Sample records for automatic model selection

  1. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    PubMed

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  2. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  3. 10 CFR 431.135 - Units to be tested.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.135 Units to be tested. For each basic model of automatic commercial ice maker selected for testing, a sample of sufficient size shall be selected...

  4. 10 CFR 429.45 - Automatic commercial ice makers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Automatic commercial ice makers. 429.45 Section 429.45... PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.45 Automatic commercial ice makers. (a... automatic commercial ice makers; and (2) For each basic model of automatic commercial ice maker selected for...

  5. 10 CFR 429.45 - Automatic commercial ice makers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Automatic commercial ice makers. 429.45 Section 429.45... PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.45 Automatic commercial ice makers. (a... automatic commercial ice makers; and (2) For each basic model of automatic commercial ice maker selected for...

  6. 10 CFR 429.45 - Automatic commercial ice makers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Automatic commercial ice makers. 429.45 Section 429.45... PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.45 Automatic commercial ice makers. (a... automatic commercial ice makers; and (2) For each basic model of automatic commercial ice maker selected for...

  7. Automatic selection of arterial input function using tri-exponential models

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Chen, Jeremy; Castro, Marcelo; Thomasson, David

    2009-02-01

    Dynamic Contrast Enhanced MRI (DCE-MRI) is one method for drug and tumor assessment. Selecting a consistent arterial input function (AIF) is necessary to calculate tissue and tumor pharmacokinetic parameters in DCE-MRI. This paper presents an automatic and robust method to select the AIF. The first stage is artery detection and segmentation, where knowledge about artery structure and dynamic signal intensity temporal properties of DCE-MRI is employed. The second stage is AIF model fitting and selection. A tri-exponential model is fitted for every candidate AIF using the Levenberg-Marquardt method, and the best fitted AIF is selected. Our method has been applied in DCE-MRIs of four different body parts: breast, brain, liver and prostate. The success rates in artery segmentation for 19 cases are 89.6%+/-15.9%. The pharmacokinetic parameters computed from the automatically selected AIFs are highly correlated with those from manually determined AIFs (R2=0.946, P(T<=t)=0.09). Our imaging-based tri-exponential AIF model demonstrated significant improvement over a previously proposed bi-exponential model.

  8. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  9. Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection

    PubMed Central

    Offman, Marc N; Tournier, Alexander L; Bates, Paul A

    2008-01-01

    Background Automatic protein modelling pipelines are becoming ever more accurate; this has come hand in hand with an increasingly complicated interplay between all components involved. Nevertheless, there are still potential improvements to be made in template selection, refinement and protein model selection. Results In the context of an automatic modelling pipeline, we analysed each step separately, revealing several non-intuitive trends and explored a new strategy for protein conformation sampling using Genetic Algorithms (GA). We apply the concept of alternating evolutionary pressure (AEP), i.e. intermediate rounds within the GA runs where unrestrained, linear growth of the model populations is allowed. Conclusion This approach improves the overall performance of the GA by allowing models to overcome local energy barriers. AEP enabled the selection of the best models in 40% of all targets; compared to 25% for a normal GA. PMID:18673557

  10. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  11. Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong

    2018-05-01

    In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.

  12. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  13. Approximation, abstraction and decomposition in search and optimization

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1992-01-01

    In this paper, I discuss four different areas of my research. One portion of my research has focused on automatic synthesis of search control heuristics for constraint satisfaction problems (CSPs). I have developed techniques for automatically synthesizing two types of heuristics for CSPs: Filtering functions are used to remove portions of a search space from consideration. Another portion of my research is focused on automatic synthesis of hierarchic algorithms for solving constraint satisfaction problems (CSPs). I have developed a technique for constructing hierarchic problem solvers based on numeric interval algebra. Another portion of my research is focused on automatic decomposition of design optimization problems. We are using the design of racing yacht hulls as a testbed domain for this research. Decomposition is especially important in the design of complex physical shapes such as yacht hulls. Another portion of my research is focused on intelligent model selection in design optimization. The model selection problem results from the difficulty of using exact models to analyze the performance of candidate designs.

  14. A Neurobiological Theory of Automaticity in Perceptual Categorization

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Ennis, John M.; Spiering, Brian J.

    2007-01-01

    A biologically detailed computational model is described of how categorization judgments become automatic in tasks that depend on procedural learning. The model assumes 2 neural pathways from sensory association cortex to the premotor area that mediates response selection. A longer and slower path projects to the premotor area via the striatum,…

  15. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Validation of automatic segmentation of ribs for NTCP modeling.

    PubMed

    Stam, Barbara; Peulen, Heike; Rossi, Maddalena M G; Belderbos, José S A; Sonke, Jan-Jakob

    2016-03-01

    Determination of a dose-effect relation for rib fractures in a large patient group has been limited by the time consuming manual delineation of ribs. Automatic segmentation could facilitate such an analysis. We determine the accuracy of automatic rib segmentation in the context of normal tissue complication probability modeling (NTCP). Forty-one patients with stage I/II non-small cell lung cancer treated with SBRT to 54 Gy in 3 fractions were selected. Using the 4DCT derived mid-ventilation planning CT, all ribs were manually contoured and automatically segmented. Accuracy of segmentation was assessed using volumetric, shape and dosimetric measures. Manual and automatic dosimetric parameters Dx and EUD were tested for equivalence using the Two One-Sided T-test (TOST), and assessed for agreement using Bland-Altman analysis. NTCP models based on manual and automatic segmentation were compared. Automatic segmentation was comparable with the manual delineation in radial direction, but larger near the costal cartilage and vertebrae. Manual and automatic Dx and EUD were significantly equivalent. The Bland-Altman analysis showed good agreement. The two NTCP models were very similar. Automatic rib segmentation was significantly equivalent to manual delineation and can be used for NTCP modeling in a large patient group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.

    PubMed

    Hippert, Henrique S; Taylor, James W

    2010-04-01

    Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. A Procedure for Extending Input Selection Algorithms to Low Quality Data in Modelling Problems with Application to the Automatic Grading of Uploaded Assignments

    PubMed Central

    Otero, José; Palacios, Ana; Suárez, Rosario; Junco, Luis

    2014-01-01

    When selecting relevant inputs in modeling problems with low quality data, the ranking of the most informative inputs is also uncertain. In this paper, this issue is addressed through a new procedure that allows the extending of different crisp feature selection algorithms to vague data. The partial knowledge about the ordinal of each feature is modelled by means of a possibility distribution, and a ranking is hereby applied to sort these distributions. It will be shown that this technique makes the most use of the available information in some vague datasets. The approach is demonstrated in a real-world application. In the context of massive online computer science courses, methods are sought for automatically providing the student with a qualification through code metrics. Feature selection methods are used to find the metrics involved in the most meaningful predictions. In this study, 800 source code files, collected and revised by the authors in classroom Computer Science lectures taught between 2013 and 2014, are analyzed with the proposed technique, and the most relevant metrics for the automatic grading task are discussed. PMID:25114967

  19. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  20. Automatic Generation of Building Models with Levels of Detail 1-3

    NASA Astrophysics Data System (ADS)

    Nguatem, W.; Drauschke, M.; Mayer, H.

    2016-06-01

    We present a workflow for the automatic generation of building models with levels of detail (LOD) 1 to 3 according to the CityGML standard (Gröger et al., 2012). We start with orienting unsorted image sets employing (Mayer et al., 2012), we compute depth maps using semi-global matching (SGM) (Hirschmüller, 2008), and fuse these depth maps to reconstruct dense 3D point clouds (Kuhn et al., 2014). Based on planes segmented from these point clouds, we have developed a stochastic method for roof model selection (Nguatem et al., 2013) and window model selection (Nguatem et al., 2014). We demonstrate our workflow up to the export into CityGML.

  1. A general graphical user interface for automatic reliability modeling

    NASA Technical Reports Server (NTRS)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  2. A comparison of the comfort and convenience of automatic safety belt systems among selected 1988-1989 model year automobiles

    DOT National Transportation Integrated Search

    1989-06-01

    Author's abstract: A nonrandom sample of 120 disproportionately short, tall, and overweight drivers compared the comfort and convenience of the automatic safety belt systems used in seventeen automobiles. Nine vehicles had motorized shoulder belts wi...

  3. Automatic welding detection by an intelligent tool pipe inspection

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.

    2015-07-01

    This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.

  4. 78 FR 11609 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Landing Pitchover Condition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... automatic braking system. The applicable airworthiness regulations do not contain adequate or appropriate... with an automatic braking system. This feature is a pilot-selectable function that allows earlier braking at landing without pilot pedal input. When the autobrake system is armed before landing, it...

  5. Effortful versus automatic emotional processing in schizophrenia: Insights from a face-vignette task.

    PubMed

    Patrick, Regan E; Rastogi, Anuj; Christensen, Bruce K

    2015-01-01

    Adaptive emotional responding relies on dual automatic and effortful processing streams. Dual-stream models of schizophrenia (SCZ) posit a selective deficit in neural circuits that govern goal-directed, effortful processes versus reactive, automatic processes. This imbalance suggests that when patients are confronted with competing automatic and effortful emotional response cues, they will exhibit diminished effortful responding and intact, possibly elevated, automatic responding compared to controls. This prediction was evaluated using a modified version of the face-vignette task (FVT). Participants viewed emotional faces (automatic response cue) paired with vignettes (effortful response cue) that signalled a different emotion category and were instructed to discriminate the manifest emotion. Patients made less vignette and more face responses than controls. However, the relationship between group and FVT responding was moderated by IQ and reading comprehension ability. These results replicate and extend previous research and provide tentative support for abnormal conflict resolution between automatic and effortful emotional processing predicted by dual-stream models of SCZ.

  6. Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis

    PubMed Central

    Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas

    2016-01-01

    The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246

  7. Application of industrial robots in automatic disassembly line of waste LCD displays

    NASA Astrophysics Data System (ADS)

    Wang, Sujuan

    2017-11-01

    In the automatic disassembly line of waste LCD displays, LCD displays are disassembled into plastic shells, metal shields, circuit boards, and LCD panels. Two industrial robots are used to cut metal shields and remove circuit boards in this automatic disassembly line. The functions of these two industrial robots, and the solutions to the critical issues of model selection, the interfaces with PLCs and the workflows were described in detail in this paper.

  8. The Influence of Endmember Selection Method in Extracting Impervious Surface from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Wang, J.; Feng, B.

    2016-12-01

    Impervious surface area (ISA) has long been studied as an important input into moisture flux models. In general, ISA impedes groundwater recharge, increases stormflow/flood frequency, and alters in-stream and riparian habitats. Urban area is recognized as one of the richest ISA environment. Urban ISA mapping assists flood prevention and urban planning. Hyperspectral imagery (HI), for its ability to detect subtle spectral signature, becomes an ideal candidate in urban ISA mapping. To map ISA from HI involves endmember (EM) selection. The high degree of spatial and spectral heterogeneity of urban environment puts great difficulty in this task: a compromise point is needed between the automatic degree and the good representativeness of the method. The study tested one manual and two semi-automatic EM selection strategies. The manual and the first semi-automatic methods have been widely used in EM selection. The second semi-automatic EM selection method is rather new and has been only proposed for moderate spatial resolution satellite. The manual method visually selected the EM candidates from eight landcover types in the original image. The first semi-automatic method chose the EM candidates using a threshold over the pixel purity index (PPI) map. The second semi-automatic method used the triangle shape of the HI scatter plot in the n-Dimension visualizer to identify the V-I-S (vegetation-impervious surface-soil) EM candidates: the pixels locate at the triangle points. The initial EM candidates from the three methods were further refined by three indexes (EM average RMSE, minimum average spectral angle, and count based EM selection) and generated three spectral libraries, which were used to classify the test image. Spectral angle mapper was applied. The accuracy reports for the classification results were generated. The overall accuracy are 85% for the manual method, 81% for the PPI method, and 87% for the V-I-S method. The V-I-S EM selection method performs best in this study. This fact proves the value of V-I-S EM selection method in not only moderate spatial resolution satellite image but also the more and more accessible high spatial resolution airborne image. This semi-automatic EM selection method can be adopted into a wide range of remote sensing images and provide ISA map for hydrology analysis.

  9. Using suggestion to model different types of automatic writing.

    PubMed

    Walsh, E; Mehta, M A; Oakley, D A; Guilmette, D N; Gabay, A; Halligan, P W; Deeley, Q

    2014-05-01

    Our sense of self includes awareness of our thoughts and movements, and our control over them. This feeling can be altered or lost in neuropsychiatric disorders as well as in phenomena such as "automatic writing" whereby writing is attributed to an external source. Here, we employed suggestion in highly hypnotically suggestible participants to model various experiences of automatic writing during a sentence completion task. Results showed that the induction of hypnosis, without additional suggestion, was associated with a small but significant reduction of control, ownership, and awareness for writing. Targeted suggestions produced a double dissociation between thought and movement components of writing, for both feelings of control and ownership, and additionally, reduced awareness of writing. Overall, suggestion produced selective alterations in the control, ownership, and awareness of thought and motor components of writing, thus enabling key aspects of automatic writing, observed across different clinical and cultural settings, to be modelled. Copyright © 2014. Published by Elsevier Inc.

  10. WE-A-17A-06: Evaluation of An Automatic Interstitial Catheter Digitization Algorithm That Reduces Treatment Planning Time and Provide Means for Adaptive Re-Planning in HDR Brachytherapy of Gynecologic Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dise, J; Liang, X; Lin, L

    Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions frommore » day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic digitization tool was shown to be accurate compared to manual digitization.« less

  11. Automatic Promotion and Student Dropout: Evidence from Uganda, Using Propensity Score in Difference in Differences Model

    ERIC Educational Resources Information Center

    Okurut, Jeje Moses

    2018-01-01

    The impact of automatic promotion practice on students dropping out of Uganda's primary education was assessed using propensity score in difference in differences analysis technique. The analysis strategy was instrumental in addressing the selection bias problem, as well as biases arising from common trends over time, and permanent latent…

  12. StochKit2: software for discrete stochastic simulation of biochemical systems with events.

    PubMed

    Sanft, Kevin R; Wu, Sheng; Roh, Min; Fu, Jin; Lim, Rone Kwei; Petzold, Linda R

    2011-09-01

    StochKit2 is the first major upgrade of the popular StochKit stochastic simulation software package. StochKit2 provides highly efficient implementations of several variants of Gillespie's stochastic simulation algorithm (SSA), and tau-leaping with automatic step size selection. StochKit2 features include automatic selection of the optimal SSA method based on model properties, event handling, and automatic parallelism on multicore architectures. The underlying structure of the code has been completely updated to provide a flexible framework for extending its functionality. StochKit2 runs on Linux/Unix, Mac OS X and Windows. It is freely available under GPL version 3 and can be downloaded from http://sourceforge.net/projects/stochkit/. petzold@engineering.ucsb.edu.

  13. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  14. What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents.

    PubMed

    Urschler, Martin; Grassegger, Sabine; Štern, Darko

    2015-01-01

    Age estimation of individuals is important in human biology and has various medical and forensic applications. Recent interest in MR-based methods aims to investigate alternatives for established methods involving ionising radiation. Automatic, software-based methods additionally promise improved estimation objectivity. To investigate how informative automatically selected image features are regarding their ability to discriminate age, by exploring a recently proposed software-based age estimation method for MR images of the left hand and wrist. One hundred and two MR datasets of left hand images are used to evaluate age estimation performance, consisting of bone and epiphyseal gap volume localisation, computation of one age regression model per bone mapping image features to age and fusion of individual bone age predictions to a final age estimate. Quantitative results of the software-based method show an age estimation performance with a mean absolute difference of 0.85 years (SD = 0.58 years) to chronological age, as determined by a cross-validation experiment. Qualitatively, it is demonstrated how feature selection works and which image features of skeletal maturation are automatically chosen to model the non-linear regression function. Feasibility of automatic age estimation based on MRI data is shown and selected image features are found to be informative for describing anatomical changes during physical maturation in male adolescents.

  15. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2017-01-01

    Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.

  16. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection

    PubMed Central

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2017-01-01

    Objectives Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Methods Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Results Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. Conclusion The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports. PMID:28166263

  17. Variable Selection for Regression Models of Percentile Flows

    NASA Astrophysics Data System (ADS)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.

  18. The use of transmission line modelling to test the effectiveness of I-kaz as autonomous selection of intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; PiRemli, M. A.; Karollah, B.; Rusman

    2017-10-01

    Pressure transient signal occurred due to sudden changes in fluid propagation filled in pipelines system, which is caused by rapid pressure and flow fluctuation in a system, such as closing and opening valve rapidly. The application of Hilbert-Huang Transform (HHT) as the method to analyse the pressure transient signal utilised in this research. However, this method has the difficulty in selecting the suitable IMF for the further post-processing, which is Hilbert Transform (HT). This paper proposed the implementation of Integrated Kurtosis-based Algorithm for z-filter Technique (I-kaz) to kurtosis ratio (I-kaz-Kurtosis) for that allows automatic selection of intrinsic mode function (IMF) that’s should be used. This work demonstrated the synthetic pressure transient signal generates using transmission line modelling (TLM) in order to test the effectiveness of I-kaz as the autonomous selection of intrinsic mode function (IMF). A straight fluid network was designed using TLM fixing with higher resistance at some point act as a leak and connecting to the pipe feature (junction, pipefitting or blockage). The analysis results using I-kaz-kurtosis ratio revealed that the method can be utilised as an automatic selection of intrinsic mode function (IMF) although the noise level ratio of the signal is lower. I-kaz-kurtosis ratio is recommended and advised to be implemented as automatic selection of intrinsic mode function (IMF) through HHT analysis.

  19. On the feasibility of automatically selecting similar patients in highly individualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors.

