wagner, Michael; Schütze, Niels; Laber, Hermann
2014-05-01
The increasing worldwide water scarcity, costs and negative off-site effects of irrigation are leading to the necessity of developing methods of irrigation that increase water productivity. Various approaches are available for irrigation scheduling. Traditionally schedules are calculated based on soil water balance (SWB) calculations using some measure of reference evaporation and empirical crop coeffcients. These crop-specific coefficients are provided by the FAO but are also available for different regions (e.g. Germany). The approach is simple but there are several inaccuracies due to simplifications and limitations such as poor transferability. Crop growth models - which simulate the main physiological plant processes through a set of assumptions and calibration parameter - are widely used to support decision making, but also for yield gap or scenario analyses. One major advantage of mechanistic models compared to empirical approaches is their spatial and temporal transferability. Irrigation scheduling can also be based on measurements of soil water tension which is closely related to plant stress. Advantages of precise and easy measurements are able to be automated but face difficulties of finding the place where to probe especially in heterogenous soils. In this study, a two-year field experiment was used to extensively evaluate the three mentioned irrigation scheduling approaches regarding their efficiency on irrigation water application with the aim to promote better agronomic practices in irrigated horticulture. To evaluate the tested irrigation scheduling approaches, an extensive plant and soil water data collection was used to precisely calibrate the mechanistic crop model Daisy. The experiment was conducted with white cabbage (Brassica oleracea L.) on a sandy loamy field in 2012/13 near Dresden, Germany. Hereby, three irrigation scheduling approaches were tested: (i) two schedules were estimated based on SWB calculations using different crop coefficients, and (ii) one treatment was automatically drip irrigated using tensiometers (irrigation of 15 mm at a soil tension of -250 hPa at 30 cm soil depth). In treatment (iii), the irrigation schedule was estimated (using the same critera as in the tension-based treatment) applying the model Daisy partially calibrated against data of 2012. Moreover, one control treatment was minimally irrigated. Measured yield was highest for the tension-based treatment with a low irrigation water input (8.5 DM t/ha, 120 mm). Both SWB treatments showed lower yields and higher irrigation water input (both 8.3 DM t/ha, 306 and 410 mm). The simulation model based treatment yielded lower (7.5 DM t/ha, 106 mm) mainly due to drought stress caused by inaccurate simulation of the soil water dynamics and thus an overestimation of the soil moisture. The evaluation using the calibrated model estimated heavy deep percolation under both SWB treatments. Targeting the challenge to increase water productivity, soil water tension-based irrigation should be favoured. Irrigation scheduling based on SWB calculation requires accurate estimates of crop coefficients. A robust calibration of mechanistic crop models implies a high effort and can be recommended to farmers only to some extent but enables comprehensive crop growth and site analyses.
NASA Astrophysics Data System (ADS)
Rodríguez-Sinobas, L.; Gil-Rodríguez, M.; Sánchez, R.; Losada, A.; Castañón, G.; Juana, L.; Laguna, F. V.; Benítez, J.
2010-05-01
Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters and the inlet pressure and irrigation time for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. Likewise, water distribution is affected by soil hydraulic properties, initial water content, emitter discharge, irrigation frequency, evapotranspiration and root characteristics. However, complexity arousing of soil water properties and soil profile characteristics means that these are often not properly considered in the design and management of those systems. A better understanding of the infiltration process around the discharge point source should contribute to increase water use efficiency and thus to reduce the risk of environmental impact of irrigation. In this regard, numerical models have been proved to be a powerful tool to analyze the evolution of the wetting pattern during the distribution and redistribution processes, in order to explore irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. Also, irrigation design variables such as emitter spacing and discharge could also be assessed. In this study the suitability of the HYDRUS-2D to simulate infiltration process around an emitter during irrigation of a loamy soil with drip and SDI laterals has been addressed. The model was then applied in order to evaluate the main dimensions of the wetted soil volume surrounding the emitter during irrigation. Irrigation uniformity with DI and SDI laterals were determined by field evaluations at different inlet head pressures. Results were related with estimations made on water distribution within the soil that were simulated taking into account the emitter discharge at different lateral locations, initial soil water content, soil hydraulic properties and time of irrigation. Conclusions highlight the effect of emitter discharge, emitter spacing, and irrigation time on wetting patterns, and thus solute transport, in both drip and subsurface drip irrigation. The effect of emitter depth was also considered in SDI. Some recommendations for the design and management of these irrigation systems are also provided.
NASA Astrophysics Data System (ADS)
Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang
2017-04-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.
Economics of adopting solar photovoltaic energy systems in irrigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlin, R.W.; Katzman, M.T.
An economic analysis concerning the adoption of solar photovoltaic energy systems in irrigation has been made compared to conventional fossil fuel energy sources. The basis for this analysis is presented along with a discussion as to the time of initial profitability, the time of optimal investment, the effects of the tax system, the cost per acre that would make irrigation unviable, and possible governmental incentives that would promote the deployment of photovoltaic irrigation systems between the time of initial profitability and the time of optimal investment.
ERIC Educational Resources Information Center
Development Planning and Research Associates, Inc., Manhattan, KS.
This manual provides materials for a two-week inservice training program for Peace Corps volunteers on the planning, construction, and operation and maintenance of small-scale irrigation systems. The workshop is designed to be given by two experienced professionals: one with practical knowledge of irrigation system design, operation, and…
Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China
Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li
2013-01-01
Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water. PMID:24082852
Emergy evaluation of a production and utilization process of irrigation water in China.
Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li
2013-01-01
Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.
A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China
NASA Astrophysics Data System (ADS)
Cong, Z.
2015-12-01
In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting and other information about the irrigation. This system can be expanded in other irrigation districts. In future, it is even possible to upgrade the system for the mobile user.
Matching soil salinization and cropping systems in communally managed irrigation schemes
NASA Astrophysics Data System (ADS)
Malota, Mphatso; Mchenga, Joshua
2018-03-01
Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.
van der Sluis, L W M
2015-10-01
The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems.
USDA-ARS?s Scientific Manuscript database
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...
USDA-ARS?s Scientific Manuscript database
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...
Afghanistan irrigation system assessment using remote sensing
NASA Astrophysics Data System (ADS)
Haack, Barry
1997-01-01
The Helmand-Arghandab Valley irrigation system in southern Afghanistan is one of the country's most important capital resources. Prior to the civil and military conflict that has engulfed Afghanistan for more than 15 years, agricultural lands irrigated by the system produced a large proportion of the country's food grains and cotton. This study successfully employed Landsat satellite imagery, Geographic Information Systems (GIS), Global Positioning Systems (GPS), and field surveys to assess changes that have occurred in this system since 1973 as a consequence of the war. This information is a critical step in irrigation rehabilitation for restoration of Afghanistan's agricultural productivity.
Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions
Mozo, Sandra; Llena, Carmen
2012-01-01
Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738
Haapasalo, Markus; Shen, Ya; Wang, Zhejun; Park, Ellen; Curtis, Allison; Patel, Payal; Vandrangi, Prashanthi
2016-09-01
The purpose of this study is to compare pressures at the apical foramen created by conventional syringe irrigation and the GentleWave™ System, which releases high-velocity degassed irrigants to the pulp chamber and uses broad-spectrum sound energy for cleaning. The apical pressure generated during irrigation was measured for palatal and distobuccal root canals of four extracted maxillary molars after no instrumentation, minimal instrumentation to a size #15/.04, instrumentation to a size #40/.04 taper, and after perforating the apical foramen to size #40. The root canals opened into an air-tight custom fixture coupled to a piezoresistive pressure transducer. Apical pressures were measured for the GentleWave™ System and syringe-needle irrigation at different irrigant flow rates, with the needle tip at 1 and 3 mm from the apical foramen using 30-gauge (G) open-ended or side-vented safety tip needles. The GentleWave™ System generated negative apical pressures (P < 0.001 compared with syringe irrigation); the mean pressures were between -13.07 and -17.19 mmHg. The 30 G needles could not reach the 1 and 3 mm from the working length in uninstrumented and 1 mm in minimally instrumented canals. The mean positive pressures between 6.46 and 110.34 mmHg were measured with needle irrigation depending on the flow rate, needle insertion depth, and size of the root canal. The GentleWave™ System creates negative pressure at the apical foramen during root canal cleaning irrespective of the size of canal instrumentation. Positive apical pressures were measured for syringe irrigation. Negative pressure during irrigation contributes to improved safety as compared to high-positive pressure.
Diagnosing Trouble Spots Caused by an Irrigation System
John R. Scholtes
2002-01-01
I discuss a testing procedure to determine the water distribution pattern of a sprinkler irrigation system and steps that may be taken to improve uniformity of application. All irrigation systems require testing and maintenance to assure that water application is as uniform as possible. Even new systems installed to a manufacturer's specifications should be "...
Real-time data acquisition and telemetry based irrigation control system
Slater, John M.; Svoboda, John M.
2005-12-13
A data acquisition and telemetry based control system for use in facilitating substantially real time management of an agricultural irrigation system. The soil moisture sensor includes a reader and a plurality of probes. The probes each include an electronic circuit having a moisture sensing capacitor in operative communication with the soil whose moisture is to be measured. Each probe also includes a receive/transmit antenna and the reader includes a transmit/receive antenna, so that as the reader passes near the probe, the reader transmits a digital excitation signal to the electronic circuit of the biodegradable probe via an inductive couple formed between the transmit/receive antenna of the reader and the receive/transmit coil of the probe. The electronic circuit uses an energy component of the excitation signal to generate a digital data signal which indicates the moisture content of the soil adjacent to the moisture sensing capacitor. The probe sends the data signal to the reader which then uses the data signal to develop a corresponding set of watering instructions which are then transmitted to a control module in communication with the irrigation system. The control module sends corresponding control signals to nozzles of the irrigation system causing the irrigation system to disperse water in a manner consistent with the moisture content data transmitted by the probes to the reader. Because the irrigation system moves continuously through the field to be irrigated, the moisture content data acquisition and resultant water dispersal by the irrigation system occur substantially in real time.
An Assessment of Irrigation Technology Performance in the Southern San Joaquin Valley of California
NASA Astrophysics Data System (ADS)
Vaux, H. J., Jr.; Handley, Dale F.; Giboney, Paul M.
1990-01-01
Seasonal applied water measurements were obtained for 1710 irrigated fields in the southern San Joaquin Valley of California. Most of the fields were planted to one of five major crops: citrus, almonds, grapes, cotton, and small grains. These crops were irrigated with a wide array of irrigation technologies, including drip, sprinkler, furrows with tailwater reuse facilities, conventional furrows, and border irrigation systems. The data were analyzed within an accounting framework to standardize for a variety of climatic and cultural variations. Analyses of the mean depths of applied water by crop and irrigation technology and of the standardized results reveal that drip irrigation systems were associated with the lowest levels of applied water on permanent crops and that the levels of water applied with sprinklers did not differ significantly from those applied with surface systems on either permanent or annual crops.
Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya
2014-01-01
Objective: Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Materials and Methods: Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. Results: The Reciproc file system produced significantly more debris compared with OneShape file system (P<0.05), but no statistically significant difference was obtained between the two reciprocating instruments (P>0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Conclusions: Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems. PMID:25628665
21 CFR 876.5220 - Colonic irrigation system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colonic irrigation system. 876.5220 Section 876.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system...
ERIC Educational Resources Information Center
Shea, Kevin P.
1975-01-01
A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)
21 CFR 876.5220 - Colonic irrigation system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Colonic irrigation system. 876.5220 Section 876.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system...
Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher
2015-01-01
The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...
Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield
NASA Astrophysics Data System (ADS)
Widiastuti, I.; Wijayanto, D. S.
2017-03-01
Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.
Automation of irrigation systems to control irrigation applications and crop water use efficiency
USDA-ARS?s Scientific Manuscript database
Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...
The SRFR 5 modeling system for surface irrigation
USDA-ARS?s Scientific Manuscript database
The SRFR program is a modeling system for surface irrigation. It is a central component of WinSRFR, a software package for the hydraulic analysis of surface irrigation systems. SRFR solves simplified versions of the equations of unsteady open channel flow coupled to a user selected infiltration mod...
Yield response to variable rate irrigation in corn
USDA-ARS?s Scientific Manuscript database
To investigate the impact of variable rate irrigation on corn yield, twenty plots of corn were laid out under a center pivot variable rate irrigation (VRI) system in an experimental field near Stoneville, MS. The VRI system is equipped with five VRI zone control units, a global positioning system (G...
Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology
NASA Astrophysics Data System (ADS)
Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao
2018-03-01
To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.
Land use policy and agricultural water management of the previous half of century in Africa
NASA Astrophysics Data System (ADS)
Valipour, Mohammad
2015-12-01
This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.
Memory of irrigation effects on hydroclimate and its modeling challenge
NASA Astrophysics Data System (ADS)
Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng
2018-06-01
Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.
Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David
2016-07-01
The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.
Analytical Solution for Optimum Design of Furrow Irrigation Systems
NASA Astrophysics Data System (ADS)
Kiwan, M. E.
1996-05-01
An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.
Reservoir and canal system regulation for operation of the Raymond Reservoir Hydro Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.D.; Davidson, B.
1995-12-31
In 1989 LIMA Engineering Ltd. of Lethbridge, Alberta, Canada and Tudor Engineering Company of Oakland, California investigated the feasibility of installing a hydroelectric facility for the St. Mary River Irrigation District at Raymond Chute. This chute is a 29.3 m (96 ft) drop structure on the District`s main canal outside of the town of Raymond in southern Alberta. The chute discharges into the east end of Raymond Reservoir, a small regulating reservoir. The engineering team concluded that the project could be made more attractive by combining the drop at Raymond Chute with an additional 17.7 m (58 ft) of headmore » available at the upstream Milk River Ridge Reservoir. The result was the 20 MW Raymond Reservoir Hydro Project which went into commercial operation in May, 1994. Combining these two drops in elevation required the construction of a complete bypass system with a new approach canal and tailrace discharging into the west end of Raymond Reservoir, approximately 5 km (3 miles) west of the Raymond Chute. The system allows up to 56.7 cms (2,000 cfs) to be diverted through the powerhouse and thereby bypass Milk River Ridge Reservoir, Raymond Chute and approximately 6.5 km (4 miles) of canal. No synchronous bypass valve or spill facility was provided at the powerhouse. Rather, a system of rehabilitated or new check structures and controls were provided to automatically transfer flow from the power canal to the original system and thereby maintain a constant pre-set discharge downstream of the powerhouse following load rejections. This constant discharge is essential for meeting downstream irrigation demand.« less
NASA Astrophysics Data System (ADS)
Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang
2016-04-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development that comprised the improved representation of Mediterranean crops (2). References: (1) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Mediterranean irrigation under climate change : More efficient irrigation needed to compensate increases in irrigation water requirements. HESSD 12, 8459-8504. (2) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev., 8, 3545-3561, 2015.
Web/smart phone based control and feedback systems for irrigation systems
USDA-ARS?s Scientific Manuscript database
The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...
Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains
USDA-ARS?s Scientific Manuscript database
Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...
Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua
2011-01-01
Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil–root system (Lsr) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with Lsr in both the whole and irrigated root zones for all three irrigation methods but not with Lsr in the non-irrigated root zone of FPRI. The total Lsr in the irrigated root zone of two PRIs was increased by 49.0–92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of Lsr in a half root zone to Lsr in the whole root zone was ∼50%. For FPRI, the Lsr in the irrigated root zone was close to that of the whole root zone. As for APRI, the Lsr in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the Lsr in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The Lsr in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627
Hammam, H M; Allam, F A; Hassanein, F; El-Garby, M T
1975-01-01
Four villages in Assiut Governorate were studied. They were matched for availability and time of introduction of medical services, the size of population and the socioeconomic status. One village had a basin system of irrigation. The other three villages had perennial irrigation introduced at different dates. A sketch map of each village was made showing the location of every house and the irrigation channels. Total coverage was intended in Gezirat El-Maabda (with basin irrigation) and Nazza Karar (with perennial irrigation-recently introduced). In El-Ghorayeb and Garf Sarhan (with older systems of perennial irrigation) systematic random samples were studied. The Study included a full, double check clinical examination of urine and stools samples and a social study. Data about educational level and activities that bring the individual in contact with canal water were recorded. Tables showing the age and sex distribution of the total population and the population studied in each village are presented and show validity of the samples taken from the population.
Soares, Janir Alves; Leonardo, Mario Roberto; da Silva, Léa Assed Bezerra; Tanomaru Filho, Mario; Ito, Izabel Yoko
2006-01-01
This study aimed at evaluating the antisepsis of the root canal system (RCS) and periapical region (PR) provided by rotary instrumentation associated with chlorhexidine + calcium hydroxide as intracanal medicament. Chronic periapical lesions were induced in 26 pre-molar roots in two dogs. After microbiological sampling, automatic instrumentation using the Profile system and irrigation with 5.25% sodium hypochlorite solution, with a final rinse of 14.3% EDTA followed by profuse irrigation with physiological saline were carried out in 18 root canals. After drying the canals, a paste based on calcium hydroxide associated with a 2% chlorhexidine digluconate solution was placed inside them. After 21 days, the medication was removed, leaving the root canals empty and coronally sealed. After 96 hours, a final microbiological sample was obtained, followed by histomicrobiological processing by the Brown & Brenn method. Eight untreated root canals represented the control group (C-G). Based on the Mann-Whitney test at a confidence level of 5% (p < 0.05), the procedures of antisepsis used offered significant efficacy (p < 0.05) resulting in 100.0% of the canals free of microorganisms. In the C-G, an elevated incidence of various microbial morphotypes was confirmed in all sites of the RCS, with the presence of microbial colonies in the periapical region. In contrast, the experimental group showed a similar pattern of infection in the RCS, although less intense and a reduced level of periapical infection (p < 0.05). It was concluded that adequate instrumentation followed by the application of calcium hydroxide + chlorhexidine offered significant elimination of microorganisms.
Crop water productivity and irrigation management
USDA-ARS?s Scientific Manuscript database
Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...
Pawar, Rekha; Alqaied, Abdullah; Safavi, Kamran; Boyko, Jennifer; Kaufman, Blythe
2012-09-01
Recent in vitro studies that use an apical negative pressure irrigation system, EndoVac, have demonstrated promising results in the production of debris-free root canals, while also preventing potential extrusion of irrigants into the periapical region. We conducted a randomized, controlled, prospective clinical study to determine whether the use of EndoVac irrigation (EndoVac group) was more efficient compared with standard needle irrigation (control group) in obtaining canals from which microbes could not be cultivated. Routine endodontic therapy was performed in 48 patients with necrotic, single-rooted, single-canal teeth. The patients were randomly assigned to either the EndoVac group (n = 25) or control group (n = 23). Irrigation with either method was carried out with 0.5% sodium hypochlorite. After surface disinfection, before instrumentation and on completion of chemomechanical preparation, intracanal microbial samples were obtained and cultured under anaerobic conditions. The frequency of microbial cultivability by using either irrigation system was analyzed. The frequency of obtaining culture-negative root canals was 90.9% and 82.6% for the control group and EndoVac group, respectively. There was no significant difference in the antimicrobial efficacy of either control group or EndoVac group (Fisher exact test, P = .665). Furthermore, no significant association between study variables and the irrigation systems' antimicrobial efficacy was found (P > .05). The results of this prospective in vivo study demonstrate that the antimicrobial efficacy of EndoVac irrigation is comparable to that of standard irrigation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Performance assessment of the Gash Delta Spate Irrigation System, Sudan
NASA Astrophysics Data System (ADS)
Ghebreamlak, Araya Z.; Tanakamaru, Haruya; Tada, Akio; Adam, Bashir M. Ahmed; Elamin, Khalid A. E.
2018-02-01
The Gash Delta Spate Irrigation System (GDSIS), located in eastern Sudan with a net command area of 100 000 ha (an area currently equipped with irrigation structures), was established in 1924. The land is irrigated every 3 years (3-year rotation) or every 2 years (2-year rotation) so that about 33 000 or 50 000 ha respectively can be cultivated annually. This study deals with assessing the performance of the 3- and 2-year rotation systems using the Monte Carlo simulation. Reliability, which is a measure of how frequently the irrigation water supply satisfies the demand, and vulnerability, which is a measure of the magnitude of failure, were selected as the performance criteria. Combinations of five levels of intake ratio and five levels of irrigation efficiency for the irrigation water supply of each rotation system were analysed. Historical annual flow data of the Gash River for 107 years were fit to several frequency distributions. The Weibull distribution was the best on the basis of the Akaike information criteria and was used for simulating the ensembles of annual river flow. The reliabilities and vulnerabilities of both rotation systems were evaluated at typical values of intake ratio and irrigation efficiency. The results show that (i) the 3-year rotation is more reliable in water supply than the 2-year rotation, (ii) the vulnerability of the 3-year rotation is lower than that of the 2-year rotation and (iii) therefore the 3-year rotation is preferable in the GDSIS. The sensitivities of reliability and vulnerability to changes in intake ratio and irrigation efficiency were also examined.
USDA-ARS?s Scientific Manuscript database
The effects of nitrogen (N) fertigation using conventional drip and alternative micro irrigation systems were evaluated in six cultivars of northern highbush blueberry. The drip system consisted of two laterals of drip tubing, with 2 L/h in-line emitters (point source) spaced every 0.45 m, on each s...
Developing wind and/or solar powered crop irrigation systems for the Great Plains
USDA-ARS?s Scientific Manuscript database
Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...
Solar- and wind-powered irrigation systems
NASA Astrophysics Data System (ADS)
Enochian, R. V.
1982-02-01
Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.
Virtual Sensors for Designing Irrigation Controllers in Greenhouses
Sánchez, Jorge Antonio; Rodríguez, Francisco; Guzmán, José Luis; Arahal, Manuel R
2012-01-01
Monitoring the greenhouse transpiration for control purposes is currently a difficult task. The absence of affordable sensors that provide continuous transpiration measurements motivates the use of estimators. In the case of tomato crops, the availability of estimators allows the design of automatic fertirrigation (irrigation + fertilization) schemes in greenhouses, minimizing the dispensed water while fulfilling crop needs. This paper shows how system identification techniques can be applied to obtain nonlinear virtual sensors for estimating transpiration. The greenhouse used for this study is equipped with a microlysimeter, which allows one to continuously sample the transpiration values. While the microlysimeter is an advantageous piece of equipment for research, it is also expensive and requires maintenance. This paper presents the design and development of a virtual sensor to model the crop transpiration, hence avoiding the use of this kind of expensive sensor. The resulting virtual sensor is obtained by dynamical system identification techniques based on regressors taken from variables typically found in a greenhouse, such as global radiation and vapor pressure deficit. The virtual sensor is thus based on empirical data. In this paper, some effort has been made to eliminate some problems associated with grey-box models: advance phenomenon and overestimation. The results are tested with real data and compared with other approaches. Better results are obtained with the use of nonlinear Black-box virtual sensors. This sensor is based on global radiation and vapor pressure deficit (VPD) measurements. Predictive results for the three models are developed for comparative purposes. PMID:23202208
USDA-ARS?s Scientific Manuscript database
An integrated foundation is presented to study the impacts of external forcings on irrigated agricultural systems. Individually, models are presented that simulate groundwater hydrogeology and econometric farm level crop choices and irrigated water use. The natural association between groundwater we...
Nitrogen removal function of recycling irrigation system.
Hitomi, T; Yoshinaga, I; Feng, Y W; Shiratani, E
2006-01-01
The purpose of this study was to clarify the nitrogen (N) purification capacity of a paddy field in a recycling irrigation system. Irrigation water was sampled at 12-h intervals during the irrigation period from April to September 2003. In addition, ponded water in a paddy field was collected at three points (inlet, centre and outlet). Total amounts of N were 30.7 kg ha(-1) in inflow and 27.8 kg ha(-1) in outflow. Thus, the net outflow load was -2.9 kg ha(-1). The N removal rate constant when N removal is expressed as a 1st-order kinetic was 0.017-0.024 m d(-1). This value is close to values of wetlands and paddy fields in the literature. We found a good correlation between recycling ratio and N removal effect. These results indicate that the recycling irrigation system accumulates N in the irrigation/drainage system, and thus the paddy field does a good job of water purification by removing N.
Are There Infinite Irrigation Trees?
NASA Astrophysics Data System (ADS)
Bernot, M.; Caselles, V.; Morel, J. M.
2006-08-01
In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.
USDA-ARS?s Scientific Manuscript database
Many of the irrigation systems today in the U.S. Central Great Plains no longer have the capacity to match peak irrigation needs during the summer and must rely on soil water reserves to buffer the crop from water stress. Considerable research was conducted on preseason irrigation in the U.S. Great ...
Adhikari, B; Verhoeven, R; Troch, P
2009-01-01
This paper studies primary canals of three traditional irrigation systems in the southern plains of Nepal. It offers a scientific interpretation of the indigenous technology applied to the systems, which facilitates to use the same channel network for irrigation, drainage and flood management. The flood management technology of the farmers by diverting as much discharge as possible to the field channels results in the reduction of discharge towards the downstream part of the main channel. It is depicted in the simulation study that uses the river analysis program HEC-RAS 4.0. A cascade of weirs is found to be the most cost effective and user-friendly option to upgrade these systems preserving the existing irrigation, drainage as well as flood management functions. This study suggests that the conventional irrigation design principles should be applied very cautiously with full knowledge of the existing socio-institutional setting, hydro-ecological regime and indigenous technology for upgrading any traditional irrigation system successfully. The indigenous flood management technology strengthens the emerging concept that the floods in the Ganges plain are to be managed, not controlled.
Influence of different operating conditions on irrigation uniformity with microperforated tapes
NASA Astrophysics Data System (ADS)
Moreno Pizani, María Alejandra; Jesús Farías Ramírez, Asdrúbal
2013-04-01
Irrigated agriculture is a safe alternative to meet the growing demand for food. Numerous studies show that proper management of localized irrigation can increase crop yields and reduce soil salinization. Therefore, periodic field systems irrigation assessments are needed in order to optimize the use efficiency of irrigation water, as well as, to increase the agricultural area covered by the same amount of water and to reduce the environmental impact. It was assessed the behavior of micro perforated tapes under different operating conditions, crops and regions of Venezuela. Evaluations were made on irrigated areas using Santeno ® Type I tape with the following crops: Banana (Musa sp), lettuce (Lactuca sativa L.), carrot (Daucus carota L) and forage sugar cane (Saccharum officinarum). In the other hand, Santeno ® Type II tape was used with papaya (Carica papaya L.) and melon (Cucumis melo L.) crops (the last crop using inverted irrigation tape). The procedures used for sampling and determining the uniformity indices of the system were performed using a series of adjustments to the methodology proposed by Keller and Karmeli (1975), Deniculi (1980) and De Santa and De Juan (1993), in order to increase the number of observations as a function of irrigation time. The calculated irrigation uniformity indices were as follow: Distribution Coefficient (UD), Uniformity Coefficient (CUC), Coefficient of Variation of Flows (CV) and Statistical Uniformity Coefficient (Us). The indices characterization was made according to Merrian and Keller (1978); Bralts (1986); Pizarro (1990) y ASAE (1996), respectively. The results showed that the irrigation uniformity for the evaluated systems varied from excellent to unacceptable, mainly due to the lack of maintenance and the absent of manometric connectors. Among the findings, it is possible to highlight the need for technical support to farmers, both in the installation, management and maintenance of irrigation systems. In this sense, it is proposed to establish a simple and reliable procedure to evaluate the irrigation uniformity in the field, which should be available for farmers and feasible for researchers.
NASA Astrophysics Data System (ADS)
Xanthopoulou, Themis; Ertsen, Maurits; Düring, Bleda; Kolen, Jan
2017-04-01
In the dry Southern Oman, more than a thousand years ago, a large water system that connected the mountain mass with the coastal region was constructed. Its length (up to 30 km) and the fact that the coastal region has a rich groundwater aquifer create confusion as to why the system was initially built. Nonetheless, it was abandoned a couple of centuries later only to be partially revived by small farming communities in the 17th to 18th century. The focus of our research is one of the irrigation systems that used the water conveyed from the large water system. Not much is known about these small irrigation systems functioning in the Wadi Al Jizzi of the greater Sohar region. There are no written records and we can only make guesses about the way the systems were managed based on ethnographical studies and the traditional Omani techniques. On the other hand, the good preservation state of the canals offers a great opportunity for hydraulic reconstruction of irrigation events. More than that, the material remains suggest and at the same time limit the ways in which humans interacted with the system and the water resources of the region. All irrigation activities and some daily activities had to be realized through the canal system and only if the canal system permits it these actions would have been feasible. We created a conceptual model of irrigation that includes the human agent and feedback mechanisms through hydraulics and then we simulated irrigation events using the Sobek software. Scenarios and sensibility analysis were used to address the unknown aspects of the system. Our research yielded insights about the way the farming community interacted with the larger water system, the levels of co-ordination and co-operation required for successful irrigation and the predisposition of conflict and power relations.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2015-08-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.
Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
Collector design for measuring high intensity time variant sprinkler application rates
USDA-ARS?s Scientific Manuscript database
Peak water application rate in relation to soil water infiltration rate and soil surface storage capacity is important in the design of center pivot sprinkler irrigation systems for efficient irrigation and soil erosion control. Measurement of application rates of center pivot irrigation systems ha...
Efficient irrigation management with conventional and VRI sprinkler systems
USDA-ARS?s Scientific Manuscript database
In Alabama, there is a ploitical push towards irrigated agriculture, as reduction in water resources for agriculture in the West becomes more limited. Some farmers have invested in center pivot systems but have little experience with irrigation scheduling methods. ARS scientists at Bushland have e...