    PubMed

    Virgolin, Marco; van Dijk, Irma W E M; Wiersma, Jan; Ronckers, Cécile M; Witteveen, Cees; Bel, Arjan; Alderliesten, Tanja; Bosman, Peter A N

    2018-04-01

    The aim of this study is to establish the first step toward a novel and highly individualized three-dimensional (3D) dose distribution reconstruction method, based on CT scans and organ delineations of recently treated patients. Specifically, the feasibility of automatically selecting the CT scan of a recently treated childhood cancer patient who is similar to a given historically treated child who suffered from Wilms' tumor is assessed. A cohort of 37 recently treated children between 2- and 6-yr old are considered. Five potential notions of ground-truth similarity are proposed, each focusing on different anatomical aspects. These notions are automatically computed from CT scans of the abdomen and 3D organ delineations (liver, spleen, spinal cord, external body contour). The first is based on deformable image registration, the second on the Dice similarity coefficient, the third on the Hausdorff distance, the fourth on pairwise organ distances, and the last is computed by means of the overlap volume histogram. The relationship between typically available features of historically treated patients and the proposed ground-truth notions of similarity is studied by adopting state-of-the-art machine learning techniques, including random forest. Also, the feasibility of automatically selecting the most similar patient is assessed by comparing ground-truth rankings of similarity with predicted rankings. Similarities (mainly) based on the external abdomen shape and on the pairwise organ distances are highly correlated (Pearson r p ≥ 0.70) and are successfully modeled with random forests based on historically recorded features (pseudo-R 2 ≥ 0.69). In contrast, similarities based on the shape of internal organs cannot be modeled. For the similarities that random forest can reliably model, an estimation of feature relevance indicates that abdominal diameters and weight are the most important. Experiments on automatically selecting similar patients lead to coarse, yet quite robust results: the most similar patient is retrieved only 22% of the times, however, the error in worst-case scenarios is limited, with the fourth most similar patient being retrieved. Results demonstrate that automatically selecting similar patients is feasible when focusing on the shape of the external abdomen and on the position of internal organs. Moreover, whereas the common practice in phantom-based dose reconstruction is to select a representative phantom using age, height, and weight as discriminant factors for any treatment scenario, our analysis on abdominal tumor treatment for children shows that the most relevant features are weight and the anterior-posterior and left-right abdominal diameters. © 2018 American Association of Physicists in Medicine.

  20. UNCERTAINTY ANALYSIS IN WATER QUALITY MODELING USING QUAL2E

    EPA Science Inventory

    A strategy for incorporating uncertainty analysis techniques (sensitivity analysis, first order error analysis, and Monte Carlo simulation) into the mathematical water quality model QUAL2E is described. The model, named QUAL2E-UNCAS, automatically selects the input variables or p...

  1. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  2. Autonomous mental development with selective attention, object perception, and knowledge representation

    NASA Astrophysics Data System (ADS)

    Ban, Sang-Woo; Lee, Minho

    2008-04-01

    Knowledge-based clustering and autonomous mental development remains a high priority research topic, among which the learning techniques of neural networks are used to achieve optimal performance. In this paper, we present a new framework that can automatically generate a relevance map from sensory data that can represent knowledge regarding objects and infer new knowledge about novel objects. The proposed model is based on understating of the visual what pathway in our brain. A stereo saliency map model can selectively decide salient object areas by additionally considering local symmetry feature. The incremental object perception model makes clusters for the construction of an ontology map in the color and form domains in order to perceive an arbitrary object, which is implemented by the growing fuzzy topology adaptive resonant theory (GFTART) network. Log-polar transformed color and form features for a selected object are used as inputs of the GFTART. The clustered information is relevant to describe specific objects, and the proposed model can automatically infer an unknown object by using the learned information. Experimental results with real data have demonstrated the validity of this approach.

  3. The evolution and devolution of cognitive control: The costs of deliberation in a competitive world

    PubMed Central

    Tomlin, Damon; Rand, David G.; Ludvig, Elliot A.; Cohen, Jonathan D.

    2015-01-01

    Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale. PMID:26078086

  4. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  5. The evolution and devolution of cognitive control: The costs of deliberation in a competitive world.

    PubMed

    Tomlin, Damon; Rand, David G; Ludvig, Elliot A; Cohen, Jonathan D

    2015-06-16

    Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale.

  6. A hybrid fuzzy logic/constraint satisfaction problem approach to automatic decision making in simulation game models.

    PubMed

    Braathen, Sverre; Sendstad, Ole Jakob

    2004-08-01

    Possible techniques for representing automatic decision-making behavior approximating human experts in complex simulation model experiments are of interest. Here, fuzzy logic (FL) and constraint satisfaction problem (CSP) methods are applied in a hybrid design of automatic decision making in simulation game models. The decision processes of a military headquarters are used as a model for the FL/CSP decision agents choice of variables and rulebases. The hybrid decision agent design is applied in two different types of simulation games to test the general applicability of the design. The first application is a two-sided zero-sum sequential resource allocation game with imperfect information interpreted as an air campaign game. The second example is a network flow stochastic board game designed to capture important aspects of land manoeuvre operations. The proposed design is shown to perform well also in this complex game with a very large (billionsize) action set. Training of the automatic FL/CSP decision agents against selected performance measures is also shown and results are presented together with directions for future research.

  7. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  8. Analysis of regional rainfall-runoff parameters for the Lake Michigan Diversion hydrological modeling

    USGS Publications Warehouse

    Soong, David T.; Over, Thomas M.

    2015-01-01

    Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.

  9. Stimulus-response compatibility and psychological refractory period effects: implications for response selection

    NASA Technical Reports Server (NTRS)

    Lien, Mei-Ching; Proctor, Robert W.

    2002-01-01

    The purpose of this paper was to provide insight into the nature of response selection by reviewing the literature on stimulus-response compatibility (SRC) effects and the psychological refractory period (PRP) effect individually and jointly. The empirical findings and theoretical explanations of SRC effects that have been studied within a single-task context suggest that there are two response-selection routes-automatic activation and intentional translation. In contrast, all major PRP models reviewed in this paper have treated response selection as a single processing stage. In particular, the response-selection bottleneck (RSB) model assumes that the processing of Task 1 and Task 2 comprises two separate streams and that the PRP effect is due to a bottleneck located at response selection. Yet, considerable evidence from studies of SRC in the PRP paradigm shows that the processing of the two tasks is more interactive than is suggested by the RSB model and by most other models of the PRP effect. The major implication drawn from the studies of SRC effects in the PRP context is that response activation is a distinct process from final response selection. Response activation is based on both long-term and short-term task-defined S-R associations and occurs automatically and in parallel for the two tasks. The final response selection is an intentional act required even for highly compatible and practiced tasks and is restricted to processing one task at a time. Investigations of SRC effects and response-selection variables in dual-task contexts should be conducted more systematically because they provide significant insight into the nature of response-selection mechanisms.

  10. DELINEATING SUBTYPES OF SELF-INJURIOUS BEHAVIOR MAINTAINED BY AUTOMATIC REINFORCEMENT

    PubMed Central

    Hagopian, Louis P.; Rooker, Griffin W.; Zarcone, Jennifer R.

    2016-01-01

    Self-injurious behavior (SIB) is maintained by automatic reinforcement in roughly 25% of cases. Automatically reinforced SIB typically has been considered a single functional category, and is less understood than socially reinforced SIB. Subtyping automatically reinforced SIB into functional categories has the potential to guide the development of more targeted interventions and increase our understanding of its biological underpinnings. The current study involved an analysis of 39 individuals with automatically reinforced SIB and a comparison group of 13 individuals with socially reinforced SIB. Automatically reinforced SIB was categorized into 3 subtypes based on patterns of responding in the functional analysis and the presence of self-restraint. These response features were selected as the basis for subtyping on the premise that they could reflect functional properties of SIB unique to each subtype. Analysis of treatment data revealed important differences across subtypes and provides preliminary support to warrant additional research on this proposed subtyping model. PMID:26223959

  11. A probabilistic union model with automatic order selection for noisy speech recognition.

    PubMed

    Jancovic, P; Ming, J

    2001-09-01

    A critical issue in exploiting the potential of the sub-band-based approach to robust speech recognition is the method of combining the sub-band observations, for selecting the bands unaffected by noise. A new method for this purpose, i.e., the probabilistic union model, was recently introduced. This model has been shown to be capable of dealing with band-limited corruption, requiring no knowledge about the band position and statistical distribution of the noise. A parameter within the model, which we call its order, gives the best results when it equals the number of noisy bands. Since this information may not be available in practice, in this paper we introduce an automatic algorithm for selecting the order, based on the state duration pattern generated by the hidden Markov model (HMM). The algorithm has been tested on the TIDIGITS database corrupted by various types of additive band-limited noise with unknown noisy bands. The results have shown that the union model equipped with the new algorithm can achieve a recognition performance similar to that achieved when the number of noisy bands is known. The results show a very significant improvement over the traditional full-band model, without requiring prior information on either the position or the number of noisy bands. The principle of the algorithm for selecting the order based on state duration may also be applied to other sub-band combination methods.

  12. Eye movements in pedophiles: automatic and controlled attentional processes while viewing prepubescent stimuli.

    PubMed

    Fromberger, Peter; Jordan, Kirsten; Steinkrauss, Henrike; von Herder, Jakob; Stolpmann, Georg; Kröner-Herwig, Birgit; Müller, Jürgen Leo

    2013-05-01

    Recent theories in sexuality highlight the importance of automatic and controlled attentional processes in viewing sexually relevant stimuli. The model of Spiering and Everaerd (2007) assumes that sexually relevant features of a stimulus are preattentively selected and automatically induce focal attention to these sexually relevant aspects. Whether this assumption proves true for pedophiles is unknown. It is aim of this study to test this assumption empirically for people suffering from pedophilic interests. Twenty-two pedophiles, 8 nonpedophilic forensic controls, and 52 healthy controls simultaneously viewed the picture of a child and the picture of an adult while eye movements were measured. Entry time was assessed as a measure of automatic attentional processes and relative fixation time in order to assess controlled attentional processes. Pedophiles demonstrated significantly shorter entry time to child stimuli than to adult stimuli. The opposite was the case for nonpedophiles, as they showed longer relative fixation time for adult stimuli, and, against all expectations, pedophiles also demonstrated longer relative fixation time for adult stimuli. The results confirmed the hypothesis that pedophiles automatically selected sexually relevant stimuli (children). Contrary to all expectations, this automatic selection did not trigger the focal attention to these sexually relevant pictures. Furthermore, pedophiles were first and longest attracted by faces and pubic regions of children; nonpedophiles were first and longest attracted by faces and breasts of adults. The results demonstrated, for the first time, that the face and pubic region are the most attracting regions in children for pedophiles. © 2013 American Psychological Association

  13. Using automated texture features to determine the probability for masking of a tumor on mammography, but not ultrasound.

    PubMed

    Häberle, Lothar; Hack, Carolin C; Heusinger, Katharina; Wagner, Florian; Jud, Sebastian M; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger; Wittenberg, Thomas; Fasching, Peter A

    2017-08-30

    Tumors in radiologically dense breast were overlooked on mammograms more often than tumors in low-density breasts. A fast reproducible and automated method of assessing percentage mammographic density (PMD) would be desirable to support decisions whether ultrasonography should be provided for women in addition to mammography in diagnostic mammography units. PMD assessment has still not been included in clinical routine work, as there are issues of interobserver variability and the procedure is quite time consuming. This study investigated whether fully automatically generated texture features of mammograms can replace time-consuming semi-automatic PMD assessment to predict a patient's risk of having an invasive breast tumor that is visible on ultrasound but masked on mammography (mammography failure). This observational study included 1334 women with invasive breast cancer treated at a hospital-based diagnostic mammography unit. Ultrasound was available for the entire cohort as part of routine diagnosis. Computer-based threshold PMD assessments ("observed PMD") were carried out and 363 texture features were obtained from each mammogram. Several variable selection and regression techniques (univariate selection, lasso, boosting, random forest) were applied to predict PMD from the texture features. The predicted PMD values were each used as new predictor for masking in logistic regression models together with clinical predictors. These four logistic regression models with predicted PMD were compared among themselves and with a logistic regression model with observed PMD. The most accurate masking prediction was determined by cross-validation. About 120 of the 363 texture features were selected for predicting PMD. Density predictions with boosting were the best substitute for observed PMD to predict masking. Overall, the corresponding logistic regression model performed better (cross-validated AUC, 0.747) than one without mammographic density (0.734), but less well than the one with the observed PMD (0.753). However, in patients with an assigned mammography failure risk >10%, covering about half of all masked tumors, the boosting-based model performed at least as accurately as the original PMD model. Automatically generated texture features can replace semi-automatically determined PMD in a prediction model for mammography failure, such that more than 50% of masked tumors could be discovered.

  14. Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.

    PubMed

    Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David

    2018-07-01

    To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP modeling. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  15. Automatic measurement of images on astrometric plates

    NASA Astrophysics Data System (ADS)

    Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.

    1994-04-01

    We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).

  16. A new method of automatic landmark tagging for shape model construction via local curvature scale

    NASA Astrophysics Data System (ADS)

    Rueda, Sylvia; Udupa, Jayaram K.; Bai, Li

    2008-03-01

    Segmentation of organs in medical images is a difficult task requiring very often the use of model-based approaches. To build the model, we need an annotated training set of shape examples with correspondences indicated among shapes. Manual positioning of landmarks is a tedious, time-consuming, and error prone task, and almost impossible in the 3D space. To overcome some of these drawbacks, we devised an automatic method based on the notion of c-scale, a new local scale concept. For each boundary element b, the arc length of the largest homogeneous curvature region connected to b is estimated as well as the orientation of the tangent at b. With this shape description method, we can automatically locate mathematical landmarks selected at different levels of detail. The method avoids the use of landmarks for the generation of the mean shape. The selection of landmarks on the mean shape is done automatically using the c-scale method. Then, these landmarks are propagated to each shape in the training set, defining this way the correspondences among the shapes. Altogether 12 strategies are described along these lines. The methods are evaluated on 40 MRI foot data sets, the object of interest being the talus bone. The results show that, for the same number of landmarks, the proposed methods are more compact than manual and equally spaced annotations. The approach is applicable to spaces of any dimensionality, although we have focused in this paper on 2D shapes.

  17. Design of Automatic Extraction Algorithm of Knowledge Points for MOOCs

    PubMed Central

    Chen, Haijian; Han, Dongmei; Zhao, Lina

    2015-01-01

    In recent years, Massive Open Online Courses (MOOCs) are very popular among college students and have a powerful impact on academic institutions. In the MOOCs environment, knowledge discovery and knowledge sharing are very important, which currently are often achieved by ontology techniques. In building ontology, automatic extraction technology is crucial. Because the general methods of text mining algorithm do not have obvious effect on online course, we designed automatic extracting course knowledge points (AECKP) algorithm for online course. It includes document classification, Chinese word segmentation, and POS tagging for each document. Vector Space Model (VSM) is used to calculate similarity and design the weight to optimize the TF-IDF algorithm output values, and the higher scores will be selected as knowledge points. Course documents of “C programming language” are selected for the experiment in this study. The results show that the proposed approach can achieve satisfactory accuracy rate and recall rate. PMID:26448738

  18. POPCORN: a Supervisory Control Simulation for Workload and Performance Research

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Battiste, V.; Lester, P. T.

    1984-01-01

    A multi-task simulation of a semi-automatic supervisory control system was developed to provide an environment in which training, operator strategy development, failure detection and resolution, levels of automation, and operator workload can be investigated. The goal was to develop a well-defined, but realistically complex, task that would lend itself to model-based analysis. The name of the task (POPCORN) reflects the visual display that depicts different task elements milling around waiting to be released and pop out to be performed. The operator's task was to complete each of 100 task elements that ere represented by different symbols, by selecting a target task and entering the desired a command. The simulated automatic system then completed the selected function automatically. Highly significant differences in performance, strategy, and rated workload were found as a function of all experimental manipulations (except reward/penalty).

  19. IADE: a system for intelligent automatic design of bioisosteric analogs

    NASA Astrophysics Data System (ADS)

    Ertl, Peter; Lewis, Richard

    2012-11-01

    IADE, a software system supporting molecular modellers through the automatic design of non-classical bioisosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminformatics functionalities for constructing novel analogs and filtering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabilities: the best candidates are selected according to their similarity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every generation until structures with optimal properties are identified. The program frees molecular modellers from routine, repetitive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhancing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisosteric analog of a farnesyltransferase inhibitor—an analog that has won a recent "Design a Molecule" competition.

  20. IADE: a system for intelligent automatic design of bioisosteric analogs.

    PubMed

    Ertl, Peter; Lewis, Richard

    2012-11-01

    IADE, a software system supporting molecular modellers through the automatic design of non-classical bioisosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminformatics functionalities for constructing novel analogs and filtering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabilities: the best candidates are selected according to their similarity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every generation until structures with optimal properties are identified. The program frees molecular modellers from routine, repetitive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhancing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisosteric analog of a farnesyltransferase inhibitor--an analog that has won a recent "Design a Molecule" competition.

  1. Comparison of the efficiency between two sampling plans for aflatoxins analysis in maize

    PubMed Central

    Mallmann, Adriano Olnei; Marchioro, Alexandro; Oliveira, Maurício Schneider; Rauber, Ricardo Hummes; Dilkin, Paulo; Mallmann, Carlos Augusto

    2014-01-01

    Variance and performance of two sampling plans for aflatoxins quantification in maize were evaluated. Eight lots of maize were sampled using two plans: manual, using sampling spear for kernels; and automatic, using a continuous flow to collect milled maize. Total variance and sampling, preparation, and analysis variance were determined and compared between plans through multifactor analysis of variance. Four theoretical distribution models were used to compare aflatoxins quantification distributions in eight maize lots. The acceptance and rejection probabilities for a lot under certain aflatoxin concentration were determined using variance and the information on the selected distribution model to build the operational characteristic curves (OC). Sampling and total variance were lower at the automatic plan. The OC curve from the automatic plan reduced both consumer and producer risks in comparison to the manual plan. The automatic plan is more efficient than the manual one because it expresses more accurately the real aflatoxin contamination in maize. PMID:24948911

  2. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  3. Dream controller

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  4. Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis.

    PubMed

    Schäfer, Sebastian; Nylund, Kim; Sævik, Fredrik; Engjom, Trond; Mézl, Martin; Jiřík, Radovan; Dimcevski, Georg; Gilja, Odd Helge; Tönnies, Klaus

    2015-08-01

    This paper presents a system for correcting motion influences in time-dependent 2D contrast-enhanced ultrasound (CEUS) images to assess tissue perfusion characteristics. The system consists of a semi-automatic frame selection method to find images with out-of-plane motion as well as a method for automatic motion compensation. Translational and non-rigid motion compensation is applied by introducing a temporal continuity assumption. A study consisting of 40 clinical datasets was conducted to compare the perfusion with simulated perfusion using pharmacokinetic modeling. Overall, the proposed approach decreased the mean average difference between the measured perfusion and the pharmacokinetic model estimation. It was non-inferior for three out of four patient cohorts to a manual approach and reduced the analysis time by 41% compared to manual processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  6. Automatic rapid attachable warhead section

    DOEpatents

    Trennel, A.J.

    1994-05-10

    Disclosed are a method and apparatus for automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly. 10 figures.

  7. Automatic rapid attachable warhead section

    DOEpatents

    Trennel, Anthony J.

    1994-05-10

    Disclosed are a method and apparatus for (1) automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, (2) automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, (3) manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and (4) automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly.

  8. Variable selection and model choice in geoadditive regression models.

    PubMed

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  9. The performance of an automatic acoustic-based program classifier compared to hearing aid users' manual selection of listening programs.