A comparison of precision mobile drip irrigation, LESA and LEPA
USDA-ARS?s Scientific Manuscript database
Precision mobile drip irrigation (PMDI) is a surface drip irrigation system fitted onto moving sprinkler systems that applies water through the driplines as they are dragged across the field. This application method can conserve water by limiting runoff, and reducing evaporative losses since the wat...
Peanut canopy temperature and NDVI response to varying irrigation rates
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) systems have the potential to conserve water by spatially allocating limited water resources. In this study, peanut was grown under a VRI system to evaluate the impact of differential irrigation rates on peanut yield. Additionally, we evaluated the impact of differenti...
NASA Astrophysics Data System (ADS)
Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Nisantzi, A.
2011-05-01
Cyprus is frequently confronted with severe droughts and the need for accurate and systematic data on crop evapotranspiration (ETc) is essential for decision making, regarding water irrigation management and scheduling. The aim of this paper is to highlight how data from meteorological stations in Cyprus can be used for monitoring and determining the country's irrigation demands. This paper shows how daily ETc can be estimated using FAO Penman-Monteith method adapted to satellite data and auxiliary meteorological parameters. This method is widely used in many countries for estimating crop evapotranspiration using auxiliary meteorological data (maximum and minimum temperatures, relative humidity, wind speed) as inputs. Two case studies were selected in order to determine evapotranspiration using meteorological and low resolution satellite data (MODIS - TERRA) and to compare it with the results of the reference method (FAO-56) which estimates the reference evapotranspiration (ETo) by using only meteorological data. The first approach corresponds to the FAO Penman-Monteith method adapted for using both meteorological and remotely sensed data. Furthermore, main automatic meteorological stations in Cyprus were mapped using Geographical Information System (GIS). All the agricultural areas of the island were categorized according to the nearest meteorological station which is considered as "representative" of the area. Thiessen polygons methodology was used for this purpose. The intended goal was to illustrate what can happen to a crop, in terms of water requirements, if meteorological data are retrieved from other than the representative stations. The use of inaccurate data can result in low yields or excessive irrigation which both lead to profit reduction. The results have shown that if inappropriate meteorological data are utilized, then deviations from correct ETc might be obtained, leading to water losses or crop water stress.
Comparison of the EndoVac system to needle irrigation of root canals.
Nielsen, Benjamin A; Craig Baumgartner, J
2007-05-01
Past studies have shown that current irrigation methods are effective at cleaning root canals coronally but less effective apically. To be effective, endodontic irrigants should ideally be delivered near working length. The purpose of this study was to compare the efficacy of the EndoVac irrigation system and needle irrigation to debride root canals at 1 and 3 mm from working length. One tooth of each matched pair was instrumented and irrigated by using the EndoVac, which uses negative pressure to deliver irrigating solutions to working length. The other tooth of the matched pair was instrumented and irrigated with a 30-gauge ProRinse irrigating needle. All teeth were irrigated with sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) for a predetermined amount of time, and total volume of irrigant used was recorded. After instrumentation and irrigation, the teeth were fixed, decalcified, and sectioned at 1 mm and 3 mm from working length. Serial sections were made and digitally photographed. The amount of remaining debris was determined as a percentage of the area of the canal lumen. Remaining debris and total irrigant were analyzed by using the Wilcoxon signed rank test at the 5% confidence level. At the 1-mm level, significantly less debris was found in the EndoVac group (p=0.0347). At the 3-mm level, there was no significant difference between groups. Significantly more irrigant was delivered with the EndoVac (p<0001). This study showed significantly better debridement at 1 mm from working length by using the EndoVac compared with needle irrigation.
NASA Astrophysics Data System (ADS)
Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan
2017-08-01
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.
Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan
2017-08-01
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.
Performance evaluation of a center pivot variable rate irrigation system
USDA-ARS?s Scientific Manuscript database
Variable Rate Irrigation (VRI) for center pivots offers potential to match specific application rates to non-uniform soil conditions along the length of the lateral. The benefit of such systems is influenced by the areal extent of these variations and the smallest scale to which the irrigation syste...
Center pivot mounted infrared sensors: Retrieval of ET and interface with satellite systems
USDA-ARS?s Scientific Manuscript database
Infrared sensors mounted aboard cener pivot irrigation systems can remotely sense the surface temperatures of the crops and soils, which provides important information on crop water status. This can be used for irrigation management and irrigation automation, which can increase crop water productivi...
Irrigation Systems. Instructor's Guide.
ERIC Educational Resources Information Center
Amarillo Coll., TX.
This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…
Yield response and economics of shallow subsurface drip irrigation systems
USDA-ARS?s Scientific Manuscript database
Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...
USDA-ARS?s Scientific Manuscript database
Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...
USDA-ARS?s Scientific Manuscript database
The development of site-specific sprinkler irrigation water management systems will be a major factor in future efforts to improve the various efficiencies of water-use and to support a sustainable irrigated environment. The challenge is to develop fully integrated management systems with supporting...
USDA-ARS?s Scientific Manuscript database
The development of site-specific sprinkler irrigation water management systems will be a major factor in future efforts to improve the various efficiencies of water-use and to support a sustainable irrigated environment. The challenge is to develop fully integrated management systems with supporting...
Performance test of nutrient control equipment for hydroponic plants
NASA Astrophysics Data System (ADS)
Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.
2017-11-01
Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.
Economic feasibility of converting center pivot irrigation to subsurface drip irrigation
USDA-ARS?s Scientific Manuscript database
Advancements in irrigation technology have increased water use efficiency. However, producers can be reluctant to convert to a more efficient irrigation system when the initial investment costs are high. This study examines the economic feasibility of replacing low energy precision application (LEPA...
A review of mechanical move sprinkler irrigation control and automation technologies
USDA-ARS?s Scientific Manuscript database
Electronic sensors, equipment controls, and communication protocols have been developed to meet the growing interest in site-specific irrigation using center pivot and lateral move irrigation systems. Onboard and field-distributed sensors can collect data necessary for real-time irrigation manageme...
Can variable frequency drives reduce irrigation costs for rice producers?
USDA-ARS?s Scientific Manuscript database
Variable Frequency Drives (VFD's) allow for variable speed operation of electrical motor drive irrigation pumps and are an emerging technology for agricultural irrigation, primarily for pressurized irrigation systems. They are considered an energy savings device, but less is known about their app...
Irrigation system management assisted by thermal imagery and spatial statistics
USDA-ARS?s Scientific Manuscript database
Thermal imaging has the potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of therm...
Ancestral irrigation method by kanis in Bolivia
NASA Astrophysics Data System (ADS)
Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María
2015-04-01
Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and, therefore, the water is distributed by turns among irrigators. Turns usually depend on water availability. Water Agent distributes water equitably without giving preference to anyone.
Wall shear stress effects of different endodontic irrigation techniques and systems.
Goode, Narisa; Khan, Sara; Eid, Ashraf A; Niu, Li-na; Gosier, Johnny; Susin, Lisiane F; Pashley, David H; Tay, Franklin R
2013-07-01
This study examined débridement efficacy as a result of wall shear stresses created by different irrigant delivery/agitation techniques in an inaccessible recess of a curved root canal model. A reusable, curved canal cavity containing a simulated canal fin was milled into mirrored titanium blocks. Calcium hydroxide (Ca(OH)2) paste was used as debris and loaded into the canal fin. The titanium blocks were bolted together to provide a fluid-tight seal. Sodium hypochlorite was delivered at a previously-determined flow rate of 1 mL/min that produced either negligible or no irrigant extrusion pressure into the periapex for all the techniques examined. Nine irrigation delivery/agitation techniques were examined: NaviTip passive irrigation control, Max-i-Probe(®) side-vented needle passive irrigation, manual dynamic agitation (MDA) using non-fitting and well-fitting gutta-percha points, EndoActivator™ sonic agitation with medium and large points, VPro™ EndoSafe™ irrigation system, VPro™ StreamClean™ continuous ultrasonic irrigation and EndoVac apical negative pressure irrigation. Débridement efficacies were analysed with Kruskal-Wallis ANOVA and Dunn's multiple comparisons tests (α=0.05). EndoVac was the only technique that removed more than 99% calcium hydroxide debris from the canal fin at the predefined flow rate. This group was significantly different (p<0.05) from the other groups that exhibited incomplete Ca(OH)2 removal. The ability of the EndoVac system to significantly clean more debris from a mechanically inaccessible recess of the model curved root canal may be caused by robust bubble formation during irrigant delivery, creating higher wall shear stresses by a two-phase air-liquid flow phenomenon that is well known in other industrial débridement systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of 4 Different Irrigating Systems for Apical Extrusion of Sodium Hypochlorite.
Yost, Ross A; Bergeron, Brian E; Kirkpatrick, Timothy C; Roberts, Mark D; Roberts, Howard W; Himel, Van T; Sabey, Kent A
2015-09-01
The aim of this study was to evaluate NaOCl apical extrusion by using negative apical pressure (EndoVac), sonic agitation (EndoActivator), side-vented needle (Max-i-Probe), and photon induced photoacoustic streaming (PIPS 10 mJ and PIPS 20 mJ) laser irrigation in an in vitro gel model. Extracted mandibular and maxillary central incisors (n = 18) were prepared to size 35/.04 and 55/.04, respectively. Teeth were mounted in transparent containers with clear acrylic and suspended in a color-changing pH-sensitive gel, creating a closed system. By using a crossover design, each tooth was sequentially irrigated by using 6% NaOCl with each device following manufacturers' recommendations. Each tooth served as its own control. Pre-irrigation and post-irrigation buccal and proximal view photographs served to measure the longest distance of extrusion and were analyzed with ImageJ software. Mean results were analyzed by using Kruskal-Wallis and Dunn post hoc test (P < .05). There were no significant differences between EndoVac, EndoActivator, and the passive extrusion groups. The EndoVac and EndoActivator groups produced significantly less extrusion than PIPS irrigation. Max-i-Probe extrusion results were more variable than those of EndoActivator but had no significant difference. Across all irrigation systems, there were no significant differences with respect to apical preparation size. Under the in vitro conditions of this study, no difference was found between the 10 mJ and 20 mJ PIPS laser groups. EndoVac demonstrated significantly less potential for apical extrusion than PIPS and Max-i-Probe, whereas apical preparation size did not significantly affect extrusion of irrigant. The potential for apical extrusion of endodontic irrigants should be a consideration when selecting a system for final irrigation. Published by Elsevier Inc.
Agricultural irrigated land-use inventory for Polk County, Florida, 2016
Marella, Richard L.; Berry, Darbi; Dixon, Joann F.
2017-08-16
An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and spray emitters. The remaining 3.2 percent of the irrigated acreage was irrigated by a sprinkler system (2,360 acres) or subsurface flood systems (504 acres). Groundwater was the primary source of water used on irrigated acreage (88 percent, or 78,050 acres); the remaining 10,602 acres (12 percent) used groundwater combined with surface water as the irrigation source.The irrigated acreage estimated by the U.S. Geological Survey (USGS) for this 2016 inventory (88,652 acres) is about 11 percent higher than the 79,869 acres estimated by the U.S. Department of Agriculture (USDA) for 2012. Citrus and pasture in Polk County show the biggest difference in irrigated acreage between the USGS and USDA totals. Irrigated citrus acreage inventoried in 2016 by the USGS totaled 83,996 acres, whereas the USDA reported 78,305 acres of citrus in 2012. The USGS identified 6 acres of irrigated pasture and 20 acres of hay, whereas the USDA reported 6,631 acres of irrigated pasture and 1,349 acres of hay for 2012. In general, differences between the 2016 USGS field-verified acreage totals and acreage published by the USDA for 2012 could be due to (1) irrigated acreage for some specific crops increased or decreased substantially during the 4-year interval between 2012 and 2016 because of production or economic changes, (2) the assumption that if an irrigation system was present, it was used in 2016, when in fact some landowners may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreage published by the USDA for selected crops may be underestimated as a result of how information is obtained and formulated by the agency during census compilations.
Irrigation efficiency and quality of irrigation return flows in the Ebro River Basin: an overview.
Causapé, J; Quílez, D; Aragüés, R
2006-06-01
The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)(avg)(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)(avg)(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)(avg)(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3-16 Mg salt/ha x year and 23-195 kg NO)(3) (-)-N/ha x year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE's also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (>or=14 Mg/ha x year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.
Using Remote Sensing to Determine Timing of High Altitude Grass Hay Growth Stages
NASA Astrophysics Data System (ADS)
Mefford, B.
2015-12-01
Remote sensing has become the standard for collecting data to determine potential irrigation consumptive use in Wyoming for the Green River Basin. The Green River Basin within Wyoming is around 10.8 million acres, located in south western Wyoming and is a sub-basin of the Colorado River Basin. Grass hay is the main crop grown in the basin. The majority of the hay is grown at elevations 7,000 feet above mean sea level. Daily potential irrigation consumptive use is calculated for the basin during the growing season (May 1st to September 30th). To determine potential irrigation consumptive use crop coefficients, reference evapotranspiration (ET) and effective precipitation are required. Currently crop coefficients are the hardest to determine as most research on crop coefficients are based at lower elevations. Values for crop coefficients for grass hay still apply to high altitude grass hay, but the hay grows at a much slower rate than low elevation grass hay. To be able to more accurately determine the timing of the growth stages of hay in this basin, time-lapse cameras were installed at two different irrigated hay fields in the basin for the 2015 growing season and took pictures automatically once a day at 1 P.M.. Both of the fields also contained a permanent research grade weather station. Imagery obtained from these cameras was used as indicators of timing of the major growth stages of the hay and the length of days between the stages. A crop coefficient value was applied every day in the growing season based on the results from the imagery. Daily potential ET was calculated using the crop coefficients and the data from the on-site weather stations. The final result was potential irrigation induced crop consumptive use for each site. Using remote sensing provided necessary information that normally would be applied arbitrarily in determining irrigation induced consumptive use in the Green River Basin.
Automated irrigation management with soil and canopy sensing
USDA-ARS?s Scientific Manuscript database
Automated irrigation management provides for real time feedback between crop water needs and the delivery of specific amount of irrigation water to specific locations on demand. In addition to the basic components of any irrigation system, e.g. pumps, filters, valves, pipes and tubing, sprinkler he...
Assessment of irrigation reservoir levee impairment in Arkansas, USA
USDA-ARS?s Scientific Manuscript database
The use of surface water resources in the state of Arkansas increased over the years following 2000 because of groundwater depletion. In order to reduce dependence on groundwater, irrigation reservoirs and tailwater recovery systems are used to capture and store water for irrigation. Irrigation re...
Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi
2017-06-20
An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi
An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less
The case for distributed irrigation as a development priority in sub-Saharan Africa.
Burney, Jennifer A; Naylor, Rosamond L; Postel, Sandra L
2013-07-30
Distributed irrigation systems are those in which the water access (via pump or human power), distribution (via furrow, watering can, sprinkler, drip lines, etc.), and use all occur at or near the same location. Distributed systems are typically privately owned and managed by individuals or groups, in contrast to centralized irrigation systems, which tend to be publicly operated and involve large water extractions and distribution over significant distances for use by scores of farmers. Here we draw on a growing body of evidence on smallholder farmers, distributed irrigation systems, and land and water resource availability across sub-Saharan Africa (SSA) to show how investments in distributed smallholder irrigation technologies might be used to (i) use the water sources of SSA more productively, (ii) improve nutritional outcomes and rural development throughout SSA, and (iii) narrow the income disparities that permit widespread hunger to persist despite aggregate economic advancement.
Irrigation effects on soil attributes and grapevine performance in a 'Godello' vineyard of NW Spain
NASA Astrophysics Data System (ADS)
Fandiño, María; Trigo-Córdoba, Emiliano; Martínez, Emma M.; Bouzas-Cid, Yolanda; Rey, Benjamín J.; Cancela, Javier J.; Mirás-Avalos, Jose M.
2014-05-01
Irrigation systems are increasingly being used in Galician vineyards. However, a lack of information about irrigation management can cause a bad use of these systems and, consequently, reductions in berry quality and loss of water resources. In this context, experiences with Galician cultivars may provide useful information. A field experiment was carried out over two seasons (2012-2013) on Vitis vinifera (L.) cv. 'Godello' in order to assess the effects of irrigation on soil attributes, grapevine performance and berry composition. The field site was a commercial vineyard located in A Rúa (Ourense-NW Spain). Rain-fed vines (R) were compared with two irrigation systems: surface drip irrigation (DI) and subsurface drip irrigation (SDI). Physical and chemical characteristics of soil were analyzed after installing irrigation systems at the beginning of each season, in order to assess the effects that irrigation might have on soil attributes. Soil water content, leaf and stem water potentials and stomatal conductance were periodically measured over the two seasons. Yield components including number of clusters, yield per plant and cluster average weight were taken. Soluble solids, pH, total acidity and amino acids contents were measured on the grapes at harvest. Pruning weight was also recorded. Soil attributes did not significantly vary due to the irrigation treatments. Stem water potentials were significantly lower for R plants on certain dates through the season, whereas stomatal conductance was similar for the three treatments in 2013, while in 2012 SDI plants showed greater stomatal conductance values. SDI plants yielded more than those R due to both a greater number of clusters per plant and to heavier clusters. Pruning weight was significantly higher in SI plants. Berry composition was similar for the three treatments except for the amino acids content, which was higher under SDI conditions. These results may be helpful for a sustainable management of irrigation in Galician vineyards.
NASA Astrophysics Data System (ADS)
Van Opstal, J.; Neale, C. M. U.; Lecina, S.
2014-12-01
Irrigation management is a dynamic process that adapts according to weather conditions and water availability, as well as socio-economic influences. The goal of water users is to adapt their management to achieve maximum profits. However, these decisions should take into account the environmental impact on the surroundings. Agricultural irrigation systems need to be viewed as a system that is an integral part of a watershed. Therefore changes in the infrastructure, operation and management of an irrigated area, has an impact on the water quantity and quality available for other water users. A strategy can be developed for decision-makers using an irrigation system modelling tool. Such a tool can simulate the impact of the infrastructure, operation and management of an irrigation area on its hydrology and agricultural productivity. This combination of factors is successfully simulated with the Ador model, which is able to reproduce on-farm irrigation and water delivery by a canal system. Model simulations for this study are supported with spatial analysis tools using GIS and remote sensing. Continuous measurements of drainage water will be added to indicate the water quality aspects. The Bear River Canal Company located in Northern Utah (U.S.A.) is used as a case study for this research. The irrigation area encompasses 26,000 ha and grows mainly alfalfa, grains, corn and onions. The model allows the simulation of different strategies related to water delivery, on-farm water use, crop rotations, and reservoirs and networks capacities under different weather and water availability conditions. Such changes in the irrigation area will have consequences for farmers in the study area regarding crop production, and for downstream users concerning both the quantity and quality of outflows. The findings from this study give insight to decision-makers and water users for changing irrigation water delivery strategies to improve the sustainability and profitability of agriculture in the future.
Frank E. Wozniak
1998-01-01
This publication reviews both published and unpublished sources on Puebloan, Hispanic, and AngloAmerican irrigation systems in the Rio Grande Valley. Settlement patterns and Spanish and Mexican land grants in the valley are also discussed. The volume includes an annotated bibliography.
USDA-ARS?s Scientific Manuscript database
Weed control in rice is challenging, particularly in light of increased resistance to herbicides in weed populations and diminishing availability of irrigation water. Certain indica rice cultivars can produce high yields and suppress weeds in conventional flood-irrigated, drill-seeded systems in the...
The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops
Nagaveni, S Aspalli; Balakoti, K Reddy; Smita, Karan; Ratnakar, P; Satish, S V; Aravind, T
2013-11-01
The apical extrusion of infected debris may have the potential to disrupt the balance between microbial aggression and host defense, resulting in incidents of acute inflammation. During preparation, irrigants and debris, such as bacteria, dentin filings and necrotic tissue may be extruded into the periradicular region leading to periapical inflammation and postoperative flare ups. Using an instrumentation technique that minimizes apical extrusion would be beneficial to both the practitioner and patient. The purpose of the study was to evaluate the weight of debris and volume of irrigant extruded apically from extracted teeth in vitro after endodontic instrumentation using four different rotary root canal instrumentation systems. Four groups of each 20 extracted mandibular premolars were instrumented using one of the four systems: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland)), Hero-shaper (MicroMega, Besancon, France), RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) and K3 (SybronEndo, West Collins, CA). Debris and irrigant extruded from the apical foramen during instrumentation were collected in preweighed test tubes. Volume of irrigant extruded was noted. The containers were stored in incubator at 70° for two days to evaporate the moisture. Weight of dry debris was noted. Data was analyzed using Kruskall-Wallis and Mann-Whitney U test at a significance of 0.001. The results indicated that all of the instrumentation systems tested caused measurable apical extrusion of debris and irrigants. Higher extrusion was observed with Protaper system which was statistically significant with Hero-Shaper, RaCe and K3 systems. There were no statistical differences between Hero-shaper, K3 and RaCe systems (p < 0.05). All instrumentation techniques apically extruded debris and irrigant. However, Hero-shaper, K3 and RaCe systems produced less extruded debris and irrigant than the Protaper system.
USDA-ARS?s Scientific Manuscript database
Although slowly abandoned in developed countries, furrow irrigation systems continue to be a dominant irrigation method in developing countries. Numerical models represent powerful tools to assess irrigation and fertigation efficiency. While several models have been proposed in the past, the develop...
Reducing water inputs with subsurface drip irrigation may improve alfalfa nutritive value
USDA-ARS?s Scientific Manuscript database
Irrigated alfalfa (Medicago sativa L.) is an important forage crop for western Kansas dairy producers. Concerns over decreasing groundwater supplies have prompted the need to develop more efficient methods of irrigation. We investigated the effects of a subsurface drip irrigation system at three lev...
Potential and challenges in use of thermal imaging for humid region irrigation system management
USDA-ARS?s Scientific Manuscript database
Thermal imaging has shown potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of the...
de Gregorio, Cesar; Estevez, Roberto; Cisneros, Rafael; Paranjpe, Avina; Cohenca, Nestor
2010-07-01
The removal of vital and necrotic pulp tissue, microorganisms, and their toxins is essential for endodontic success. However, the complex anatomy of the root canal system has limited our ability to debride it completely. Hence the purpose of this study was to evaluate the effect of currently used irrigation and activation systems on the penetration of sodium hypochlorite into simulated lateral canals and to working length in a closed system. One hundred single-rooted teeth were used in this study. A total of 600 simulated lateral canals were created, 6 in each tooth, with 2 lateral canals at 2, 4.5, and 6 mm of working length. To resemble the clinical situation, a closed system was created by coating each root with soft modeling wax. Roots were then randomly assigned to 4 experimental groups: group 1 (n = 20), Endoactivator (sonic activation); group 2 (n = 20), passive ultrasonic (PUI) activation; group 3 (n = 20), F file; group 4 (n = 20), apical negative pressure (ANP) irrigation; and control group 5 (n = 20), positive pressure irrigation. The samples were evaluated by direct observation of the images recorded under the dental operating microscope. The results demonstrated that the ANP irrigation group was superior at reaching working length, and PUI was the most effective at lateral canal penetration. The ANP irrigation system demonstrated limited activation of the irrigant into lateral canals but reached the working length significantly more than the other groups tested. In contrast, PUI group demonstrated significantly more penetration of irrigant into lateral canals but not up to the working length. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2016-03-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to compensate to some degree for the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they implement some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity may pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one hand, their degree of resilience to climate shocks and, on the other hand, their adaptation potential when confronted with higher temperatures and changes in water availability.
The effect of four different irrigation systems in the removal of a root canal sealer.
Grischke, J; Müller-Heine, A; Hülsmann, M
2014-09-01
The aim of this study was to compare the efficiency of sonic, ultrasonic, and hydrodynamic devices in the removal of a root canal sealer from the surface and from simulated irregularities of root canals. Fifty-three root canals with two standardized grooves in the apical and coronal parts of longitudinally split roots were covered with AH Plus root canal sealer. Compared were the effects of (control) syringe irrigation, (1) CanalBrush, (2) passive ultrasonic irrigation, (3) EndoActivator, and (4) RinsEndo on the removal of the sealer. The specimens were divided into four groups (N = 12) and one control group (N = 5) via randomization. The amount of remaining sealer in the root canal irregularities was evaluated under a microscope using a 4-grade scoring system, whereas the remaining sealer on the root canal surface was evaluated with a 7-grade scoring system. Passive ultrasonic irrigation is more effective than the other tested irrigation systems or syringe irrigation in removing sealer from root canal walls (p < 0.01). None of the techniques had a significant effect on cleaning the lateral grooves. Within the limitations of this study protocol ultrasonic irrigation shows a superior effect on sealer removal from the root canal surface during endodontic retreatment. Cleaning of lateral grooves seems not to be possible with one of the techniques investigated. Incomplete removal of root canal sealer during re-treatment may cause treatment failure. Passive Ultrasonic irrigation seems to be the most effective system to remove sealer from a root canal.
Watanabe, Toru; Mashiko, Takuma; Maftukhah, Rizki; Kaku, Nobuo; Pham, Dong Duy; Ito, Hiroaki
2017-02-01
This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.
NASA Astrophysics Data System (ADS)
Adhikari, B.; Verhoeven, R.; Troch, P.
The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.
Blanc, Elodie; Caron, Justin; Fant, Charles; ...
2017-06-27
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Elodie; Caron, Justin; Fant, Charles
While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climatemore » change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO 2 fertilization effect compared to an unconstrained GHG emission scenario.« less
WaterSense recognizes certification programs for irrigation professionals that meet the specification criteria. Certification programs cover three areas: irrigation system design, installation and maintenance, and system auditing.
NASA Astrophysics Data System (ADS)
Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.
2014-08-01
It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.
Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S
2014-01-01
It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779
NASA Astrophysics Data System (ADS)
Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.
2015-12-01
The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that climate change could justify the investment in new irrigation systems during this century, but the timing of a farmer's response is likely to depend on a variety of factors, including changes in the frequency and magnitude of drought events, current irrigation systems, climatological characteristics within the basin, and crop type.
25 CFR 152.32 - Irrigation fee; payment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... costs against any Indian-owned lands within Indian irrigation projects is deferred as long as Indian... operation and maintenance of the irrigation system. (b) Any operation and maintenance charges that are...
25 CFR 152.32 - Irrigation fee; payment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... costs against any Indian-owned lands within Indian irrigation projects is deferred as long as Indian... operation and maintenance of the irrigation system. (b) Any operation and maintenance charges that are...
25 CFR 152.32 - Irrigation fee; payment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... costs against any Indian-owned lands within Indian irrigation projects is deferred as long as Indian... operation and maintenance of the irrigation system. (b) Any operation and maintenance charges that are...
25 CFR 152.32 - Irrigation fee; payment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... costs against any Indian-owned lands within Indian irrigation projects is deferred as long as Indian... operation and maintenance of the irrigation system. (b) Any operation and maintenance charges that are...
25 CFR 152.32 - Irrigation fee; payment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... costs against any Indian-owned lands within Indian irrigation projects is deferred as long as Indian... operation and maintenance of the irrigation system. (b) Any operation and maintenance charges that are...
Small-Scale Surface (Tank) Irrigation in Asia
NASA Astrophysics Data System (ADS)
Palanisami, K.; Easter, K. William
1987-05-01
Tank irrigation is an ancient tradition in Asia which is now being reviewed as a potential model for future irrigation expansion. South India has thousands of tanks which are in need of rehabilitation after being in operation for over a century. This study evaluates tank irrigation in an area of south India which has the greatest concentration of tanks. Constraints and unique characteristics of tank irrigation are analyzed to provide a basis for devising strategies for improving tank irrigation. A combination of public and private investments along with institutional changes are recommended to help farmers organize to improve irrigation. Yet, only if public investment is carefully integrated with existing private efforts will farmers have incentives to maintain the irrigation systems.
Paqué, Frank; Rechenberg, Dan-Krister; Zehnder, Matthias
2012-05-01
Hard-tissue debris is accumulated during rotary instrumentation. This study investigated to what extent a calcium-complexing agent that has good short-term compatibility with sodium hypochlorite (NaOCl) could reduce debris accumulation when applied in an all-in-one irrigant during root canal instrumentation. Sixty extracted mandibular molars with isthmuses in the mesial root canal system were selected based on prescans using a micro-computed tomography system. Thirty teeth each were randomly assigned to be instrumented with a rotary system and irrigated with either 2.5% NaOCl or 2.5% NaOCl containing 9% (wt/vol) etidronic acid (HEBP). Using a side-vented irrigating tip, 2 mL of irrigant was applied by 1 blinded investigator to the mesial canals after each instrument. Five milliliters of irrigant was applied per canal as the final rinse. Mesial root canal systems were scanned at high resolution before and after treatment, and accumulated hard-tissue debris was calculated as vol% of the original canal anatomy. Values between groups were compared using the Student's t test (α < .05). Irrigation with 2.5% NaOCl resulted in 5.5 ± 3.6 vol% accumulated hard-tissue debris compared with 3.8 ± 1.8 vol% when HEBP was contained in the irrigant (P < .05). A hypochlorite-compatible chelator can reduce but not completely prevent hard-tissue debris accumulation during rotary root canal instrumentation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.
2018-05-01
An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.
Applications of digital image analysis capability in Idaho
NASA Technical Reports Server (NTRS)
Johnson, K. A.
1981-01-01
The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.
Economics of wind energy for irrigation pumping
NASA Astrophysics Data System (ADS)
Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.
1980-07-01
The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.
Anthony S. Davis; Matthew M. Aghai; Jeremiah R. Pinto; Kent G. Apostal
2011-01-01
Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were...
USDA-ARS?s Scientific Manuscript database
Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...
Solving multi-objective water management problems using evolutionary computation.
Lewis, A; Randall, M
2017-12-15
Water as a resource is becoming increasingly more valuable given the changes in global climate. In an agricultural sense, the role of water is vital to ensuring food security. Therefore the management of it has become a subject of increasing attention and the development of effective tools to support participative decision-making in water management will be a valuable contribution. In this paper, evolutionary computation techniques and Pareto optimisation are incorporated in a model-based system for water management. An illustrative test case modelling optimal crop selection across dry, average and wet years based on data from the Murrumbidgee Irrigation Area in Australia is presented. It is shown that sets of trade-off solutions that provide large net revenues, or minimise environmental flow deficits can be produced rapidly, easily and automatically. The system is capable of providing detailed information on optimal solutions to achieve desired outcomes, responding to a variety of factors including climate conditions and economics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
NASA Astrophysics Data System (ADS)
Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.
2014-12-01
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.
An analysis of photovoltaic irrigation system for olive orchards in Greece
NASA Astrophysics Data System (ADS)
Taousanidis, N.; Gavros, K.
2016-11-01
Olive tree cultivation is of major importance in Greece. It has been proved that irrigation of olive orchards increases their production. The classic method followed is diesel pump irrigation. Since Greece favours high insolation the alternative of photovoltaic pumping is proposed. A case study for an olive orchard in Crete is studied with the two alternatives. The photovoltaic pumping system is a direct pumping system as olive trees tolerate even deficit irrigation and storage tank increases the cost. A comparison using the Life Cycle Costing method is proposed. Considerations about climate and economic conditions are taken into account and the study concludes with the profound advantage of the renewable system over the conventional one in strict economic terms.
Fluvial particle characterization using artificial neural network and spectral image processing
NASA Astrophysics Data System (ADS)
Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru
2008-03-01
Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.
Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation.
Castorina, A; Consoli, S; Barbagallo, S; Branca, F; Farag, A; Licciardello, F; Cirelli, G L
2016-01-01
The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.
Evaluation of triple antibiotic paste removal by different irrigation procedures.
Berkhoff, Julie A; Chen, Paul B; Teixeira, Fabricio B; Diogenes, Anibal
2014-08-01
Regenerative endodontics aims to re-establish a functional pulp-dentin complex. First, the root canal system is disinfected primarily by irrigants and medicaments. Triple antibiotic paste (TAP), a commonly used intracanal medicament, has been shown to be directly toxic to stem cells at concentrations greater than 0.1 g/mL. Thus, its complete removal is a crucial step in regenerative endodontic procedures. We hypothesized that currently used irrigation techniques do not completely remove TAP from root canal system. TAP was radiolabeled by the incorporation of I(125), and calcium hydroxide (Ultracal; Ultradent, South Jordan, UT) was radiolabeled with Ca(45). The intracanal medicaments were placed into standardized human root segments and incubated for 28 days at 37°C. Then, canals were irrigated with EndoActivator (Dentsply, Tulsa, OK), passive ultrasonic irrigation, EndoVac (SybronEndo, Coppell, TX), or a syringe/Max-i-Probe needle (Dentsply Rinn, Elgin, IL) using a standardized irrigation protocol in a closed system. Radioactivity levels (counts per minute values) were measured for each tooth before and after the irrigation protocols. Furthermore, the canals were sequentially enlarged and dentin samples collected and evaluated for radioactivity. Data were analyzed with analysis of variance and Bonferroni post hoc testing (P < .05). Approximately 88% of the TAP was retained in the root canal system regardless of the irrigation technique used (no difference among groups). Furthermore, approximately 50% of the radiolabeled TAP was present circumferentially up to 350 μm within the dentin. Conversely, up to 98% of the radiolabeled intracanal calcium hydroxide was removed, and most residual medicament was found present in the initial 50 μm of dentin. Current irrigation techniques do not effectively remove TAP from root canal systems, possibly because of its penetration and binding into dentin. However, calcium hydroxide is effectively removed with significant less residual presence. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Balkhair, Khaled S.
2015-01-01
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571
Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal
2016-12-15
Diabetes mellitus is a multisystem disease which weakens the human's immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. Enterococcus faecalis , Peptostreptococcus micros , and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals.
Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal
2016-01-01
BACKGROUND: Diabetes mellitus is a multisystem disease which weakens the human’s immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. AIM: This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. MATERIAL AND METHODS: Enterococcus faecalis, Peptostreptococcus micros, and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. RESULTS: The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. CONCLUSION: The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals. PMID:28028421
Grower demand for sensor-controlled irrigation
NASA Astrophysics Data System (ADS)
Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica
2015-01-01
Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.
Effect of Passive Ultrasonic Irrigation on Enterococcus faecalis from Root Canals: An Ex Vivo Study.
Guerreiro-Tanomaru, Juliane Maria; Chávez-Andrade, Gisselle Moraima; de Faria-Júnior, Norberto Batista; Watanabe, Evandro; Tanomaru-Filho, Mário
2015-01-01
Endodontic irrigation aims to clean and disinfect the root canal system. Passive ultrasonic irrigation (PUI) is based on the use of an ultrasound-activated instrument into the root canal filled with irrigant. The aim of this study was to evaluate, ex vivo, the effectiveness of PUI in eliminating Enterococcus faecalis from root canals. Seventy-five extracted human single-root teeth were used. After root canal preparation, specimens were inoculated with E. faecalis and incubated at 37 °C for 21 days. Specimens were distributed into five groups (n=15), according to the irrigation method: PUI + saline solution (PUI/SS); PUI + 1% NaOCl (PUI/NaOCl); conventional needle irrigation (CNI) + saline solution (CNI/SS); CNI + 1% NaOCl (CNI/NaOCl); No irrigation (control). Microbiological samples were collected at three time points: initial (21 days after inoculation), post-irrigation (immediately after irrigation), and final (7 days after irrigation). Data were obtained in CFU mL-1 and subjected to analysis by ANOVA and Tukey's tests at 5% significance level. The post-irrigation samples did not demonstrate statistical difference between PUI/SS and CNI/SS nor between PUI/NaOCl and CNI/NaOCl (p>0.05), but PUI/NaOCl and CNI/NaOCl had lower CFU mL-1 number than the other groups (p>0.05). Statistically significant difference was observed between the initial and post-irrigation samples and between the post-irrigation and final samples (p<0.05) in all groups, except in the control. The final samples of all groups presented bacterial counts similar to the initial samples. PUI or CNI with 1% NaOCl contribute to disinfection, but are unable to eradicate E. faecalis from the root canal system.
Çapar, İsmail Davut; Aydinbelge, Hale Ari
2014-01-01
The purpose of the present study is to evaluate smear layer generation and residual debris after using self-adjusting file (SAF) or rotary instrumentation and to compare the debris and smear layer removal efficacy of the SAF cleaning/shaping irrigation system against final agitation techniques. One hundred and eight maxillary lateral incisor teeth were randomly divided into nine experimental groups (n = 12), and root canals were prepared using ProTaper Universal rotary files, with the exception of the SAF instrumentation group. During instrumentation, root canals were irrigated with a total of 16 mL of 5% NaOCl. For final irrigation, rotary-instrumented groups were irrigated with 10 mL of 17% EDTA and 10 mL of 5% NaOCl using different irrigation agitation regimens (syringe irrigation with needles, NaviTip FX, manual dynamic irrigation, CanalBrush, EndoActivator, EndoVac, passive ultrasonic irrigation (PUI), and SAF irrigation). In the SAF instrumentation group, root canals were instrumented for 4 min at a rate of 4 mL/min with 5% NaOCl and received a final flush with same as syringe irrigation with needles. The surface of the root dentin was observed using a scanning electron microscope. The SAF instrumentation group generated less smear layer and yielded cleaner canals compared to rotary instrumentation. The EndoActivator, EndoVac, PUI, and SAF irrigation groups increased the efficacy of irrigating solutions on the smear layer and debris removal. The SAF instrumentation yielded cleaner canal walls when compared to rotary instrumentation. None of the techniques completely removed the smear layer from the root canal walls. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ren, Dongyang; Xu, Xu; Hao, Yuanyuan; Huang, Guanhua
2016-01-01
Water saving in irrigation is a key issue in the upper Yellow River basin. Excessive irrigation leads to water waste, water table rising and increased salinity. Land fragmentation associated with a large dispersion of crops adds to the agro-hydrological complexity of the irrigation system. The model HYDRUS-1D, coupled with the FAO-56 dual crop coefficient approach (dualKc), was applied to simulate the water and salt movement processes. Field experiments were conducted for maize, sunflower and watermelon crops in the command area of a typical irrigation canal system in Hetao Irrigation District during 2012 and 2013. The model was calibrated and validated in three crop fields using two-year experimental data. Simulations of soil moisture, salinity concentration and crop yield fitted well with the observations. The irrigation water use was then evaluated and results showed that large amounts of irrigation water percolated due to over-irrigation but their reuse through capillary rise was also quite large. That reuse was facilitated by the dispersion of crops throughout largely fragmented field, thus with fields reusing water percolated from nearby areas due to the rapid lateral migration of groundwater. Beneficial water use could be improved when taking this aspect into account, which was not considered in previous researches. The non-beneficial evaporation and salt accumulation into the root zone were found to significantly increase during non-growth periods due to the shallow water tables. It could be concluded that when applying water saving measures, close attention should be paid to cropping pattern distribution and groundwater control in association with irrigation scheduling and technique improvement.
Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California
NASA Technical Reports Server (NTRS)
Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.
2017-01-01
Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.
Nitrogen and water management strategies to reduce nitrate leaching under irrigated maize
NASA Astrophysics Data System (ADS)
Schepers, J. S.; Varvel, G. E.; Watts, D. G.
1995-12-01
Cropping systems that fail to integrate nitrogen (N) water management are frequently associated with elevated concentrations of nitrate-N in soil and groundwater. Examples of poorly integrated management practices are abundant, especially where irrigation is used to minimize the effects of drought and N fertilizer is inexpensive. Two maize fields under improved water and N management practices at the Nebraska Management Systems Evaluation Area (MSEA) project were compared with an adjacent field under conventional furrow irrigation that followed management guidelines mandated by the local Natural Resources District. Surge-flow furrow irrigation with laser grading and a runoff-water recovery system reduced water application by 45-69% compared to conventional furrow irrigation over the three years of this study. Center-pivot sprinkler irrigation reduced water application by 60-72% compared to conventional furrow irrigation. Uniformity of water application was improved with the surge-flow and sprinkler irrigation systems, which made it reasonable to consider adding fertilizer N in the water (fertigation) to meet crop needs. The spoon-feeding strategy, based on chlorophyll meter readings to schedule fertigation, saved 168 kg ha t1¯ N the first year and 105 kg ha -1 N the second year without reducing yields. Near total reliance of fertigation to meet crop N needs resulted in a 15% yield reduction the second year because spatial variability in soil N status made it difficult to collect representative chlorophyll meter data. Plot studies showed chlorophyll meter readings and yields were consistently higher for maize following soybean than where maize was grown in monoculture.
Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.
2016-07-28
The irrigated acreage that was field verified in 2015 for the 13 counties in the Suwannee River Water Management District (113,134 acres) is about 6 percent higher than the estimated acreage published by the U.S. Department of Agriculture (107,217 acres) for 2012; however, this 2012 value represents acreage for the entire portion of all 13 counties, not just the Suwannee River Water Management District portion. Differences between the 2015 field-verified acreage totals and those published by the U.S. Department of Agriculture for 2012 may occur because (1) irrigated acreage for some specific crops increased or decreased substantially during the 3-year interval due to commodity prices or economic changes, (2) calculated field-verified irrigated acreage may be an overestimate because irrigation was assumed if an irrigation system was present and therefore the acreage was counted as irrigated, when in fact that may not have been the case as some farmers may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreages published by the U.S. Department of Agriculture for selected crops may be underestimated in some cases.
USDA-ARS?s Scientific Manuscript database
TAM 304 wheat is a medium-early hard red winter wheat. It is a great dryland or semi-irrigated wheat. TAM 304 performs best under adequate rainfall, limited irrigation, or irrigation, but does not perform as well under extended drought. TAM 304 performs exceptionally well under foliar disease pressu...
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 outbreaks associated with the consumption of leafy greens have increased food safety concerns in the food industry. Irrigation water could be a major potential source of microbial contamination to vegetables. The potential for irrigation water to contaminate vegetables with ...
Apical extrusion of debris and irrigant using hand and rotary systems: A comparative study
Ghivari, Sheetal B; Kubasad, Girish C; Chandak, Manoj G; Akarte, NR
2011-01-01
Aim: To evaluate and compare the amount of debris and irrigant extruded quantitatively by using two hand and rotary nickel–titanium (Ni–Ti) instrumentation techniques. Materials and Methods: Eighty freshly extracted mandibular premolars having similar canal length and curvature were selected and mounted in a debris collection apparatus. After each instrument change, 1 ml of distilled water was used as an irrigant and the amount of irrigant extruded was measured using the Meyers and Montgomery method. After drying, the debris was weighed using an electronic microbalance to determine its weight. Statistical analysis used: The data was analyzed statistically to determine the mean difference between the groups. The mean weight of the dry debris and irrigant within the group and between the groups was calculated by the one-way ANOVA and multiple comparison (Dunnet D) test. Results: The step-back technique extruded a greater quantity of debris and irrigant in comparison to other hand and rotary Ni–Ti systems. Conclusions: All instrumentation techniques extrude debris and irrigant, it is prudent on the part of the clinician to select the instrumentation technique that extrudes the least amount of debris and irrigant, to prevent a flare-up phenomena. PMID:21814364
Decision Support System for an efficient irrigation water management in semi arid environment
NASA Astrophysics Data System (ADS)
Khan, M. A.; Islam, M.; Hafeez, M. M.; Flugel, W. A.
2009-12-01
A significant increase in agricultural productivity over the last few decades has protected the world from episodes of hunger and food shortages. Water management in irrigated agriculture was instrumental in achieving those gains. Water resources are under high pressure due to rapid population growth and increased competition among various sectors. Access to reliable data on water availability, quantity and quality can provide the necessary foundation for sound management of water resources. There are many traditional methods for matching water demand and supply, however imbalances between demand and supply remain inevitable. It is possible to reduce the imbalances considerably through development of appropriate irrigation water management tool that take into account various factors such as soil type, irrigation water supply, and crop water demand. All components of water balance need to be understood and quantified for efficient and sustainable management of water resources. Application of an intelligent Decision Support System (DSS) is becoming significant. A DSS incorporates knowledge and expertise within the decision support framework. It is an integrated set of data, functions, models and other relevant information that efficiently processes input data, simulates models and displays the results in a user friendly format. It helps in decision-making process, to analyse the problem and explore various scenarios to make the most appropriate decision for water management. This paper deals with the Coleambally Irrigation Area (CIA) located in Murrumbidgee catchment, NSW, Australia. An Integrated River Information System called Coleambally IRIS has been developed to improve the irrigation water management ranging from farm to sub-system and system level. It is a web-based information management system with a focus on time series and geospatial hydrological, climatic and remote sensing data including land cover class, surface temperature, soil moisture, Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and Evapotranspiration (ET). Coleambally IRIS provides user friendly environment for data input and output, and an adaptable set of functions for data analysis, management and decision making to develops strategies for sustainable irrigation water management. Coleambally IRIS is used to assist the managers of irrigation service provider and the farmers in their decision making by providing relevant information over the web. The developed DSS has been practically used in managing irrigation water under the current drought conditions. The DSS will be further extended for forecasting irrigation water demand in the future.
de Gregorio, C; Paranjpe, A; Garcia, A; Navarrete, N; Estevez, R; Esplugues, E O; Cohenca, N
2012-05-01
To assess the ability of sodium hypochlorite (NaOCl) to penetrate simulated lateral canals and to reach working length (WL) when using the self-adjusting file (SAF). Seventy single-rooted teeth with oval-shaped canals were used. Upon access, presence of a single canal was confirmed by direct visualization under a dental-operating microscope. Canal length and patency were obtained using a size 10 K-file and root length standardized to 18 mm. Pre-enlargement was restricted to the coronal one-third. The apical size of each canal was gauged at WL and samples larger than size 30 were excluded. Canals were instrumented for 5 min using the SAF system while delivering a total of 20 mL of 5.25% NaOCl and 5 mL of 17% EDTA. Then, the apical diameters were standardized to size 35 using hand files. Four hundred and twenty simulated lateral canals were then created during the clearing process and roots coated with wax to create a closed system. All samples were then cleared and randomly assigned to four experimental groups: 1 (n = 15) positive pressure; 2 (n = 15) SAF without pecking motion; 3 (n = 15) SAF with pecking motion; 4 (n = 15) apical negative pressure (ANP) irrigation and (n = 10) control groups. Samples were scored on the basis of the ability of the contrast solution to reach WL and permeate into the simulated lateral canals to at least 50% of the total length. The Kruskal-Wallis test was used to analyse irrigant penetration and the Tukey test to determine statistical differences between groups (P < 0.05). All samples irrigated with ANP were associated with irrigant penetration to WL (Table 1). The differences between group 4 (ANP) and all other groups were significant in penetration to WL (P < 0.05). The pecking motion allowed for further penetration of the irrigant when using the SAF system but failed to irrigate at WL. None of the experimental groups demonstrated predictable irrigation of simulated lateral canals. In this laboratory model, ANP was the only delivery system capable of irrigating consistently to full WL. None of the systems tested produced complete irrigation in artificial lateral canals. © 2012 International Endodontic Journal.
Smart Water Conservation System for Irrigated Landscape
2016-05-01
purple pipe indicating reuse water) and properly labeled “not for human consumption”; • Do not connect rainwater overflow discharge to sanitary sewer...Report Smart Water Conservation System 75 May 2016 Condensate Capture If redirecting condensate from sanitary sewer, ensure sewer gases are managed...the spring/early summer to determine optimum irrigation safety factor. Irrigate at night or early morning. Set soak and cycle for clay soils. ET
USDA-ARS?s Scientific Manuscript database
Rice is a staple food for almost half of the world. Most rice in the world, including the USA, is produced under a flooded paddy system that makes rice one of the most irrigated grain crops on earth. With many water resources being depleted due to high irrigation demands, it has become essential to ...
Nduwimana, André; Yang, Xiang-Long; Wang, Li-Ren
2007-01-01
Wastewater stabilization ponds generate low cost by-products that are useful for agriculture. The utilization of these by-products for soil amendment and as a source of nutrients for plants requires a high level of sanitation and stabilization of the organic matter, to maintain acceptable levels of soil, water and air quality. In this study, two aquaculture wastewater treatment systems; recirculating system and a floating plant bed system were designed to improve the quality of irrigation water in local communities with low income. In both systems the grass species Lolium perenne Lam was used as a plant biofilter while vegetable specie Amaranthus viridis was used to evaluate the performance of the system and the suitability of the phyto-treated water for irrigation. It was found that the harmful material removal rate for recirculating system was 88.9% for TAN (total ammonia nitrogen), 90% for NO2(-)-N, 64.8% for NO3(-)-N while for floating plant bed system 82.7% for TAN, 82% for NO2(-)-N and 60.5% for NO3(-)-N. Comparative analysis of the efficiency of waste element removal between the two systems revealed that both systems performed well, however, plant growth was not robust for floating plant bed system while recirculating system is energy consuming. Although both systems did not attain sufficient levels of TN (total nitrogen) and TP (total phosphorus) load reduction, the treatment with L. perenne remarkably improved the irrigation water quality. A. viridis plants irrigated with the phyto-treated discharge water had lesser concentrations of heavy metals in their tissues compared to those irrigated with untreated discharge. The control plants irrigated with untreated discharge were also found to be highly lignified with few stems and small leaves.
NASA Astrophysics Data System (ADS)
Lüneberg, Kathia; Schneider, Dominik; Daniel, Rolf; Siebe, Christina
2017-04-01
Soil bacteria are important determinants of soil fertility and ecosystem services as they participate in all biogeochemical cycles. Until now the comprehension of compositional and functional response that bacterial communities have to land use change and management, specifically in dry land its limited. Dry lands cover 40% of the world's land surface and its crop production supports one third of the global population. In this regions soil moisture is limited constraining farming to the rainy season or oblige to irrigate, as fresh water resources become scarce, to maintain productivity, treated or untreated wastewater for field irrigation is used. In this study the transformation of semiarid shrubland to agriculture under different land systems regarding quantity and quality of water use for crop irrigation on bacterial communities was investigated. The land systems included maize rain-fed plantations and irrigation systems with freshwater, untreated wastewater stored in a dam and untreated wastewater during dry and rainy season. Bacterial community structure and function was heavily affected by land use system and soil properties, whereas seasonality had a slighter effect. A soil moisture, nutrient and contaminant-content increasing gradient among the land use systems, going from rain fed plantation over fresh water, dam wastewater to untreated wastewater irrigated plantations was detected, this gradient diminished the abundance of Actinobacteria and Cyanobacteria, but enhanced the one from Bacteroidetes and Proteobacteria. Discernible clustering of the dry land soil communities coincides with the moisture, nutrient and contaminant gradient, being shrubland soil communities closer to the rain-fed's system and farer to the one from untreated wastewater irrigated soil. Soil moisture together with sodium content and pH were the strongest drivers of the community structure. Seasonality promoted shifts in the composition of soil bacteria under irrigation with freshwater and untreated wastewater, as these systems showed differences in soil properties between seasons such as P content and electric conductivity. Potential functional profiles revealed that differences in land use systems also influence distinct functional pathways. Nitrogen fixation, nitrification, denitrification pathways and methane metabolism are potentially enhanced in wastewater irrigation systems, while dissimilatory nitrate reduction, anammox, lignin and chitin degradation are diminished. The junction of 16S rRNA data and associated functional profiles provided extensive understanding into the bacterial community responses to changing environmental conditions associated with differences in land use, management and seasonality in drylands. Irrigation with wastewater can be potentially harmful as higher abundance of the pathogens A. baumanni, A. soli, A. junii, A. haemolyticus, A. schindleri, B. thuringiensis/anthracis,cereus and N. flavorosea was recorded in these systems.
Microbiological water quality in a large irrigation system: El Valle del Yaqui, Sonora México.
Gortáres-Moroyoqui, Pablo; Castro-Espinoza, L; Naranjo, Jaime E; Karpiscak, Martin M; Freitas, Robert J; Gerba, Charles P
2011-01-01
The primary objective of this study was to determine the microbial water quality of a large irrigation system and how this quality varies with respect to canal size, impact of near-by communities, and the travel distance from the source in the El Valle del Yaqui, Sonora, México. In this arid region, 220,000 hectares are irrigated with 80% of the irrigation water being supplied from an extensive irrigation system including three dams on the Yaqui River watershed. The stored water flows to the irrigated fields through two main canal systems (severing the upper and lower Yaqui Valley) and then through smaller lateral canals that deliver the water to the fields. A total of 146 irrigation water samples were collected from 52 sample sites during three sampling events. Not all sites could be accessed on each occasion. All of the samples contained coliform bacteria ranging from 1,140 to 68,670 MPN/100 mL with an arithmetic mean of 11,416. Ninety-eight percent of the samples contained less than 1,000 MPN/100 mL Escherichia coli, with an arithmetic mean of 291 MPN/100 mL. Coliphage were detected in less than 30% of the samples with an arithmetic average equal to 141 PFU/100 mL. Enteroviruses, Cryptosporidium oocysts, and Giardia cysts were also detected in the canal systems. No significant difference was found in the water quality due to canal system (upper or lower Yaqui Valley), canal-size (main vs. lateral), distance from source, and the vicinity of human habitation (presence of various villages and towns along the length of the canals). There was a significant decrease in coliforms (p < 0.011) and E. coli (< 0.022) concentrations as travel distance increased from the City of Obregón.
A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada
NASA Astrophysics Data System (ADS)
Ammar, M. E.; Davies, E. G.
2015-12-01
Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as livestock production systems and agricultural production economics will be integrated to the agricultural model to make the systems tool. It will capture feedback loops, time delays, and the nonlinearities of the system. Moreover, the model is designed for quick reconfiguration to different regions given parametrized crop data.
Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui
2016-01-01
Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244
Marella, Richard L.; Dixon, Joann F.
2015-09-18
The irrigated acreage estimated for Jackson County in 2014 (31,608) is about 47 percent higher than the 2012 estimated acreage published by the USDA (21,508 acres). The estimates of irrigated acreage field verified during 2014 for Calhoun and Gadsden Counties are also higher than those published by the USDA for 2012 (86 percent and 71 percent, respectively). In Calhoun County the USDA reported 1,647 irrigated acres while the current study estimated 3,060 acres, and in Gadsden County the USDA reported 2,650 acres while the current study estimated 4,547 acres. For Houston County the USDA-reported value of 9,138 acres in 2012 was 13 percent below the 10,333 acres field verified in the current study. Differences between the USDA 2012 values and 2014 field verified estimates in these two datasets may occur because (1) irrigated acreage for some specific crops increased or decreased substantially during the 2-year interval due to commodity prices or economic changes, (2) irrigated acreage calculated for the current study may be estimated high because irrigation was assumed if an irrigation system was present and therefore the acreage was counted as irrigated, when in fact that may not have been the case as some farmers may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreages published by the USDA for selected crops may be underestimated in some cases.
How much water do we need for irrigation under Climate Change in the Mediterranean?
NASA Astrophysics Data System (ADS)
Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi
2014-05-01
Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.
Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil
2014-08-01
Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
3. Photographic copy of map. San Carlos Project, Arizona. Irrigation ...
3. Photographic copy of map. San Carlos Project, Arizona. Irrigation System. Department of the Interior. United States Indian Service. No date. Circa 1939. (Source: Henderson, Paul. U.S. Indian Irrigation Service. Supplemental Storage Reservoir, Gila River. November 10, 1939, RG 115, San Carlos Project, National Archives, Rocky Mountain Region, Denver, CO.) - San Carlos Irrigation Project, Lands North & South of Gila River, Coolidge, Pinal County, AZ
NASA Astrophysics Data System (ADS)
Maraseni, T. N.; Mushtaq, S.; Reardon-Smith, K.
2012-09-01
The Australian Government is currently addressing the challenge of increasing water scarcity through significant on-farm infrastructure investment to facilitate the adoption of new water-efficient pressurized irrigation systems. However, it is highly likely that conversion to these systems will increase on-farm energy consumption and greenhouse gas (GHG) emissions, suggesting potential conflicts in terms of mitigation and adaptation policies. This study explored the trade-offs associated with the adoption of more water efficient but energy-intensive irrigation technologies by developing an integrated assessment framework. Integrated analysis of five case studies revealed trade-offs between water security and environmental security when conversion to pressurized irrigation systems was evaluated in terms of fuel and energy-related emissions, except in cases where older hand-shift sprinkler irrigation systems were replaced. These results suggest that priority should be given, in implementing on-farm infrastructure investment policy, to replacing inefficient and energy-intensive sprinkler irrigation systems such as hand-shift and roll-line. The results indicated that associated changes in the use of agricultural machinery and agrochemicals may also be important. The findings of this study support the use of an integrated approach to avoid possible conflicts in designing national climate change mitigation and adaptation policies, both of which are being developed in Australia.
Buldur, B; Kapdan, A
2017-09-01
This study aimed to compare the EndoVac system and conventional needle irrigation in removing smear layer (SR) from primary molar root canals. Fifty extracted human primary second molar roots were instrumented up to an apical size of 0.04/35 and randomly divided into two main groups; Group 1: EndoVac system (n = 25) and Group 2: Conventional needle irrigation (n = 25) and three subgroups (a) NaOCl + ethylenediaminetetraacetic acid (EDTA) (n = 20) (b) ozonated water (OW) + EDTA (n = 20) and (c) saline (control, n = 10). After a standardized final irrigation protocol performed for all teeth, scanning electron microscope images were taken at ×1000 magnification for each thirds of each root canal. Data were analyzed by the weighted kappa, Kruskal-Wallis, and Wilcoxon signed rank tests. EndoVac was more effective than conventional needle in the removal of SR from the apical third of the root canal system (P < 0.05). The OW + EDTA regimen provided similar SR removal compared with NaOCl + EDTA. EndoVac has better performance than conventional needle irrigation in the removal of the SR in the apical thirds of the primary molar root canals. As a final irrigation regimen, the OW + EDTA regimen is as effective as the NaOCl + EDTA regimen.
Wireless sensor network for irrigation application in cotton
USDA-ARS?s Scientific Manuscript database
A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...
Irrigation Signals Detected From SMAP Soil Moisture Retrievals
NASA Astrophysics Data System (ADS)
Lawston, Patricia M.; Santanello, Joseph A.; Kumar, Sujay V.
2017-12-01
Irrigation can influence weather and climate, but the magnitude, timing, and spatial extent of irrigation are poorly represented in models, as are the resulting impacts of irrigation on the coupled land-atmosphere system. One way to improve irrigation representation in models is to assimilate soil moisture observations that reflect an irrigation signal to improve model states. Satellite remote sensing is a promising avenue for obtaining these needed observations on a routine basis, but to date, irrigation detection in passive microwave satellites has proven difficult. In this study, results show that the new enhanced soil moisture product from the Soil Moisture Active Passive satellite is able to capture irrigation signals over three semiarid regions in the western United States. This marks an advancement in Earth-observing satellite skill and the ability to monitor human impacts on the water cycle.