    PubMed

    Searchfield, Grant D; Linford, Tania; Kobayashi, Kei; Crowhen, David; Latzel, Matthias

    2018-03-01

    To compare preference for and performance of manually selected programmes to an automatic sound classifier, the Phonak AutoSense OS. A single blind repeated measures study. Participants were fit with Phonak Virto V90 ITE aids; preferences for different listening programmes were compared across four different sound scenarios (speech in: quiet, noise, loud noise and a car). Following a 4-week trial preferences were reassessed and the users preferred programme was compared to the automatic classifier for sound quality and hearing in noise (HINT test) using a 12 loudspeaker array. Twenty-five participants with symmetrical moderate-severe sensorineural hearing loss. Participant preferences of manual programme for scenarios varied considerably between and within sessions. A HINT Speech Reception Threshold (SRT) advantage was observed for the automatic classifier over participant's manual selection for speech in quiet, loud noise and car noise. Sound quality ratings were similar for both manual and automatic selections. The use of a sound classifier is a viable alternative to manual programme selection.

  10. Selective visual working memory in fear of spiders: the role of automaticity and material-specificity.

    PubMed

    Reinecke, Andrea; Becker, Eni S; Rinck, Mike

    2009-12-01

    Following cognitive models of anxiety, biases occur if threat processing is automatic versus strategic. Therefore, most of these models predict attentional bias, but not explicit memory bias. We suggest dividing memory into the highly automatic working memory (WM) component versus long-term memory when investigating bias in anxiety. WM for threat has rarely been investigated although its main function is stimulus monitoring, particularly important in anxiety. We investigated WM for spiders in spider fearfuls (SFs) versus non-anxious controls (NACs). In Experiment 1 (23 SFs/24 NACs), we replicated an earlier WM study, reducing strategic processing options. This led to stronger group differences and, thus, clearer WM threat biases. There were no group differences in Experiment 2 (18 SFs/19 NACs), using snakes instead of spiders to test whether WM biases are material-specific. This article supports cognitive models of anxiety in that biases are more likely to occur when reducing strategic processing. However, it contradicts the assumption that explicit memory biases are not characteristic of anxiety.

  11. Automatic detection and classification of artifacts in single-channel EEG.

    PubMed

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W; Sorensen, Helge B D

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.

  12. Rapid performance modeling and parameter regression of geodynamic models

    NASA Astrophysics Data System (ADS)

    Brown, J.; Duplyakin, D.

    2016-12-01

    Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.

  13. Automatic labeling of MR brain images through extensible learning and atlas forests.

    PubMed

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic atlas datasets and obtain accurate results. © 2017 American Association of Physicists in Medicine.

  14. An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks.

    PubMed

    Sareen, Sanjay; Sood, Sandeep K; Gupta, Sunil Kumar

    2016-11-01

    Epilepsy is one of the most common neurological disorders which is characterized by the spontaneous and unforeseeable occurrence of seizures. An automatic prediction of seizure can protect the patients from accidents and save their life. In this article, we proposed a mobile-based framework that automatically predict seizures using the information contained in electroencephalography (EEG) signals. The wireless sensor technology is used to capture the EEG signals of patients. The cloud-based services are used to collect and analyze the EEG data from the patient's mobile phone. The features from the EEG signal are extracted using the fast Walsh-Hadamard transform (FWHT). The Higher Order Spectral Analysis (HOSA) is applied to FWHT coefficients in order to select the features set relevant to normal, preictal and ictal states of seizure. We subsequently exploit the selected features as input to a k-means classifier to detect epileptic seizure states in a reasonable time. The performance of the proposed model is tested on Amazon EC2 cloud and compared in terms of execution time and accuracy. The findings show that with selected HOS based features, we were able to achieve a classification accuracy of 94.6 %.

  15. Exploiting Acoustic and Syntactic Features for Automatic Prosody Labeling in a Maximum Entropy Framework

    PubMed Central

    Sridhar, Vivek Kumar Rangarajan; Bangalore, Srinivas; Narayanan, Shrikanth S.

    2009-01-01

    In this paper, we describe a maximum entropy-based automatic prosody labeling framework that exploits both language and speech information. We apply the proposed framework to both prominence and phrase structure detection within the Tones and Break Indices (ToBI) annotation scheme. Our framework utilizes novel syntactic features in the form of supertags and a quantized acoustic–prosodic feature representation that is similar to linear parameterizations of the prosodic contour. The proposed model is trained discriminatively and is robust in the selection of appropriate features for the task of prosody detection. The proposed maximum entropy acoustic–syntactic model achieves pitch accent and boundary tone detection accuracies of 86.0% and 93.1% on the Boston University Radio News corpus, and, 79.8% and 90.3% on the Boston Directions corpus. The phrase structure detection through prosodic break index labeling provides accuracies of 84% and 87% on the two corpora, respectively. The reported results are significantly better than previously reported results and demonstrate the strength of maximum entropy model in jointly modeling simple lexical, syntactic, and acoustic features for automatic prosody labeling. PMID:19603083

  16. Carotid stenosis assessment with multi-detector CT angiography: comparison between manual and automatic segmentation methods.

    PubMed

    Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H

    2013-04-01

    Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.

  17. The Structure of Processing Resource Demands in Monitoring Automatic Systems.

    DTIC Science & Technology

    1981-01-01

    Attempts at modelling the human failure detection process have continually focused on normative predictions of optimal operator behavior ( Smallwood ...Broadbent’s filter model (Broadbent, 1957), to Treisman’s attenuation model (Treisman, 1964), to Norman’s late selection model ( Norman , 1968), tife concept...survey and a model. Acta Psychologica, 1967, 27, 84-92. Moray, N. Mental workload: Its theory and measurement. New York: Plenum Press, 1979. Li 42 Norman

  18. Automatic selection of optimal Savitzky-Golay filter parameters for Coronary Wave Intensity Analysis.

    PubMed

    Rivolo, Simone; Nagel, Eike; Smith, Nicolas P; Lee, Jack

    2014-01-01

    Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. The cWIA ability to establish a mechanistic link between coronary haemodynamics measurements and the underlying pathophysiology has been widely demonstrated. Moreover, the prognostic value of a cWIA-derived metric has been recently proved. However, the clinical application of cWIA has been hindered due to the strong dependence on the practitioners, mainly ascribable to the cWIA-derived indices sensitivity to the pre-processing parameters. Specifically, as recently demonstrated, the cWIA-derived metrics are strongly sensitive to the Savitzky-Golay (S-G) filter, typically used to smooth the acquired traces. This is mainly due to the inability of the S-G filter to deal with the different timescale features present in the measured waveforms. Therefore, we propose to apply an adaptive S-G algorithm that automatically selects pointwise the optimal filter parameters. The newly proposed algorithm accuracy is assessed against a cWIA gold standard, provided by a newly developed in-silico cWIA modelling framework, when physiological noise is added to the simulated traces. The adaptive S-G algorithm, when used to automatically select the polynomial degree of the S-G filter, provides satisfactory results with ≤ 10% error for all the metrics through all the levels of noise tested. Therefore, the newly proposed method makes cWIA fully automatic and independent from the practitioners, opening the possibility to multi-centre trials.

  19. How to determine an optimal threshold to classify real-time crash-prone traffic conditions?

    PubMed

    Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang

    2018-08-01

    One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A Simulated Annealing based Optimization Algorithm for Automatic Variogram Model Fitting

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Safa, Mohammad

    2016-09-01

    Fitting a theoretical model to an experimental variogram is an important issue in geostatistical studies because if the variogram model parameters are tainted with uncertainty, the latter will spread in the results of estimations and simulations. Although the most popular fitting method is fitting by eye, in some cases use is made of the automatic fitting method on the basis of putting together the geostatistical principles and optimization techniques to: 1) provide a basic model to improve fitting by eye, 2) fit a model to a large number of experimental variograms in a short time, and 3) incorporate the variogram related uncertainty in the model fitting. Effort has been made in this paper to improve the quality of the fitted model by improving the popular objective function (weighted least squares) in the automatic fitting. Also, since the variogram model function (£) and number of structures (m) too affect the model quality, a program has been provided in the MATLAB software that can present optimum nested variogram models using the simulated annealing method. Finally, to select the most desirable model from among the single/multi-structured fitted models, use has been made of the cross-validation method, and the best model has been introduced to the user as the output. In order to check the capability of the proposed objective function and the procedure, 3 case studies have been presented.

  1. Bayesian Quantification of Contrast-Enhanced Ultrasound Images With Adaptive Inclusion of an Irreversible Component.

    PubMed

    Rizzo, Gaia; Tonietto, Matteo; Castellaro, Marco; Raffeiner, Bernd; Coran, Alessandro; Fiocco, Ugo; Stramare, Roberto; Grisan, Enrico

    2017-04-01

    Contrast Enhanced Ultrasound (CEUS) is a sensitive imaging technique to assess tissue vascularity and it can be particularly useful in early detection and grading of arthritis. In a recent study we have shown that a Gamma-variate can accurately quantify synovial perfusion and it is flexible enough to describe many heterogeneous patterns. However, in some cases the heterogeneity of the kinetics can be such that even the Gamma model does not properly describe the curve, with a high number of outliers. In this work we apply to CEUS data the single compartment recirculation model (SCR) which takes explicitly into account the trapping of the microbubbles contrast agent by adding to the single Gamma-variate model its integral. The SCR model, originally proposed for dynamic-susceptibility magnetic resonance imaging, is solved here at pixel level within a Bayesian framework using Variational Bayes (VB). We also include the automatic relevant determination (ARD) algorithm to automatically infer the model complexity (SCR vs. Gamma model) from the data. We demonstrate that the inclusion of trapping best describes the CEUS patterns in 50% of the pixels, with the other 50% best fitted by a single Gamma. Such results highlight the necessity of the use ARD, to automatically exclude the irreversible component where not supported by the data. VB with ARD returns precise estimates in the majority of the kinetics (88% of total percentage of pixels) in a limited computational time (on average, 3.6 min per subject). Moreover, the impact of the additional trapping component has been evaluated for the differentiation of rheumatoid and non-rheumatoid patients, by means of a support vector machine classifier with backward feature selection. The results show that the trapping parameter is always present in the selected feature set, and improves the classification.

  2. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task

    PubMed Central

    Wang, Xiao-Jing

    2016-01-01

    Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a “Stop” process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor) neural circuit mechanism with discrimination in perception. PMID:27551824

  3. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    PubMed

    Lo, Chung-Chuan; Wang, Xiao-Jing

    2016-08-01

    Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor) neural circuit mechanism with discrimination in perception.

  4. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  5. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA

    PubMed Central

    Garcia, Ramon I.; Ibrahim, Joseph G.; Zhu, Hongtu

    2009-01-01

    We consider the variable selection problem for a class of statistical models with missing data, including missing covariate and/or response data. We investigate the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and propose a unified model selection and estimation procedure for use in the presence of missing data. We develop a computationally attractive algorithm for simultaneously optimizing the penalized likelihood function and estimating the penalty parameters. Particularly, we propose to use a model selection criterion, called the ICQ statistic, for selecting the penalty parameters. We show that the variable selection procedure based on ICQ automatically and consistently selects the important covariates and leads to efficient estimates with oracle properties. The methodology is very general and can be applied to numerous situations involving missing data, from covariates missing at random in arbitrary regression models to nonignorably missing longitudinal responses and/or covariates. Simulations are given to demonstrate the methodology and examine the finite sample performance of the variable selection procedures. Melanoma data from a cancer clinical trial is presented to illustrate the proposed methodology. PMID:20336190

  6. Shaping Attention with Reward: Effects of Reward on Space- and Object-Based Selection

    PubMed Central

    Shomstein, Sarah; Johnson, Jacoba

    2014-01-01

    The contribution of rewarded actions to automatic attentional selection remains obscure. We hypothesized that some forms of automatic orienting, such as object-based selection, can be completely abandoned in lieu of reward maximizing strategy. While presenting identical visual stimuli to the observer, in a set of two experiments, we manipulate what is being rewarded (different object targets or random object locations) and the type of reward received (money or points). It was observed that reward alone guides attentional selection, entirely predicting behavior. These results suggest that guidance of selective attention, while automatic, is flexible and can be adjusted in accordance with external non-sensory reward-based factors. PMID:24121412

  7. Particle acceleration in a complex solar active region modelled by a Cellular automata model

    NASA Astrophysics Data System (ADS)

    Dauphin, C.; Vilmer, N.; Anastasiadis, A.

    2004-12-01

    The models of cellular automat allowed to reproduce successfully several statistical properties of the solar flares. We use a cellular automat model based on the concept of self-organised critical system to model the evolution of the magnetic energy released in an eruptive active area. Each burst of magnetic energy released is assimilated to a process of magnetic reconnection. We will thus generate several current layers (RCS) where the particles are accelerated by a direct electric field. We calculate the energy gain of the particles (ions and electrons) for various types of magnetic configuration. We calculate the distribution function of the kinetic energy of the particles after their interactions with a given number of RCS for each type of configurations. We show that the relative efficiency of the acceleration of the electrons and the ions depends on the selected configuration.

  8. Automatic Prediction of Conversion from Mild Cognitive Impairment to Probable Alzheimer’s Disease using Structural Magnetic Resonance Imaging

    PubMed Central

    Nho, Kwangsik; Shen, Li; Kim, Sungeun; Risacher, Shannon L.; West, John D.; Foroud, Tatiana; Jack, Clifford R.; Weiner, Michael W.; Saykin, Andrew J.

    2010-01-01

    Mild Cognitive Impairment (MCI) is thought to be a precursor to the development of early Alzheimer’s disease (AD). For early diagnosis of AD, the development of a model that is able to predict the conversion of amnestic MCI to AD is challenging. Using automatic whole-brain MRI analysis techniques and pattern classification methods, we developed a model to differentiate AD from healthy controls (HC), and then applied it to the prediction of MCI conversion to AD. Classification was performed using support vector machines (SVMs) together with a SVM-based feature selection method, which selected a set of most discriminating predictors for optimizing prediction accuracy. We obtained 90.5% cross-validation accuracy for classifying AD and HC, and 72.3% accuracy for predicting MCI conversion to AD. These analyses suggest that a classifier trained to separate HC vs. AD has substantial potential for predicting MCI conversion to AD. PMID:21347037

  9. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  10. Development of an automated ultrasonic testing system

    NASA Astrophysics Data System (ADS)

    Shuxiang, Jiao; Wong, Brian Stephen

    2005-04-01

    Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.

  11. Testing the physiological plausibility of conflicting psychological models of response inhibition: A forward inference fMRI study.

    PubMed

    Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe

    2017-08-30

    The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  13. Integration of tools for binding archetypes to SNOMED CT.

    PubMed

    Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Ahlfeldt, Hans; Rector, Alan

    2008-10-27

    The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail.

  14. Integration of tools for binding archetypes to SNOMED CT

    PubMed Central

    Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Åhlfeldt, Hans; Rector, Alan

    2008-01-01

    Background The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Methods Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. Results An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Conclusion Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail. PMID:19007444

  15. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  16. RCrane: semi-automated RNA model building.

    PubMed

    Keating, Kevin S; Pyle, Anna Marie

    2012-08-01

    RNA crystals typically diffract to much lower resolutions than protein crystals. This low-resolution diffraction results in unclear density maps, which cause considerable difficulties during the model-building process. These difficulties are exacerbated by the lack of computational tools for RNA modeling. Here, RCrane, a tool for the partially automated building of RNA into electron-density maps of low or intermediate resolution, is presented. This tool works within Coot, a common program for macromolecular model building. RCrane helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RCrane then allows the crystallographer to review the newly built structure and select alternative backbone conformations where desired. This tool can also be used to automatically correct the backbone structure of previously built nucleotides. These automated corrections can fix incorrect sugar puckers, steric clashes and other structural problems.

  17. Automatic Construction of 3D Basic-Semantic Models of Inhabited Interiors Using Laser Scanners and RFID Sensors

    PubMed Central

    Valero, Enrique; Adan, Antonio; Cerrada, Carlos

    2012-01-01

    This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results. PMID:22778609

  18. The Development of the Speaker Independent ARM Continuous Speech Recognition System

    DTIC Science & Technology

    1992-01-01

    spokeTi airborne reconnaissance reports u-ing a speech recognition system based on phoneme-level hidden Markov models (HMMs). Previous versions of the ARM...will involve automatic selection from multiple model sets, corresponding to different speaker types, and that the most rudimen- tary partition of a...The vocabulary size for the ARM task is 497 words. These words are related to the phoneme-level symbols corresponding to the models in the model set

  19. "Wireless": Some Facts and Figures from a Corpus-Driven Study

    ERIC Educational Resources Information Center

    Rizzo, Camino Rea

    2009-01-01

    "Wireless" is the word selected to illustrate a model of analysis designed to determine the specialized character of a lexical unit. "Wireless" belongs to the repertoire of specialized vocabulary automatically extracted from a corpus of telecommunication engineering English (TEC). This paper describes the procedure followed in the analysis which…

  20. Automatic Selection of Order Parameters in the Analysis of Large Scale Molecular Dynamics Simulations.

    PubMed

    Sultan, Mohammad M; Kiss, Gert; Shukla, Diwakar; Pande, Vijay S

    2014-12-09

    Given the large number of crystal structures and NMR ensembles that have been solved to date, classical molecular dynamics (MD) simulations have become powerful tools in the atomistic study of the kinetics and thermodynamics of biomolecular systems on ever increasing time scales. By virtue of the high-dimensional conformational state space that is explored, the interpretation of large-scale simulations faces difficulties not unlike those in the big data community. We address this challenge by introducing a method called clustering based feature selection (CB-FS) that employs a posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.

  1. Domain Adaptation of Translation Models for Multilingual Applications

    DTIC Science & Technology

    2009-04-01

    expansion effect that corpus (or dictionary ) based trans- lation introduces - however, this effect is maintained even with monolingual query expansion [12...every day; bilingual web pages are harvested as parallel corpora as the quantity of non-English data on the web increases; online dictionaries of...approach is to customize translation models to a domain, by automatically selecting the resources ( dictionaries , parallel corpora) that are best for

  2. MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose, Soumya, E-mail: soumya.ghose@case.edu; Mitra, Jhimli; Rivest-Hénault, David

    Purpose: The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Methods: Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contoursmore » were selected in a spectral clustering manifold learning framework. This aids in clustering “similar” gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. Results: A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). Conclusions: An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.« less

  3. MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection.

    PubMed

    Ghose, Soumya; Mitra, Jhimli; Rivest-Hénault, David; Fazlollahi, Amir; Stanwell, Peter; Pichler, Peter; Sun, Jidi; Fripp, Jurgen; Greer, Peter B; Dowling, Jason A

    2016-05-01

    The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contours were selected in a spectral clustering manifold learning framework. This aids in clustering "similar" gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.

  4. SU-F-T-342: Dosimetric Constraint Prediction Guided Automatic Mulit-Objective Optimization for Intensity Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, T; Zhou, L; Li, Y

    Purpose: For intensity modulated radiotherapy, the plan optimization is time consuming with difficulties of selecting objectives and constraints, and their relative weights. A fast and automatic multi-objective optimization algorithm with abilities to predict optimal constraints and manager their trade-offs can help to solve this problem. Our purpose is to develop such a framework and algorithm for a general inverse planning. Methods: There are three main components contained in this proposed multi-objective optimization framework: prediction of initial dosimetric constraints, further adjustment of constraints and plan optimization. We firstly use our previously developed in-house geometry-dosimetry correlation model to predict the optimal patient-specificmore » dosimetric endpoints, and treat them as initial dosimetric constraints. Secondly, we build an endpoint(organ) priority list and a constraint adjustment rule to repeatedly tune these constraints from their initial values, until every single endpoint has no room for further improvement. Lastly, we implement a voxel-independent based FMO algorithm for optimization. During the optimization, a model for tuning these voxel weighting factors respecting to constraints is created. For framework and algorithm evaluation, we randomly selected 20 IMRT prostate cases from the clinic and compared them with our automatic generated plans, in both the efficiency and plan quality. Results: For each evaluated plan, the proposed multi-objective framework could run fluently and automatically. The voxel weighting factor iteration time varied from 10 to 30 under an updated constraint, and the constraint tuning time varied from 20 to 30 for every case until no more stricter constraint is allowed. The average total costing time for the whole optimization procedure is ∼30mins. By comparing the DVHs, better OAR dose sparing could be observed in automatic generated plan, for 13 out of the 20 cases, while others are with competitive results. Conclusion: We have successfully developed a fast and automatic multi-objective optimization for intensity modulated radiotherapy. This work is supported by the National Natural Science Foundation of China (No: 81571771)« less

  5. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  6. Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.

    PubMed

    Zhao, Liang; Wu, Wei; Corso, Jason J

    2013-01-01

    Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.

  7. Automatic single questionnaire intensity (SQI, EMS98 scale) estimation using ranking models built on the existing BCSF database

    NASA Astrophysics Data System (ADS)

    Schlupp, A.; Sira, C.; Schmitt, K.; Schaming, M.

    2013-12-01

    In charge of intensity estimations in France, BCSF has collected and manually analyzed more than 47000 online individual macroseismic questionnaires since 2000 up to intensity VI. These macroseismic data allow us to estimate one SQI value (Single Questionnaire Intensity) for each form following the EMS98 scale. The reliability of the automatic intensity estimation is important as they are today used for automatic shakemaps communications and crisis management. Today, the automatic intensity estimation at BCSF is based on the direct use of thumbnails selected on a menu by the witnesses. Each thumbnail corresponds to an EMS-98 intensity value, allowing us to quickly issue an intensity map of the communal intensity by averaging the SQIs at each city. Afterwards an expert, to determine a definitive SQI, manually analyzes each form. This work is time consuming and not anymore suitable considering the increasing number of testimonies at BCSF. Nevertheless, it can take into account incoherent answers. We tested several automatic methods (USGS algorithm, Correlation coefficient, Thumbnails) (Sira et al. 2013, IASPEI) and compared them with 'expert' SQIs. These methods gave us medium score (between 50 to 60% of well SQI determined and 35 to 40% with plus one or minus one intensity degree). The best fit was observed with the thumbnails. Here, we present new approaches based on 3 statistical ranking methods as 1) Multinomial logistic regression model, 2) Discriminant analysis DISQUAL and 3) Support vector machines (SVMs). The two first methods are standard methods, while the third one is more recent. Theses methods could be applied because the BCSF has already in his database more then 47000 forms and because their questions and answers are well adapted for a statistical analysis. The ranking models could then be used as automatic method constrained on expert analysis. The performance of the automatic methods and the reliability of the estimated SQI can be evaluated thanks to the fact that each definitive BCSF SQIs is determined by an expert analysis. We compare the SQIs obtained by these methods from our database and discuss the coherency and variations between automatic and manual processes. These methods lead to high scores with up to 85% of the forms well classified and most of the remaining forms classified with only a shift of one intensity degree. This allows us to use the ranking methods as the best automatic methods to fast SQIs estimation and to produce fast shakemaps. The next step, to improve the use of these methods, will be to identify explanations for the forms not classified at the correct value and a way to select the few remaining forms that should be analyzed by the expert. Note that beyond intensity VI, on-line questionnaires are insufficient and a field survey is indispensable to estimate intensity. For such survey, in France, BCSF leads a macroseismic intervention group (GIM).

  8. LYRA, a webserver for lymphocyte receptor structural modeling.

    PubMed

    Klausen, Michael Schantz; Anderson, Mads Valdemar; Jespersen, Martin Closter; Nielsen, Morten; Marcatili, Paolo

    2015-07-01

    The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions.

    PubMed

    Burgmans, Mark Christiaan; den Harder, J Michiel; Meershoek, Philippa; van den Berg, Nynke S; Chan, Shaun Xavier Ju Min; van Leeuwen, Fijs W B; van Erkel, Arian R

    2017-06-01

    To determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions. CT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers. Mean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values. The accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.

  10. The effects of early and late night partial sleep deprivation on automatic and selective attention: An ERP study.

    PubMed

    Zerouali, Younes; Jemel, Boutheina; Godbout, Roger

    2010-01-13

    The link between decrease in levels of attention and total sleep deprivation is well known but the respective contributions of slow wave sleep (SWS) and rapid eye movement sleep (REM) is still largely unknown. The aim of this study was to characterize the effects of sleep deprivation during the SWS phase (i.e., early night sleep) and the REM phase (i.e., late night sleep) on tasks that tap automatic and selective attention; these two forms of attention were indexed respectively by "mismatch negativity" (MMN) and "negative difference" (Nd) event-related potential (ERP) difference waves. Ten young adult participants were subjected to a three-night sleep protocol. They were each received one night of full sleep (F), one night of sleep deprivation during the first half of the night (H1), and one night of sleep deprivation during the second half of the night (H2). MMN and Nd were recorded the following morning of each night during two auditory oddball tasks that tapped automatic and selective attention. The effect of sleep deprivation condition was assessed using ERP amplitude measures and standardized low-resolution electromagnetic tomography method (sLORETA). ERP results revealed significant MMN amplitude reduction over frontal and temporal recording areas following the H2 night compared to F and H1, indicating reductions in levels of automatic attention. In addition, Nd amplitude over the parietal recording area was significantly increased following the H2 night compared to F and H1. sLORETA findings show significant changes from F to H2 night in frontal cortex activity, decreasing during the automatic attention task but increasing during the selective attention task. No significant change in brain activity is observed after H1 night. The restoration of attention processes is mainly achieved during REM sleep, which confirms results from previous studies in rat models. The anterior cortex seems to be more sensitive to sleep loss, while the parietal cortex acts as a compensatory resource to restore cognitive performance in a task context.

  11. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated good repeatability, with all standard deviations under 0.33. The algorithm is independent of the background and requires 10 cows for training with approximately 30 movies of 4 s each. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  13. Robust extraction of the aorta and pulmonary artery from 3D MDCT image data

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2010-03-01

    Accurate definition of the aorta and pulmonary artery from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents robust methods for defining the aorta and pulmonary artery in the central chest. The methods work on both contrast enhanced and no-contrast 3D MDCT image data. The automatic methods use a common approach employing model fitting and selection and adaptive refinement. During the occasional event that more precise vascular extraction is desired or the method fails, we also have an alternate semi-automatic fail-safe method. The semi-automatic method extracts the vasculature by extending the medial axes into a user-guided direction. A ground-truth study over a series of 40 human 3D MDCT images demonstrates the efficacy, accuracy, robustness, and efficiency of the methods.

  14. Automatic Condensation of Electronic Publications by Sentence Selection.

    ERIC Educational Resources Information Center

    Brandow, Ronald; And Others

    1995-01-01

    Describes a system that performs automatic summaries of news from a large commercial news service encompassing 41 different publications. This system was compared to a system that used only the lead sentences of the texts. Lead-based summaries significantly outperformed the sentence-selection summaries. (AEF)

  15. Computer aided stress analysis of long bones utilizing computer tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marom, S.A.

    1986-01-01

    A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less

  16. [Severity classification of chronic obstructive pulmonary disease based on deep learning].

    PubMed

    Ying, Jun; Yang, Ceyuan; Li, Quanzheng; Xue, Wanguo; Li, Tanshi; Cao, Wenzhe

    2017-12-01

    In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.

  17. Statistics and Style. Mathematical Linguistics and Automatic Language Processing No. 6.

    ERIC Educational Resources Information Center

    Dolezel, Lubomir, Ed.; Bailey, Richard W., Ed.

    This collection of 17 articles concerning the application of mathematical models and techniques to the study of literary style is an attempt to overcome the communication barriers that exist between scholars in the various fields that find their meeting ground in statistical stylistics. The articles selected were chosen to represent the best…

  18. Predicting habits of vegetable parenting practices to facilitate the design of change programmes

    USDA-ARS?s Scientific Manuscript database

    Habit has been defined as the automatic performance of a usual behaviour. The present paper reports the relationships of variables from a Model of Goal Directed Behavior to four scales in regard to parents' habits when feeding their children: habit of (i) actively involving child in selection of veg...

  19. Improving the Effectiveness of English Vocabulary Review by Integrating ARCS with Mobile Game-Based Learning

    ERIC Educational Resources Information Center

    Wu, Ting-Ting

    2018-01-01

    Memorizing English vocabulary is often considered uninteresting, and a lack of motivation exists during learning activities. Moreover, most vocabulary practice systems automatically select words from articles and do not provide integrated model methods for students. Therefore, this study constructed a mobile game-based English vocabulary practice…

  20. Functional genomic hypothesis generation and experimentation by a robot scientist.

    PubMed

    King, Ross D; Whelan, Kenneth E; Jones, Ffion M; Reiser, Philip G K; Bryant, Christopher H; Muggleton, Stephen H; Kell, Douglas B; Oliver, Stephen G

    2004-01-15

    The question of whether it is possible to automate the scientific process is of both great theoretical interest and increasing practical importance because, in many scientific areas, data are being generated much faster than they can be effectively analysed. We describe a physically implemented robotic system that applies techniques from artificial intelligence to carry out cycles of scientific experimentation. The system automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments using a laboratory robot, interprets the results to falsify hypotheses inconsistent with the data, and then repeats the cycle. Here we apply the system to the determination of gene function using deletion mutants of yeast (Saccharomyces cerevisiae) and auxotrophic growth experiments. We built and tested a detailed logical model (involving genes, proteins and metabolites) of the aromatic amino acid synthesis pathway. In biological experiments that automatically reconstruct parts of this model, we show that an intelligent experiment selection strategy is competitive with human performance and significantly outperforms, with a cost decrease of 3-fold and 100-fold (respectively), both cheapest and random-experiment selection.

  1. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

    PubMed Central

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718

  2. Automatic mathematical modeling for real time simulation program (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Purinton, Steve

    1989-01-01

    A methodology is described for automatic mathematical modeling and generating simulation models. The major objective was to create a user friendly environment for engineers to design, maintain, and verify their models; to automatically convert the mathematical models into conventional code for computation; and finally, to document the model automatically.

  3. Comparison of the manual, semiautomatic, and automatic selection and leveling of hot spots in whole slide images for Ki-67 quantification in meningiomas.

    PubMed

    Swiderska, Zaneta; Korzynska, Anna; Markiewicz, Tomasz; Lorent, Malgorzata; Zak, Jakub; Wesolowska, Anna; Roszkowiak, Lukasz; Slodkowska, Janina; Grala, Bartlomiej

    2015-01-01

    Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections collected from meningioma patients. The samples were immunohistochemically stained to determine the Ki-67/MIB-1 proliferation index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and results of a pathologist's manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times), and the same software but on hot spots selected by proposed automatic methods were compared using Kendall's tau-b statistics. Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma.

  4. Comparison of the Manual, Semiautomatic, and Automatic Selection and Leveling of Hot Spots in Whole Slide Images for Ki-67 Quantification in Meningiomas

    PubMed Central

    Swiderska, Zaneta; Korzynska, Anna; Markiewicz, Tomasz; Lorent, Malgorzata; Zak, Jakub; Wesolowska, Anna; Roszkowiak, Lukasz; Slodkowska, Janina; Grala, Bartlomiej

    2015-01-01

    Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections collected from meningioma patients. The samples were immunohistochemically stained to determine the Ki-67/MIB-1 proliferation index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and results of a pathologist's manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times), and the same software but on hot spots selected by proposed automatic methods were compared using Kendall's tau-b statistics. Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma. PMID:26240787

  5. Near-real time 3D probabilistic earthquakes locations at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Barberi, G.; D'Agostino, M.; Mostaccio, A.; Patane', D.; Tuve', T.

    2012-04-01

    Automatic procedure for locating earthquake in quasi-real time must provide a good estimation of earthquakes location within a few seconds after the event is first detected and is strongly needed for seismic warning system. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. On Mt. Etna, the seismic network is managed by INGV and the quasi-real time earthquakes locations are performed by using an automatic-picking algorithm based on short-term-average to long-term-average ratios (STA/LTA) calculated from an approximate squared envelope function of the seismogram, which furnish a list of P-wave arrival times, and the location algorithm Hypoellipse, with a 1D velocity model. The main purpose of this work is to investigate the performances of a different automatic procedure to improve the quasi-real time earthquakes locations. In fact, as the automatic data processing may be affected by outliers (wrong picks), the use of a traditional earthquake location techniques based on a least-square misfit function (L2-norm) often yield unstable and unreliable solutions. Moreover, on Mt. Etna, the 1D model is often unable to represent the complex structure of the volcano (in particular the strong lateral heterogeneities), whereas the increasing accuracy in the 3D velocity models at Mt. Etna during recent years allows their use today in routine earthquake locations. Therefore, we selected, as reference locations, all the events occurred on Mt. Etna in the last year (2011) which was automatically detected and located by means of the Hypoellipse code. By using this dataset (more than 300 events), we applied a nonlinear probabilistic earthquake location algorithm using the Equal Differential Time (EDT) likelihood function, (Font et al., 2004; Lomax, 2005) which is much more robust in the presence of outliers in the data. Successively, by using a probabilistic non linear method (NonLinLoc, Lomax, 2001) and the 3D velocity model, derived from the one developed by Patanè et al. (2006) integrated with that obtained by Chiarabba et al. (2004), we obtained the best possible constraint on the location of the focii expressed as a probability density function (PDF) for the hypocenter location in 3D space. As expected, the obtained results, compared with the reference ones, show that the NonLinLoc software (applied to a 3D velocity model) is more reliable than the Hypoellipse code (applied to layered 1D velocity models), leading to more reliable automatic locations also when outliers are present.

  6. Temporal BYY encoding, Markovian state spaces, and space dimension determination.

    PubMed

    Xu, Lei

    2004-09-01

    As a complementary to those temporal coding approaches of the current major stream, this paper aims at the Markovian state space temporal models from the perspective of the temporal Bayesian Ying-Yang (BYY) learning with both new insights and new results on not only the discrete state featured Hidden Markov model and extensions but also the continuous state featured linear state spaces and extensions, especially with a new learning mechanism that makes selection of the state number or the dimension of state space either automatically during adaptive learning or subsequently after learning via model selection criteria obtained from this mechanism. Experiments are demonstrated to show how the proposed approach works.

  7. Quantitative Determination of NTA and Other Chelating Agents in Detergents by Potentiometric Titration with Copper Ion Selective Electrode.

    PubMed

    Ito, Sana; Morita, Masaki

    2016-01-01

    Quantitative analysis of nitrilotriacetate (NTA) in detergents by titration with Cu 2+ solution using a copper ion selective electrode was achieved. This method tolerates a wide range of pH and ingredients in detergents. In addition to NTA, other chelating agents, having relatively lower stability constants toward Cu 2+ , were also qualified with sufficient accuracy by this analytical method for model detergent formulations. The titration process was automated by automatic titrating systems available commercially.

  8. Automatic learning-based beam angle selection for thoracic IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amit, Guy; Marshall, Andrea; Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca

    Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationallymore » efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume coverage and organ at risk sparing and were superior over plans produced with fixed sets of common beam angles. The great majority of the automatic plans (93%) were approved as clinically acceptable by three radiation therapy specialists. Conclusions: The results demonstrated the feasibility of utilizing a learning-based approach for automatic selection of beam angles in thoracic IMRT planning. The proposed method may assist in reducing the manual planning workload, while sustaining plan quality.« less

  9. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  10. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  11. [Research on direct forming of comminuted fracture surgery orienting model by selective laser melting].

    PubMed

    He, Xingrong; Yang, Yongqiang; Wu, Weihui; Wang, Di; Ding, Huanwen; Huang, Weihong

    2010-06-01

    In order to simplify the distal femoral comminuted fracture surgery and improve the accuracy of the parts to be reset, a kind of surgery orienting model for the surgery operation was designed according to the scanning data of computer tomography and the three-dimensional reconstruction image. With the use of DiMetal-280 selective laser melting rapid prototyping system, the surgery orienting model of 316L stainless steel was made through orthogonal experiment for processing parameter optimization. The technology of direct manufacturing of surgery orienting model by selective laser melting was noted to have obvious superiority with high speed, precise profile and good accuracy in size when compared with the conventional one. The model was applied in a real surgical operation for thighbone replacement; it worked well. The successful development of the model provides a new method for the automatic manufacture of customized surgery model, thus building a foundation for more clinical applications in the future.

  12. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.

    PubMed

    Brown, Andrew D; Marotta, Thomas R

    2018-05-01

    Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both wasted health care resources and patient harm. We present a machine learning method for analyzing the unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI) orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning models - support vector machine, gradient boosting machine, and random forest - to a baseline model that predicted the most common protocol for all observations in our test set. The gradient boosting machine model significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of automating sequence selection by applying machine learning to MRI orders. Automated sequence selection has important safety, quality, and financial implications and may facilitate improvements in the quality and safety of medical imaging service delivery.