Examining the evolution of an ancient irrigation system: the Middle Gila River Canals
NASA Astrophysics Data System (ADS)
Zhu, Tianduowa; Ertsen, Maurits
2014-05-01
Studying ancient irrigation systems reinforces to understand the co-evolution process between the society and water systems. In the prehistoric Southwest of America, the irrigation has been a crucial feature of human adaptation to the dry environment. The influences of social arrangements on irrigation managements, and implications of the irrigation organization in social developments are main issues that researchers have been exploring for a long time. The analysis of ceramics pattern and distribution has assisted to the reconstruction of prehistoric social networks. The existing study shows that, a few pottery fragments specially produced by the materials of the middle Gila River valley, were found in the Salt River valley; however, very few specialized ceramics of the Salt River valley occurred in the middle Gila River valley. It might indicate that there were trades or exchanges of potteries or raw materials from the middle Gila River valley to the Salt River valley. The most popular hypothesis of trading for the potteries is crop production. Based on this hypothesis, the ceramics trade was highly tied to the irrigation system change. Therefore, examining the changing relationship among the ceramics distribution along the middle Gila River, canals flow capacity, and available streamflows, can provide an insight into the evolutionary path among the social economy, irrigation and water environment. In this study, we reconstruct the flow capacity of canals along the middle Gila River valley. In combination with available streamflow from the middle Gila River, we can simulate how much water could be delivered to the main canals and lateral canals. Based on the variation and chronology of potteries distribution, we may identify that, the drama of the middle Gila River receiving insufficient flows for crop irrigation caused the development of ceramics exchange; or the rising of potteries exchange triggers the decline of irrigation in the study area.
Linked hydrologic and social systems that support resilience of traditional irrigation communities
NASA Astrophysics Data System (ADS)
Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B.; Lopez, S.; Ochoa, C.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C.
2015-01-01
Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems, though not immune to upheaval, have astonishing resilience.
Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko
2014-01-01
We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.
Using a System Model for Irrigation Management
NASA Astrophysics Data System (ADS)
de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba
2014-05-01
When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.
Apically-extruded debris using the ProTaper system.
Azar, Nasim Gheshlaghi; Ebrahimi, Gholamreza
2005-04-01
The purpose of this in vitro study was to determine the quantity of debris and irrigant extruded apically using the ProTaper system compared to ProFiles and K-Flexofiles. Thirty-six mesio-buccal root canals of human mandibular molars were selected and divided into three groups of twelve canals. Two groups were instrumented with ProFiles and ProTapers according to the manufacturer's instructions. The other group was instrumented with K-Flexofiles using the step-back technique. A standard amount of irrigant was used for each canal. Apically-extruded debris and irrigant was collected in pre-weighed vials. The mean weight of extruded debris and irrigant for each group was statistically analysed using Student's t-test and one-way ANOVA. All instrumentation techniques produced extruded debris and irrigant. Although the mean amount of extrusion with the step-back technique was higher than the two rotary systems, there was no significant difference between the three groups (p > 0.05). NiTi rotary systems were associated with less apical extrusion, but were not significantly better than hand file instrumentation. All techniques extruded debris.
Soil moisture and plant canopy temperature sensing for irrigation application in cotton
USDA-ARS?s Scientific Manuscript database
A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...
Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L
2006-01-01
The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.
Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D
2009-02-01
Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter = 2 mm) and fine root morphology were assessed. Biomass and length of hyphae were studied by a mesh ingrowth bag technique. Total fine root biomass in the litter and in the 0-120 cm soil profile ranged between 111 and 296 g m(-2). Results derived from the measurements of biomass and root length, or root area, showed that both fertilizer treatments reduced the size of the fine root system, especially in the top soil layers, but did not affect small roots. Compared with control treatments, fine root morphology was affected by both fertilizer treatments with the fine roots having increased specific root length/area, and irrigation tended to reinforce this finer morphology. The amount of hyphae in the mesh ingrowth bags was higher in the fertilization and irrigation treatments than in the controls, suggesting further extension of the root system (ectomycorrhizal infection) and thus of the uptake system. Irrigation had no significant effect on the size of the fine root system, but resulted in a shallower rooting system. Total root to shoot ratios were unaffected by the treatments, but fine root mass:needle mass and fine root area index:leaf area index ratios decreased with increasing nutrient supply. Overall, compared with the control fine roots, increased nutrient supply resulted in a lower fine root biomass but the dynamic fraction of the finest roots was greater. Irrigation had only limited effects on fine root size, distribution and morphology.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru
2017-04-01
Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of irrigation water resources. This work is financed by the European Union's H2020 research and innovation programme under grant agreement No 642258 (Moses Project).
Optimal crop selection and water allocation under limited water supply in irrigation
NASA Astrophysics Data System (ADS)
Stange, Peter; Grießbach, Ulrike; Schütze, Niels
2015-04-01
Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.
Alkaline Sodium Hypochlorite Irrigant and Its Chemical Interactions
Kahler, Bill; Walsh, Laurence J.
2017-01-01
Endodontic irrigating solutions may interact chemically with one another. This is important, because even when solutions are not admixed, they will come into contact with one another during an alternating irrigation technique, forming unwanted by-products, which may be toxic or irritant. Mixing or alternating irrigants can also reduce their ability to clean and disinfect the root canal system of teeth by changing their chemical structure with subsequent loss of the active agent, or by inducing precipitate formation in the root canal system. Precipitates occlude dental tubules, resulting in less penetration of antimicrobials and a loss of disinfection efficacy. Sodium hypochlorite is not only a very reactive oxidizing agent, but is also the most commonly used endodontic irrigant. As such, many interactions occurring between it and other irrigants, chelators and other antimicrobials, may occur. Of particular interest is the interaction between sodium hypochlorite and the chelators EDTA, citric acid and etidronate and between sodium hypochlorite and the antimicrobials chlorhexidine, alexidine, MTAD and octenisept. PMID:28961175
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.
2017-12-01
In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.
Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia
NASA Astrophysics Data System (ADS)
Zeyliger, Anatoly; Ermolaeva, Olga
2016-04-01
Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some results of analyzing water stress during growing season of 2012 and yielded biomass of crops three types of crops alfalfa, corn and soya irrigated by sprinkling machines at left bank of Volga River at Saratov Region of Russia are presented and analyzed. For that a combination of data received from satellite, local meteorological station and farmers as well as SWAP model was used. Analyze of data sets of monitored water deficit of each crop averaged for irrigation period was done by linear regression with yielded biomass values. Following analyze of effectiveness of irrigation water application was done by SWAP agrohydrological model.
Apical Negative Pressure irrigation presents tissue compatibility in immature teeth
Pucinelli, Carolina Maschietto; da Silva, Léa Assed Bezerra; Cohenca, Nestor; Romualdo, Priscilla Coutinho; da Silva, Raquel Assed Bezerra; Consolaro, Alberto; de Queiroz, Alexandra Mussolino; Nelson, Paulo
2017-01-01
Abstract Aim: To compare the apical negative pressure irrigation (ANP) with conventional irrigation in the teeth of immature dogs with apical periodontitis. Methods: Fifty-two immature pre-molar root canals were randomly assigned into 4 groups: ANP (n=15); conventional irrigation (n=17); healthy teeth (control) (n = 10); and teeth with untreated apical periodontitis (control) (n=10). After induction of apical periodontitis, teeth were instrumented using EndoVac® (apical negative pressure irrigation) or conventional irrigation. The animals were euthanized after 90 days. The sections were stained by HE and analyzed under conventional and fluorescence microscopy. TRAP histoenzymology was also performed. Statistical analyses were performed with the significance level set at 5%. Results: There was difference in the histopathological parameters between ANP and conventional groups (p<0.05). The ANP group showed a predominance of low magnitude inflammatory infiltrate, a smaller periodontal ligament, and lower mineralized tissue resorption. There were no differences in the periapical lesion extensions between the ANP and conventional groups (p>0.05). However, a lower number of osteoclasts was observed in the ANP group (p<0.05). Conclusion: The EndoVac® irrigation system presented better biological results and more advanced repair process in immature teeth with apical periodontitis than the conventional irrigation system, confirming the hypothesis. PMID:29211282
Development of deficit irrigation scheduling strategies for 'Prime Giant' sweet cherry
NASA Astrophysics Data System (ADS)
Blanco, Víctor; Domingo, Rafael; Torres, Roque; Pérez Pastor, Alejandro; García, Manuel; López, Juan Antonio
2016-04-01
Precision regulated deficit irrigation scheduling is useful for improving water productivity and ensuring crop production sustainability. This form of water management requires continuous monitoring in order to know soil and/or plant water status at all times. Water status sensors are key tools for modulating irrigation water amounts. The objective of this work was to study the physiological and agronomic response of cherry trees to different irrigation treatments based on crop evapotranspiration (ETc). However, the final purpose was to establish threshold values of water stress indicators, which can be considered of practical applicability in automatic irrigation scheduling. The experiment was carried out in 2015 in a 0.5 ha commercial plot of 'Prime Giant' cherry [Prunus avium (L.)] in SE Spain. Three treatments were studied i) T110, irrigated above the maximum crop water requirements (110% of ETc), ii) T85, sustained deficit irrigation, irrigated to satisfy 85% of ETc, throughout the growing season, and iii) T100-55, regulated deficit irrigation with different water deficit levels: 100% and 55% of ETc during pre- and postharvest, respectively. Each treatment was randomly distributed in blocks and run in triplicate. Soil and plant water status were assessed from the soil matric potential and volumetric water content (Ym and Ov), midday stem and fruit water potential (Ys and Yf), maximum daily trunk shrinkage (MDS), daily trunk growth rate (TGR), stomatal conductance (gs), photosynthesis (Pn) and transpiration rates (E). Vegetative growth, yield and the quality of the fruit were also evaluated. Ys and MDS signal intensity were used as the main indicators of water stress. The water applied during the 2015 growing season was 7190, 5425 and 4225 m3 ha-1 for T110, T85 and T100-55, respectively. The mean values of Ys during pre- and postharvest were -0.51, -0.57, -0.54 and -0.65, -0.77 and -0.97 MPa in T110, T85 and T100-55, respectively, while Yf was -1.20, -1.36, -1.27 MPa, during the preharvest period, respectively. The deficit irrigation strategies tested, T85 and T100-55, corresponded to equivalent signal intensities of Ys, 1.1 and 1.05, and of MDS 1.40 and 1.25, respectively, which would denote that the treatment irrigated to satisfy 100% of ETc during preharvest (T100-55) was slightly stressed. Our results show that the water regime applied generated statistically significance differences between treatments both in plant (Ys, Yf, MDS, TGR, gs, Pn, E) and soil (Ym, Ov) water relations. There were no differences in vegetative growth, trunk cross-sectional area or summer pruning values. The irrigation strategies followed did not cause any difference in total production (16.1 t ha-1). Moreover, fruit quality at harvest did not differ between treatments, except for the solid soluble content and unitary cherry weight, when significant differences were obtained. The results confirm the usefulness of support deficit irrigation scheduling in sweet cherry trees. However, these good results need to be followed up in subsequent growing seasons. This study was funded by the Spanish Ministry for Economy and Competitiveness (MINECO) and the European Agricultural Funds for Rural Development. Reference: AGL2013-49047-C2-1-R.
Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines
NASA Astrophysics Data System (ADS)
Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja
2016-05-01
Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.
Dickens, Jade M.; Forbes, Brandon T.; Cobean, Dylan S.; Tadayon, Saeid
2011-01-01
An indirect method for estimating irrigation withdrawals is presented and results are compared to the 2005 USGS-reported irrigation withdrawals for selected States. This method is meant to demonstrate a way to check data reported or received from a third party, if metered data are unavailable. Of the 11 States where this method was applied, 8 States had estimated irrigation withdrawals that were within 15 percent of what was reported in the 2005 water-use compilation, and 3 States had estimated irrigation withdrawals that were more than 20 percent of what was reported in 2005. Recommendations for improving estimates of irrigated acreage and irrigation withdrawals also are presented in this report. Conveyance losses and irrigation-system efficiencies should be considered in order to achieve a more accurate representation of irrigation withdrawals. Better documentation of data sources and methods used can help lead to more consistent information in future irrigation water-use compilations. Finally, a summary of data sources and methods used to estimate irrigated acreage and irrigation withdrawals for the 2000 and 2005 compilations for each WSC is presented in appendix 1.
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions
Allende, Ana; Monaghan, James
2015-01-01
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.
Allende, Ana; Monaghan, James
2015-07-03
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.
Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana
Bergeron, Marcel P.
1981-01-01
Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining.
The use and re-use of unsustainable groundwater for irrigation: A global budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted bymore » reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ~600 km 3 yr –1. Lastly, these findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.« less
The use and re-use of unsustainable groundwater for irrigation: A global budget
Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; ...
2017-03-08
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted bymore » reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ~600 km 3 yr –1. Lastly, these findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.« less
The use and re-use of unsustainable groundwater for irrigation: a global budget
NASA Astrophysics Data System (ADS)
Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; Lammers, Richard B.; Frolking, Steve
2017-03-01
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted by reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ∽600 km3 yr-1. These findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.
Control of intrauterine fluid pressure during operative hysteroscopy.
Shirk, G J; Gimpelson, R J
1994-05-01
To evaluate the safety of a commonly used piston pump that controls the infusion pressure of low-viscosity fluids in a continuous-flow hysteroscopic system during operative hysteroscopy. Consecutive patients requiring operative hysteroscopy. Three hospital facilities in the Midwest. Sequential sample of 250 women who underwent operative hysteroscopy. Endometrial ablations, resection of submucosal or pedunculated uterine leiomyomata with or without endometrial ablation, polyp resections, metroplasty, and lysis of synechiae. The most serious complication of operative hysteroscopy is fluid overload due to intravasation into the patient's vascular system. Low-viscosity fluids were infused by the Zimmer Controlled Distention Irrigation System. The instrument uses a closed-feedback loop to monitor cavity pressure and automatically regulates the flow to maintain the set point pressure. It is designed to operate in a pressure range of 0 to 80 mm Hg and at flows in excess of 450 ml/minute. In 250 operative hysteroscopies no fluid complications occurred when intrauterine pressure was maintained below 80 mm Hg. No clinically significant differences in intravasation were seen in any type of operative hysteroscopy. This controlled mechanical pump system with exact intrauterine pressure measurement reduced many technical difficulties associated with low-viscosity media, and created a safe environment for the media's use in operative hysteroscopy.
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel
2016-09-15
Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.
2009-04-01
The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites allows comparing different combinations of (1) water quality, including tap water as a reference, (2) irrigation techniques, and (3) irrigation strategies (including full irrigation, partial root drying, RDI). The replication of each of the combinations on three different plots takes into account the local variations of soil properties and allows a proper statistical treatment. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases will also determine the availability of trace elements for the plant and determine the passage towards crops and products. Therefore it is important to assess the soil water quality, directly or indirectly. Direct measurements of soil water imply soil water sampling through an appropriate system; porous cups were installed on the Cretan, Italian and Chinese sites. Indirect evaluation of water-soil interactions can be obtained through sequential extractions. The combination of a variable input function (through diffuse pollution, irrigation, fertigation) and of variable MTE mobility in soils can be expected to lead to short term variations in soil metal concentrations even if such short term variations have been rarely investigated (Féder, 2001; Cary and Trolard, 2008). The sampling focused upon the fully irrigated plots given that the potential impact of irrigation water quality on soil and plant quality can be expected higher for fully irrigated soils compared to other irrigation strategies. Samples were taken within the soil volume of potential influence around each of the drip emitters. This volume varies depending on the nature of the soil and the irrigation system so that each site adopted a specific protocol. For all experiments, three sampling campaigns were scheduled for each irrigation season: at pre-planting, at the end of irrigation, at harvest. The geochemical evolution of soil properties over the 3 years shows significant variations in major and minor elements, especially trace metallic elements. It implies the role of the cultivated plant as a sink of elements which leads to direct loss of elements in the soil system. Bouwer, H., 2000. Groundwater problems caused by irrigation with sewage effluent. Journal of Environmental Health 63, 17-20. Cary L., Trolard F. (2008). Metal mobility in the ground water of a paddy field in Camargue (South eastern France). Journal of Geochemical Exploration 96/2-3 : 132-143. Féder, 2001. Dynamique des processus d'oxydo-reduction dans les sols hydromorphes, These de l'Universite Aix Marseille III. Kass, A. Gavrieli, I. Yechieli, Y. Vengosh A.and Starinsky, A., 2005. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer, Journal of Hydrology, 300, 314-331.
NASA Astrophysics Data System (ADS)
Eckert, Jerry B.; Wang, Erda
1993-02-01
Farms in NE Conejos County, Colorado, are characterized by limited resources, uncertain surface flow irrigation systems, and mixed crop-livestock enterprise combinations which are dependent on public grazing resources. To model decision making on these farms, a linear program is developed stressing enterprise choices under conditions of multiple resource constraints. Differential access to grazing resources and irrigation water is emphasized in this research. Regarding the water resource, the model reflects farms situated alternatively on high-, medium-, and low-priority irrigation ditches within the Alamosa-La Jara river system, each with and without supplemental pumping. Differences are found in optimum enterprise mixes, net returns, choice of cropping technology, level of marketings, and other characteristics in response to variations in the availability of irrigation water. Implications are presented for alternative improvement strategies.
Asian irrigation, African rain: Remote impacts of irrigation
NASA Astrophysics Data System (ADS)
Vrese, Philipp; Hagemann, Stefan; Claussen, Martin
2016-04-01
Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.
Middle East Regional Irrigation Management Information Systems project-Some science products
USDA-ARS?s Scientific Manuscript database
Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...
Linked hydrologic and social systems that support resilience of traditional irrigation communities
USDA-ARS?s Scientific Manuscript database
Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity...
Optimal Design and Operation of Permanent Irrigation Systems
NASA Astrophysics Data System (ADS)
Oron, Gideon; Walker, Wynn R.
1981-01-01
Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.
Socio-economic impacts of irrigated agriculture in Mbarali District of south west Tanzania
NASA Astrophysics Data System (ADS)
Mwakalila, Shadrack
Irrigation has been found to be central in curbing food scarcity not only in Tanzania but also in many other developing countries. It has been proved that continued reliability on rainfall in agriculture cannot sustain the increase in population. This study examines the impacts of smallholder irrigated agriculture in improving social and economic benefits in Igurusi Ward of Mbarali District which is located in the southern-western part of Tanzania. The study applies the Participatory Rural Appraisal Framework for data collection. The study was confined to five villages in Igurusi ward which are Majenje, Igurusi, Chamoto, Uhambule and Mahango. The study examined critically paddy production for smallholder farmers that practice irrigation and those who cultivates rain-fed paddy. The study examined both existing traditional and modern irrigation systems. It was found that, most of the respondents (79%) practice irrigated agriculture in paddy production while the remaining 21% practice rain-fed agriculture. Forty percent of households that practice irrigated agriculture harvest paddy two seasons per year. The return to labour in paddy production for smallholder farmers who irrigate their paddy fields is about US 2.5/manday which is above the poverty line of US 1.0/day. The smallest return to labour (US $ 0.85/manday) is obtained by an average smallholder farmer who cultivates rain-fed paddy using hand hoe and family labour. The potential implication of the current irrigation systems is that if irrigation is managed properly it may lead to sustainable increases in small farmer’s productivity and income, thus alleviating rural poverty.
NASA Astrophysics Data System (ADS)
Gowing, John; Alataway, Abed
2013-04-01
Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable standards. Sampling from the canal system showed that there was a general increase of E coli concentration with distance downstream representing an increasing risk to human health from consumption of sensitive crops. Reasons for this trend were explored with the most likely explanation being the use of contaminated drainage water. Natural processes of soil filtration were not providing adequate decontamination of drainage water.
Evaluation of modern cotton harvest systems on irrigated cotton: Fiber quality
USDA-ARS?s Scientific Manuscript database
Picker and stripper harvest systems were evaluated on production-scale irrigated cotton on the High Plains of Texas over three harvest seasons. Observations on fiber quality using High Volume Instrument (HVI) and Advanced Fiber Information Systems (AFIS) were made on multiple cultivars harvested fro...
NASA Technical Reports Server (NTRS)
Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu
2010-01-01
Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.
Quanqi, Li; Yuhai, Chen; Xunbo, Zhou; Songlie, Yu; Changcheng, Guo
2012-01-01
In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS), the photosynthetic active radiation (PAR) capture ratio, grain yield, and the radiation use efficiency (RUE) of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, P < 0.05) increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops. PMID:22654613
NASA Astrophysics Data System (ADS)
Minashina, N. G.
2009-07-01
Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.
Plume, Russell W.
2003-01-01
In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994-97 irrigation seasons was 110 to 235 percent of the power consumption in the 1998 irrigation season. If the amount of water applied to fields during the 1998 irrigation season were adjusted to account for these differences in power consumption, the average amount of water applied to a field during a typical season using center-pivot and wheel-line sprinkler systems would be 3.1 feet and 3.7 feet, respectively. Total ground water pumped in the middle Humboldt River Basin during 1998 was about 298,000 acre-feet. This pumpage was distributed as follows: 78 percent for mining, 19 percent for irrigation, and 3 percent for industrial, municipal, and power plants combined. Mining pumpage is by far the largest source of ground-water use because several large gold mines have extended below local ground-water levels and the area around each mine must be dewatered in order to maintain a dry and workable mine. Total mining pumpage in 1998 was 233,000 acre-feet, of this total, 23,600 acre-feet was for consumptive use and 209,000 acre-feet was for dewatering eight mines. Excess water from the mines being dewatered was distributed as follows: 74,500 acre-feet was returned to aquifers by infiltration; 33,100 acre-feet was used for irrigation and for consumptive use at two mines and a power plant; 96,700 acre-feet was released to the Humboldt River or one of its tributaries; and 5,260 acre-feet was lost to evaporation.
Automating variable rate irrigation management prescriptions for center pivots from field data maps
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) enables center pivot systems to match irrigation application to non-uniform field needs. This technology has potential to improve application and water-use efficiency while reducing environmental impacts from excess runoff and poor water quality. Proper management of V...
USDA-ARS?s Scientific Manuscript database
A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...
Soil water sensors for irrigation management-What works, what doesn't, and why
USDA-ARS?s Scientific Manuscript database
Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...
Dynamic prescription maps for site-specific variable rate irrigation of cotton
USDA-ARS?s Scientific Manuscript database
A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...
Growth and biomass of Populus irrigated with landfill leachate
Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall
2007-01-01
Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...
Agronomic, physiological and biochemical evaluations of rice under a water-deficit irrigation system
USDA-ARS?s Scientific Manuscript database
The sustainability of conventional flood irrigation management in rice is a concern worldwide considering the uncertain patterns of precipitation and depletion of aquifers used for irrigation. This same concern is shared in USA rice producing areas and, thus, development of rice varieties that can t...
USDA-ARS?s Scientific Manuscript database
Irrigation waters are implicated in the transmission of pathogens to fresh produce, and microbial release and retention from biofilms that form on inner surfaces of irrigation lines may impact the quality of delivered water. Biofilms in water distribution systems have been suggested as a reservoir ...
SDI increases water use efficiency of grain crops in the Southern High Plains
USDA-ARS?s Scientific Manuscript database
In the semi-arid Southern High Plains, nearly all irrigation water is derived from the declining High Plains (Ogallala) aquifer. As well capacities likewise decline, one tactic for continued irrigation is to install subsurface drip irrigation (SDI) systems with zones sized to accommodate the limited...
Infrared thermometry for deficit irrigation of peach trees
USDA-ARS?s Scientific Manuscript database
Water shortage has been a major concern for crop production in the western states of the USA and other arid regions in the world. Deficit irrigation can be used in some cropping systems as a potential water saving strategy to alleviate water shortage, however, the margin of error in irrigation manag...
78 FR 38285 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
...) whether the collection of information is necessary for the proper performance of the functions of the... category, acres and yields of irrigated and non-irrigated crops, quantity of water applied and method of... of water distribution systems, and number of irrigation wells and pumps. The primary purpose of FRIS...
Progress on field study with precision mobile drip irrigation technologly
USDA-ARS?s Scientific Manuscript database
Precision mobile drip irrigation (PMDI) is a technology that was developed in the 1970s that converts drop hoses on moving irrigation systems to dripline. Although this technology was developed more than 40 years ago, it was not widely implemented and few studies reported on its performance. Recentl...
Modeling irrigation behavior in groundwater systems
NASA Astrophysics Data System (ADS)
Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.
2014-08-01
Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.
Impact of irrigation over India on the land surface fluxes
NASA Astrophysics Data System (ADS)
de Rosnay, P. R.; Polcher, J. P.; Laval, K. L.; Sabre, M. S.
2003-04-01
Irrigation is the main water user in the world with 87 % of the global water consumption being attributed to use on irrigated crop land. There are large spatial variations of the irrigated areas, from 68 % in Asia and 16 % in America, 10 % in Europe and the remaining in Africa and Australia. India is the most important irrigating country in the world with a gross irrigation requirement estimated by the FAO at 457 cubic km by year. The environmental impacts of irrigation are very important: irrigation causes the soil salinization, it affects the water quality and ecology, and increases the incidence of water related diseases. Irrigation is also expected to affect the the land surface energy budget, and thereby the climate system. The work presented here is conducted in the framework of the PROMISE European project. It aims to analyze the sensitivity of the land surface fluxes to the intensive irrigation over Indian peninsula. Numerical experiments are conducted with the land surface scheme ORCHIDEE of the Laboratoire de Meteorologie Dynamique, with a 1 degree spatial resolution. Two 2years simulations, forced by the ISLSCP (1987-88) data sets, are compared, with and without irrigation. The analysis focuses on the effect of land irrigation on the surface fluxes (partition of energy between latent and sensible fluxes), and the river flow.
WelltonMohawk Irrigation System, Wasteway No. 1, WelltonMohawk Canal, North side ...
Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ
PRN 87-1: Label Improvement Program for Pesticides Applied through Irrigation Systems (Chemigation)
This Notice requires registrants of pesticide products registered under FIFRA and applied through irrigation systems to revise the labeling for such products to include additional use directions and other statements described in this Notice.
NASA Astrophysics Data System (ADS)
Gao, Xuan
2017-04-01
Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally rely on eco-hydrological engineering rules,which broke the ecosystem stability of agricultural terraces.The current situation of Honghe Hani Rice Terraces heritage cannot completely meets the purpose of sustainability development and appropriate conservation of Honghe Hani Rice Terraces heritage.This study of traditional cultivation pattern can help us to propose rational solutions for future development of terraces heritages. Key words:Honghe Hani Rice Terraces,water management,eco-hydrological effects,heritage conservation
NASA Astrophysics Data System (ADS)
Zarafshani, Kiumars; Hossien Alibaygi, Amir; Afshar, Nasrin
Participatory irrigation management has been problematic in most parts of the world and Iran has been no exception. The purpose of this study was to assess farmers' intentions to participate in irrigation management based on selected variables using discriminant analysis. A survey questionnaire was used to collect information from a sample of Water Cooperatives in Javanrood Townships using stratified random sampling (n = 106). Results indicated that age, educational level, attitude towards PIM, irrigation performance, landholding size, agricultural and non-agricultural income affected farmers' intentions to participate in irrigation management.
Thomas, Anchu Rachel; Velmurugan, Natanasabapathy; Smita, Surendran; Jothilatha, Sundaramurthy
2014-10-01
The purpose of this study was to evaluate the canal isthmus debridement efficacy of a new modified EndoVac (Discus Dental, Culver City, CA) irrigation protocol in comparison with EndoVac, passive ultrasonic irrigation (PUI), and conventional needle irrigation in mesial roots of mandibular molars. The mesial roots of 64 extracted mandibular molars mounted in resin using Kuttler's endodontic cube, sectioned at 2 and 4 mm from the working length, were randomly divided into 4 groups (n = 16): group 1: Max-I-Probe (Dentsply Tulsa Dental, York, PA), group 2: EndoVac (EVI), group 3: modified EndoVac, and group 4: PUI. The specimens were reassembled and instrumented. A standard irrigation protocol was used during cleaning and shaping and final irrigation with the 4 irrigation/agitation techniques. Images of the isthmus region were taken before and after cleaning and shaping and after final irrigation. The percentage reduction of debris in the isthmus region was calculated by using the software program Image J (v1.43; National Institutes of Health, Bethesda, MD). Intergroup analysis was performed using the Kruskal Wallis and Mann-Whitney U tests. Intragroup analysis was performed using Friedman and Wilcoxon signed rank tests. The level of significance was set at P < .05. Intragroup analysis revealed a statistically significant difference in the percentage reduction of debris after cleaning and shaping and after final irrigation protocol in all the groups (P < .001). The final irrigation protocol produced significantly cleaner canal isthmuses in all the groups (P < .001). On intergroup analysis, the modified EVI group performed significantly better than the other groups. The EVI and PUI groups performed better than the Max-I-Probe group. There was no statistical significance between the EVI and PUI groups. Canal isthmuses were significantly cleaner with the modified EndoVac irrigation technique when compared with the cleanliness seen with the other irrigation systems. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Assessing application uniformity of a variable rate irrigation system in a windy location
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) systems are commercially available and can easily be retrofitted onto moving sprinkler systems. However, there are few reports on the application performance of such equipment. In this study, application uniformity of two center pivots equipped with a commercial VRI sy...