  13. Intelligent scanning: automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination.

    PubMed

    Zhang, Ling; Chen, Siping; Chin, Chien Ting; Wang, Tianfu; Li, Shengli

    2012-08-01

    To assist radiologists and decrease interobserver variability when using 2D ultrasonography (US) to locate the standardized plane of early gestational sac (SPGS) and to perform gestational sac (GS) biometric measurements. In this paper, the authors report the design of the first automatic solution, called "intelligent scanning" (IS), for selecting SPGS and performing biometric measurements using real-time 2D US. First, the GS is efficiently and precisely located in each ultrasound frame by exploiting a coarse to fine detection scheme based on the training of two cascade AdaBoost classifiers. Next, the SPGS are automatically selected by eliminating false positives. This is accomplished using local context information based on the relative position of anatomies in the image sequence. Finally, a database-guided multiscale normalized cuts algorithm is proposed to generate the initial contour of the GS, based on which the GS is automatically segmented for measurement by a modified snake model. This system was validated on 31 ultrasound videos involving 31 pregnant volunteers. The differences between system performance and radiologist performance with respect to SPGS selection and length and depth (diameter) measurements are 7.5% ± 5.0%, 5.5% ± 5.2%, and 6.5% ± 4.6%, respectively. Additional validations prove that the IS precision is in the range of interobserver variability. Our system can display the SPGS along with biometric measurements in approximately three seconds after the video ends, when using a 1.9 GHz dual-core computer. IS of the GS from 2D real-time US is a practical, reproducible, and reliable approach.

  14. Pse-Analysis: a python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods.

    PubMed

    Liu, Bin; Wu, Hao; Zhang, Deyuan; Wang, Xiaolong; Chou, Kuo-Chen

    2017-02-21

    To expedite the pace in conducting genome/proteome analysis, we have developed a Python package called Pse-Analysis. The powerful package can automatically complete the following five procedures: (1) sample feature extraction, (2) optimal parameter selection, (3) model training, (4) cross validation, and (5) evaluating prediction quality. All the work a user needs to do is to input a benchmark dataset along with the query biological sequences concerned. Based on the benchmark dataset, Pse-Analysis will automatically construct an ideal predictor, followed by yielding the predicted results for the submitted query samples. All the aforementioned tedious jobs can be automatically done by the computer. Moreover, the multiprocessing technique was adopted to enhance computational speed by about 6 folds. The Pse-Analysis Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/Pse-Analysis/, and can be directly run on Windows, Linux, and Unix.

  15. A two-dimensional air-to-air combat game - Toward an air-combat advisory system

    NASA Technical Reports Server (NTRS)

    Neuman, Frank

    1987-01-01

    Air-to-air combat is modeled as a discrete differential game, and by constraining the game to searching for the best guidance laws from the sets of those considered for each opponent, feedback and outcome charts are obtained which can be used to turn one of the automatic opponents into an intelligent opponent against a human pilot. A one-on-one two-dimensional fully automatic, or manned versus automatic, air-to-air combat game has been designed which includes both attack and evasion alternatives for both aircraft. Guidance law selection occurs by flooding the initial-condition space with four simulated fights for each initial condition, depicting the various attack/evasion strategies for the two opponents, and recording the outcomes. For each initial condition, the minimax method from differential games is employed to determine the best choice from the available strategies.

  16. Building a Better Model: A Comprehensive Breast Cancer Risk Model Incorporating Breast Density to Stratify Risk and Apply Resources

    DTIC Science & Technology

    2014-10-01

    variability with well trained readers. Figure 7: comparison between the PD (percent density using Cumulus area) and the automatic PD. The...evaluation of outlier correction, comparison of several different software methods, precision measurement, and evaluation of variation by mammography...chart review for selected cases (month 4-6). Comparison of information from the Breast Cancer Database and medical records showed good consistency

  17. Fully automatic time-window selection using machine learning for global adjoint tomography

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, J.; Lei, W.; Lefebvre, M. P.; Bozdag, E.; Komatitsch, D.; Tromp, J.

    2017-12-01

    Selecting time windows from seismograms such that the synthetic measurements (from simulations) and measured observations are sufficiently close is indispensable in a global adjoint tomography framework. The increasing amount of seismic data collected everyday around the world demands "intelligent" algorithms for seismic window selection. While the traditional FLEXWIN algorithm can be "automatic" to some extent, it still requires both human input and human knowledge or experience, and thus is not deemed to be fully automatic. The goal of intelligent window selection is to automatically select windows based on a learnt engine that is built upon a huge number of existing windows generated through the adjoint tomography project. We have formulated the automatic window selection problem as a classification problem. All possible misfit calculation windows are classified as either usable or unusable. Given a large number of windows with a known selection mode (select or not select), we train a neural network to predict the selection mode of an arbitrary input window. Currently, the five features we extract from the windows are its cross-correlation value, cross-correlation time lag, amplitude ratio between observed and synthetic data, window length, and minimum STA/LTA value. More features can be included in the future. We use these features to characterize each window for training a multilayer perceptron neural network (MPNN). Training the MPNN is equivalent to solve a non-linear optimization problem. We use backward propagation to derive the gradient of the loss function with respect to the weighting matrices and bias vectors and use the mini-batch stochastic gradient method to iteratively optimize the MPNN. Numerical tests show that with a careful selection of the training data and a sufficient amount of training data, we are able to train a robust neural network that is capable of detecting the waveforms in an arbitrary earthquake data with negligible detection error compared to existing selection methods (e.g. FLEXWIN). We will introduce in detail the mathematical formulation of the window-selection-oriented MPNN and show very encouraging results when applying the new algorithm to real earthquake data.

  18. Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle

    PubMed Central

    Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.

    2011-01-01

    Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877

  19. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  20. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  1. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatic interlocking. (a) The control circuits for aspects with indications more favorable than “proceed... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits, selection through track... automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation...

  2. Automatic Text Analysis Based on Transition Phenomena of Word Occurrences

    ERIC Educational Resources Information Center

    Pao, Miranda Lee

    1978-01-01

    Describes a method of selecting index terms directly from a word frequency list, an idea originally suggested by Goffman. Results of the analysis of word frequencies of two articles seem to indicate that the automated selection of index terms from a frequency list holds some promise for automatic indexing. (Author/MBR)

  3. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgmans, Mark Christiaan, E-mail: m.c.burgmans@lumc.nl; Harder, J. Michiel den, E-mail: chiel.den.harder@gmail.com; Meershoek, Philippa, E-mail: P.Meershoek@lumc.nl

    PurposeTo determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions.Materials and MethodsCT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined bymore » measurement of the residual displacement in phantom lesions by two independent observers.ResultsMean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values.ConclusionThe accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.« less

  4. A simulation evaluation of a pilot interface with an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1987-01-01

    The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.

  5. WE-AB-209-05: Development of an Ultra-Fast High Quality Whole Breast Radiotherapy Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Li, T; Yoo, S

    2016-06-15

    Purpose: To enable near-real-time (<20sec) and interactive planning without compromising quality for whole breast RT treatment planning using tangential fields. Methods: Whole breast RT plans from 20 patients treated with single energy (SE, 6MV, 10 patients) or mixed energy (ME, 6/15MV, 10 patients) were randomly selected for model training. Additional 20 cases were used as validation cohort. The planning process for a new case consists of three fully automated steps:1. Energy Selection. A classification model automatically selects energy level. To build the energy selection model, principle component analysis (PCA) was applied to the digital reconstructed radiographs (DRRs) of training casesmore » to extract anatomy-energy relationship.2. Fluence Estimation. Once energy is selected, a random forest (RF) model generates the initial fluence. This model summarizes the relationship between patient anatomy’s shape based features and the output fluence. 3. Fluence Fine-tuning. This step balances the overall dose contribution throughout the whole breast tissue by automatically selecting reference points and applying centrality correction. Fine-tuning works at beamlet-level until the dose distribution meets clinical objectives. Prior to finalization, physicians can also make patient-specific trade-offs between target coverage and high-dose volumes.The proposed method was validated by comparing auto-plans with manually generated clinical-plans using Wilcoxon Signed-Rank test. Results: In 19/20 cases the model suggested the same energy combination as clinical-plans. The target volume coverage V100% was 78.1±4.7% for auto-plans, and 79.3±4.8% for clinical-plans (p=0.12). Volumes receiving 105% Rx were 69.2±78.0cc for auto-plans compared to 83.9±87.2cc for clinical-plans (p=0.13). The mean V10Gy, V20Gy of the ipsilateral lung was 24.4±6.7%, 18.6±6.0% for auto plans and 24.6±6.7%, 18.9±6.1% for clinical-plans (p=0.04, <0.001). Total computational time for auto-plans was < 20s. Conclusion: We developed an automated method that generates breast radiotherapy plans with accurate energy selection, similar target volume coverage, reduced hotspot volumes, and significant reduction in planning time, allowing for near-real-time planning.« less

  6. DIRT: The Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, M. W.; Wolfire, M. G.; Mundy, L. G.; Teuben, P. J.; Lord, S.

    We present DIRT, a Java applet geared toward modeling a variety of processes in envelopes of young and evolved stars. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. The computing cluster for the database is described in the accompanying paper by Teuben et al. (2000). A typical user query will return about 50-100 models, which the user can then interactively filter as a function of 8 model parameters (e.g., extinction, size, flux, luminosity). A flexible, multi-dimensional plotter (Figure 1) allows users to view the models, rotate them, tag specific parameters with color or symbol size, and probe individual model points. For any given model, auxiliary plots such as dust grain properties, radial intensity profiles, and the flux as a function of wavelength and beamsize can be viewed. The user can fit observed data to several models simultaneously and see the results of the fit; the best fit is automatically selected for plotting. The URL for this project is http://dustem.astro.umd.edu.

  7. Automatic home medical product recommendation.

    PubMed

    Luo, Gang; Thomas, Selena B; Tang, Chunqiang

    2012-04-01

    Web-based personal health records (PHRs) are being widely deployed. To improve PHR's capability and usability, we proposed the concept of intelligent PHR (iPHR). In this paper, we use automatic home medical product recommendation as a concrete application to demonstrate the benefits of introducing intelligence into PHRs. In this new application domain, we develop several techniques to address the emerging challenges. Our approach uses treatment knowledge and nursing knowledge, and extends the language modeling method to (1) construct a topic-selection input interface for recommending home medical products, (2) produce a global ranking of Web pages retrieved by multiple queries, and (3) provide diverse search results. We demonstrate the effectiveness of our techniques using USMLE medical exam cases.

  8. Threshold automatic selection hybrid phase unwrapping algorithm for digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Min, Junwei; Yao, Baoli; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan

    2015-01-01

    Conventional quality-guided (QG) phase unwrapping algorithm is hard to be applied to digital holographic microscopy because of the long execution time. In this paper, we present a threshold automatic selection hybrid phase unwrapping algorithm that combines the existing QG algorithm and the flood-filled (FF) algorithm to solve this problem. The original wrapped phase map is divided into high- and low-quality sub-maps by selecting a threshold automatically, and then the FF and QG unwrapping algorithms are used in each level to unwrap the phase, respectively. The feasibility of the proposed method is proved by experimental results, and the execution speed is shown to be much faster than that of the original QG unwrapping algorithm.

  9. Towards an automatic statistical model for seasonal precipitation prediction and its application to Central and South Asian headwater catchments

    NASA Astrophysics Data System (ADS)

    Gerlitz, Lars; Gafurov, Abror; Apel, Heiko; Unger-Sayesteh, Katy; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    Statistical climate forecast applications typically utilize a small set of large scale SST or climate indices, such as ENSO, PDO or AMO as predictor variables. If the predictive skill of these large scale modes is insufficient, specific predictor variables such as customized SST patterns are frequently included. Hence statistically based climate forecast models are either based on a fixed number of climate indices (and thus might not consider important predictor variables) or are highly site specific and barely transferable to other regions. With the aim of developing an operational seasonal forecast model, which is easily transferable to any region in the world, we present a generic data mining approach which automatically selects potential predictors from gridded SST observations and reanalysis derived large scale atmospheric circulation patterns and generates robust statistical relationships with posterior precipitation anomalies for user selected target regions. Potential predictor variables are derived by means of a cellwise correlation analysis of precipitation anomalies with gridded global climate variables under consideration of varying lead times. Significantly correlated grid cells are subsequently aggregated to predictor regions by means of a variability based cluster analysis. Finally for every month and lead time, an individual random forest based forecast model is automatically calibrated and evaluated by means of the preliminary generated predictor variables. The model is exemplarily applied and evaluated for selected headwater catchments in Central and South Asia. Particularly the for winter and spring precipitation (which is associated with westerly disturbances in the entire target domain) the model shows solid results with correlation coefficients up to 0.7, although the variability of precipitation rates is highly underestimated. Likewise for the monsoonal precipitation amounts in the South Asian target areas a certain skill of the model could be detected. The skill of the model for the dry summer season in Central Asia and the transition seasons over South Asia is found to be low. A sensitivity analysis by means on well known climate indices reveals the major large scale controlling mechanisms for the seasonal precipitation climate of each target area. For the Central Asian target areas, both, the El Nino Southern Oscillation and the North Atlantic Oscillation are identified as important controlling factors for precipitation totals during moist spring season. Drought conditions are found to be triggered by a warm ENSO phase in combination with a positive phase of the NAO. For the monsoonal summer precipitation amounts over Southern Asia, the model suggests a distinct negative response to El Nino events.

  10. Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin

    2016-01-01

    Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.

  11. Automatic allograft bone selection through band registration and its application to distal femur.

    PubMed

    Zhang, Yu; Qiu, Lei; Li, Fengzan; Zhang, Qing; Zhang, Li; Niu, Xiaohui

    2017-09-01

    Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.

  12. Automatic reconstruction of the muscle architecture from the superficial layer fibres data.

    PubMed

    Kohout, Josef; Cholt, David

    2017-10-01

    Physiological cross-sectional area (PCSA) of a muscle plays a significant role in determining the force contribution of muscle fascicles to skeletal movement. This parameter is typically calculated from the lengths of muscle fibres selectively sampled from the superficial layer of the muscle. However, recent studies have found that the length of fibres in the superficial layer often differs significantly (p < 0.5) from the length of fibres in the deep layer. As a result, PCSA estimation is inaccurate. In this paper, we propose a method to automatically reconstruct fibres in the whole volume of a muscle from those selectively sampled on the superficial layer. The method performs a centripetal Catmull-Rom interpolation of the input fibres within the volume of a muscle represented by its 3D surface model, automatically distributing the fibres among multiple heads of the muscle and shortening the deep fibres to support large attachment areas with extremely acute angles. Our C++ implementation runs in a couple of seconds on commodity hardware providing realistic results for both artificial and real data sets we tested. The fibres produced by the method can be used directly to determine the personalised mechanical muscle functioning. Our implementation is publicly available for the researchers at https://mi.kiv.zcu.cz/. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Grohar: Automated Visualization of Genome-Scale Metabolic Models and Their Pathways.

    PubMed

    Moškon, Miha; Zimic, Nikolaj; Mraz, Miha

    2018-05-01

    Genome-scale metabolic models (GEMs) have become a powerful tool for the investigation of the entire metabolism of the organism in silico. These models are, however, often extremely hard to reconstruct and also difficult to apply to the selected problem. Visualization of the GEM allows us to easier comprehend the model, to perform its graphical analysis, to find and correct the faulty relations, to identify the parts of the system with a designated function, etc. Even though several approaches for the automatic visualization of GEMs have been proposed, metabolic maps are still manually drawn or at least require large amount of manual curation. We present Grohar, a computational tool for automatic identification and visualization of GEM (sub)networks and their metabolic fluxes. These (sub)networks can be specified directly by listing the metabolites of interest or indirectly by providing reference metabolic pathways from different sources, such as KEGG, SBML, or Matlab file. These pathways are identified within the GEM using three different pathway alignment algorithms. Grohar also supports the visualization of the model adjustments (e.g., activation or inhibition of metabolic reactions) after perturbations are induced.

  14. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

    PubMed

    Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen

    2011-04-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

  15. Surface Estimation, Variable Selection, and the Nonparametric Oracle Property

    PubMed Central

    Storlie, Curtis B.; Bondell, Howard D.; Reich, Brian J.; Zhang, Hao Helen

    2010-01-01

    Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting. PMID:21603586

  16. Parameter estimation procedure for complex non-linear systems: calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K

    2001-01-01

    When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable.

  17. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben

    2015-08-01

    Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.

  18. Predicting the accuracy of ligand overlay methods with Random Forest models.

    PubMed

    Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J

    2008-12-01

    The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.

  19. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.

  20. The Researching on Evaluation of Automatic Voltage Control Based on Improved Zoning Methodology

    NASA Astrophysics Data System (ADS)

    Xiao-jun, ZHU; Ang, FU; Guang-de, DONG; Rui-miao, WANG; De-fen, ZHU

    2018-03-01

    According to the present serious phenomenon of increasing size and structure of power system, hierarchically structured automatic voltage control(AVC) has been the researching spot. In the paper, the reduced control model is built and the adaptive reduced control model is researched to improve the voltage control effect. The theories of HCSD, HCVS, SKC and FCM are introduced and the effect on coordinated voltage regulation caused by different zoning methodologies is also researched. The generic framework for evaluating performance of coordinated voltage regulation is built. Finally, the IEEE-96 stsyem is used to divide the network. The 2383-bus Polish system is built to verify that the selection of a zoning methodology affects not only the coordinated voltage regulation operation, but also its robustness to erroneous data and proposes a comprehensive generic framework for evaluating its performance. The New England 39-bus network is used to verify the adaptive reduced control models’ performance.

  1. Using genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Horton, Pascal; Jaboyedoff, Michel; Obled, Charles

    2018-01-01

    Analogue methods provide a statistical precipitation prediction based on synoptic predictors supplied by general circulation models or numerical weather prediction models. The method samples a selection of days in the archives that are similar to the target day to be predicted, and consider their set of corresponding observed precipitation (the predictand) as the conditional distribution for the target day. The relationship between the predictors and predictands relies on some parameters that characterize how and where the similarity between two atmospheric situations is defined. This relationship is usually established by a semi-automatic sequential procedure that has strong limitations: (i) it cannot automatically choose the pressure levels and temporal windows (hour of the day) for a given meteorological variable, (ii) it cannot handle dependencies between parameters, and (iii) it cannot easily handle new degrees of freedom. In this work, a global optimization approach relying on genetic algorithms could optimize all parameters jointly and automatically. The global optimization was applied to some variants of the analogue method for the Rhône catchment in the Swiss Alps. The performance scores increased compared to reference methods, especially for days with high precipitation totals. The resulting parameters were found to be relevant and coherent between the different subregions of the catchment. Moreover, they were obtained automatically and objectively, which reduces the effort that needs to be invested in exploration attempts when adapting the method to a new region or for a new predictand. For example, it obviates the need to assess a large number of combinations of pressure levels and temporal windows of predictor variables that were manually selected beforehand. The optimization could also take into account parameter inter-dependencies. In addition, the approach allowed for new degrees of freedom, such as a possible weighting between pressure levels, and non-overlapping spatial windows.

  2. A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data.

    PubMed

    Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C

    2016-08-01

    Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Automatic 3D Moment tensor inversions for southern California earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Friberg, P.; Tromp, J.