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud; van den Eertwegh, Gé; Worm, Bas; Cirkel, Gijsbert; van Loon, Arnaut; Raat, Klaasjan
2017-04-01
Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of two pilot studies in drought sensitive regions in the Netherlands, concerning agricultural water supply through reuse of industrial and domestic treated wastewater. In these pilots, excess wastewater is delivered to the plant root zone through sub-irrigation by drainage systems. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Domestic wastewater treatment plants in the Netherlands produce annually 40-50mm freshwater. A pilot project has been setup in the eastern part of the Netherlands, in which treated wastewater is applied to a corn field by sub-irrigation during the growing seasons of 2015 and 2016, using a climate adaptive drainage system. The chemical composition of treated domestic wastewater is different from infiltrating excess rainfall water and natural groundwater. In the pilot project, the bromide-chloride ratio and traces of pharmaceuticals in the treated wastewater are used as a tracer to describe water and solute transport in the soil system. Focus of this pilot study is on quantifying potential contamination of both the root zone and the deeper groundwater with pharmaceutical residues. We have installed a field monitoring network at several locations in the vadose zone and the local groundwater system, which enables us to measure vertical solute profiles in the soil water by taking samples. Based on field data obtained during the experiments, combined with SWAP (1D) and Hydrus (2D) model simulations, flow and transport of the sub-irrigated treated wastewater are quantified. In the south of The Netherlands, the Bavaria Beer Brewery abstracts a large volume of groundwater and discharges treated wastewater to local surface water which transports the water rapidly out of the region. At the same time, neighboring farmers invest in sprinkler irrigation systems to maintain their crop production during drought periods. In this region, increasing pressure is put on the regional groundwater and surface water availability. Within a pilot study, a sub-irrigation system has been installed, by using subsurface drains, interconnected through a collector drain, and connected to an inlet control basin for the treated wastewater to enter the drainage system. We combine both process-based modeling of the soil-plant-atmosphere system and field experiments to i) investigate the amount of water that needs to be and that can be sub-irrigated, and ii) quantify the effect on soil moisture availability and herewith reduced needs for aboveground irrigation.
NASA Astrophysics Data System (ADS)
Venema, Victor; Lindau, Ralf
2016-04-01
In an accompanying talk we show that well-homogenized national dataset warm more than temperatures from global collections averaged over the region of common coverage. In this poster we want to present auxiliary work about possible biases in the raw observations and on how well relative statistical homogenization can remove trend biases. There are several possible causes of cooling biases, which have not been studied much. Siting could be an important factor. Urban stations tend to move away from the centre to better locations. Many stations started inside of urban areas and are nowadays more outside. Even for villages the temperature difference between the centre and edge can be 0.5°C. When a city station moves to an airport, which often happened around WWII, this takes the station (largely) out of the urban heat island. During the 20th century the Stevenson screen was established as the dominant thermometer screen. This screen protected the thermometer much better against radiation than earlier designs. Deficits of earlier measurement methods have artificially warmed the temperatures in the 19th century. Newer studies suggest we may have underestimated the size of this bias. Currently we are in a transition to Automatic Weather Stations. The net global effect of this transition is not clear at this moment. Irrigation on average decreases the 2m-temperature by about 1 degree centigrade. At the same time, irrigation has increased significantly during the last century. People preferentially live in irrigated areas and weather stations serve agriculture. Thus it is possible that there is a higher likelihood that weather stations are erected in irrigated areas than elsewhere. In this case irrigation could lead to a spurious cooling trend. In the Parallel Observations Science Team of the International Surface Temperature Initiative (ISTI-POST) we are studying influence of the introduction of Stevenson screens and Automatic Weather Stations using parallel measurements, as well as the influence of relocations. Previous validation studies of statistical homogenizations unfortunately have some caveats when it comes to the large-scale trends. The main problem is that the validation datasets had a relatively large signal to noise ratio (SNR), i.e., they had a large break variance relative to the variance of the noise of the difference time series. Our recent work on multiple breakpoint detection methods shows that SNR is very important and that for a SNR around 0.5 the segmentation is about as good as a random segmentation. If the corrections are computed with a composite reference that also contains breaks, the bias due to network-wide transitions that are executed over short periods will reduce the obvious breaks in the single stations, but may not reduce the large-scale bias much. The joint correction method using a decomposition approach (ANOVA) can remove the bias when all breaks (predictors) are known. Any error in the predictors will, however, lead to undercorrection of any large-scale trend biases.
Conjunctive use of groundwater and surface water for irrigated agriculture: Risk aversion
Bredehoeft, John D.; Young, Richard A.
1983-01-01
In examining the South Platte system in Colorado where surface water and groundwater are used conjunctively for irrigation, we find the actual installed well capacity is approximately sufficient to irrigate the entire area. This would appear to be an overinvestment in well capacity. In this paper we examine to what extent groundwater is being developed as insurance against periods of low streamflow. Using a simulation model which couples the hydrology of a conjunctive stream aquifer system to a behavioral-economic model which incorporates farmer behavior in such a system, we have investigated the economics of an area patterned after a reach of the South Platte Valley in Colorado. The results suggest that under current economic conditions the most reasonable groundwater pumping capacity is a total capacity capable of irrigating the available acreage with groundwater. Installing sufficient well capacity to irrigate all available acreage has two benefits: (1) this capacity maximizes the expected net benefits and (2) this capacity also minimizes the variation in annual income: it reduces the variance to essentially zero. As pumping capacity is installed in a conjunctive use system, the value of flow forecasts is diminished. Poor forecasts are compensated for by pumping groundwater.
NASA Astrophysics Data System (ADS)
Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas
2015-04-01
The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"
Yoo, Do Guen; Lee, Ho Min; Sadollah, Ali; Kim, Joong Hoon
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.
Lee, Ho Min; Sadollah, Ali
2015-01-01
Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252
Automated Irrigation System for Greenhouse Monitoring
NASA Astrophysics Data System (ADS)
Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.
2018-06-01
The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.
Automated Irrigation System for Greenhouse Monitoring
NASA Astrophysics Data System (ADS)
Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.
2018-03-01
The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions
NASA Astrophysics Data System (ADS)
Ohta, Shunji; Kaga, Takumi
2014-04-01
Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.
Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek
2016-01-01
Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p < 0.05). There was no statistically significant difference between syringe and sonic irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106
A rule-based smart automated fertilization and irrigation systems
NASA Astrophysics Data System (ADS)
Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.
NASA Astrophysics Data System (ADS)
Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.
2012-04-01
Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.
Policy Implications Learning from Sociohydrological Modelling
NASA Astrophysics Data System (ADS)
Tian, F.
2016-12-01
Sociohydrology focuses on the interplays between natural variability and social activities. Policy is one of important social activities, which drives the evolution of sociohydrological system at annual to decadal scales. A conceptual sociohydrological model can be a useful tool to explore how policy functions. In this study, we developed a coupled socio-hydrological model which includes water and land policies, irrigated land area, irrigation water use and an environmental indicator.The model is used to analyze the agriculture water-conservation development during 1998—2010 in Bayinguoleng Mongol Autonomous Prefecture, Xinjiang as an example with four policy scenarios including weak irrigation land control,low irrigation land control,medium irrigation land control and strong irrigation land control to analyze how agriculture water-conservation develops with different policies.
Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.
Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S
2003-01-01
Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.
A two-plane internally irrigated root observation system for forest nursery stock.
Paul S. Johnson; Charles W. Putnam; William G. Mares
1981-01-01
A root observation chamber designed for forest nursery stock is described. The chamber consists of lower root observation section and a detachable upper "planter" section, both constructed of plexiglass and wood; the lower section is internally irrigated by a porous irrigation tube and the upper section by a "leader tube."
USDA-ARS?s Scientific Manuscript database
Proper irrigation scheduling in potato (Solanum tuberosum L.) can lead to higher returns and more sustainable production practices when compared to systems that do not take plant water demand into account. In an attempt to reduce irrigation applications while minimizing yield reduction, we evaluated...
Development of an irrigation scheduling software based on model predicted crop water stress
USDA-ARS?s Scientific Manuscript database
Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...
Performance of precision mobile drip irrigation in the Texas High Plains region
USDA-ARS?s Scientific Manuscript database
Mobile drip irrigation (MDI) technology adapts driplines to the drop hoses of moving sprinkler systems to apply water as the drip lines are pulled across the field. There is interest in this technology among farmers in the Texas High Plains region to help sustain irrigated agriculture. However, info...
Leaf, woody, and root biomass of Populus irrigated with landfill leachate
Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall
2007-01-01
Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...
Conservation cropping systems: Increasing water use efficiency and lowering production costs
USDA-ARS?s Scientific Manuscript database
As of the 2007 Census of Agriculture, irrigated acres were only found on 4.4% of agricultural operations in Alabama. To increase irrigated acres, the Alabama Legislature passed the Irrigation Incentives Bill in 2012 to provide a state income tax credit of 20 percent of the costs of the purchase and ...
Irrigation Systems. Student's Guide.
ERIC Educational Resources Information Center
Amarillo Coll., TX.
This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…
The Regularity of Optimal Irrigation Patterns
NASA Astrophysics Data System (ADS)
Morel, Jean-Michel; Santambrogio, Filippo
2010-02-01
A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 < α < 1. The aim of this paper is to prove the regularity of paths (rivers, branches,...) when the irrigated measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.
Antibacterial efficacy of an endodontic sonic-powered irrigation system: An in vitro study.
Zeng, Chang; Willison, Jon; Meghil, Mohamed M; Bergeron, Brian E; Cutler, Christopher W; Tay, Franklin R; Niu, Lina; Ma, Jingzhi
2018-06-13
To evaluate the efficacy of EDDY, a new sonic-powered irrigation system, in reducing intracanal bacteria load. Thirty-eight instrumented, autoclaved single-rooted human premolars were inoculated with Enterococcus faecalis (ATCC-29212) for 21 days. Two teeth were used as negative control without bacterial contamination. For the bacteria-inoculated teeth, 6 were used as positive control without irrigation. The remaining 30 teeth were randomly divided into 2 groups (N = 15), using 3% NaOCl as irrigant: (A) 30-gauge syringe needle irrigation (SNI), (B) EDDY (VDW, Munich, Germany). Twelve teeth per group and 4 teeth in the positive control were evaluated for bacterial reduction using MTT assay. The remaining teeth were split for BacLight LIVE/DEAD staining to examine the percentages of live/dead bacteria present in the dentinal tubules from different canal locations (coronal, mid-root and apical portions of the canal space) using confocal laser scanning microscopy (CLSM). MTT assay indicated that both SNI and EDDY significantly reduced overall intracanal bacterial load compared with the positive control, with no significant difference between the two techniques. CLSM indicated that EDDY had better intratubular bacterial killing efficacy than SNI in the coronal and mid-root portions of the canal space only but not in the apical portion. In all canal locations (coronal, mid-root apical), both systems failed to eliminate bacteria that proliferated deep within the dentinal tubules. With the use of 3% NaOCl, sonic-powered irrigant activation with EDDY tips did not provide additional advantage over SNI in killing Enterococcus faecalis from deep intraradicular dentin. Both the sonic-powered root canal irrigant activation system and syringe needle irrigation can reduce intracanal bacteria load but are incapable of completely killing all bacteria that resided deep within the dentinal tubules of root canals infected with Enterococcus faecalis. Published by Elsevier Ltd.
Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.
1999-01-01
The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.
NASA Astrophysics Data System (ADS)
Wu, C.; Margulis, S. A.
2007-12-01
Wastewater re-use via crop irrigation has the potential to be an effective means of wastewater disposal. However, nitrate in wastewater may contaminate groundwater if it does not decay before reaching the groundwater table. In order to dispose of wastewater while preventing long-term groundwater pollution, irrigation rates need to be optimized based on the current and predicted states of the soil, such as soil moisture content and/or nitrate concentration. A real-time soil states estimation system using the Ensemble Kalman Filter (EnKF) has been developed for application to a test bed for wastewater re-use in Palmdale, CA. This test bed, covered with alfalfa, is a 30-acre irrigation plot with a 200-meter long rotating pivot arm that irrigates the area with reclaimed wastewater. A sensor network is deployed in the soil near the surface. The data assimilation system has shown the ability to characterize soil states and fluxes from sparse measurements. The real-time estimation system will then be used to explore the potential feedback for optimizing the sprinkler operation (i.e. maximizing the magnitude of wastewater release while minimizing the ultimate groundwater pollution). In optimization models, soil states and fluxes can be regarded as functions of irrigation rate. Through optimization, the irrigation rate in a finite horizon can be maximized while still satisfying all criteria in soil states and fluxes to ensure the safety of groundwater. Since the data assimilation system provides reliable estimation of soil states and fluxes, it is expected to define the optimal irrigation rate with higher confidence compared to using models or sensors only.
Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling
NASA Astrophysics Data System (ADS)
Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè
2017-04-01
Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.
Koueik, Joyce; Rocque, Brandon G; Henry, Jordan; Bragg, Taryn; Paul, Jennifer; Iskandar, Bermans J
2018-02-01
Continuous irrigation is an important adjunct for successful intraventricular endoscopy, particularly for complex cases. It allows better visualization by washing out blood and debris, improves navigation by expanding the ventricles, and assists with tissue dissection. A method of irrigation delivery using a centrifugal pump designed originally for cardiac surgery is presented. The BioMedicus centrifugal pump has the desirable ability to deliver a continuous laminar flow of fluid that excludes air from the system. A series of modifications to the pump tubing was performed to adapt it to neuroendoscopy. Equipment testing determined flow and pressure responses at various settings and simulated clinical conditions. The pump was then studied clinically in 11 endoscopy cases and eventually used in 310 surgical cases. Modifications of the pump tubing allowed for integration with different endoscopy systems. Constant flow rates were achieved with and without surgical instruments through the working ports. Optimal flow rates ranged between 30 and 100 ml/min depending on endoscope size. Intraoperative use was well tolerated with no permanent morbidity and showed consistent flow rates, minimal air accumulation, and seamless irrigation bag replacement during prolonged surgery. Although the pump is equipped with an internal safety mechanism to protect against pressure buildup when outflow obstructions occur, equipment testing revealed that flow cessation is not instantaneous enough to protect against sudden intracranial pressure elevation. A commonly available cardiac pump system was modified to provide continuous irrigation for intraventricular endoscopy. The system alleviates the problems of inconsistent flow rates, air in the irrigation lines, and delays in changing irrigation bags, thereby optimizing patient safety and surgical efficiency. Safe use of the pump requires good ventricular outflow and, clearly, sound surgical judgment.
NASA Astrophysics Data System (ADS)
Ermolaeva, Olga; Zeyliger, Anatoly
2017-04-01
Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. The authors would like to express their gratitude to the Russian Foundation of Basic Research for providing financial support of the project 16-05-01097
NASA Astrophysics Data System (ADS)
Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna
2016-04-01
In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils, determined volumetric water content (VWC) by measuring the dielectric constant of the soil using frequency domain technology (FDR). The data acquired real time were used to determine water balance with a physically based model Hydrus 1D. The results show how the model is able to identify the optimal irrigation schedule as function of soil proprieties and crop needs. Keywords: irrigation, DSS, rocket, water content
A Fuzzy analytical hierarchy process approach in irrigation networks maintenance
NASA Astrophysics Data System (ADS)
Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i
2017-11-01
Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.
NASA Astrophysics Data System (ADS)
Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.
2016-12-01
Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by 20-40% relative to grower standard practices while maintaining crop yields and quality.
Pumpage data from irrigation wells in eastern Laramie County, Wyoming, and Kimball County, Nebraska
Avery, Charles
1983-01-01
Quantitative information concerning pumpage by irrigation wells is an integral component of the U.S. Geological Survey High Plains Regional Aquifer System Analysis. Thus, operation time, discharge rate, and irrigated acreage were measured at approximately 450 randomly selected irrigation wells within 10 areas of the High Plains during the 1980 irrigation season. The data were used to estimate the seasonal mean application of water to crops and to project total pumpage by irrigation wells in 1980 throughout the High Plains area. As part of the sampling effort, 50 irrigation wells were randomly chosen from the area of eastern Laramie County, Wyoming, and Kimball County, Nebraska. Required information was collected on only 40 of the wells. For these wells, the seasonal mean application of water on the irrigated land was 15.2 inches. For the major crop types, the seasonal mean application, in inches, were as follows: alfalfa, 19.8; corn, 15.4; potatoes, 13.8; beans, 12.8; and small grains 10.2. (USGS)
The power of the bubble: comparing ultrasonic and laser activated irrigation
NASA Astrophysics Data System (ADS)
De Moor, Roeland J. G.; Meire, Maarten A.; Verdaasdonk, Rudolf M.
2014-01-01
The major problem of irrigation is the fluid motion within the confined geometry of the root canal : efficient dispersion of the liquid is difficult, conventional irrigation is limited due to the absence of turbulence over much of the canal volume, vapour lock may limit apical cleaning and disinfection, there is also a stagnation plane beyond the needle tip. The best way to improve irrigant penetration and biofilm removal is achieved by means of the agitation of the fluid. Today ultrasonic activation appears to be the best way to activate and potentiate irrigants among the present-day used means and marketed systems. Another way to activate irrigation solutions is the use of lasers: laser activated irrigation or photon-initiated acoustic streaming have been investigated. Based on present-day research it appears that the efficacy of laser activation (especially with Erbium lasers) can be more efficient thanks to the induction of specific cavitation phenomena and acoustic streaming. Other wavelengths are now explored to be used for laser activated irrigation.
NASA Astrophysics Data System (ADS)
Eltahir, E. A. B.; IM, E. S.
2014-12-01
This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and further research is needed before any practical application in water resources planning. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Effect of irrigation and stainless steel drills on dental implant bed heat generation.
Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J
2015-02-01
The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (p<0.05, Bonferroni correction). Lower temperature variation coefficient throughout the 50 measurements was observed in irrigated groups (K=5.6%, S=5.1% vs. without irrigation groups K=9.4%, S=9.3%). The first K drill generated more heat than the remaining drills. No significant differences were detected among temperature values in any of the analyzed drill groups. Unlike irrigation, drill use and type were observed to have no significant impact on heat generation. The stainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.
NASA Astrophysics Data System (ADS)
Homburg, Jeffrey; Nials, Fred
2017-04-01
Pedoarchaeological studies were conducted at the Las Capas and Sunset Road sites in the Tucson Basin of Arizona in order to document and evaluate soil productivity and hydraulic soil properties of ancient agricultural irrigation systems. These ancient irrigated fields are on the margin of the Santa Cruz River floodplain, between two alluvial fans where high water tables and stable to aggrading geomorphic conditions facilitated diverting water from drainages and directing it to fields by gravity-fed canal irrigation. Archaeological investigations at these sites recently provided opportunities for documenting the configuration and evolution of the oldest irrigation systems yet identified in the United States, the earliest dating to more than three millennia in age. This research is significant archaeologically because of: (1) the antiquity ( 575-1225 B.C.) of the Early Agricultural period irrigation systems at these sites, (2) the fact that irrigation systems dated to different times are separated stratigraphically within the sites, and (3) the fact that extensive, well-preserved gridded irrigation features were identified using mechanical stripping, with nearly 100 ancient footprints preserved on a buried agricultural surface at Sunset Road. The stratigraphic separation of buried surfaces that were irrigated and the abundant cultivated irrigation plots facilitated soil sampling so that field, border, and uncultivated control samples could be compared in order to measure the anthropogenic effects of agriculture on soil quality in the irragric soils. Long-term indicators of agricultural soil quality such as organic carbon, nutrient content, and hydraulic soil water properties such as available water capacity and saturated hydraulic conductivity, indicate that soil changes were generally favorable for agricultural production and that these ancient irrigation systems were sustainable. Canals regularly supplied water to the fields, but they also supplied nutrient-rich sediments that continually renewed soil fertility, enough to counter nutrient losses resulting from crop uptake, volatilization, leaching, and oxidation. Cultivated soils tend to have significantly elevated organic carbon, nitrogen, and available phosphorus levels. Sodium and sodium adsorption ratios are slightly elevated, but not to high levels that indicate a serious detrimental effect on crop production. Soil textures in cultivated contexts are dominated by silt loams, silty clay loams, and silty clays, all textures with high moisture-and nutrient-holding properties. The complex alluvial history of Las Capas is reconstructed by identifying cycles of geomorphic stability, soil formation, erosion, and aggradation over seven centuries. Natural floodplain sediments at the site are highly dispersive and prone to subterranean erosion (piping) that may have contributed to field abandonment. A model of prime farmland in the Tucson Basin is presented in relation to ancient agricultural features (e.g., canals and terraces) that have been identified by archaeological surveys, showing that the Las Capas and Sunset Road sites are located in a large expanse of prime farmland along an ancient floodplain of the Santa Cruz River.
Zone edge effects with variable rate irrigation
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...
USDA-ARS?s Scientific Manuscript database
Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...
Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna
David R. Coyle; Jill A. Zalesny; Ronald S. Zalesny Jr.; Adam H. Wiese
2011-01-01
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high...
Fall rice straw management and winter flooding treatment effects on a subsequent soybean crop
Anders, M.M.; Windham, T.E.; McNew, R.W.; Reinecke, K.J.
2005-01-01
The effects of fall rice (Oryza sativa L.) straw management and winter flooding on the yield and profitability of subsequent irrigated and dryland soybean [Glycine max (L.) Merr.] crops were studied for 3 years. Rice straw treatments consisted of disking, rolling, or standing stubble. Winter flooding treatments consisted of maintaining a minimum water depth of 10 cm by pumping water when necessary, impounding available rainfall, and draining fields to prevent flooding. The following soybean crop was managed as a conventional-tillage system or no-till system. Tillage system treatments were further divided into irrigated or dryland. Results indicated that there were no significant effects from either fall rice straw management or winter flooding treatments on soybean seed yields. Soybean seed yields for, the conventional tillage system were significantly greater than those for the no-till system for the first 2 yrs and not different in the third year. Irrigated soybean seed yields were significantly greater than those from dryland plots for all years. Net economic returns averaged over the 3 yrs were greatest ($390.00 ha-1) from the irrigated no-till system.
Irrigation mitigates against heat extremes
NASA Astrophysics Data System (ADS)
Thiery, Wim; Fischer, Erich; Visser, Auke; Hirsch, Annette L.; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.
2017-04-01
Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use gridded observations and ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on hot extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Finally we find that present-day irrigation is partly masking GHG-induced warming of extreme temperatures, with particularly strong effects in South Asia. Our results overall underline that irrigation substantially reduces our exposure to hot temperature extremes and highlight the need to account for irrigation in future climate projections.
Present-day irrigation mitigates heat extremes
NASA Astrophysics Data System (ADS)
Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.
2017-02-01
Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.
Observed Local Impacts of Global Irrigation on Surface Temperature
NASA Astrophysics Data System (ADS)
Chen, L.; Dirmeyer, P.
2017-12-01
Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.
Root Zone Sensors for Irrigation Management in Intensive Agriculture
Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos
2009-01-01
Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047
Castelo-Baz, Pablo; Martín-Biedma, Benjamín; Cantatore, Giuseppe; Ruíz-Piñón, Manuel; Bahillo, José; Rivas-Mundiña, Berta; Varela-Patiño, Purificación
2012-05-01
Complete endodontic system disinfection requires the removal of vital and necrotic pulp tissue, microorganisms, and toxins. The purpose of this study was to compare the effects of 2 ultrasonic irrigation techniques on the penetration of sodium hypochlorite into the main canal and simulated lateral canals of extracted teeth. Two simulated lateral canals each were created 2, 4, and 6 mm from the working length in 60 single-rooted teeth (6 canals/tooth, n = 360). To resemble the clinical situation, a closed system was created in each tooth. The teeth were randomly assigned to 3 experimental irrigation groups: group 1 (n = 20), positive pressure irrigation (PPI); group 2 (n = 20), passive ultrasonic irrigation (PUI); and group 3 (n = 20), continuous ultrasonic irrigation (CUI). Samples were evaluated by direct observation of still images recorded under a dental operating microscope. To examine irrigating solution penetration, 20% Chinese ink (Sanford Rotring GmbH, Hamburg, Germany) was added to a 5% sodium hypochlorite solution and delivered into the root canals. The results showed a significantly higher (P < .05) penetration of irrigant into the lateral canals in the CUI group. PUI and CUI did not differ significantly in solution penetration into the apical thirds of the main canals. The PPI group showed a significantly lower penetration of sodium hypochlorite into the main and lateral canals compared with the CUI and PUI groups. CUI as a final rinse significantly increased the penetration of irrigating solution into simulated lateral canals. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun
2017-01-01
Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012-2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants.
Lüneberg, Kathia; Schneider, Dominik; Siebe, Christina; Daniel, Rolf
2018-01-23
Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater affects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specific adaptations to drought and sodium content in specific land use systems. Predicted functionality profiles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles differed among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identified potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profiles provided extensive understanding of the short-term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands.
Singh, Abhishek; Arunagiri, Doraiswamy; Pushpa, Shankarappa; Sawhny, Asheesh; Misra, Abhinav; Khetan, Kirti
2015-01-01
The purpose of this ex vivo study was to evaluate and compare the weight of debris and volume of irrigant extruded apically from teeth using different preparation techniques. Thirty extracted human mandibular premolars with single canals and similar lengths were instrumented using hand ProTaper F2 (25, 0.08; Dentsply Maillefer, Ballaigues, Switzerland), M-two (25, 0.06; VDW, Munich, Germany) and WaveOne Primary (25, 0.08; Dentsply Maillefer, Ballaigues, Switzerland). Debris and irrigant extruded during instrumentation were collected into preweighed Eppendorf tubes. The volume of the irrigant was measured, and then the tubes were stored in an incubator at 70°C for 2 days. The Eppendorf tubes were weighed to obtain the final weight when the extruded debris was included. Three consecutive weights were obtained for each tube. Data were statistically analyzed by one-way analysis of variance and Student's t-test. There were no statistically significant differences among the groups. The WaveOne reciprocating system showed the maximum amount of apical extrusion of debris and irrigant among all the groups. The least amount of debris and irrigant was observed in ProTaper hand instrument (P > 0.05). All instrumentation techniques were associated with debris and irrigant extrusion.
Unusual Root Canal Irrigation Solutions.
Mohammadi, Zahed; Jafarzadeh, Hamid; Shalavi, Sousan; Kinoshita, Jun-Ichiro
2017-05-01
Microorganisms and their by-products play a critical role in pulp and periradicular pathosis. Therefore, one of the main purposes of root canal treatment is disinfection of the entire system of the canal. This aim may be obtained using mechanical preparation, chemical irrigation, and temporary medication of the canal. For this purpose, various irrigation solutions have been advocated. Common root canal irrigants, such as sodium hypochlorite, chlorhexidine, and a mixture of tetracycline, acid, and detergent have been extensively reviewed. The aim of this review was to address the less common newer root canal irrigation solutions, such as citric acid, maleic acid, electrochemically activated water, green tea, ozonated water, and SmearClear.
Impacts of Irrigation on Daily Extremes in the Coupled Climate System
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide
2014-01-01
Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.
Water saving in chufa cultivation using flat raised beds and drip irrigation
NASA Astrophysics Data System (ADS)
Pascual-Seva, N.; San Bautista, A.; López-Galarza, S.; Maroto, J. V.; Pascual, B.
2012-04-01
Chufa (Cyperus esculentus L. var. sativus), also known as tiger nut, is a typical crop in the Region of Valencia (Spain). Its tubers are used to produce a beverage called horchata. Chufa has been cultivated traditionally in ridges and furrow irrigated. Currently, the quality of water used is acceptable, there are no limitations on supply, and water is not expensive; therefore, large amounts of water are used. The European Water Framework Directive 2000/60 is based on the precautionary principle, considering preventive action for measures to be taken; thus, water use is an issue to improve. Moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. In this two year study (2007-2008), we analysed how yield and irrigation water use efficiency (IWUE) are affected by two cultivation factors: planting strategy and irrigation system. Three planting strategies were analysed: ridges (R) and flat raised beds, with two (B2) and three (B3) plant rows along them, while two irrigation systems were compared, furrow (FI) and drip irrigation (DI). Within the beds, the effect of the position of the plant row was considered, differing among plants grown in the north (n), central (c), and south (s) rows. Distances between ridge and bed axes were 60, 80 and 120 cm for R, B2 and B3, respectively. Irrigation was based on the Volumetric Soil Water Content (VSWC), which was continuously monitored with capacitance sensors (ECH2O EC-5 in FI and multidepth capacitance sensors C-Probe in DI). Each irrigation session started when the VSWC in R dropped to 60% and 80% of field capacity in FI and DI, respectively. Each DI session lasted 60 min in 2007; while in 2008 the installation was automated, stopping each session when the sum of the VSWC at 10, 20, and 30 cm soil depth reached its corresponding field capacity value. With both irrigation systems, beds were irrigated simultaneously with ridges and with the same irrigation duration. Plants from the different plant rows were sampled periodically and later fractionated into leaves, roots, and tubers, to examine the evolution of the different plant organs. The results showed that there were no differences among planting strategies in 2007; however, in 2008, R produced lower yields than the two types of beds. The interaction between the experimental years and the irrigation strategy did affect the yield significantly, obtaining higher yields with DI than with FI, which led to higher yields in 2007 than in 2008. Regarding the IWUE, DI gave the highest values, especially in 2008. Ridges led to the highest IWUE with DI, and the lowest IWUE with FI. When comparing the different planting lines, the highest yield was obtained in the southern row. It can be concluded that modifications to the planting strategy and the irrigation system within the traditional cultivation practices of the chufa crop would increase IWUE and lead to major water savings.
Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.
2014-01-01
Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.
NASA Astrophysics Data System (ADS)
Christ, E.; Webster, P. J.; Collins, G.; Byrd, S.
2014-12-01
Recent droughts and the continuing water wars between the states of Georgia, Alabama and Florida have made agricultural producers more aware of the importance of managing their irrigation systems more efficiently. Many southeastern states are beginning to consider laws that will require monitoring and regulation of water used for irrigation. Recently, Georgia suspended issuing irrigation permits in some areas of the southwestern portion of the state to try and limit the amount of water being used in irrigation. However, even in southern Georgia, which receives on average between 23 and 33 inches of rain during the growing season, irrigation can significantly impact crop yields. In fact, studies have shown that when fields do not receive rainfall at the most critical stages in the life of cotton, yield for irrigated fields can be up to twice as much as fields for non-irrigated cotton. This leads to the motivation for this study, which is to produce a forecast tool that will enable producers to make more efficient irrigation management decisions. We will use the ECMWF (European Centre for Medium-Range Weather Forecasts) vars EPS (Ensemble Prediction System) model precipitation forecasts for the grid points included in the 1◦ x 1◦ lat/lon square surrounding the point of interest. We will then apply q-to-q bias corrections to the forecasts. Once we have applied the bias corrections, we will use the check-book method of irrigation scheduling to determine the probability of receiving the required amount of rainfall for each week of the growing season. These forecasts will be used during a field trial conducted at the CM Stripling Irrigation Research Park in Camilla, Georgia. This research will compare differences in yield and water use among the standard checkbook method of irrigation, which uses no precipitation forecast knowledge, the weather.com forecast, a dry land plot, and the ensemble-based forecasts mentioned above.
29 CFR 780.407 - System must be nonprofit or operated on a share-crop basis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false System must be nonprofit or operated on a share-crop basis... Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.407 System must be nonprofit or operated on... on facilities of any irrigation system unless the ditches, canals, reservoirs, or waterways in...
29 CFR 780.407 - System must be nonprofit or operated on a share-crop basis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false System must be nonprofit or operated on a share-crop basis... Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.407 System must be nonprofit or operated on... on facilities of any irrigation system unless the ditches, canals, reservoirs, or waterways in...
29 CFR 780.407 - System must be nonprofit or operated on a share-crop basis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 3 2012-07-01 2012-07-01 false System must be nonprofit or operated on a share-crop basis... Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.407 System must be nonprofit or operated on... on facilities of any irrigation system unless the ditches, canals, reservoirs, or waterways in...
29 CFR 780.407 - System must be nonprofit or operated on a share-crop basis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false System must be nonprofit or operated on a share-crop basis... Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.407 System must be nonprofit or operated on... on facilities of any irrigation system unless the ditches, canals, reservoirs, or waterways in...
29 CFR 780.407 - System must be nonprofit or operated on a share-crop basis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false System must be nonprofit or operated on a share-crop basis... Requirements Under Section 13(b)(12) The Irrigation Exemption § 780.407 System must be nonprofit or operated on... on facilities of any irrigation system unless the ditches, canals, reservoirs, or waterways in...
Model development for prediction of soil water dynamics in plant production.
Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng
2015-09-01
Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.
Darrieus wind-turbine and pump performance for low-lift irrigation pumping
NASA Astrophysics Data System (ADS)
Hagen, L. J.; Sharif, M.
1981-10-01
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
USDA-ARS?s Scientific Manuscript database
The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...
USDA-ARS?s Scientific Manuscript database
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emis-sions, and global warming potential (GWP) in irrigated systems, however,...
NASA Astrophysics Data System (ADS)
Nocco, M. A.; Kucharik, C. J.; Kraft, G.
2013-12-01
Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential recharge) and by inferring ET through difference, modeling, and gas exchange. In April 2013 prior to planting, we installed 10 passive capillary wick lysimeters below the effective rooting zone (z=100 cm) in potato (n=6) and maize (n=4) cropping systems to collect drainage at a 10-minute time-step under cultivation on Isherwood Farms, a sixth-generation family farm in the Wisconsin Central Sands region. Lysimeters were also instrumented to measure soil moisture and temperature at depth (z=10, 20, 40, 80 cm). Farm operators initiated center-pivot irrigation when soil moisture dropped to approximately 50% of plant available water content. Results show that drainage for May-July 2013 was 43 × 53 mm and 48 × 41 mm in irrigated potato and maize cropping systems, respectively, despite 320 mm of precipitation received during the experimental period, which was 15% above average for this region. Soil moisture consistently fluctuated in response to precipitation/irrigation events at the 10 and 20 cm soil depths, but rarely fluctuated in response to precipitation/irrigation events at the 40 and 80 cm soil depths, supporting the low drainage observed during the growing season. Future work will couple these drainage data to ongoing phenological, micrometeorological, and gas exchange observations in order to infer ET and calculate crop water budgets on a seasonal basis.
Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J
2017-07-01
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1 yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks. © 2017 John Wiley & Sons Ltd.
The impact of conjunctive use of canal and tube well water in Lagar irrigated area, Pakistan
NASA Astrophysics Data System (ADS)
Kazmi, Syed Iftikhar; Ertsen, Maurits W.; Asi, Muhammad Rafique
Introduction of the large gravity irrigation system in the Indus Basin in the late 19th century without a drainage system resulted in a rising water table, which resulted in water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem, the Pakistan government initiated installation of 10,000 tube wells in different areas. This not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the irrigation opportunities motivated framers to install private tube wells. The Punjab area meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tube wells, creating a pattern of private and public water control. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. The field work in the Lagar irrigated area, discussed in this paper, show that within the general picture of conjunctive use of canal water and groundwater, there is a clear spatial pattern between upstream and downstream areas, with upstream areas depending much less on groundwater than downstream areas. The irrigation context in the study area proves to be highly complex, with water users having differential access to canal and tube well water, resulting in different responses of farmers with their irrigation strategies, which in turn affect the salinity and water balances on the fields.
Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L
2016-04-01
The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Azmeri, Hadihardaja, Iwan K.; Shaskia, Nina; Admaja, Kamal Surya
2017-11-01
Rukoh Reservoir's construction was planned to be built in Krueng Rukoh Watershed with supplet ion from Krueng Tiro River. Rukoh Reservoir operating system as a multipurpose reservoir raised potential conflict of interest between raw water and irrigation water. In this study, the operating system of Rukoh Reservoirs was designed to supply raw water in Titeu Sub-District and replenish water shortage in Baro Irrigation Area which is not able to be served by the Keumala Weir. Reservoir operating system should be planned optimally so that utilization of water in accordance with service area demands. Reservoir operation method was analyzed by using optimization technique with nonlinear programming. Optimization of reservoir operation is intended to minimize potential conflicts of interest in the operation. Suppletion discharge from Krueng Tiro River amounted to 46.62%, which was calculated based on ratio of Baro and Tiro irrigation area. However, during dry seasons, water demands could not be fully met, so there was a shortage of water. By considering the rules to minimize potential conflicts of interest between raw water and irrigation water, it would require suppletion from Krueng Tiro amounted to 52.30%. The increment of suppletion volume could minimize conflicts of interest. It produced l00% reservoir reliability for raw water and irrigation demands. Rukoh reservoir could serve raw water demands of Titeu Sub-District and irrigation demands of Baro irrigation area which is covering an area of 6,047 hectars. Reservoir operation guidelines can specify reservoir water release to balance the demands and the target storage.
An economic and energy analysis of poplar intensive cultures in the Lake States.
Dietmar Rose; Karen Ferguson; David C. Lothner; J. Zavitkovski
1981-01-01
Short- (5 to 10 years) and long- (15 years) rotation, irrigated and nonirrigated intensive cultures of hybrid poplar were analyzed economically via cash flow analysis. Energy balances we also calculated for each alternative. Nonirrigated systems offer reasonable economic returns whereas irrigated systems do not. All systems produce more energy than they use as...
He, Chunlin
2010-08-03
Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages.
The Middle Eastern Regional Irrigation Management Information Systems project-update
USDA-ARS?s Scientific Manuscript database
The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...
Using a spatially explicit analysis model to evaluate spatial variation of corn yield
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
Evaluation of modern cotton harvest systems on irrigated cotton: harvester performance
USDA-ARS?s Scientific Manuscript database
Picker and stripper harvest systems were evaluated on production-scale irrigated cotton on the High Plains of Texas over three harvest seasons. Observations on harvester performance, including time-in-motion, harvest loss, seed cotton composition, and turnout, were conducted at seven locations with...
Yakama Nation Renewable Energy Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigdon, Phillip
2016-05-10
It is the intention of the Yakama Nation to make improvements on the Wapato Irrigation Project (WIP) for the benefit of all stakeholders. Water management, water conservation and water allocation on the Wapato Irrigation Project is equally as important as hydropower. Irrigation will always be the primary purpose of this water system, but the irrigation system can also generate energy. The purpose of this project is the purchase and installation of inflow water turbines to generate an additional one megawatt of hydro-electrical power. The project will occur in two phases, Environmental Assessment and Project Implementation. The core objective for thismore » proposal is to meet the Yakama Nation’s goal in hydroelectric power development. This will include the installation of inflow water turbines on the Wapato Irrigation Project. The Yakama Nation will prepare an Environmental Assessment in preparation to purchase and install new water turbines for hydropower generation of 1 Megawatt. This is a valuable economic development strategy for Yakama Nation that will create new jobs, improve and increase rural electrification, and attract private investments. This water system has an untapped low head/low power potential without the need to construct a new dam. The objective of Phase 1 is to complete an environmental assessment and obtain approval to proceed with installation of the hydroelectric power system.« less
Calibration and testing of selected portable flowmeters for use on large irrigation systems
Luckey, Richard R.; Heimes, Frederick J.; Gaggiani, Neville G.
1980-01-01
Existing methods for measuring discharge of irrigation systems in the High Plains region are not suitable to provide the pumpage data required by the High Plains Regional Aquifer System Analysis. Three portable flowmeters that might be suitable for obtaining fast and accurate discharge measure-ments on large irrigation systems were tested during 1979 under both laboratory and field conditions: propeller type gated-pipe meter, a Doppler meter, and a transient-time meter.The gated-pipe meter was found to be difficult to use and sensitive to particulate matter in the fluid. The Doppler meter, while easy to use, would not function suitably on steel pipe 6 inches or larger in diameter, or on aluminum pipe larger than 8 inches in diameter. The transient-time meter was more difficult to use than the other two meters; however, this instrument provided a high degree of accuracy and reliability under a variety of conditions. Of the three meters tested, only the transient-time meter was found to be suitable for providing reliable discharge measurements on the variety of irrigation systems used in the High Plains region.
Madhusudhana, Koppolu; Mathew, Vinod Babu; Reddy, Nelaturi Madhusudhan
2010-10-01
Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy.
Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh
NASA Astrophysics Data System (ADS)
Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke
2016-04-01
Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater depth and groundwater recharge shows that the groundwater depth is continuously increasing with a little response to groundwater recharge. Groundwater abstraction for irrigation is not sustainable. Hence, more detailed studies on the effect of different irrigation scenarios on the groundwater system are recommended to strategize sustainable management of overexploited aquifer in Bangladesh.
Wang, Yunqi; Zhang, Yinghua; Zhang, Rui; Li, Jinpeng; Zhang, Meng; Zhou, Shunli; Wang, Zhimin
2018-03-15
The groundwater table has fallen sharply over the last 30years on the North China Plain, resulting in a shortage of water for winter wheat irrigation. Reducing irrigation may be an important strategy to maintain agricultural sustainability in the region; however, few studies have evaluated the transition from conventional irrigation management practices to reduced irrigation management practices in the winter wheat-summer maize rotation system. Here, we compare the yield, water consumption, and water use efficiency of winter wheat-summer maize rotation under conventional irrigation and reduced irrigation on the North China Plain from 2012 to 2015. Reducing irrigation decreased the yield but increased the water use efficiency and significantly advanced the harvest date of winter wheat. As a result, the summer maize sowing date advanced significantly, and the flowering date subsequently advanced 2-8days, thus extending the summer maize grain-filling stage. Therefore, the yield and water use efficiency of summer maize were higher under reduced irrigation than conventional irrigation, which compensated for the winter wheat yield loss under reduced irrigation. In addition, under reduced irrigation from 2012 to 2015, the yield and water use efficiency advantage of the winter wheat-summer maize rotation ranged from 0.0 to 9.7% and from 4.1 to 14.7%, respectively, and water consumption and irrigated water decreased by 20-61mm and 150mm, respectively, compared to conventional irrigation. Overall, the reduced irrigation management practice involving no irrigation after sowing winter wheat, and sowing summer maize on June 7 produced the most favorable grain yield with superb water use efficiency in the winter wheat-summer maize rotation. This study indicates that reducing irrigation could be an efficient means to cope with water resource shortages while maintaining crop production sustainability on the North China Plain. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Dogaru, Diana
2016-04-01
Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies/institutes, providing the data at fine resolutions. The increased irrigated area was accounted according to the reported increased percentages of the irrigated area out of the total area equipped for irrigation, as an expected outcome of public irrigation systems rehabilitation schemes (MADR, 2011), while the optimum Nitrogen fertilizer rates for wheat and maize were established according to several field experiments made on irrigated and rain-fed wheat and maize plots in south Romania (Hera and Borlan, 1980). The effects of such farming measures on yields were compared to a baseline condition given by actual irrigated area and fertilization rates. The preliminary results show that potential gains in CWP could be obtained through improved fertilizer management and water allocation in winter wheat cropping systems, particularly in the dry periods, while in maize cropping systems CWP is more sensitive to water than to optimum fertilization rates. Irrigation water supply increases the stability of yields in both cropping systems, although regional differences can be observed across the study area, thus augmenting the relevance and the need for investigations on sustainable use of irrigation water in Romania. As such, this study could represent an information base for further analyses on yield potential under current and future climatic conditions, on impacts of land use patterns and farming practices on crop production in Romania, etc. Keywords: agricultural water use, crop water productivity, irrigation water, GEPIC, Romania References: Molden, D.J., Sakthivadivel, R., Perry, C.J., de Fraiture, C., Kloezen, W.H. (1998). Indicators for comparing performance of irrigated agricultural systems, Research Report 20, IWMI: Colombo, Sri Lanka. Sandu, I., Mateescu E. (2014). Current and prospective climate changes in Romania (in Romanian), in vol. Climate change: a major challenge for research in agriculture (ed. Saulescu, N.), Romanian Academy Publishing House, 17-36. Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A. (1989). The EPIC crop growth model. Trans. ASAE 32 (2), 497-511. Liu, J. (2009). A GIS-based tool for modelling large-scale crop-water relations, Environmental Modelling & Software, 24, 411-422. MADR (Ministry of Agriculture and Rural Development), (2011). Rehabilitation and reform in the irrigation sector. Strategy of investment in the irrigation sector (in Romanian), Fidman Merk at., Bucharest, http://old.madr.ro/pages/strategie/strategie-investitii-irigatii.pdf. Hera, C., Borlan, Z. (1980). Guide for fertilization planning (in Romanian), 2nd edition, CERES Publishing House, Bucharest, Romania, 341p.
Present-day irrigation mitigates heat extremes
Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; ...
2017-02-16
Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impactmore » on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. In conclusion, our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiery, Wim; Davin, Edouard L.; Lawrence, David M.
Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impactmore » on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. In conclusion, our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.« less
NASA Astrophysics Data System (ADS)
Shah, Tushaar; Singh, O. P.; Mukherji, Aditi
2006-03-01
Since 1960, South Asia has emerged as the largest user of groundwater in irrigation in the world. Yet, little is known about this burgeoning economy, now the mainstay of the region's agriculture, food security and livelihoods. Results from the first socio-economic survey of its kind, involving 2,629 well-owners from 278 villages from India, Pakistan, Nepal Terai and Bangladesh, show that groundwater is used in over 75% of the irrigated areas in the sample villages, far more than secondary estimates suggest. Thanks to the pervasive use of groundwater in irrigation, rain-fed farming regions are a rarity although rain-fed plots within villages abound. Groundwater irrigation is quintessentially supplemental and used mostly on water-economical inferior cereals and pulses, while a water-intensive wheat and rice system dominates canal areas. Subsidies on electricity and canal irrigation shape the sub-continental irrigation economy, but it is the diesel pump that drives it. Pervasive markets in tubewell irrigation services enhance irrigation access to the poor. Most farmers interviewed reported resource depletion and deterioration, but expressed more concern over the high cost and poor reliability of energy supply for groundwater irrigation, which has become the fulcrum of their survival strategy.
Kent, Dea J; Long, Mary Arnold; Bauer, Carole
2015-01-01
Colostomy irrigation may be used by patients with colostomies to regulate bowel evacuations by stimulating emptying of the colon at regularly scheduled times. This Evidence-Based Report Card reviews the effect of colostomy irrigation on frequency of bowel evacuation, flatus production, odor, and health-related quality of life. We systematically reviewed the literature for studies that evaluated health-related quality of life in persons aged 18 years or older with colostomies of the sigmoid or descending left colon. A professional librarian performed the literature search, which yielded 499 articles using the search terms "colostomy," "colostomies," "therapeutic irrigation," "irrigation," and "irrigator." Following title and abstract reviews, we identified and retrieved 4 studies that met inclusion criteria. Colostomy irrigation reduces the frequency of bowel evacuations when compared to spontaneous evacuation and containment using a pouching system. Regular irrigation is associated with reductions in pouch usage. This change in bowel evacuation function frequently results in absence of bowel evacuations for 24 hours or longer, enabling some to discontinue ongoing use of a pouching system. Subjects using CI report reductions in flatus and odors associated with presence of a colostomy. One study was identified that found persons using CI reported higher health-related quality of life than did those who managed their colostomies with spontaneous evacuation using the Digestive Disease Quality of Life-15, but no differences were found when health-related quality of life was measured using the more generic instrument, the Medical Outcomes Study: Short Form-36. Instruction on principles and techniques of colostomy irrigation should be considered when managing patients with a permanent, left-sided colostomy.
Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes
NASA Astrophysics Data System (ADS)
Wu, Laosheng; Yang, Ting; Šimůnek, Jirka
2017-04-01
Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.
Irrigation Trials for ET Estimation and Water Management in California Specialty Crops
NASA Astrophysics Data System (ADS)
Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.
2012-12-01
Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to nutrient management and crop viability.
USDA-ARS?s Scientific Manuscript database
Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...
USDA-ARS?s Scientific Manuscript database
Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...
Establishment of Rio Grande cottonwood seedlings using micro-irrigation of xeric flood plain sites
David R. Dreesen; Gregory A. Fenchel; Joseph G. Fraser
1999-01-01
Flood control, irrigation structures, and flow control practices on the Middle Rio Grande have prevented the deposition of sediments and hydrologic conditions conducive to the germination and establishment of Rio Grande cottonwood (Populus fremontii S. Wats.). The Los Lunas Plant Materials Center has been investigating the use of micro-irrigation systems on xeric flood...
NASA Astrophysics Data System (ADS)
Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.
2017-12-01
Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.
Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo
2003-01-01
The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage effluent into wells along the coast. A digital ground-water flow model was developed to provide information for water managers to evaluate some of these alternatives. After calibration of the ground-water model to historical data, four simulations of ground-water management strategies were performed: ground-water conservation, surface infiltration over existing agricultural fields, or infiltration along streams and canals, or injection wells along the coast. Simulations of four alternative water management strategies indicate that current condition of water levels below sea level near the coast can be reversed to raise water levels above sea level by either: (1) about a 27 percent reduction in 2003 ground-water withdrawal rates; (2) application of about 1,700 million gallons per year of artificial recharge over more than half of the current agricultural areas; (3) injection of about 3 million gallons per day (1,095 million gallons per year) of freshwater or treated wastewater in wells distributed along the coast; (4) injection of about 3.5 million gallons per day (1,280 million gallons per year) of freshwater or treated wastewater in wells distributed along canals and streams.
The future of irrigation on the U.S. Great Plains
USDA-ARS?s Scientific Manuscript database
In the Great Plains, soil and water conservation is being achieved in both dryland and irrigated agricultural systems, and increasingly in combinations of these systems. Limiting tillage has increased the retention of crop residues on the surface and has reduced the evaporative loss of water, making...
USDA-ARS?s Scientific Manuscript database
Critical to the use of modeling tools for the hydraulic analysis of surface irrigation systems is characterizing the infiltration and hydraulic resistance process. Since those processes are still not well understood, various formulations are currently used to represent them. A software component h...
McDonald, Robert I; Girvetz, Evan H
2013-01-01
Agricultural irrigation practices will likely be affected by climate change. In this paper, we use a statistical model relating observed water use by U.S. producers to the moisture deficit, and then use this statistical model to project climate changes impact on both the fraction of agricultural land irrigated and the irrigation rate (m³ ha⁻¹). Data on water withdrawals for US states (1985-2005) show that both quantities are highly positively correlated with moisture deficit (precipitation--PET). If current trends hold, climate change would increase agricultural demand for irrigation in 2090 by 4.5-21.9 million ha (B1 scenario demand: 4.5-8.7 million ha, A2 scenario demand: 9.1-21.9 million ha). Much of this new irrigated area would occur in states that currently have a wet climate and a small fraction of their agricultural land currently irrigated, posing a challenge to policymakers in states with less experience with strict regulation of agriculture water use. Moreover, most of this expansion will occur in states where current agricultural production has relatively low market value per hectare, which may make installation of irrigation uneconomical without significant changes in crops or practices by producers. Without significant increases in irrigation efficiency, climate change would also increase the average irrigation rate from 7,963 to 8,400-10,415 m³ ha⁻¹ (B1 rate: 8,400-9,145 m³ ha⁻¹, A2 rate: 9,380-10,415 m³ ha⁻¹). The irrigation rate will increase the most in states that already have dry climates and large irrigation rates, posing a challenge for water supply systems in these states. Accounting for both the increase in irrigated area and irrigation rate, total withdrawals might increase by 47.7-283.4 billion m³ (B1 withdrawal: 47.7-106.0 billion m³, A2 withdrawal: 117.4-283.4 billion m³). Increases in irrigation water-use efficiency, particularly by reducing the prevalence of surface irrigation, could eliminate the increase in total irrigation withdrawals in many states.
NASA Technical Reports Server (NTRS)
Lawston, Patricia M.; Santanello, Joseph A.; Rodell, Matthew; Franz, Trenton E.
2017-01-01
Irrigation increases soil moisture, which in turn controls water and energy fluxes from the land surface to the10 planetary boundary layer and determines plant stress and productivity. Therefore, developing a realistic representation of irrigation is critical to understanding land-atmosphere interactions in agricultural areas. Irrigation parameterizations are becoming more common in land surface models and are growing in sophistication, but there is difficulty in assessing the realism of these schemes, due to limited observations (e.g., soil moisture, evapotranspiration) and scant reporting of irrigation timing and quantity. This study uses the Noah land surface model run at high resolution within NASAs Land15 Information System to assess the physics of a sprinkler irrigation simulation scheme and model sensitivity to choice of irrigation intensity and greenness fraction datasets over a small, high resolution domain in Nebraska. Differences between experiments are small at the interannual scale but become more apparent at seasonal and daily time scales. In addition, this study uses point and gridded soil moisture observations from fixed and roving Cosmic Ray Neutron Probes and co-located human practice data to evaluate the realism of irrigation amounts and soil moisture impacts simulated by the model. Results20 show that field-scale heterogeneity resulting from the individual actions of farmers is not captured by the model and the amount of irrigation applied by the model exceeds that applied at the two irrigated fields. However, the seasonal timing of irrigation and soil moisture contrasts between irrigated and non-irrigated areas are simulated well by the model. Overall, the results underscore the necessity of both high-quality meteorological forcing data and proper representation of irrigation foraccurate simulation of water and energy states and fluxes over cropland.
Kalra, Pinky; Rao, Arathi; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna
2017-02-01
Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis . Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals were prepared using K files, Hand protapers and Protaper rotary files. Non Parametric test like Kruskal-Wallis and Mann-Whitney U test were applied to determine the significant differences among the group. Tests revealed statistically significant difference between the amount of debris and number of bacteria extruded by the ProTaper hand and the K-files. No statistically significant difference was observed between the amounts of irrigant extruded by the ProTaper hand and the K-file system. Statistically significant differences were observed between the amounts of bacteria and irrigant extruded by the ProTaper rotary and the Protaper hand. No statistically significant difference was observed between the amounts of debris extruded by the ProTaper hand and the K-file system. Amount of apical extrusion of irrigant solution, bacteria and debris are significantly greater with K File instruments and least with Protaper rotary instruments. Key words: Protaper, rotary, periapical extrusion.
GOKTURK, Hakan; OZKOCAK, Ismail; BUYUKGEBİZ, Fevzi; DEMİR, Osman
2016-01-01
ABSTRACT Objective The aim of this study was to investigate the effectiveness of conventional syringe irrigations, passive ultrasonic irrigation (PUI), Vibringe, CanalBrush, XP-endo Finisher, and laser-activated irrigation (LAI) systems in removing double antibiotic paste (DAP) from root canals. Material and Methods One hundred five extracted single-rooted teeth were instrumented. The roots were split longitudinally. Three standard grooves were created and covered with DAP. The roots were distributed into seven groups: Group 1, beveled needle irrigation; Group 2, double side-vented needle irrigation; Group 3, CanalBrush; Group 4, XP-endo Finisher; Group 5, Vibringe; Group 6, PUI; Group 7, LAI. The amount of remaining DAP was scored under a stereomicroscope. Results Group 4, Group 6, and Group 7 removed significantly more DAP than the other protocols in the coronal region. Group 7 was more efficient in the middle region; however, no significant difference was found between Group 7 and Group 6. No differences were found between groups in the apical region either, except for the comparisons between groups 7 and 2, and groups 2 and 3. Conclusions None of the investigated protocols were able to completely remove the DAP from the grooves. The Vibringe and XP-endo Finisher systems showed results similar to those of conventional needle irrigation. PMID:28076461
Global Estimates of Trace Gas Fluxes Affected by Land Use Change and Irrigation of Major Crops
NASA Astrophysics Data System (ADS)
Ojima, D. S.; del Grosso, S.; Parton, W. J.; Keough, C.
2005-12-01
Cropland conversions have altered many fertile regions of the earth and have modified the biogeochemical and hydrological cycling in these regions. These croplands are significant sources of N trace gas emissions however, the extent of changing trace gas emission due to land management changes and irrigation need further analysis. We use the DAYCENT biogeochemical model which is a daily time step version of the CENTURY model. DAYCENT simulates fluxes of N2O between croplands and the atmosphere for major crop types, and allows for a dynamic representation of GHG fluxes that accounts for environmental conditions, soil characteristics, climate, specific crop qualities, and fertilizer and irrigation management practices. DAYCENT is applied to all world cropland regions. Global datasets of weather, soils, native vegetation and cropping fractions were mapped to an approximate 2° x 2° resolution. Non-spatial data (such as planting date and fertilizer application rates) were assigned as point values for each region (i.e. country), and were assumed to be similar within crop types across the region. Three major crops were simulated (corn, wheat and soybeans) under both irrigated and non-irrigated conditions. Results indicate that N2O emission for maize and soy bean increase between 3 to 10%, where as wheat emission decline by about 1% when irrigated systems are compared to non-irrigated systems.
Heat profiling of phacoemulsification tip using a thermal scanning camera.
Ngo, Wei Kiong; Lim, Louis W; Tan, Colin S H; Heng, Wee Jin
2013-12-01
An experimental study to measure the heat profile of the phacoemulsification (phaco) tip using standard continuous phaco and hyperpulse phaco with and without waveform power modulation in the Millennium Microsurgical System with Custom Control Software (CCS). The phaco tip was imaged in air using a thermal camera. The highest temperature was measured 15 s after application of phaco power. Continuous, hyperpulse and waveform power modulations of the Millennium Microsurgical System were used with different power settings (20, 50 and 100 %) and duty cycles (40, 60 and 90 %), with the irrigation turned on and off. Using continuous phaco with the irrigation on, the phaco tip temperature remains <28.0 °C. With irrigation off, the temperature is higher compared to irrigation on but still remains <45.0 °C. Comparing the temperatures for all three power modulations when irrigation is on, at each phaco power and duty cycle setting, the temperature of the phaco tip is highest with continuous phaco, followed by hyperpulse with rise time 1, then hyperpulse with rise time 2. When irrigation is off, the highest temperatures are recorded using the hyperpulse with rise time 2, followed by continuous phaco, then hyperpulse with rise time 1. Hyperpulse and waveform modulations reduce heat generation compared to the continuous mode when irrigation is turned on. Lower duty cycles and lower ultrasound power produce less heat at the phaco tip.
Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun
2017-01-01
Background Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. Methodology/Principal findings The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012–2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Conclusion/Significance Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants. PMID:28719623
Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds.