    2008-12-01

    We present a new source mechanism (moment-tensor and depth) catalog for about 150 recent southern California earthquakes with Mw ≥ 3.5. We carefully select the initial solutions from a few available earthquake catalogs as well as our own preliminary 3D moment tensor inversion results. We pick useful data windows by assessing the quality of fits between the data and synthetics using an automatic windowing package FLEXWIN (Maggi et al 2008). We compute the source Fréchet derivatives of moment-tensor elements and depth for a recent 3D southern California velocity model inverted based upon finite-frequency event kernels calculated by the adjoint methods and a nonlinear conjugate gradient technique with subspace preconditioning (Tape et al 2008). We then invert for the source mechanisms and event depths based upon the techniques introduced by Liu et al 2005. We assess the quality of this new catalog, as well as the other existing ones, by computing the 3D synthetics for the updated 3D southern California model. We also plan to implement the moment-tensor inversion methods to automatically determine the source mechanisms for earthquakes with Mw ≥ 3.5 in southern California.

  4. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    NASA Astrophysics Data System (ADS)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  5. Content-based analysis of Ki-67 stained meningioma specimens for automatic hot-spot selection.

    PubMed

    Swiderska-Chadaj, Zaneta; Markiewicz, Tomasz; Grala, Bartlomiej; Lorent, Malgorzata

    2016-10-07

    Hot-spot based examination of immunohistochemically stained histological specimens is one of the most important procedures in pathomorphological practice. The development of image acquisition equipment and computational units allows for the automation of this process. Moreover, a lot of possible technical problems occur in everyday histological material, which increases the complexity of the problem. Thus, a full context-based analysis of histological specimens is also needed in the quantification of immunohistochemically stained specimens. One of the most important reactions is the Ki-67 proliferation marker in meningiomas, the most frequent intracranial tumour. The aim of our study is to propose a context-based analysis of Ki-67 stained specimens of meningiomas for automatic selection of hot-spots. The proposed solution is based on textural analysis, mathematical morphology, feature ranking and classification, as well as on the proposed hot-spot gradual extinction algorithm to allow for the proper detection of a set of hot-spot fields. The designed whole slide image processing scheme eliminates such artifacts as hemorrhages, folds or stained vessels from the region of interest. To validate automatic results, a set of 104 meningioma specimens were selected and twenty hot-spots inside them were identified independently by two experts. The Spearman rho correlation coefficient was used to compare the results which were also analyzed with the help of a Bland-Altman plot. The results show that most of the cases (84) were automatically examined properly with two fields of view with a technical problem at the very most. Next, 13 had three such fields, and only seven specimens did not meet the requirement for the automatic examination. Generally, the Automatic System identifies hot-spot areas, especially their maximum points, better. Analysis of the results confirms the very high concordance between an automatic Ki-67 examination and the expert's results, with a Spearman rho higher than 0.95. The proposed hot-spot selection algorithm with an extended context-based analysis of whole slide images and hot-spot gradual extinction algorithm provides an efficient tool for simulation of a manual examination. The presented results have confirmed that the automatic examination of Ki-67 in meningiomas could be introduced in the near future.

  6. Patch-Based Generative Shape Model and MDL Model Selection for Statistical Analysis of Archipelagos

    NASA Astrophysics Data System (ADS)

    Ganz, Melanie; Nielsen, Mads; Brandt, Sami

    We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning a patch-based dictionary for possible shapes, (2) building up a time-homogeneous Markov model to model the neighbourhood correlations between the patches, and (3) automatic selection of the model complexity by the minimum description length principle. The generative shape model is proposed as a probability distribution of a binary image where the model is intended to facilitate sequential simulation. Our results show that a relatively simple model is able to generate structures visually similar to calcifications. Furthermore, we used the shape model as a shape prior in the statistical segmentation of calcifications, where the area overlap with the ground truth shapes improved significantly compared to the case where the prior was not used.

  7. Automating the selection of standard parallels for conic map projections

    NASA Astrophysics Data System (ADS)

    Šavriǒ, Bojan; Jenny, Bernhard

    2016-05-01

    Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.

  8. Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction

    PubMed Central

    Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.

    2010-01-01

    We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451

  9. Random forest models to predict aqueous solubility.

    PubMed

    Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O

    2007-01-01

    Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.

  10. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.

    PubMed

    Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed

    2018-01-01

    The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A non-linear data mining parameter selection algorithm for continuous variables

    PubMed Central

    Razavi, Marianne; Brady, Sean

    2017-01-01

    In this article, we propose a new data mining algorithm, by which one can both capture the non-linearity in data and also find the best subset model. To produce an enhanced subset of the original variables, a preferred selection method should have the potential of adding a supplementary level of regression analysis that would capture complex relationships in the data via mathematical transformation of the predictors and exploration of synergistic effects of combined variables. The method that we present here has the potential to produce an optimal subset of variables, rendering the overall process of model selection more efficient. This algorithm introduces interpretable parameters by transforming the original inputs and also a faithful fit to the data. The core objective of this paper is to introduce a new estimation technique for the classical least square regression framework. This new automatic variable transformation and model selection method could offer an optimal and stable model that minimizes the mean square error and variability, while combining all possible subset selection methodology with the inclusion variable transformations and interactions. Moreover, this method controls multicollinearity, leading to an optimal set of explanatory variables. PMID:29131829

  12. Autoclass: An automatic classification system

    NASA Technical Reports Server (NTRS)

    Stutz, John; Cheeseman, Peter; Hanson, Robin

    1991-01-01

    The task of inferring a set of classes and class descriptions most likely to explain a given data set can be placed on a firm theoretical foundation using Bayesian statistics. Within this framework, and using various mathematical and algorithmic approximations, the AutoClass System searches for the most probable classifications, automatically choosing the number of classes and complexity of class descriptions. A simpler version of AutoClass has been applied to many large real data sets, has discovered new independently-verified phenomena, and has been released as a robust software package. Recent extensions allow attributes to be selectively correlated within particular classes, and allow classes to inherit, or share, model parameters through a class hierarchy. The mathematical foundations of AutoClass are summarized.

  13. Processes in the Resolution of Ambiguous Words: Towards a Model of Selective Inhibition. Cognitive Science Program, Technical Report No. 86-6.

    ERIC Educational Resources Information Center

    Yee, Penny L.

    This study investigates the role of specific inhibitory processes in lexical ambiguity resolution. An attentional view of inhibition and a view based on specific automatic inhibition between nodes predict different results when a neutral item is processed between an ambiguous word and a related target. Subjects were 32 English speakers with normal…

  14. Automatic blood vessel based-liver segmentation using the portal phase abdominal CT

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen

    2018-02-01

    Liver segmentation is the basis for computer-based planning of hepatic surgical interventions. In diagnosis and analysis of hepatic diseases and surgery planning, automatic segmentation of liver has high importance. Blood vessel (BV) has showed high performance at liver segmentation. In our previous work, we developed a semi-automatic method that segments the liver through the portal phase abdominal CT images in two stages. First stage was interactive segmentation of abdominal blood vessels (ABVs) and subsequent classification into hepatic (HBVs) and non-hepatic (non-HBVs). This stage had 5 interactions that include selective threshold for bone segmentation, selecting two seed points for kidneys segmentation, selection of inferior vena cava (IVC) entrance for starting ABVs segmentation, identification of the portal vein (PV) entrance to the liver and the IVC-exit for classifying HBVs from other ABVs (non-HBVs). Second stage is automatic segmentation of the liver based on segmented ABVs as described in [4]. For full automation of our method we developed a method [5] that segments ABVs automatically tackling the first three interactions. In this paper, we propose full automation of classifying ABVs into HBVs and non- HBVs and consequently full automation of liver segmentation that we proposed in [4]. Results illustrate that the method is effective at segmentation of the liver through the portal abdominal CT images.

  15. On-line Model Structure Selection for Estimation of Plasma Boundary in a Tokamak

    NASA Astrophysics Data System (ADS)

    Škvára, Vít; Šmídl, Václav; Urban, Jakub

    2015-11-01

    Control of the plasma field in the tokamak requires reliable estimation of the plasma boundary. The plasma boundary is given by a complex mathematical model and the only available measurements are responses of induction coils around the plasma. For the purpose of boundary estimation the model can be reduced to simple linear regression with potentially infinitely many elements. The number of elements must be selected manually and this choice significantly influences the resulting shape. In this paper, we investigate the use of formal model structure estimation techniques for the problem. Specifically, we formulate a sparse least squares estimator using the automatic relevance principle. The resulting algorithm is a repetitive evaluation of the least squares problem which could be computed in real time. Performance of the resulting algorithm is illustrated on simulated data and evaluated with respect to a more detailed and computationally costly model FREEBIE.

  16. Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score

    NASA Astrophysics Data System (ADS)

    Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning

    2017-03-01

    The Gleason grading system was developed for assessing prostate histopathology slides. It is correlated to the outcome and incidence of relapse in prostate cancer. Although this grading is part of a standard protocol performed by pathologists, visual inspection of whole slide images (WSIs) has an inherent subjectivity when evaluated by different pathologists. Computer aided pathology has been proposed to generate an objective and reproducible assessment that can help pathologists in their evaluation of new tissue samples. Deep convolutional neural networks are a promising approach for the automatic classification of histopathology images and can hierarchically learn subtle visual features from the data. However, a large number of manual annotations from pathologists are commonly required to obtain sufficient statistical generalization when training new models that can evaluate the daily generated large amounts of pathology data. A fully automatic approach that detects prostatectomy WSIs with high-grade Gleason score is proposed. We evaluate the performance of various deep learning architectures training them with patches extracted from automatically generated regions-of-interest rather than from manually segmented ones. Relevant parameters for training the deep learning model such as size and number of patches as well as the inclusion or not of data augmentation are compared between the tested deep learning architectures. 235 prostate tissue WSIs with their pathology report from the publicly available TCGA data set were used. An accuracy of 78% was obtained in a balanced set of 46 unseen test images with different Gleason grades in a 2-class decision: high vs. low Gleason grade. Grades 7-8, which represent the boundary decision of the proposed task, were particularly well classified. The method is scalable to larger data sets with straightforward re-training of the model to include data from multiple sources, scanners and acquisition techniques. Automatically generated heatmaps for theWSIs could be useful for improving the selection of patches when training networks for big data sets and to guide the visual inspection of these images.

  17. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  18. A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Hovland, P. D.

    2001-05-01

    Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.

  19. Analysis and Comparison of Some Automatic Vehicle Monitoring Systems

    DOT National Transportation Integrated Search

    1973-07-01

    In 1970 UMTA solicited proposals and selected four companies to develop systems to demonstrate the feasibility of different automatic vehicle monitoring techniques. The demonstrations culminated in experiments in Philadelphia to assess the performanc...

  20. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  1. Thai Automatic Speech Recognition

    DTIC Science & Technology

    2005-01-01

    used in an external DARPA evaluation involving medical scenarios between an American Doctor and a naïve monolingual Thai patient. 2. Thai Language... dictionary generation more challenging, and (3) the lack of word segmentation, which calls for automatic segmentation approaches to make n-gram language...requires a dictionary and provides various segmentation algorithms to automatically select suitable segmentations. Here we used a maximal matching

  2. Automatic assessment of functional health decline in older adults based on smart home data.

    PubMed

    Alberdi Aramendi, Ane; Weakley, Alyssa; Aztiria Goenaga, Asier; Schmitter-Edgecombe, Maureen; Cook, Diane J

    2018-05-01

    In the context of an aging population, tools to help elderly to live independently must be developed. The goal of this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home behavioral data to automatically detect one of the most common consequences of aging: functional health decline. After gathering the longitudinal smart home data of 29 older adults for an average of >2 years, we automatically labeled the data with corresponding activity classes and extracted time-series statistics containing 10 behavioral features. Using this data, we created regression models to predict absolute and standardized functional health scores, as well as classification models to detect reliable absolute change and positive and negative fluctuations in everyday functioning. Functional health was assessed every six months by means of the Instrumental Activities of Daily Living-Compensation (IADL-C) scale. Results show that total IADL-C score and subscores can be predicted by means of activity-aware smart home data, as well as a reliable change in these scores. Positive and negative fluctuations in everyday functioning are harder to detect using in-home behavioral data, yet changes in social skills have shown to be predictable. Future work must focus on improving the sensitivity of the presented models and performing an in-depth feature selection to improve overall accuracy. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Semi-automatic registration of 3D orthodontics models from photographs

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Treuillet, Sylvie; Lucas, Yves; Albouy-Kissi, Benjamin

    2013-03-01

    In orthodontics, a common practice used to diagnose and plan the treatment is the dental cast. After digitization by a CT-scan or a laser scanner, the obtained 3D surface models can feed orthodontics numerical tools for computer-aided diagnosis and treatment planning. One of the pre-processing critical steps is the 3D registration of dental arches to obtain the occlusion of these numerical models. For this task, we propose a vision based method to automatically compute the registration based on photos of patient mouth. From a set of matched singular points between two photos and the dental 3D models, the rigid transformation to apply to the mandible to be in contact with the maxillary may be computed by minimizing the reprojection errors. During a precedent study, we established the feasibility of this visual registration approach with a manual selection of singular points. This paper addresses the issue of automatic point detection. Based on a priori knowledge, histogram thresholding and edge detection are used to extract specific points in 2D images. Concurrently, curvatures information detects 3D corresponding points. To improve the quality of the final registration, we also introduce a combined optimization of the projection matrix with the 2D/3D point positions. These new developments are evaluated on real data by considering the reprojection errors and the deviation angles after registration in respect to the manual reference occlusion realized by a specialist.

  4. From assessment to improvement of elderly care in general practice using decision support to increase adherence to ACOVE quality indicators: study protocol for randomized control trial

    PubMed Central

    2014-01-01

    Background Previous efforts such as Assessing Care of Vulnerable Elders (ACOVE) provide quality indicators for assessing the care of elderly patients, but thus far little has been done to leverage this knowledge to improve care for these patients. We describe a clinical decision support system to improve general practitioner (GP) adherence to ACOVE quality indicators and a protocol for investigating impact on GPs’ adherence to the rules. Design We propose two randomized controlled trials among a group of Dutch GP teams on adherence to ACOVE quality indicators. In both trials a clinical decision support system provides un-intrusive feedback appearing as a color-coded, dynamically updated, list of items needing attention. The first trial pertains to real-time automatically verifiable rules. The second trial concerns non-automatically verifiable rules (adherence cannot be established by the clinical decision support system itself, but the GPs report whether they will adhere to the rules). In both trials we will randomize teams of GPs caring for the same patients into two groups, A and B. For the automatically verifiable rules, group A GPs receive support only for a specific inter-related subset of rules, and group B GPs receive support only for the remainder of the rules. For non-automatically verifiable rules, group A GPs receive feedback framed as actions with positive consequences, and group B GPs receive feedback framed as inaction with negative consequences. GPs indicate whether they adhere to non-automatically verifiable rules. In both trials, the main outcome measure is mean adherence, automatically derived or self-reported, to the rules. Discussion We relied on active end-user involvement in selecting the rules to support, and on a model for providing feedback displayed as color-coded real-time messages concerning the patient visiting the GP at that time, without interrupting the GP’s workflow with pop-ups. While these aspects are believed to increase clinical decision support system acceptance and its impact on adherence to the selected clinical rules, systems with these properties have not yet been evaluated. Trial registration Controlled Trials NTR3566 PMID:24642339

  5. Model selection for clustering of pharmacokinetic responses.

    PubMed

    Guerra, Rui P; Carvalho, Alexandra M; Mateus, Paulo

    2018-08-01

    Pharmacokinetics comprises the study of drug absorption, distribution, metabolism and excretion over time. Clinical pharmacokinetics, focusing on therapeutic management, offers important insights towards personalised medicine through the study of efficacy and toxicity of drug therapies. This study is hampered by subject's high variability in drug blood concentration, when starting a therapy with the same drug dosage. Clustering of pharmacokinetics responses has been addressed recently as a way to stratify subjects and provide different drug doses for each stratum. This clustering method, however, is not able to automatically determine the correct number of clusters, using an user-defined parameter for collapsing clusters that are closer than a given heuristic threshold. We aim to use information-theoretical approaches to address parameter-free model selection. We propose two model selection criteria for clustering pharmacokinetics responses, founded on the Minimum Description Length and on the Normalised Maximum Likelihood. Experimental results show the ability of model selection schemes to unveil the correct number of clusters underlying the mixture of pharmacokinetics responses. In this work we were able to devise two model selection criteria to determine the number of clusters in a mixture of pharmacokinetics curves, advancing over previous works. A cost-efficient parallel implementation in Java of the proposed method is publicly available for the community. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Functional Specificity and Sex Differences in the Neural Circuits Supporting the Inhibition of Automatic Imitation.

    PubMed

    Darda, Kohinoor M; Butler, Emily E; Ramsey, Richard

    2018-06-01

    Humans show an involuntary tendency to copy other people's actions. Although automatic imitation builds rapport and affiliation between individuals, we do not copy actions indiscriminately. Instead, copying behaviors are guided by a selection mechanism, which inhibits some actions and prioritizes others. To date, the neural underpinnings of the inhibition of automatic imitation and differences between the sexes in imitation control are not well understood. Previous studies involved small sample sizes and low statistical power, which produced mixed findings regarding the involvement of domain-general and domain-specific neural architectures. Here, we used data from Experiment 1 ( N = 28) to perform a power analysis to determine the sample size required for Experiment 2 ( N = 50; 80% power). Using independent functional localizers and an analysis pipeline that bolsters sensitivity, during imitation control we show clear engagement of the multiple-demand network (domain-general), but no sensitivity in the theory-of-mind network (domain-specific). Weaker effects were observed with regard to sex differences, suggesting that there are more similarities than differences between the sexes in terms of the neural systems engaged during imitation control. In summary, neurocognitive models of imitation require revision to reflect that the inhibition of imitation relies to a greater extent on a domain-general selection system rather than a domain-specific system that supports social cognition.

  7. Automatic processes in at-risk adolescents: the role of alcohol-approach tendencies and response inhibition in drinking behavior.

    PubMed

    Peeters, Margot; Wiers, Reinout W; Monshouwer, Karin; van de Schoot, Rens; Janssen, Tim; Vollebergh, Wilma A M

    2012-11-01

    This study examined the association between automatic processes and drinking behavior in relation to individual differences in response inhibition in young adolescents who had just started drinking. It was hypothesized that strong automatic behavioral tendencies toward alcohol-related stimuli (alcohol-approach bias) were associated with higher levels of alcohol use, especially amongst adolescents with relatively weak inhibition skills. To test this hypothesis structural equation analyses (standard error of mean) were performed using a zero inflated Poisson (ZIP) model. A well-known problem in studying risk behavior is the low incidence rate resulting in a zero dominated distribution. A ZIP-model accounts for non-normality of the data. Adolescents were selected from secondary Special Education schools (a risk group for the development of substance use problems). Participants were 374 adolescents (mean age of M = 13.6 years). Adolescents completed the alcohol approach avoidance task (a-AAT), the Stroop colour naming task (Stroop) and a questionnaire that assessed alcohol use. The ZIP-model established stronger alcohol-approach tendencies for adolescent drinkers (P < 0.01) and the interaction revealed a stronger effect of alcohol-approach tendencies on alcohol use in the absence of good inhibition skills (P < 0.05). Automatically-activated cognitive processes are associated with the drinking behavior of young, at-risk adolescents. It appears that alcohol-approach tendencies are formed shortly after the initiation of drinking and particularly affect the drinking behavior of adolescents with relatively weak inhibition skills. Implications for the prevention of problem drinking in adolescents are discussed. © 2012 The Authors. Addiction © 2012 Society for the Study of Addiction.