Csinos, Alex S; Laska, James E; Childers, Stan
2002-04-01
A new method is described for tracing water movement in polyethylene film covered soil beds. Dye was delivered via a drip tape micro-irrigation system which was placed in the bed as the soil beds were shaped and covered with polyethylene film. The dye was injected into the system and irrigated with water for 4-24 h at 0.41-1.38 bar (41-138 kPa) pressure depending on the experiment. The dye appeared as blue circles on the soil surface within 20 min of injection and produced a three-dimensional pattern in the soil profile. Injection-irrigation-pressure scenarios were evaluated by measuring dye movement directly below and between emitters by sliding fabricated blades vertically into the bed at the desired examination point and excavating the soil away from the blade. The dye typically produced a U shape on the face of the bed and the area was calculated for each of these exposed faces. The area increased as the length of irrigation and water pressure increased. Interrupted irrigation (pulsing) scenarios did not alter the calculated areas encompassed by the dye compared to uninterrupted irrigation scenarios. The blue dye provided a direct, inexpensive and easy method of visualizing water movement in soil beds. This information will be used to optimize application of emulsifiable plant-care products in polyethylene film mulch beds.
Economic risk assessment of drought impacts on irrigated agriculture
NASA Astrophysics Data System (ADS)
Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.
2017-07-01
In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.
Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.
Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.
2017-01-01
Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129
Khan, Muhammad Usman; Malik, Riffat Naseem; Muhammad, Said
2013-11-01
The current study was designed to investigate the potential human health risks associated with consumption of food crops contaminated with toxic heavy metals. Cadmium (Cd) concentration in surface soils; Cd, lead (Pb) and chromium (Cr) in the irrigation water and food crops were above permissible limits. The accumulation factor (AF) was >1 for manganese (Mn) and Pb in different food crops. The Health Risk Index (HRI) was >1 for Pb in all food crops irrigated with wastewater and tube well water. HRI >1 was also recorded for Cd in all selected vegetables; and for Mn in Spinacia oleracea irrigated with wastewater. All wastewater irrigated samples (soil and food crops) exhibited high relative contamination level as compared to samples irrigated with tube well water. Our results emphasized the need for pretreatment of wastewater and routine monitoring in order to avoid contamination of food crops from the wastewater irrigation system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integration of Hydrogeophysical Datasets for Improved Water Resource Management in Irrigated Systems
NASA Astrophysics Data System (ADS)
Finkenbiner, C. E.; Franz, T. E.; Heeren, D.; Gibson, J. P.; Russell, M. V.
2016-12-01
With an average irrigation water use efficiency of approximately 45% in the United States, improvements in water management can be made within agricultural systems. Advancements in precision irrigation technologies allow application rates and times to vary within a field. Current limitations in applying these technologies are often attributed to the quantification of soil spatial variability. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Field capacity and wilting point values for a field near Sutherland, NE were downloaded from the USDA SSURGO database. Stationary and roving cosmic-ray neutron probes (CRNP) (sensor measurement volume of 300 m radius sphere and 30 cm vertical soil depth) were combined in order to characterize the spatial and temporal patterns of soil moisture at the site. We used a data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler ( 102 m2) for variable rate irrigation, the individual wedge ( 103 m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. The results show our CRNP "observed" field capacity was higher compared to the SSURGO products. The measured hydraulic properties from sixty-two soil cores collected from the field correlate well with our "observed" CRNP values. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depths and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of the CRNP into current irrigation practices has the potential to greatly increase agricultural water use efficiency. Moreover, the defined soil hydraulic properties at various spatial scales offers additional valuable datasets for the land surface modeling community.
Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.
Livesley, S J; Adams, M A; Grierson, P F
2007-01-01
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.
Sainju, Upendra M; Stevens, William B; Caesar-Tonthat, Thecan; Liebig, Mark A
2012-01-01
Management practices, such as irrigation, tillage, cropping system, and N fertilization, may influence soil greenhouse gas (GHG) emissions. We quantified the effects of irrigation, tillage, crop rotation, and N fertilization on soil CO, NO, and CH emissions from March to November, 2008 to 2011 in a Lihen sandy loam in western North Dakota. Treatments were two irrigation practices (irrigated and nonirrigated) and five cropping systems (conventional-tilled malt barley [ L.] with N fertilizer [CT-N], conventional-tilled malt barley with no N fertilizer [CT-C], no-tilled malt barley-pea [ L.] with N fertilizer [NT-PN], no-tilled malt barley with N fertilizer [NT-N], and no-tilled malt barley with no N fertilizer [NT-C]). The GHG fluxes varied with date of sampling and peaked immediately after precipitation, irrigation, and/or N fertilization events during increased soil temperature. Both CO and NO fluxes were greater in CT-N under the irrigated condition, but CH uptake was greater in NT-PN under the nonirrigated condition than in other treatments. Although tillage and N fertilization increased CO and NO fluxes by 8 to 30%, N fertilization and monocropping reduced CH uptake by 39 to 40%. The NT-PN, regardless of irrigation, might mitigate GHG emissions by reducing CO and NO emissions and increasing CH uptake relative to other treatments. To account for global warming potential for such a practice, information on productions associated with CO emissions along with NO and CH fluxes is needed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Tissue dissolution by a novel multisonic ultracleaning system and sodium hypochlorite.
Haapasalo, Markus; Wang, Zhejun; Shen, Ya; Curtis, Allison; Patel, Payal; Khakpour, Mehrzad
2014-08-01
This study aimed to evaluate the effectiveness of a novel Multisonic Ultracleaning System (Sonendo Inc, Laguna Hills, CA) in tissue dissolution in comparison with conventional irrigation devices. Pieces of bovine muscle tissue (68 ± 2 mg) were placed in 0.7-mL test tubes (height: 23.60 mm, inner diameter: 6.00 mm, outer diameter: 7.75 mm) and exposed to 5 minutes of irrigation by different devices. Endodontic devices included the Multisonic Ultracleaning System, the Piezon Master 700 (EMS, Dallas, TX) ultrasonic system with agitation, the EndoVac negative-pressure irrigation system (SybronEndo, Orange, CA), and a conventional positive-pressure 27-G irrigation needle at a flow rate of 10 mL/min. The systems were tested with 0.5%, 3%, and 6% sodium hypochlorite (NaOCl) at room temperature (21°C) as well as 40°C. Irrigation with sterile water was used as a control. The mass of tissue specimens was measured and recorded before and after the use of each device, and if the specimen was completely dissolved visually within 5 minutes, the dissolution time was recorded. The rate of tissue dissolution (%/s) was then calculated. The Multisonic Ultracleaning System had the fastest rate of tissue dissolution (P < .05), at 1.0% ± 0.1% per second using 0.5% NaOCl, 2.3% ± 0.9% per second using 3% NaOCl, and 2.9% ± 0.7% per second using 6% NaOCl. This tissue dissolution rate was more than 8 times greater than the second fastest device tested (P < .01), the Piezon Master 700 ultrasonic system, which resulted in a tissue dissolution rate of 0.328% ± 0.002% per second using 6% NaOCl at 40°C. For all irrigation devices tested, the rate of tissue dissolution increased with a higher concentration and temperature of the NaOCl solution. The novel Multisonic Ultracleaning System achieved a significantly faster tissue dissolution rate when compared with the other systems examined in vitro. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Poblete, Tomas; Ortega-Farías, Samuel; Ryu, Dongryeol
2018-01-30
Water stress caused by water scarcity has a negative impact on the wine industry. Several strategies have been implemented for optimizing water application in vineyards. In this regard, midday stem water potential (SWP) and thermal infrared (TIR) imaging for crop water stress index (CWSI) have been used to assess plant water stress on a vine-by-vine basis without considering the spatial variability. Unmanned Aerial Vehicle (UAV)-borne TIR images are used to assess the canopy temperature variability within vineyards that can be related to the vine water status. Nevertheless, when aerial TIR images are captured over canopy, internal shadow canopy pixels cannot be detected, leading to mixed information that negatively impacts the relationship between CWSI and SWP. This study proposes a methodology for automatic coregistration of thermal and multispectral images (ranging between 490 and 900 nm) obtained from a UAV to remove shadow canopy pixels using a modified scale invariant feature transformation (SIFT) computer vision algorithm and Kmeans++ clustering. Our results indicate that our proposed methodology improves the relationship between CWSI and SWP when shadow canopy pixels are removed from a drip-irrigated Cabernet Sauvignon vineyard. In particular, the coefficient of determination (R²) increased from 0.64 to 0.77. In addition, values of the root mean square error (RMSE) and standard error (SE) decreased from 0.2 to 0.1 MPa and 0.24 to 0.16 MPa, respectively. Finally, this study shows that the negative effect of shadow canopy pixels was higher in those vines with water stress compared with well-watered vines.
System contemplations for precision irrigation in agriculture
NASA Astrophysics Data System (ADS)
Schubert, Martin J. W.
2017-04-01
This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.
USDA-ARS?s Scientific Manuscript database
Contaminated irrigation water is a potential source for the introduction of foodborne pathogens on to produce commodities. Zero-valent iron (ZVI) may provide a simple cheap method to mitigate the contamination of produce groups through irrigation water. A small field scale system was utilized to e...
Kong, Ping; Richardson, Patricia; Hong, Chuanxue
2017-01-01
Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.
Kong, Ping; Richardson, Patricia; Hong, Chuanxue
2017-01-01
Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible. PMID:28301562
NASA Astrophysics Data System (ADS)
Forbes, B. T.
2015-12-01
Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin
2016-04-01
The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement
Hammam, H M; Allam, F A; Hassanein, F
1975-01-01
The epidemiology of bilharziasis was studied in four villages in Assiut Governorate. These villages were almost similar with respect to their socioeconomic conditions, modes of living, availability and date of introduction of medical services. The first village, Gezirat El-Maabda, has a basin system of irrigation. The other three villages had shifted to the perennial system of irrigation for three years in Nazza Karrar, 26 years in El-Ghorayeb and 95 years in Garf Sarhan and were similar with respect to proximity to water courses. So the only variable of importance between the four villages was the mode of irrigation. Bilharziasis was diagnosed by detection of eggs in urine or faeces. A definitive relationship between the prevalence of S. haematobium infection and the type of irrigation system was further documented. A low prevalence was found in Gezirat El-Maabda (2.95%). In the other three villages a much higher prevalence existed (31.9%, 46.2% & 38.9% in Nazza Karar, El-Ghorayeb and Garf Sarhan respectively). The higher prevalence of S. haematobium in Nazza Karar (31.9%) only three years after introduction of perennial irrigation was a disappointing finding. It can be considered as an evidence against the elaborate measures and precautions planned and incompletely implemented before or after the establishment of Aswan High Dam. Not a single case of S. mansoni was encountered during this study. As regards the age and sex distribution of S. haematobium in the three villages irrigated perennially, a steep rise started at the age group 5-9 years reaching a peak at the age group 10-14 years. In Gezirat El-Maabda the peak was reached at later age (15-19 years). The cause of this difference was explained. Males showed a higher rate of infection than females in almost all age groups of the four village studied.
Mancini, Manuele; Cerroni, Loredana; Iorio, Lorenzo; Armellin, Emiliano; Conte, Gabriele; Cianconi, Luigi
2013-11-01
The purpose of this study was to evaluate the effectiveness of different irrigating methods in removing the smear layer at 1, 3, 5, and 8 mm from the apex of endodontic canals. Sixty-five extracted single-rooted human mandibular premolars were decoronated to a standardized length of 16 mm. Specimens were shaped to ProTaper F4 (Dentsply Maillefer, Ballaigues, Switzerland) and irrigated with 5.25% NaOCl at 37°C. Teeth were divided into 5 groups (2 control groups [n = 10] and 3 test groups [n = 15]) according to the final irrigant activation/delivering technique (ie, sonic irrigation, passive ultrasonic irrigation [PUI], or apical negative pressure). Root canals were then split longitudinally and observed by field emission scanning electron microscopy. The presence of debris and a smear layer at 1, 3, 5, and 8 mm from the apex was evaluated. Scores were analyzed by Kruskal-Wallis and Mann-Whitney U tests. The EndoActivator System (Dentsply Tulsa Dental Specialties, Tulsa, OK) was significantly more efficient than PUI and the control groups in removing the smear layer at 3, 5, and 8 mm from the apex. The EndoVac System (Discus Dental, Culver City, CA) removed statistically significantly more smear layer than all groups at 1, 3, 5, and 8 mm from the apex. At 5 and 8 mm from the apex, PUI and the EndoVac did not differ statistically significantly, but both performed statistically better than the control groups. In our study, none of the activation/delivery systems completely removed the smear layer from the endodontic dentine walls; nevertheless, the EndoActivator and EndoVac showed the best results at 3, 5, and 8 mm (EndoActivator) and 1, 3, 5, and 8 mm (EndoVac) from the apex. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The use of automated weather stations for irrigation management in the Jordan Valley
USDA-ARS?s Scientific Manuscript database
We discuss an irrigation management information system approach developed by NCARE researchers with the help of USDA-ARS. The system is capable of providing farmers with online crop water requirements based on automated meteorological data published on the internet (www.ncare.gov.jo/imis, and www.m...
Calibration of a crop model to irrigated water use using a genetic algorithm
USDA-ARS?s Scientific Manuscript database
Near-term consumption of groundwater for irrigated agriculture in the High Plains Aquifer supports a dynamic bio-socio-economic system, all parts of which will be impacted by a future transition to sustainable usage that matches natural recharge rates. Plants are the foundation of this system and so...
Simplified Equations to Estimate Flushline Diameter for Subsurface Drip Irrigation Systems
USDA-ARS?s Scientific Manuscript database
A formulation of the Hazen-Williams equation is typically used to determine the diameter of the common flushline that is often used at the distal end of subsurface drip irrigation systems to aid in joint flushing of a group of driplines. Although this method is accurate, its usage is not intuitive a...
29 CFR 780.408 - Facilities of system must be used exclusively for agricultural purposes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... irrigation work that the ditches, canals, reservoirs, or waterways in connection with which the employee's... water furnished for use in his farming operations is in fact used for incidental domestic purposes by... supplied through the ditches, canals, reservoirs, or waterways of the irrigation system includes a small...
NASA Technical Reports Server (NTRS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.
2013-01-01
Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.
Assessing the groundwater recharge under various irrigation schemes in Central Taiwan
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin
2014-05-01
The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration
Drost, B.W.
1983-01-01
A digital-computer model was developed to simulate three-dimensional ground-water flow in aquifers underlying the Sequim-Dungeness peninsula, Clallam County, Washington. Analysis using the model shows that leakage from irrigation ditches is the area 's most important source of ground-water recharge. Termination of the irrigation system would lead to lower heads throughout the ground-water system. After 10-20 years of no irrigation, the water-table aquifer would have average drawdowns of about 20 feet and some areas would become completely unsaturated. Several hundred wells could be in danger of going dry. If irrigation were terminated, leakage from the Dungeness River would become the major source of ground-water recharge. As of June 1980, ground-water quality has apparently not been affected in the study area by the use of on-site domestic sewage-disposal systems. The median nitrate-plus-nitrite (as N) concentration in the water-table aquifer was 0.25 milligrams per liter, and the maximum concentration was 2.5 milligrams per liter. (USGS)
Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.
Isidoro, D; Quílez, D; Aragüés, R
2006-01-01
Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.
NASA Astrophysics Data System (ADS)
Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.
2016-12-01
Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional hydrologic budgets. This study reports our methodology to integrate perspectives of irrigators into projections of future water use and crop growth in the LBRB. It also highlights the need for more robust social data collection methods in socio-hydrologic studies.
Susong, David D.
1995-01-01
Ground-water recharge to basin-fill aquifers from unconsumed irrigation water in the western United States is being reduced as irrigators convert to more efficient irrigation systems. In some areas, these changes in irrigation methods may be contributing to ground-water-level declines and reducing the quantity of water available to downgradient users. The components of the water budget were measured or calculated for each field for the 1992 and 1993 irrigation seasons. Precipitation was about 6.5 cm (2.6 inches) both years. The flood-irrigated field received 182 and 156 centimeters (71.6 and 61.4 inches) of irrigation water in 1992 and 1993, and the sprinkler-irrigated field received 52.8 and 87.2 centimeters (20.8 and 34.3 inches) of water, respectively. Evapotranspiration for alfalfa was calculated using the Penman-Monteith combination equation and was 95.4 and 84.3 centimeters (37.2 and 33.2 inches) for 1992 and 1993, respectively. No runoff and no significant change in soil moisture in storage was observed from either field. Recharge to the aquifer from the flood-irrigated field was 93.3 and 78.1 centimeters (36.7 and 30.7 inches) in 1992 and 1993 and from the sprinkler-irrigated field was -35.9 and 9.3 centimeters (-14.1 and 3.7 inches), respectively. The daily water budget and soil-moisture profiles in the upper 6.4 meters (21 feet) of the unsaturated zone were simulated with an unsaturated flow model for average climate conditions. Simulated recharge was 57.4 and 50.5 percent of the quantity of irrigation water applied to the flood-irrigated field during 1992 and 1993, respectively, and was 8.7 and 13.8 percent of the quantity of irrigation water applied to the sprinkler- irrigated field.
Susong, D.D.
1995-01-01
Ground-water recharge to basin-fill aquifers from unconsumed irrigation water in the western United States is being reduced as irrigators convert to more efficient irrigation systems. In some areas, these changes in irrigation methods may be contributing to ground-water-level declines and reducing the quantity of water available to downgradient users. The components of the water budget were measured or calculated for each field for the 1992 and 1993 irrigation seasons. Precipitation was about 6.5 cm (2.6 inches) both years. The flood-irrigated field received 182 and 156 centimeters (71.6 and 61.4 inches) of irrigation water in 1992 and 1993, and the sprinkler-irrigated field received 52.8 and 87.2 centimeters (20.8 and 34.3 inches) of water, respectively. Evapotrans- piration for alfalfa was calculated using the Penman-Monteith combination equation and was 95.4 and 84.3 centimeters (37.2 and 33.2 inches) for 1992 and 1993, respectively. No runoff and no signifi- cant change in soil moisture in storage was observed from either field. Recharge to the aquifer from the flood-irrigated field was 93.3 and 78.1 centimeters (36.7 and 30.7 inches) in 1992 and 1993 and from the sprinkler-irrigated field was -35.9 and 9.3 centimeters (-14.1 and 3.7 inches), respectively. The daily water budget and soil-moisture profiles in the upper 6.4 meters (21 feet) of the unsaturated zone were simulated with an unsaturated flow model for average climate conditions. Simulated recharge was 57.4 and 50.5 percent of the quantity of irrigation water applied to the flood-irrigated field during 1992 and 1993, respectively, and was 8.7 and 13.8 percent of the quantity of irrigation water applied to the sprinkler-irrigated field.
NASA Astrophysics Data System (ADS)
Wang, C. H.
2015-08-01
In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.
Uncertainties in modelling the climate impact of irrigation
NASA Astrophysics Data System (ADS)
de Vrese, Philipp; Hagemann, Stefan
2017-11-01
Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land surface is more than three times larger when assuming a low irrigation effectiveness than when a high effectiveness is assumed. For certain variables, such as the vertically integrated water vapour, the impact is almost an order of magnitude larger. The timing of irrigation also has non-negligible effects on the simulated climate impacts and it can strongly alter their seasonality.
[Ecological risks of reclaimed water irrigation: a review].
Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao
2012-12-01
Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2014-11-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
Auguste, Kurtis I; McDermott, Michael W
2006-10-01
When complicated by infection, craniotomy bone flaps are commonly removed, discarded, and delayed cranioplasty is performed. This treatment paradigm is costly, carries the risks associated with additional surgery, and may cause cosmetic deformities. The authors present their experience with an indwelling antibiotic irrigation system used for the sterilization and salvage of infected bone flaps as an alternative to their removal and replacement. The authors retrospectively reviewed the medical records for 12 patients with bone flap infections following craniotomy who received treatment with the wash-in, wash-out indwelling antibiotic irrigation system. Infected flaps were removed and scrubbed with povidone-iodine solution and soaked in 1.5% hydrogen peroxide while the wound was debrided. The bone flaps were returned to the skull and the irrigation system was installed. Antibiotic medication was infused through the system for a mean of 5 days. Intravenous antibiotic therapy was continued for 2 weeks and oral antibiotics for 3 months postoperatively. Wound checks were performed at clinic follow-up visits, and there was a mean follow-up period of 13 months. Eleven of the 12 patients who had undergone placement of the bone flap irrigation system experienced complete resolution of the infection. In five patients there was involvement of the nasal sinus cavities, and in four there was a history of radiation treatment. In the one patient whose infection recurred, there was both involvement of the nasal sinuses and a history of extensive radiation treatment. Infected bone flaps can be salvaged, thus avoiding the cost, risk, and possible disfigurement associated with flap removal and delayed cranioplasty. Although prior radiation treatment and involvement of the nasal sinuses may interfere with wound healing and clearance of the infection, these factors should not preclude the use of irrigation with antibiotic agents for bone flap salvage.
NASA Astrophysics Data System (ADS)
Pascual-Aguilar, J. A.; Andreu, V.; Picó, Y.
2012-04-01
Irrigation systems are considered as one of the major landscapes features in western Mediterranean environments. Both socio-economic and cultural elements are interrelated in their development and preservation. Generally, due to their location in flat lands and close to major urban-industrial zones, irrigation lands are suffering of intense pressures that can alter their agricultural values, environmental quality and, consequently, the sustainability of the systems. To understand the nature of anthropogenic pressures on large Mediterranean water agricultural systems a methodology based on environmental forensics criteria has been developed and applied to La Albufera Natural Park in Valencia (Eastern Spain), a protected area where traditional irrigation systems exists since Muslim times (from 8th to 15th centuries). The study analysed impacts on water and soils, for the first case the fate of emerging contaminants of urban origin (pharmaceuticals and illegal drugs) are analysed. Impact on soils is analysed using the dynamics urban expansion and the loss and fragmentation of soils. The study focused is organised around two major procedures: (1) analysis of 16 water samples to identify the presence of 14 illicit drugs and 17 pharmaceutical compounds by Liquid Chromatography-Mass Spectrometry techniques; (2) spatial analysis with Geographical Information Systems (GIS) integrating different sources and data formats such as water analysis, social, location of sewage water treatment plan and the synchronic comparison of two soil sealing layers -for the years 1991 and 2010. Results show that there is a clear trend in the introduction of pharmaceutical in the irrigation water through previous use of urban consumption and, in many cases, for receiving the effluents of wastewaters treatment plants. Impacts on soils are also important incidence in the fragmentation and disappearance of agricultural land due to soil sealing, even within the protected area of the Natural Park. In consequence, effort will have to be put to avoid the interconnection of urban and irrigation waters through sewage and irrigation networks and to prevent or minimize the enlargement of build-up areas. Acknowledgments This work has been supported by the Spanish Ministry of Science and Innovation through the project HUCOMED (CGL2008-01693/BTE), as well as by this Ministry and the European Regional Development Funds (ERDF) (projects CGL2011-29703-C02-00, CGL2011-29703-C02-01).
NASA Astrophysics Data System (ADS)
Berry, Pamela; Yassin, Fuad; Belcher, Kenneth; Lindenschmidt, Karl-Erich
2017-12-01
There is a need to explore more sustainable approaches to water management on the Canadian Prairies. Retention pond installation schemes designed to capture surface water may be a viable option that would reduce water stress during drought periods by providing water for irrigation. The retention systems would serve to capture excess spring runoff and extreme rainfall events, reducing flood potential downstream. Additionally, retention ponds may be used for biomass production and nutrient retention. The purpose of this research was to investigate the economic viability of adopting local farm surface water retention systems as a strategic water management strategy. A retention pond was analyzed using a dynamic simulation model to predict its storage capacity, installation and upkeep cost, and economic advantage to farmers when used for irrigation. While irrigation application increased crop revenue, the cost of irrigation and reservoir infrastructure and installation costs were too high for the farmer to experience a positive net revenue. Farmers who harvest cattails from retention systems for biomass and available carbon offset credits can gain 642.70/hectare of harvestable cattail/year. Cattail harvest also removes phosphorus and nitrogen, providing a monetized impact of 7014/hectare of harvestable cattail/year. The removal of phosphorus, nitrogen, carbon, and avoided flooding damages of the retention basin itself provide an additional 17,730-18,470/hectare of retention system/year. The recommended use of retention systems is for avoided flood damages, nutrient retention, and biomass production. The revenue gained from these functions can support farmers wanting to invest in irrigation while providing economic and environmental benefits to the region.
McDonald, Robert I.; Girvetz, Evan H.
2013-01-01
Agricultural irrigation practices will likely be affected by climate change. In this paper, we use a statistical model relating observed water use by U.S. producers to the moisture deficit, and then use this statistical model to project climate changes impact on both the fraction of agricultural land irrigated and the irrigation rate (m3ha−1). Data on water withdrawals for US states (1985–2005) show that both quantities are highly positively correlated with moisture deficit (precipitation – PET). If current trends hold, climate change would increase agricultural demand for irrigation in 2090 by 4.5–21.9 million ha (B1 scenario demand: 4.5–8.7 million ha, A2 scenario demand: 9.1–21.9 million ha). Much of this new irrigated area would occur in states that currently have a wet climate and a small fraction of their agricultural land currently irrigated, posing a challenge to policymakers in states with less experience with strict regulation of agriculture water use. Moreover, most of this expansion will occur in states where current agricultural production has relatively low market value per hectare, which may make installation of irrigation uneconomical without significant changes in crops or practices by producers. Without significant increases in irrigation efficiency, climate change would also increase the average irrigation rate from 7,963 to 8,400–10,415 m3ha−1 (B1 rate: 8,400–9,145 m3ha−1, A2 rate: 9,380–10,415 m3ha−1). The irrigation rate will increase the most in states that already have dry climates and large irrigation rates, posing a challenge for water supply systems in these states. Accounting for both the increase in irrigated area and irrigation rate, total withdrawals might increase by 47.7–283.4 billion m3 (B1 withdrawal: 47.7–106.0 billion m3, A2 withdrawal: 117.4–283.4 billion m3). Increases in irrigation water-use efficiency, particularly by reducing the prevalence of surface irrigation, could eliminate the increase in total irrigation withdrawals in many states. PMID:23755255
XU, Chen; CHEN, Shiwen; YUAN, Lutao; JING, Yao
2016-01-01
There is controversy among neurosurgeons regarding whether irrigation or drainage is necessary for achieving a lower revision rate for the treatment of chronic subdural hematoma (CSDH) using burr-hole craniostomy (BHC). Therefore, we performed a meta-analysis of all available published reports. Multiple electronic health databases were searched to identify all studies published between 1989 and June 2012 that compared irrigation and drainage. Data were processed by using Review Manager 5.1.6. Effect sizes are expressed as pooled odds ratio (OR) estimates. Due to heterogeneity between studies, we used the random effect of the inverse variance weighted method to perform the meta-analysis. Thirteen published reports were selected for this meta-analysis. The comprehensive results indicated that there were no statistically significant differences in mortality or complication rates between drainage and no drainage (P > 0.05). Additionally, there were no differences in recurrence between irrigation and no irrigation (P > 0.05). However, the difference between drainage and no drainage in recurrence rate reached statistical significance (P < 0.01). The results from this meta-analysis suggest that burr-hole surgery with closed-system drainage can reduce the recurrence of CSDH; however, irrigation is not necessary for every patient. PMID:26377830
Chang, Dwayne; Manecksha, Rustom P; Syrrakos, Konstantinos; Lawrentschuk, Nathan
2012-01-01
To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS). Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.
Elder, J.F.; Hunn, J.D.; Calhoun, C.W.
1985-01-01
A field southeast of Tallahassee, Florida, used for land application of wastewater by spray irrigation was the site of a ground-water monitoring study to determine effects of spray irrigation on water-table elevations and ground-water quality. The study was conducted during 1980-82 in cooperation with the City of Tallahassee. The wastewater has relatively high concentrations of chloride, nitrogen, phosphorus, organic carbon , coliform bacteria, sodium, and potassium. These substances are usually attenuated before they can impact the ground water. However, increases in chloride and nitrate-nitrogen were evident in ground water in some of the monitoring wells during the study. Chloride concentrations increased five-fold or more in some wells directly affected by spray irrigation, and nitrate-nitrogen concentrations increased eight-fold or more. Ground-water levels in the area of the spray field fluctuated over a range of several feet. These fluctuations were affected somewhat by spray irrigation, but the primary control on water levels was rainfall. As of December 1982, constituents introduced to the system by spray irrigation of effluent had not exceeded drinking water standard in the ground water. However, the system had not yet stabilized and more changes in ground-water quality could be expected. (USGS)
Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe
2017-11-02
In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.
In vitro study of calcium hydroxide removal from mandibular molar root canals.
Ma, Jingzhi; Shen, Ya; Yang, Yan; Gao, Yuan; Wan, Pan; Gan, Yan; Patel, Payal; Curtis, Allison; Khakpour, Mehrzad; Haapasalo, Markus
2015-04-01
Previous studies have shown the difficulty in removing calcium hydroxide (Ca[OH]2) paste from the root canals before root filling. Mesial and distal canals of 30 mandibular molars were prepared with the WaveOne Primary (25/.08) and Large file (40/.08) (Dentsply Tulsa Dental Specialties, Tulsa, OK), respectively. All canals were then filled with Ca(OH)2. The teeth were divided into the following 3 treatment groups (each with n = 10): (1) instrumentation with needle irrigation, (2) instrumentation with irrigation and passive ultrasonic activation (PUI), and (3) the GentleWave system (Sonendo, Inc, Laguna Hills, CA) without instrumentation. The irrigation time in each group was 7.5 minutes. To further test the efficiency of the GentleWave system, shorter times of 90 seconds were tested using water alone. Reconstructed micro-computed tomographic scans were used to measure the volume of the canals and Ca(OH)2 after instrumentation, initial filling of Ca(OH)2, and after its removal. The percentage of Ca(OH)2 remaining in the canals was calculated. None of the 10 teeth (30 canals) in the conventional irrigation and PUI groups were completely cleaned of Ca(OH)2 in 7.5 minutes. In the apical third of mesial and distal canals, respectively, conventional irrigation removed 47.82% ± 16.36% and 77.68% ± 12.82%, PUI removed 61.66% ± 25.54% and 88.85 ± 12.06%, and the GentleWave system removed significantly more Ca(OH)2 (P < .05) with 100% and 98.78% ± 3.84%. Additional experiments in 10 teeth, using only water as the irrigant, revealed that the GentleWave system removed 99.85% and 99.97% of Ca(OH)2 within 90 seconds without the use of any instruments in the mesial and distal canals, respectively. The study confirms the difficulty to remove Ca(OH)2 from root canals using conventional methods. The GentleWave system removed the paste within 90 seconds using water irrigation alone. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Kalra, Pinky; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna
2017-01-01
Background Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. Aim The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Design Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis. Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals were prepared using K files, Hand protapers and Protaper rotary files. Statistical analysis Non Parametric test like Kruskal-Wallis and Mann-Whitney U test were applied to determine the significant differences among the group. Results Tests revealed statistically significant difference between the amount of debris and number of bacteria extruded by the ProTaper hand and the K-files. No statistically significant difference was observed between the amounts of irrigant extruded by the ProTaper hand and the K-file system. Statistically significant differences were observed between the amounts of bacteria and irrigant extruded by the ProTaper rotary and the Protaper hand. No statistically significant difference was observed between the amounts of debris extruded by the ProTaper hand and the K-file system. Conclusions Amount of apical extrusion of irrigant solution, bacteria and debris are significantly greater with K File instruments and least with Protaper rotary instruments. Key words:Protaper, rotary, periapical extrusion. PMID:28210445
High-yield maize with large net energy yield and small global warming intensity
Grassini, Patricio; Cassman, Kenneth G.
2012-01-01
Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N⋅ha−1) and irrigation water inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30 GJ⋅ha−1) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg⋅ha−1 and 159 GJ⋅ha−1, respectively) and lower GHG-emission intensity (231 kg of CO2e⋅Mg−1 of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N2O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684
Irrigation Controllers Specification and Certification
WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.
Atmospheric Science Data Center
2013-04-16
... and the river waters are used intensively to irrigate cotton and other crops. During the Soviet era, large irrigation systems were developed and the region became specialized in cotton growing. Independence from the Soviet Union occurred in 1991 and is ...
Wastewater retreatment and reuse system for agricultural irrigation in rural villages.
Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong
2014-01-01
Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.
Solar-thermal jet pumping for irrigation
NASA Astrophysics Data System (ADS)
Clements, L. D.; Dellenback, P. A.; Bell, C. A.
1980-01-01
This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.
Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna
Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese
2009-01-01
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...
Water management challenges at Mushandike irrigation scheme in Runde catchment, Zimbabwe
NASA Astrophysics Data System (ADS)
Malanco, Jose A.; Makurira, Hodson; Kaseke, Evans; Gumindoga, Webster
2018-05-01
Mushandike Irrigation Scheme, constructed in 1939, is located in Masvingo District and is one of the oldest irrigation schemes in Zimbabwe. Since 2002, the scheme has experienced severe water shortages resulting in poor crop yields. The low crop yields have led to loss of income to the smallholder farmers who constitute the irrigation scheme leading to water conflicts. The water stress at the scheme has been largely attributed to climate change and the uncontrolled expansion of the land under irrigation which is currently about 1000 ha against a design area of 613 ha. This study sought to determine the actual causes of water shortage at Mushandike Irrigation Scheme. Hydro-climatic data was analysed to establish if the Mushandike River system generates enough water to guarantee the calculated annual yield of the dam. Irrigation demands and efficiencies were compared against water availability and dam releases to establish if there is any deficit. The Spearman's Rank Correlation results of 0.196 for rainfall and 0.48 for evaporation confirmed positive but insignificant long-term changes in hydro-climatic conditions in the catchment. Water budgets established that the yield of the dam of 9.2 × 106 m3 year-1 is sufficient to support the expanded area of 1000 ha provided in-field water management efficiencies are adopted. The study concludes that water shortages currently experienced at the scheme are a result of inefficient water management (e.g. over-abstraction from the dam beyond the firm yield, adoption of inefficient irrigation methods and high channel losses in the canal system) and are not related to hydro-climatic conditions. The study also sees no value in considering inter-basin water transfer to cushion the losses being experienced at the scheme.
Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa
2017-01-01
To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.
da Silva, Lea Assed Bezerra; Nelson-Filho, Paulo; da Silva, Raquel Assed Bezerra; Flores, Daniel Silva Herzog; Heilborn, Carlos; Johnson, James D; Cohenca, Nestor
2010-05-01
The objective of this study was to evaluate in vivo the revascularization and the apical and periapical repair after endodontic treatment using 2 techniques for root canal disinfection (apical negative pressure irrigation versus apical positive pressure irrigation plus triantibiotic intracanal dressing) in immature dogs' teeth with apical periodontitis. Two test groups of canals with experimentally induced apical periodontitis were evaluated according to the disinfection technique: Group 1, apical negative pressure irrigation (EndoVac system), and Group 2, apical positive pressure irrigation (conventional irrigation) plus triantibiotic intracanal dressing. In Group 3 (positive control), periapical lesions were induced, but no endodontic treatment was done. Group 4 (negative control) was composed of sound teeth. The animals were killed after 90 days and the maxillas and mandibles were subjected to histological processing. The sections were stained with hematoxylin and eosin and Mallory Trichrome and examined under light microscopy. A description of the apical and periapical features was done and scores were attributed to the following histopathological parameters: newly formed mineralized apical tissue, periapical inflammatory infiltrate, apical periodontal ligament thickness, dentin resorption, and bone tissue resorption. Intergroup comparisons were done by the Kruskal-Wallis and Dunn's tests (alpha = 0.05). Although statistically significant difference was found only for the inflammatory infiltrate (P < .05), Group 1 presented more exuberant mineralized formations, more structured apical and periapical connective tissue, and a more advanced repair process than Group 2. From the histological observations, sodium hypochlorite irrigation with the EndoVac system can be considered as a promising disinfection protocol in immature teeth with apical periodontitis, suggesting that the use of intracanal antibiotics might not be necessary. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Sahar-Helft, Sharonit; Sarp, Ayşe Sena Kabaş; Stabholtz, Adam; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron
2015-03-01
The purpose of this study was to compare the efficacy of three irrigation techniques for smear-layer removal with 17% EDTA. Cleaning and shaping the root canal system during endodontic treatment produces a smear layer and hard tissue debris. Three irrigation techniques were tested for solution infiltration of this layer: positive-pressure irrigation, passive ultrasonic irrigation, and laser-activated irrigation. Sixty extracted teeth were divided into six equal groups; 17% EDTA was used for 60 sec irrigation of five of the groups. The groups were as follows: Group 1, treated only with ProTaper™ F3 Ni-Ti files; Group 2, positive-pressure irrigation, with a syringe; Group 3, passive ultrasonic irrigation, inserted 1 mm short of the working length; Group 4, passive ultrasonic irrigation, inserted in the upper coronal third of the root; Group 5, Er:YAG laser-activated irrigation, inserted 1 mm short of the working length; and Group 6, Er:YAG laser-activated irrigation, inserted in the upper coronal third of the root. Scanning electron microscopy showed that the smear layer is removed most efficiently using laser-activated irrigation at low energy with 17% EDTA, inserted either at the working length or only in the coronal upper third of the root. Amounts of Ca, P, and O were not significantly different on all treated dentin surfaces. Smear-layer removal was most effective when the root canals were irrigated using Er:YAG laser at low energy with 17% EDTA solution. Interestingly, removal of the smear layer along the entire canal was similar when the laser was inserted in the upper coronal third and at 1 mm short of the working length of the root canal. This effect was not observed with the ultrasonic and positive-pressure techniques.
The partial root-zone saline irrigation system and antioxidant responses in tomato plants.
Alves, Rita de Cássia; de Medeiros, Ana Santana; Nicolau, Mayara Cristina Malvas; Neto, Antônio Pizolato; de Assis Oliveira, Francisco; Lima, Leonardo Warzea; Tezotto, Tiago; Gratão, Priscila Lupino
2018-06-01
Salinity is a limiting factor that can affect plant growth and cause significant losses in agricultural productivity. This study provides an insight about the viability of partial root-zone irrigation (PRI) system with saline water supported by a biochemical approach involving antioxidant responses. Six different irrigation methods using low and high salt concentrations (S1-0.5 and S2-5.0 dS m -1 ) were applied, with or without PRSI, so that one side of the root-zone was submitted to saline water while the other side was low salinity water irrigated. The results revealed different responses according to the treatments and the PRSI system applied. For the treatments T1, T2 and T3, the PRSI was not applied, while T4, T5 and T6 treatments were applied with PRSI system. Lipid peroxidation, proline content, and activities of SOD, CAT, APX, GR and GSH in tomato plants subjected to PRSI system were analyzed. Plant growth was not affected by the salt concentrations; however, plants submitted to high salt concentrations showed high MDA content and Na + accumulation when compared to the control plants. Plants submitted to treatments T4, T5 and T6 with PRSI system exhibited lower MDA compared to the control plants (T1). Proline content and activities of SOD, CAT, APX, GR and GSH content were maintained in all treatments and tissues analyzed, with only exception for APX in fruits and GSH content, in roots. The overall results showed that PRSI system could be an applicable technique for saline water supply on irrigation since plants did not show to be vulnerable to salt stress, supported by a biochemical approach involving antioxidant responses. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma
2016-04-01
In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These quantifications will allow for evaluating the most suitable strategies for developing sustainable irrigation agrosystems in the region. The quantification of SOC stocks was done within equivalent soil units in each area, and for each level of comparison. Soil organic C stocks were quantified using the area-frame randomized soil sampling protocol (Stolbovoy et al., 2007), in the tilled layer (0-30 cm). GHG balances were calculated from inputs information obtained from farmers, using tools developed by the regional agricultural research institute (INTIA), adapted to the local characteristics of agriculture. The results corresponding to the comparison between dryland and irrigated agrosystems showed differences both in terms of SOC storage and GHG balances in the two studied areas. Irrigated fields had significantly greater stocks of SOC on average, although net organic C storage was significantly affected by soil and crop type. Also, organic fertilization in dryland resulted in significantly more SOC stored in the soil. Net GHG balances were greatly affected by the type of crops and their management, in particular fertilization strategies. As a result, net balances in terms of GHG emissions and mitigation varied greatly among irrigated systems, and in comparison to dryland systems.
Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing
NASA Astrophysics Data System (ADS)
Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.
2015-12-01
Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com
The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1
Schmid, Wolfgang; Hanson, R.T.
2009-01-01
The ability to dynamically simulate the integrated supply-and-demand components of irrigated agricultural is needed to thoroughly understand the interrelation between surface water and groundwater flow in areas where the water-use by vegetation is an important component of the water budget. To meet this need, the computer program Farm Process (FMP1) was updated and refined for use with the U.S. Geological Survey's MODFLOW-2005 groundwater-flow model, and is referred to as MF2005-FMP2. The updated program allows the simulation, analysis, and management of nearly all components of human and natural water use. MF2005-FMP2 represents a complete hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for water consumption of irrigated agriculture, but also of urban use, and of natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply-constrained conditions. From large- to small-scale settings, the MF2005-FMP2 has the unique set of capabilities to simulate and analyze historical, present, and future conditions. MF2005-FMP2 facilitates the analysis of agricultural water use where little data is available for pumpage, land use, or agricultural information. The features presented in this new version of FMP2 along with the linkages to the Streamflow Routing (SFR), Multi-Node Well (MNW), and Unsaturated Zone Flow (UZF) Packages prevents mass loss to an open system and helps to account for 'all of the water everywhere and all of the time'. The first version, FMP1 for MODFLOW-2000, is limited to (a) transpiration uptake from unsaturated root zones, (b) on-farm efficiency defined solely by farm and not by crop type, (c) a simulation of water use and returnflows related only to irrigated agriculture and not also to non-irrigated vegetation, (d) a definition of consumptive use as potential crop evapotranspiration, (e) percolation being instantly recharged to the uppermost active aquifer, (f) automatic routing of returnflow from runoff either to reaches of tributary stream segments adjacent to a farm or to one reach nearest to the farm's lowest elevation, (g) farm-well pumping from cell locations regardless of whether an irrigation requirement from these cells exists or not, and (h) specified non-routed water transfers from an undefined source outside the model domain. All of these limitations are overcome in MF2005-FMP2. The new features include (a) simulation of transpiration uptake from variably saturated, fully saturated, or ponded root zones (for example, for crops like rice or riparian vegetation), (b) definition of on-farm efficiency not only by farm but also by crop, (c) simulation of water use and returnflow from non-irrigated vegetation (for example, rain-fed agriculture or native vegetation), (d) use of crop coefficients and reference evapotranspiration, (e) simulation of the delay between percolation from farms through the unsaturated zone and recharge into the uppermost active aquifer by linking FMP2 to the UZF Package, (f) an option to manually control the routing of returnflow from farm runoff to streams, (g) an option to limit pumping to wells located only in cells where an irrigation requirement exists, and (h) simulation of water transfers to farms from a series of well fields (for example, recovery well field of an aquifer-storage-and-recovery system, ASR). In addition to the output of an economic budget for each farm between irrigation demand and supply ('Farm Demand and Supply Budget' in FMP1), a new output option called 'Farm Budget' was created for FMP2, which allows the user to track all physical flows into and out of a water accounting unit at all times. Such a unit can represent individual farms, farming districts, natural areas, or urban areas. The example model demonstrates the application of MF2005-FMP2 with delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in de
Boutsioukis, C; Lambrianidis, T; Kastrinakis, E; Bekiaroglou, P
2007-07-01
To monitor ex vivo intra-canal irrigation with three endodontic needles (25, 27 and 30 gauge) and compare them in terms of irrigant flow rate, intra-barrel pressure, duration of irrigation and volume of irrigant delivered. A testing system was constructed to allow measurement of selected variables with pressure and displacement transducers during ex vivo intra-canal irrigation with a syringe and three different needles (groups A, B, C) into a prepared root canal. Ten specialist endodontists performed the irrigation procedure. Each operator performed ten procedures with each needle. Data recorded by the transducers were analysed using Friedman's test, Wilcoxon Signed Rank test, Mann-Whitney U-test and Kendall's T(b) test. The level of significance was set to 95%. Significant differences were detected among the three needles for most variables. Duration of delivery and flow rates significantly decreased as the needle diameter increased, whilst pressure increased up to 400-550 kPa. Gender of the operator had a significant impact on the results. Experience of the operators (years) were negatively correlated to volume of irrigant (all groups), to the duration of delivery (groups A, B) and to the average flow rate (group A). Finer diameter needles require increased effort to deliver the irrigant and result in higher intra-barrel pressure. The syringe and needles used tolerated the pressure developed. Irrigant flow rate should be considered as a factor directly influencing flow beyond the needle. Wide variations of flow rate were observed among operators. Syringe irrigation appears difficult to standardize and control.
Historical influence of irrigation on climate extremes
NASA Astrophysics Data System (ADS)
Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.
2016-04-01
Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.
McDonald, M.G.
1980-01-01
Muskegon County, Michigan, disposes of wastewater by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the groundwater flow system. Hydraulic conductivity is 0.00055 m/sec, in the north zone of the circle, and 0.00039 m/sec in the south zone. Drain leakance -6 -6 is low in both zones: 2.9 x 10m/sec in the north and 9.5 x 10 m/sec in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept wastewater is 35 percent less than design capacity.
Davis, Aaron M; Pradolin, Jordan
2016-05-25
This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management.
Irrigation market for solar thermal parabolic dish systems
NASA Technical Reports Server (NTRS)
Habib-Agahi, H.; Jones, S. C.
1981-01-01
The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.
Irrigated lands: Monitoring by remote sensing
NASA Technical Reports Server (NTRS)
Epiphanio, J. C. N.; Vitorelli, I.
1983-01-01
The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.
Bhardwaj, Anuj; Velmurugan, Natanasabapathy; Ballal, Suma
2013-01-01
Present study evaluated the efficacy of natural derivative irrigants, Morinda citrifolia juice (MCJ), Aloe Vera and Propolis in comparison to 1% sodium hypochlorite with passive ultrasonic irrigation for removal of the intraradicular E. faecalis biofilms in extracted single rooted human permanent teeth. Biofilms of E. faecalis were grown on the prepared root canal walls of 60 standardized root halves which were longitudinally sectioned. These root halves were re-approximated and the samples were divided into five groups of twelve each. The groups were, Group A (1% NaOCl), Group B (MCJ), Group C (Aloe vera), Group D (Propolis) and Group E (Saline). These groups were treated with passive ultrasonic irrigation (PUI) along with the respective irrigants. The root halves were processed for scanning electron microscopy. Three images (X2.5), coronal, middle and apical, were taken for the twelve root halves in each of the five groups. The images were randomized and biofilm coverage assessed independently by three calibrated examiners, using a four-point scoring system. 1% NaOCl with passive ultrasonic irrigation (PUI) was effective in completely removing E. faecalis biofilm and was superior to the natural irrigants like MCJ, Aloe vera and Propolis tested in this study. 1% NaOCl used along with passive ultrasonic irrigation was effective in completely removing E. faecalis biofilm when compared to natural irrigants (MCJ, Aloe Vera and Propolis).
Changes in rainfed and irrigated crop yield response to climate in the western US
NASA Astrophysics Data System (ADS)
Li, X.; Troy, T. J.
2018-06-01
As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.
49 CFR 236.504 - Operation interconnected with automatic block-signal system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Operation interconnected with automatic block... Operation interconnected with automatic block-signal system. (a) A continuous inductive automatic train stop or train control system shall operate in connection with an automatic block signal system and shall...
Hydrologic Predictions in the Anthropocene: Exploration with Co-evolutionary Socio-hydrologic Models
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng
2013-04-01
Socio-hydrology studies the co-evolution and self-organization of humans in the hydrologic landscape, which requires a thorough understanding of the complex interactions between humans and water. On the one hand, the nature of water availability greatly impacts the development of society. On the other hand, humans can significantly alter the spatio-temporal distribution of water and in this way provide feedback to the society itself. The human-water system functions underlying such complex human-water interactions are not well understood. Exploratory models with the appropriate level of simplification in any given area can be valuable to understand these functions and the self-organization associated with socio-hydrology. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed, and is used to illustrate the explanatory power of such models. In the Tarim River, humans depend heavily on agricultural production (other industries can be ignored for a start), and the social processes can be described principally by two variables, i.e., irrigated-area and human population. The eco-hydrological processes are expressed in terms of area under natural vegetation and stream discharge. The study area is the middle and the lower reaches of the Tarim River, which is divided into two modeling units, i.e. middle reach and lower reach. In each modeling unit, four ordinary differential equations are used to simulate the dynamics of the hydrological system represented by stream discharge, ecological system represented by area under natural vegetation, the economic system represented by irrigated area under agriculture and social system represented by human population. The four dominant variables are coupled together by several internal variables. For example, the stream discharge is coupled to irrigated area by the colonization rate and mortality rate of the irrigated area in the middle reach and the irrigated area is coupled to stream discharge by water used for irrigation. In a similar way, the stream discharge and natural vegetation are coupled together. The irrigated area is coupled to population by the colonization rate and mortality rate of the population. The discharge of the lower reach is determined by the discharge from the middle reach. The natural vegetation area in the lower reach is coupled to the discharge in the middle reach by water resources management policy. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and sensitivity to the external drivers and internal system variables.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2015-04-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
Real-time drought forecasting system for irrigation management
NASA Astrophysics Data System (ADS)
Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.
2014-09-01
In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7-10 days ahead of time.
Electrophysiological assessment of water stress in fruit-bearing woody plants.
Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A
2014-06-15
Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status. Copyright © 2014 Elsevier GmbH. All rights reserved.
Hydroponics reducing effluent's heavy metals discharge.
Rababah, Abdellah; Al-Shuha, Ahmad
2009-01-01
This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.
Practical salinity management for leachate irrigation to poplar trees.
Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F
2012-01-01
Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a fifteen year record of monitoring and operational data are presented that can be used by others in managing irrigation of saline water to poplar trees. When salinity is carefully managed, tree systems can help to provide sustainable leachate management solutions for landfills.
Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields
NASA Astrophysics Data System (ADS)
Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.
2013-12-01
Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.
Methods of measuring pumpage through closed-conduit irrigation systems
Kjelstrom, L.C.
1991-01-01
Methods of measuring volumes of water withdrawn from the Snake River and its tributaries and pumped through closed-conduit irrigation systems were needed for equitable management of and resolution of conflicts over water use. On the basis of evaluations and field tests by researchers from the University of Idaho, Water Resources Research Institute, Moscow, Idaho, an impeller meter was selected to monitor pumpage through closed-conduit systems. In 1988, impeller meters were installed at 20 pumping stations along the Snake River between the Upper Salmon Falls and C.J. Strike Dams. Impeller-derived pumpage data were adjusted if they differed substantially from ultrasonic flow-meter- or current-meter-derived values. Comparisons of pumpage data obtained by ultrasonic flow-meter and current-meter measurements indicated that the ultrasonic flow meter was a reliable means to check operation of impeller meters. The equipment generally performed satisfactorily, and reliable pumpage data could be obtained using impeller meters in closed-conduit irrigation systems. Many pumping stations that divert water from the Snake River for irrigation remain unmeasured; however, regression analyses indicate that total pumpage can be reasonably estimated on the basis of electrical power consumption data, an approximation of total head at a pumping station, and a derived coefficient.
Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System.
Zhang, Xueyan; Zhang, Jianwu; Li, Lin; Zhang, Yuzhu; Yang, Guocai
2017-02-23
Chongqing mountain citrus orchard is one of the main origins of Chinese citrus. Its planting terrain is complex and soil parent material is diverse. Currently, the citrus fertilization, irrigation and other management processes still have great blindness. They usually use the same pattern and the same formula rather than considering the orchard terrain features, soil differences, species characteristics and the state of tree growth. With the help of the ZigBee technology, artificial intelligence and decision support technology, this paper has developed the research on the application technology of agricultural Internet of Things for real-time monitoring of citrus soil moisture and nutrients as well as the research on the integration of fertilization and irrigation decision support system. Some achievements were obtained including single-point multi-layer citrus soil temperature and humidity detection wireless sensor nodes and citrus precision fertilization and irrigation management decision support system. They were applied in citrus base in the Three Gorges Reservoir Area. The results showed that the system could help the grower to scientifically fertilize or irrigate, improve the precision operation level of citrus production, reduce the labor cost and reduce the pollution caused by chemical fertilizer.
Migliau, Guido; Sofan, Afrah Ali Abdullah; Sofan, Eshrak Ali Abdullah; Cosma, Salvatore; Eramo, Stefano; Gallottini, Livio
2014-01-01
Summary Aim The aim of this study was to stress the ability of a specific obturation technique (thermafil technique) to seal root canal system in presence or absence of smear layer. Methodology Sixteen monoradicular teeth, extracted for periodontal reasons, were collected for this study. All specimens were prepared with nickel-titanium rotary files, and then divided into two groups: for each group was applied a different kind of irrigation method, verifying the effectiveness in removing the smear layer, thus rendering the dentinal tubules more permeable for penetration of softened gutta-percha. Thermafil system was used to fill the root canals, and then all the specimens were observed under scanning electron microscope (SEM). Results The results showed that the Group which followed irrigation only with sodium hypochlorite exhibited significantly less gutta-percha tags when compared to the second Group, which was irrigated with sodium hypochlorite and EDTA. Conclusion The thermafil systems have a very good quality of compression and fluency that permit to gain a good seal of endodontic space; furthermore it allows the penetration of gutta-percha with the formation of numerous of gutta-percha tags inside the dentinal tubules above all when smear layer is reduced or eliminated. PMID:25506413
NASA Astrophysics Data System (ADS)
Rougé, Charles; Tilmant, Amaury
2015-04-01
Stochastic dual dynamic programming (SDDP) is an optimization algorithm well-suited for the study of large-scale water resources systems comprising reservoirs - and hydropower plants - as well as irrigation nodes. It generates intertemporal allocation policies that balance the present and future marginal value of water while taking into account hydrological uncertainty. It is scalable, in the sense that the time and memory required for computation do not grow exponentially with the number of state variables. Still, this scalability relies on the sampling of a few relevant trajectories for the system, and the approximation of the future value of water through cuts -i.e., hyperplanes - at points along these trajectories. Therefore, the accuracy of this approximation arguably decreases as the number of state variables increases, and it is important not to have more than necessary. In previous formulations, SDDP had three types of state variables, namely storage in each reservoir, inflow at each node and water accumulated during the irrigation season for each crop at each node. We present a simplified formulation for irrigation that does not require using the latter type of state variable. It also requires only two decision variables for each irrigation site, where the previous formulation had four per crop - and there may be several crops at the same site. This reduction in decision variables effectively reduces computation time, since SDDP decomposes the stochastic, multiperiodic, non-linear maximization problem into a series of linear ones. The proposed formulation, while computationally simpler, is mathematically equivalent to the previous one, and therefore the model gives the same results. A corollary of this formulation is that marginal utility of water at an irrigation site is effectively related to consumption at that site, through a piecewise linear function representing the net benefits from irrigation. Last but not least, the proposed formulation can be extended to any type of consumptive use of water beyond irrigation, e.g., municipal, industrial, etc This slightly different version of SDDP is applied to a large portion of the Tigris-Euphrates river basin. It comprises 24 state variables representing storage in reservoirs, 28 hydrologic state variables, and 51 demand nodes. It is the largest yet to simultaneously consider hydropower and irrigation within the same river system, and the proposed formulation almost halves the number of state variables to be considered.
Kazemi, Fatemeh; Golzarian, Mahmood Reza; Myers, Baden
2018-03-01
Water sensitive urban design and similar concepts often recommend a 'treatment train' is employed to improve stormwater quality. In this study, the capability of a combined permeable pavement and bioretention basin was examined with a view to developing a permeable pavement reservoir that can supplement the irrigation needs of a bioretention system in semi-arid climates. Salinity was a key study parameter due to published data on salinity in permeable pavement storage, and the potential to harvest water contaminated with de-icing salts. To conduct experiments, roofwater was collected from a roof in Adelaide, South Australia. Water was amended with NaCl to produce a control runoff (no added salt), a medium (500 mg/l) and a high (1500 mg/l) salinity runoff. Water was then run through the pavement into the storage reservoir and used to irrigate the bioretention system. Samples were collected from the roof, the pavement reservoir and the bioretention system outflow to determine whether significant water quality impacts occurred. Results show that while salinity levels increased significantly as water passed through the pavement and through the bioretention system, the increase was beneficial for irrigation purposes as it was from Ca and Mg ions thus reducing the sodium absorption ratio to levels considered 'good' for irrigation in accordance with several guidelines. Permeable paving increased pH of water and this effect was prominent when the initial salt concentration increased. The study shows that permeable pavements with underlying storage can be used to provide supplementary irrigation for bioretention systems, but high initial salt concentrations may present constraints on beneficial use of stormwater. Copyright © 2017. Published by Elsevier Ltd.
Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L)
Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan
2017-01-01
Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65–70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency. PMID:28384647
Influence of irrigation during the growth stage on yield and quality in mango (Mangifera indica L).
Wei, Junya; Liu, Guoyin; Liu, Debing; Chen, Yeyuan
2017-01-01
Although being one of the few drought-tolerant plants, mango trees are irrigated to ensure optimum and consistent productivity in China. In order to better understand the effects of soil water content on mango yield and fruit quality at fruit growth stage, irrigation experiments were investigated and the object was to determine the soil water content criteria at which growth and quality of mango would be optimal based on soil water measured by RHD-JS water-saving irrigation system through micro-sprinkling irrigation. Five soil water content treatments (relative to the percentage of field water capacity) for irrigation (T1:79%-82%, T2:75%-78%, T3:71%-74%, T4: 65%-70%, T5:63%-66%) were compared in 2013. Amount of applied irrigation water for different treatments varied from 2.93m3 to 1.08 m3. The results showed that mango fruit production and quality at fruit growth stage were significantly affected under different irrigation water amounts. Variation in soil water content not only had effects on fruit size, but also on fruit yield. The highest fruit yield and irrigation water use efficiency were obtained from the T4 treatment. Irrigation water amount also affected fruit quality parameters like fruit total soluble solids, soluble sugar, starch, titratable acid and vitamin C content. Comprehensive evaluation of the effect of indexs of correlation on irrigation treatment by subordinate function showed that when the soil moisture content were controlled at about 65-70% of the field water moisture capacity, water demand in the growth and development of mango could be ensured, and maximum production efficiency of irrigation and the best quality of fruit could be achieved. In conclusion, treatment T4 was the optimum irrigation schedule for growing mango, thus achieving efficient production of mango in consideration of the compromise among mango yield, fruit quality and water use efficiency.
Modeling applications for precision agriculture in the California Central Valley
NASA Astrophysics Data System (ADS)
Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.
2017-12-01
Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield in California, especially with uncertain precipitation regimes.
NASA Astrophysics Data System (ADS)
Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.
2014-12-01
The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e., social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the modeling framework, the state of each subsystem is holistically described by one state variable and the framework is flexible enough to comprise more processes and constitutive relationships if they are needed to illustrate the interaction and feedback mechanisms of the human-water system.