  8. Variable selection with stepwise and best subset approaches

    PubMed Central

    2016-01-01

    While purposeful selection is performed partly by software and partly by hand, the stepwise and best subset approaches are automatically performed by software. Two R functions stepAIC() and bestglm() are well designed for stepwise and best subset regression, respectively. The stepAIC() function begins with a full or null model, and methods for stepwise regression can be specified in the direction argument with character values “forward”, “backward” and “both”. The bestglm() function begins with a data frame containing explanatory variables and response variables. The response variable should be in the last column. Varieties of goodness-of-fit criteria can be specified in the IC argument. The Bayesian information criterion (BIC) usually results in more parsimonious model than the Akaike information criterion. PMID:27162786

  9. Detecting cheaters without thinking: testing the automaticity of the cheater detection module.

    PubMed

    Van Lier, Jens; Revlin, Russell; De Neys, Wim

    2013-01-01

    Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity). This study, using the selection task, tested the critical automaticity assumption in three experiments. Experiments 1 and 2 established that performance on social contract versions did not depend on cognitive capacity or age. Experiment 3 showed that experimentally burdening cognitive resources with a secondary task had no impact on performance on the social contract version. However, in all experiments, performance on a non-social contract version did depend on available cognitive capacity. Overall, findings validate the automatic and effortless nature of social exchange reasoning.

  10. Automatic mathematical modeling for space application

    NASA Technical Reports Server (NTRS)

    Wang, Caroline K.

    1987-01-01

    A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.

  11. Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Shen, Yuzhong

    2011-03-01

    3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.

  12. Timing of repetition suppression of event-related potentials to unattended objects.

    PubMed

    Stefanics, Gabor; Heinzle, Jakob; Czigler, István; Valentini, Elia; Stephan, Klaas Enno

    2018-05-26

    Current theories of object perception emphasize the automatic nature of perceptual inference. Repetition suppression (RS), the successive decrease of brain responses to repeated stimuli, is thought to reflect the optimization of perceptual inference through neural plasticity. While functional imaging studies revealed brain regions that show suppressed responses to the repeated presentation of an object, little is known about the intra-trial time course of repetition effects to everyday objects. Here we used event-related potentials (ERP) to task-irrelevant line-drawn objects, while participants engaged in a distractor task. We quantified changes in ERPs over repetitions using three general linear models (GLM) that modelled RS by an exponential, linear, or categorical "change detection" function in each subject. Our aim was to select the model with highest evidence and determine the within-trial time-course and scalp distribution of repetition effects using that model. Model comparison revealed the superiority of the exponential model indicating that repetition effects are observable for trials beyond the first repetition. Model parameter estimates revealed a sequence of RS effects in three time windows (86-140ms, 322-360ms, and 400-446ms) and with occipital, temporo-parietal, and fronto-temporal distribution, respectively. An interval of repetition enhancement (RE) was also observed (320-340ms) over occipito-temporal sensors. Our results show that automatic processing of task-irrelevant objects involves multiple intervals of RS with distinct scalp topographies. These sequential intervals of RS and RE might reflect the short-term plasticity required for optimization of perceptual inference and the associated changes in prediction errors (PE) and predictions, respectively, over stimulus repetitions during automatic object processing. This article is protected by copyright. All rights reserved. © 2018 The Authors European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre

    NASA Astrophysics Data System (ADS)

    Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip

    2013-04-01

    Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in imperfect conditions. The forecasting model testing centre uses a repository to hold all the data and models and a catalogue to hold all the corresponding metadata. It allows to: Data transfer: Upload experimental data: We have developed FAST (Flexible Automated Streaming Transfer) tool to upload data from RP laboratories to the repository. FAST sets up data transfer requirements and selects automatically the transfer protocol. Metadata are automatically created and stored. Web data access: Create synthetic data: Users can choose a generator and supply parameters. Synthetic data are automatically stored with corresponding metadata. Select data and models: Search the metadata using criteria design for RP. The metadata of each data (synthetic or from laboratory) and models are well-described through their respective catalogues accessible by the web portal. Upload models: Upload and store a model with associated metadata. This provide an opportunity to share models. The web portal solicits and creates metadata describing each model. Run model and visualise results: Selected data and a model to be submitted to a High Performance Computational resource hiding technical details. Results are displayed in accelerated time and stored allowing retrieval, inspection and aggregation. The forecasting model testing centre proposed could be integrated into EPOS. Its expected benefits are: Improved the understanding of brittle failure prediction and its scalability to natural phenomena. Accelerated and extensive testing and rapid sharing of insights. Increased impact and visibility of RP and GeoScience research. Resources for education and training. A key challenge is to agree the framework for sharing RP data and models. Our work is provocative first step.

  14. A Multi Agent System for Flow-Based Intrusion Detection

    DTIC Science & Technology

    2013-03-01

    Student t-test, as it is less likely to spuriously indicate significance because of the presence of outliers [128]. We use the MATLAB ranksum function [77...effectiveness of self-organization and “ entangled hierarchies” for accomplishing scenario objectives. One of the interesting features of SOMAS is the ability...cross-validation and automatic model selection. It has interfaces for Java, Python, R, Splus, MATLAB , Perl, Ruby, and LabVIEW. Kernels: linear

  15. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate final minimum 1D P and S velocity models for the region with appropriate stations corrections. Finally, all the events are relocated with the NonLinLoc algorithm in combination with the updated 1D models. The proposed procedure represents the first step towards uniform earthquake catalog for the entire greater Alpine region using the AASN.

  16. The Lick-Gaertner automatic measuring system

    NASA Technical Reports Server (NTRS)

    Vasilevskis, S.; Popov, W. A.

    1971-01-01

    The Lick-Gaertner automatic equipment has been designed mainly for the measurement of stellar proper motions with reference to galaxies, and consists of two main components: the survey machine and the automatic measuring engine. The survey machine is used for initial inspection and selection of objects for subsequent measurement. Two plates, up to 17 x 17 inches each, are surveyed simultaneously by means of projection on a screen. The approximate positions of objects selected are measured by two optical screws: helical lines cut through an aluminum coating on glass cylinders. These approximate coordinates to a precision of the order of 0.03mm are transmitted to a card punch by encoders connected with the cylinders.

  17. GAMES II Project: a general architecture for medical knowledge-based systems.

    PubMed

    Bruno, F; Kindler, H; Leaning, M; Moustakis, V; Scherrer, J R; Schreiber, G; Stefanelli, M

    1994-10-01

    GAMES II aims at developing a comprehensive and commercially viable methodology to avoid problems ordinarily occurring in KBS development. GAMES II methodology proposes to design a KBS starting from an epistemological model of medical reasoning (the Select and Test Model). The design is viewed as a process of adding symbol level information to the epistemological model. The architectural framework provided by GAMES II integrates the use of different formalisms and techniques providing a large set of tools. The user can select the most suitable one for representing a piece of knowledge after a careful analysis of its epistemological characteristics. Special attention is devoted to the tools dealing with knowledge acquisition (both manual and automatic). A panel of practicing physicians are assessing the medical value of such a framework and its related tools by using it in a practical application.

  18. Automatic selective attention as a function of sensory modality in aging.

    PubMed

    Guerreiro, Maria J S; Adam, Jos J; Van Gerven, Pascal W M

    2012-03-01

    It was recently hypothesized that age-related differences in selective attention depend on sensory modality (Guerreiro, M. J. S., Murphy, D. R., & Van Gerven, P. W. M. (2010). The role of sensory modality in age-related distraction: A critical review and a renewed view. Psychological Bulletin, 136, 975-1022. doi:10.1037/a0020731). So far, this hypothesis has not been tested in automatic selective attention. The current study addressed this issue by investigating age-related differences in automatic spatial cueing effects (i.e., facilitation and inhibition of return [IOR]) across sensory modalities. Thirty younger (mean age = 22.4 years) and 25 older adults (mean age = 68.8 years) performed 4 left-right target localization tasks, involving all combinations of visual and auditory cues and targets. We used stimulus onset asynchronies (SOAs) of 100, 500, 1,000, and 1,500 ms between cue and target. The results showed facilitation (shorter reaction times with valid relative to invalid cues at shorter SOAs) in the unimodal auditory and in both cross-modal tasks but not in the unimodal visual task. In contrast, there was IOR (longer reaction times with valid relative to invalid cues at longer SOAs) in both unimodal tasks but not in either of the cross-modal tasks. Most important, these spatial cueing effects were independent of age. The results suggest that the modality hypothesis of age-related differences in selective attention does not extend into the realm of automatic selective attention.

  19. Pipe leak diagnostic using high frequency piezoelectric pressure sensor and automatic selection of intrinsic mode function

    NASA Astrophysics Data System (ADS)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; Remli, M. A. Pi; Kamarulzaman, M. H.

    2017-10-01

    In a recent study, the analysis of pressure transient signals could be seen as an accurate and low-cost method for leak and feature detection in water distribution systems. Transient phenomena occurs due to sudden changes in the fluid’s propagation in pipelines system caused by rapid pressure and flow fluctuation due to events such as closing and opening valves rapidly or through pump failure. In this paper, the feasibility of the Hilbert-Huang transform (HHT) method/technique in analysing the pressure transient signals in presented and discussed. HHT is a way to decompose a signal into intrinsic mode functions (IMF). However, the advantage of HHT is its difficulty in selecting the suitable IMF for the next data postprocessing method which is Hilbert Transform (HT). This paper reveals that utilizing the application of an integrated kurtosis-based algorithm for a z-filter technique (I-Kaz) to kurtosis ratio (I-Kaz-Kurtosis) allows/contributes to/leads to automatic selection of the IMF that should be used. This technique is demonstrated on a 57.90-meter medium high-density polyethylene (MDPE) pipe installed with a single artificial leak. The analysis results using the I-Kaz-kurtosis ratio revealed/confirmed that the method can be used as an automatic selection of the IMF although the noise level ratio of the signal is low. Therefore, the I-Kaz-kurtosis ratio method is recommended as a means to implement an automatic selection technique of the IMF for HHT analysis.

  20. The development of an automatically produced cholangiography procedure using the reconstruction of portal-phase multidetector-row computed tomography images: preliminary experience.

    PubMed

    Hirose, Tomoaki; Igami, Tsuyoshi; Koga, Kusuto; Hayashi, Yuichiro; Ebata, Tomoki; Yokoyama, Yukihiro; Sugawara, Gen; Mizuno, Takashi; Yamaguchi, Junpei; Mori, Kensaku; Nagino, Masato

    2017-03-01

    Fusion angiography using reconstructed multidetector-row computed tomography (MDCT) images, and cholangiography using reconstructed images from MDCT with a cholangiographic agent include an anatomical gap due to the different periods of MDCT scanning. To conquer such gaps, we attempted to develop a cholangiography procedure that automatically reconstructs a cholangiogram from portal-phase MDCT images. The automatically produced cholangiography procedure utilized an original software program that was developed by the Graduate School of Information Science, Nagoya University. This program structured 5 candidate biliary tracts, and automatically selected one as the candidate for cholangiography. The clinical value of the automatically produced cholangiography procedure was estimated based on a comparison with manually produced cholangiography. Automatically produced cholangiograms were reconstructed for 20 patients who underwent MDCT scanning before biliary drainage for distal biliary obstruction. The procedure showed the ability to extract the 5 main biliary branches and the 21 subsegmental biliary branches in 55 and 25 % of the cases, respectively. The extent of aberrant connections and aberrant extractions outside the biliary tract was acceptable. Among all of the cholangiograms, 5 were clinically applied with no correction, 8 were applied with modest improvements, and 3 produced a correct cholangiography before automatic selection. Although our procedure requires further improvement based on the analysis of additional patient data, it may represent an alternative to direct cholangiography in the future.

  1. Fast function-on-scalar regression with penalized basis expansions.

    PubMed

    Reiss, Philip T; Huang, Lei; Mennes, Maarten

    2010-01-01

    Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.

  2. Use of seatbelts in cars with automatic belts.

    PubMed Central

    Williams, A F; Wells, J K; Lund, A K; Teed, N J

    1992-01-01

    Use of seatbelts in late model cars with automatic or manual belt systems was observed in suburban Washington, DC, Chicago, Los Angeles, and Philadelphia. In cars with automatic two-point belt systems, the use of shoulder belts by drivers was substantially higher than in the same model cars with manual three-point belts. This finding was true in varying degrees whatever the type of automatic belt, including cars with detachable nonmotorized belts, cars with detachable motorized belts, and especially cars with nondetachable motorized belts. Most of these automatic shoulder belts systems include manual lap belts. Use of lap belts was lower in cars with automatic two-point belt systems than in the same model cars with manual three-point belts; precisely how much lower could not be reliably estimated in this survey. Use of shoulder and lap belts was slightly higher in General Motors cars with detachable automatic three-point belts compared with the same model cars with manual three-point belts; in Hondas there was no difference in the rates of use of manual three-point belts and the rates of use of automatic three-point belts. PMID:1561301

  3. Auditory Scene Analysis: An Attention Perspective

    PubMed Central

    2017-01-01

    Purpose This review article provides a new perspective on the role of attention in auditory scene analysis. Method A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal hearing are summarized to demonstrate attention effects on auditory perception—from passive processes that organize unattended input to attention effects that act at different levels of the system. Data will show that attention can sharpen stream organization toward behavioral goals, identify auditory events obscured by noise, and limit passive processing capacity. Conclusions A model of attention is provided that illustrates how the auditory system performs multilevel analyses that involve interactions between stimulus-driven input and top-down processes. Overall, these studies show that (a) stream segregation occurs automatically and sets the basis for auditory event formation; (b) attention interacts with automatic processing to facilitate task goals; and (c) information about unattended sounds is not lost when selecting one organization over another. Our results support a neural model that allows multiple sound organizations to be held in memory and accessed simultaneously through a balance of automatic and task-specific processes, allowing flexibility for navigating noisy environments with competing sound sources. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601618 PMID:29049599

  4. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  5. Automated Drug Identification for Urban Hospitals

    NASA Technical Reports Server (NTRS)

    Shirley, Donna L.

    1971-01-01

    Many urban hospitals are becoming overloaded with drug abuse cases requiring chemical analysis for identification of drugs. In this paper, the requirements for chemical analysis of body fluids for drugs are determined and a system model for automated drug analysis is selected. The system as modeled, would perform chemical preparation of samples, gas-liquid chromatographic separation of drugs in the chemically prepared samples, infrared spectrophotometric analysis of the drugs, and would utilize automatic data processing and control for drug identification. Requirements of cost, maintainability, reliability, flexibility, and operability are considered.

  6. Applying a deep learning based CAD scheme to segment and quantify visceral and subcutaneous fat areas from CT images

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-03-01

    Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.

  7. THE CHOICE OF OPTIMAL STRUCTURE OF ARTIFICIAL NEURAL NETWORK CLASSIFIER INTENDED FOR CLASSIFICATION OF WELDING FLAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, R.; Chady, T.; Baniukiewicz, P.

    2010-02-22

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less

  8. The Choice of Optimal Structure of Artificial Neural Network Classifier Intended for Classification of Welding Flaws

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.

    2010-02-01

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.

  9. Modeling perceived stress via HRV and accelerometer sensor streams.

    PubMed

    Wu, Min; Cao, Hong; Nguyen, Hai-Long; Surmacz, Karl; Hargrove, Caroline

    2015-08-01

    Discovering and modeling of stress patterns of human beings is a key step towards achieving automatic stress monitoring, stress management and healthy lifestyle. As various wearable sensors become popular, it becomes possible for individuals to acquire their own relevant sensory data and to automatically assess their stress level on the go. Previous studies for stress analysis were conducted in the controlled laboratory and clinic settings. These studies are not suitable for stress monitoring in one's daily life as various physical activities may affect the physiological signals. In this paper, we address such issue by integrating two modalities of sensors, i.e., HRV sensors and accelerometers, to monitor the perceived stress levels in daily life. We gathered both the heart and the motion data from 8 participants continuously for about 2 weeks. We then extracted features from both sensory data and compared the existing machine learning methods for learning personalized models to interpret the perceived stress levels. Experimental results showed that Bagging classifier with feature selection is able to achieve a prediction accuracy 85.7%, indicating our stress monitoring on daily basis is fairly practical.

  10. Motion-adaptive model-assisted compatible coding with spatiotemporal scalability

    NASA Astrophysics Data System (ADS)

    Lee, JaeBeom; Eleftheriadis, Alexandros

    1997-01-01

    We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.

  11. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective reviewing. PMID:26812647

  12. A multi-label learning based kernel automatic recommendation method for support vector machine.

    PubMed

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  13. A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine

    PubMed Central

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896

  14. Automatic transducer switching provides accurate wide range measurement of pressure differential

    NASA Technical Reports Server (NTRS)

    Yoder, S. K.

    1967-01-01

    Automatic pressure transducer switching network sequentially selects any one of a number of limited-range transducers as gas pressure rises or falls, extending the range of measurement and lessening the chances of damage due to high pressure.

  15. Automating CPM-GOMS

    NASA Technical Reports Server (NTRS)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2002-01-01

    CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the construction of GOMS models have not yet come into general use.

  16. Applying Hierarchical Model Calibration to Automatically Generated Items.

    ERIC Educational Resources Information Center

    Williamson, David M.; Johnson, Matthew S.; Sinharay, Sandip; Bejar, Isaac I.

    This study explored the application of hierarchical model calibration as a means of reducing, if not eliminating, the need for pretesting of automatically generated items from a common item model prior to operational use. Ultimately the successful development of automatic item generation (AIG) systems capable of producing items with highly similar…

  17. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  18. Selected Topics from LVCSR Research for Asian Languages at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Furui, Sadaoki

    This paper presents our recent work in regard to building Large Vocabulary Continuous Speech Recognition (LVCSR) systems for the Thai, Indonesian, and Chinese languages. For Thai, since there is no word boundary in the written form, we have proposed a new method for automatically creating word-like units from a text corpus, and applied topic and speaking style adaptation to the language model to recognize spoken-style utterances. For Indonesian, we have applied proper noun-specific adaptation to acoustic modeling, and rule-based English-to-Indonesian phoneme mapping to solve the problem of large variation in proper noun and English word pronunciation in a spoken-query information retrieval system. In spoken Chinese, long organization names are frequently abbreviated, and abbreviated utterances cannot be recognized if the abbreviations are not included in the dictionary. We have proposed a new method for automatically generating Chinese abbreviations, and by expanding the vocabulary using the generated abbreviations, we have significantly improved the performance of spoken query-based search.

  19. Real Time Computation of Kinetic Constraints to Support Equilibrium Reconstruction

    NASA Astrophysics Data System (ADS)

    Eggert, W. J.; Kolemen, E.; Eldon, D.

    2016-10-01

    A new method for quickly and automatically applying kinetic constraints to EFIT equilibrium reconstructions using readily available data is presented. The ultimate goal is to produce kinetic equilibrium reconstructions in real time and use them to constrain the DCON stability code as part of a disruption avoidance scheme. A first effort presented here replaces CPU-time expensive modules, such as the fast ion pressure profile calculation, with a simplified model. We show with a DIII-D database analysis that we can achieve reasonable predictions for selected applications by modeling the fast ion pressure profile and determining the fit parameters as functions of easily measured quantities including neutron rate and electron temperature on axis. Secondly, we present a strategy for treating Thomson scattering and Charge Exchange Recombination data to automatically form constraints for a kinetic equilibrium reconstruction, a process that historically was performed by hand. Work supported by US DOE DE-AC02-09CH11466 and DE-FC02-04ER54698.

  20. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.

    PubMed

    Mento, Giovanni

    2017-12-01

    A main distinction has been proposed between voluntary and automatic mechanisms underlying temporal orienting (TO) of selective attention. Voluntary TO implies the endogenous directing of attention induced by symbolic cues. Conversely, automatic TO is exogenously instantiated by the physical properties of stimuli. A well-known example of automatic TO is sequential effects (SEs), which refer to the adjustments in participants' behavioral performance as a function of the trial-by-trial sequential distribution of the foreperiod between two stimuli. In this study a group of healthy adults underwent a cued reaction time task purposely designed to assess both voluntary and automatic TO. During the task, both post-cue and post-target event-related potentials (ERPs) were recorded by means of a high spatial resolution EEG system. In the results of the post-cue analysis, the P3a and P3b were identified as two distinct ERP markers showing distinguishable spatiotemporal features and reflecting automatic and voluntary a priori expectancy generation, respectively. The brain source reconstruction further revealed that distinct cortical circuits supported these two temporally dissociable components. Namely, the voluntary P3b was supported by a left sensorimotor network, while the automatic P3a was generated by a more distributed frontoparietal circuit. Additionally, post-cue contingent negative variation (CNV) and post-target P3 modulations were observed as common markers of voluntary and automatic expectancy implementation and response selection, although partially dissociable neural networks subserved these two mechanisms. Overall, these results provide new electrophysiological evidence suggesting that distinct neural substrates can be recruited depending on the voluntary or automatic cognitive nature of the cognitive mechanisms subserving TO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Choosing face: The curse of self in profile image selection.

    PubMed

    White, David; Sutherland, Clare A M; Burton, Amy L

    2017-01-01

    People draw automatic social inferences from photos of unfamiliar faces and these first impressions are associated with important real-world outcomes. Here we examine the effect of selecting online profile images on first impressions. We model the process of profile image selection by asking participants to indicate the likelihood that images of their own face ("self-selection") and of an unfamiliar face ("other-selection") would be used as profile images on key social networking sites. Across two large Internet-based studies (n = 610), in line with predictions, image selections accentuated favorable social impressions and these impressions were aligned to the social context of the networking sites. However, contrary to predictions based on people's general expertise in self-presentation, other-selected images conferred more favorable impressions than self-selected images. We conclude that people make suboptimal choices when selecting their own profile pictures, such that self-perception places important limits on facial first impressions formed by others. These results underscore the dynamic nature of person perception in real-world contexts.

  2. Minimum Energy Routing through Interactive Techniques (MERIT) modeling

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1988-01-01

    The MERIT program is designed to demonstrate the feasibility of fuel savings by airlines through improved route selection using wind observations from their own fleet. After a discussion of weather and aircraft data, manually correcting wind fields, automatic corrections to wind fields, and short-range prediction models, it is concluded that improvements in wind information are possible if a system is developed for analyzing wind observations and correcting the forecasts made by the major models. One data handling system, McIDAS, can easily collect and display wind observations and model forecasts. Changing the wind forecasts beyond the time of the most recent observations is more difficult; an Australian Mesoscale Model was tested with promising but not definitive results.

  3. Automatic selection of dynamic data partitioning schemes for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Palermo, Daniel J.; Banerjee, Prithviraj

    1995-01-01

    For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given application is crucial to obtaining high performance. This task has traditionally been the user's responsibility, but in recent years much effort has been directed to automating the selection of data partitioning schemes. Several researchers have proposed systems that are able to produce data distributions that remain in effect for the entire execution of an application. For complex programs, however, such static data distributions may be insufficient to obtain acceptable performance. The selection of distributions that dynamically change over the course of a program's execution adds another dimension to the data partitioning problem. In this paper, we present a technique that can be used to automatically determine which partitionings are most beneficial over specific sections of a program while taking into account the added overhead of performing redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler for DIstributed memory General-purpose Multicomputers) project at the University of Illinois. The complete system will provide a fully automated means to parallelize programs written in a serial programming model obtaining high performance on a wide range of distributed-memory multicomputers.

  4. User Guide for the Anvil Threat Cooridor Forecast Tool V2.4 for AWIPS

    NASA Technical Reports Server (NTRS)

    Barett, Joe H., III; Bauman, William H., III

    2008-01-01

    The Anvil Tool GUI allows users to select a Data Type, toggle the map refresh on/off, place labels, and choose the Profiler Type (source of the KSC 50 MHz profiler data), the Date- Time of the data, the Center of Plot, and the Station (location of the RAOB or 50 MHz profiler). If the Data Type is Models, the user selects a Fcst Hour (forecast hour) instead of Station. There are menus for User Profiles, Circle Label Options, and Frame Label Options. Labels can be placed near the center circle of the plot and/or at a specified distance and direction from the center of the circle (Center of Plot). The default selection for the map refresh is "ON". When the user creates a new Anvil Tool map with Refresh Map "ON, the plot is automatically displayed in the AWIPS frame. If another Anvil Tool map is already displayed and the user does not change the existing map number shown at the bottom of the GUI, the new Anvil Tool map will overwrite the old one. If the user turns the Refresh Map "OFF", the new Anvil Tool map is created but not automatically displayed. The user can still display the Anvil Tool map through the Maps dropdown menu* as shown in Figure 4.

  5. [Development of an automatic vacuum liquid chromatographic device and its application in the separation of the components from Schisandra chinensis (Turz) Baill].

    PubMed

    Zhu, Jingbo; Liu, Baoyue; Shan, Shibo; Ding, Yanl; Kou, Zinong; Xiao, Wei

    2015-08-01

    In order to meet the needs of efficient purification of products from natural resources, this paper developed an automatic vacuum liquid chromatographic device (AUTO-VLC) and applied it to the component separation of petroleum ether extracts of Schisandra chinensis (Turcz) Baill. The device was comprised of a solvent system, a 10-position distribution valve, a 3-position changes valve, dynamic axis compress chromatographic columns with three diameters, and a 10-position fraction valve. The programmable logic controller (PLC) S7- 200 was adopted to realize the automatic control and monitoring of the mobile phase changing, column selection, separation time setting and fraction collection. The separation results showed that six fractions (S1-S6) of different chemical components from 100 g Schisandra chinensis (Turcz) Baill. petroleum ether phase were obtained by the AUTO-VLC with 150 mm diameter dynamic axis compress chromatographic column. A new method used for the VLC separation parameters screened by using multiple development TLC was developed and confirmed. The initial mobile phase of AUTO-VLC was selected by taking Rf of all the target compounds ranging from 0 to 0.45 for fist development on the TLC; gradient elution ratio was selected according to k value (the slope of the linear function of Rf value and development times on the TLC) and the resolution of target compounds; elution times (n) were calculated by the formula n ≈ ΔRf/k. A total of four compounds with the purity more than 85% and 13 other components were separated from S5 under the selected conditions for only 17 h. Therefore, the development of the automatic VLC and its method are significant to the automatic and systematic separation of traditional Chinese medicines.

  6. Comparison of automatic procedures in the selection of peaks over threshold in flood frequency analysis: A Canadian case study in the context of climate change

    NASA Astrophysics Data System (ADS)

    Durocher, M.; Mostofi Zadeh, S.; Burn, D. H.; Ashkar, F.

    2017-12-01

    Floods are one of the most costly hazards and frequency analysis of river discharges is an important part of the tools at our disposal to evaluate their inherent risks and to provide an adequate response. In comparison to the common examination of annual streamflow maximums, peaks over threshold (POT) is an interesting alternative that makes better use of the available information by including more than one flood event per year (on average). However, a major challenge is the selection of a satisfactory threshold above which peaks are assumed to respect certain conditions necessary for an adequate estimation of the risk. Additionally, studies have shown that POT is also a valuable approach to investigate the evolution of flood regimes in the context of climate change. Recently, automatic procedures for the selection of the threshold were suggested to guide that important choice, which otherwise rely on graphical tools and expert judgment. Furthermore, having an automatic procedure that is objective allows for quickly repeating the analysis on a large number of samples, which is useful in the context of large databases or for uncertainty analysis based on a resampling approach. This study investigates the impact of considering such procedures in a case study including many sites across Canada. A simulation study is conducted to evaluate the bias and predictive power of the automatic procedures in similar conditions as well as investigating the power of derived nonstationarity tests. The results obtained are also evaluated in the light of expert judgments established in a previous study. Ultimately, this study provides a thorough examination of the considerations that need to be addressed when conducting POT analysis using automatic threshold selection.

  7. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  8. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  9. SVM-based automatic diagnosis method for keratoconus

    NASA Astrophysics Data System (ADS)

    Gao, Yuhong; Wu, Qiang; Li, Jing; Sun, Jiande; Wan, Wenbo

    2017-06-01

    Keratoconus is a progressive cornea disease that can lead to serious myopia and astigmatism, or even to corneal transplantation, if it becomes worse. The early detection of keratoconus is extremely important to know and control its condition. In this paper, we propose an automatic diagnosis algorithm for keratoconus to discriminate the normal eyes and keratoconus ones. We select the parameters obtained by Oculyzer as the feature of cornea, which characterize the cornea both directly and indirectly. In our experiment, 289 normal cases and 128 keratoconus cases are divided into training and test sets respectively. Far better than other kernels, the linear kernel of SVM has sensitivity of 94.94% and specificity of 97.87% with all the parameters training in the model. In single parameter experiment of linear kernel, elevation with 92.03% sensitivity and 98.61% specificity and thickness with 97.28% sensitivity and 97.82% specificity showed their good classification abilities. Combining elevation and thickness of the cornea, the proposed method can reach 97.43% sensitivity and 99.19% specificity. The experiments demonstrate that the proposed automatic diagnosis method is feasible and reliable.

  10. Spectral saliency via automatic adaptive amplitude spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  11. The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis.

    PubMed

    Kavitha, Muthu Subash; Asano, Akira; Taguchi, Akira; Heo, Min-Suk

    2013-09-01

    To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

  12. Using normalization 3D model for automatic clinical brain quantative analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Yao, Wei-Jen; Hwang, Wen-Ju; Chung, Being-Tau; Lin, Kang-Ping

    2003-05-01

    Functional medical imaging, such as PET or SPECT, is capable of revealing physiological functions of the brain, and has been broadly used in diagnosing brain disorders by clinically quantitative analysis for many years. In routine procedures, physicians manually select desired ROIs from structural MR images and then obtain physiological information from correspondent functional PET or SPECT images. The accuracy of quantitative analysis thus relies on that of the subjectively selected ROIs. Therefore, standardizing the analysis procedure is fundamental and important in improving the analysis outcome. In this paper, we propose and evaluate a normalization procedure with a standard 3D-brain model to achieve precise quantitative analysis. In the normalization process, the mutual information registration technique was applied for realigning functional medical images to standard structural medical images. Then, the standard 3D-brain model that shows well-defined brain regions was used, replacing the manual ROIs in the objective clinical analysis. To validate the performance, twenty cases of I-123 IBZM SPECT images were used in practical clinical evaluation. The results show that the quantitative analysis outcomes obtained from this automated method are in agreement with the clinical diagnosis evaluation score with less than 3% error in average. To sum up, the method takes advantage of obtaining precise VOIs, information automatically by well-defined standard 3-D brain model, sparing manually drawn ROIs slice by slice from structural medical images in traditional procedure. That is, the method not only can provide precise analysis results, but also improve the process rate for mass medical images in clinical.

  13. A model selection approach for robust spatio-temporal analysis of dynamics in 4D fluorescence videomicroscopy.

    PubMed

    Bechar, Ikhlef; Trubuil, Alain

    2006-01-01

    We describe a novel automatic approach for vesicle trafficking analysis in 3D+T videomicroscopy. Tracking individually objects in time in 3D+T videomicroscopy is known to be a very tedious job and leads generally to unreliable results. So instead, our method proceeds by first identifying trafficking regions in the 3D volume and next analysing at them the vesicle trafficking. The latter is viewed as significant change in the fluorescence of a region in the image. We embed the problem in a model selection framework and we resolve it using dynamic programming. We applied the proposed approach to analyse the vesicle dynamics related to the trafficking of the RAB6A protein between the Golgi apparatus and ER cell compartments.

  14. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Basinsoft, a computer program to quantify drainage basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    2001-01-01

    In 1988, the USGS began developing a program called Basinsoft. The initial program quantified 16 selected drainage basin characteristics from three source-data layers that were manually digitized from topographic maps using the versions of ARC/INFO, Fortran programs, and prime system Command Programming Language (CPL) programs available in 1988 (Majure and Soenksen, 1991). By 1991, Basinsoft was enhanced to quantify 27 selected drainage-basin characteristics from three source-data layers automatically generated from digital elevation model (DEM) data using a set of Fortran programs (Majure and Eash, 1991: Jenson and Dominique, 1988). Due to edge-matching problems encountered in 1991 with the preprocessing

  16. 10 CFR 431.373 - Enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may conduct a review of the test records. The Secretary may then conduct enforcement testing of that...) For automatic commercial ice makers, as well as commercial refrigerators, freezers, and refrigerator... numbers to select the units to be tested. (ii) For automatic commercial ice makers, as well as commercial...

  17. Detecting Cheaters without Thinking: Testing the Automaticity of the Cheater Detection Module

    PubMed Central

    Van Lier, Jens; Revlin, Russell; De Neys, Wim

    2013-01-01

    Evolutionary psychologists have suggested that our brain is composed of evolved mechanisms. One extensively studied mechanism is the cheater detection module. This module would make people very good at detecting cheaters in a social exchange. A vast amount of research has illustrated performance facilitation on social contract selection tasks. This facilitation is attributed to the alleged automatic and isolated operation of the module (i.e., independent of general cognitive capacity). This study, using the selection task, tested the critical automaticity assumption in three experiments. Experiments 1 and 2 established that performance on social contract versions did not depend on cognitive capacity or age. Experiment 3 showed that experimentally burdening cognitive resources with a secondary task had no impact on performance on the social contract version. However, in all experiments, performance on a non-social contract version did depend on available cognitive capacity. Overall, findings validate the automatic and effortless nature of social exchange reasoning. PMID:23342012

  18. An automatic multi-atlas prostate segmentation in MRI using a multiscale representation and a label fusion strategy

    NASA Astrophysics Data System (ADS)

    Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo

    2015-01-01

    The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.

  19. Instances selection algorithm by ensemble margin

    NASA Astrophysics Data System (ADS)

    Saidi, Meryem; Bechar, Mohammed El Amine; Settouti, Nesma; Chikh, Mohamed Amine

    2018-05-01

    The main limit of data mining algorithms is their inability to deal with the huge amount of available data in a reasonable processing time. A solution of producing fast and accurate results is instances and features selection. This process eliminates noisy or redundant data in order to reduce the storage and computational cost without performances degradation. In this paper, a new instance selection approach called Ensemble Margin Instance Selection (EMIS) algorithm is proposed. This approach is based on the ensemble margin. To evaluate our approach, we have conducted several experiments on different real-world classification problems from UCI Machine learning repository. The pixel-based image segmentation is a field where the storage requirement and computational cost of applied model become higher. To solve these limitations we conduct a study based on the application of EMIS and other instance selection techniques for the segmentation and automatic recognition of white blood cells WBC (nucleus and cytoplasm) in cytological images.

  20. Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model

    NASA Astrophysics Data System (ADS)

    Seifert, Eric; Roh, Young-Jung; Fritz, Andreas; Park, Young Gun; Kang, Seungbum; Theisen-Kunde, Dirk; Brinkmann, Ralf

    2013-06-01

    Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.

  1. Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.

    PubMed

    Aishima, Jun; Russel, Daniel S; Guibas, Leonidas J; Adams, Paul D; Brunger, Axel T

    2005-10-01

    Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of the molecular model. One of the first applications of the medial axis to X-ray crystallography is presented here. When applied to ligand fitting, the method performs at least as well as methods based on selecting peaks in electron-density maps. Generalization of the method to recognition of common features across multiple contour levels could lead to powerful automatic fitting methods that perform well even at low resolution.

  2. Development of a parameter optimization technique for the design of automatic control systems

    NASA Technical Reports Server (NTRS)

    Whitaker, P. H.

    1977-01-01

    Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.

  3. Automatic vehicle monitoring systems study. Report of phase O. Volume 2: Problem definition and derivation of AVM system selection techniques

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and cost estimated for the vehicles, the fixed sites and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed. Actual applications and coverage data are tabulated for seven cities whose police departments actively cooperated in the study.

  4. Using Apex To Construct CPM-GOMS Models

    NASA Technical Reports Server (NTRS)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2006-01-01

    process for automatically generating computational models of human/computer interactions as well as graphical and textual representations of the models has been built on the conceptual foundation of a method known in the art as CPM-GOMS. This method is so named because it combines (1) the task decomposition of analysis according to an underlying method known in the art as the goals, operators, methods, and selection (GOMS) method with (2) a model of human resource usage at the level of cognitive, perceptual, and motor (CPM) operations. CPM-GOMS models have made accurate predictions about behaviors of skilled computer users in routine tasks, but heretofore, such models have been generated in a tedious, error-prone manual process. In the present process, CPM-GOMS models are generated automatically from a hierarchical task decomposition expressed by use of a computer program, known as Apex, designed previously to be used to model human behavior in complex, dynamic tasks. An inherent capability of Apex for scheduling of resources automates the difficult task of interleaving the cognitive, perceptual, and motor resources that underlie common task operators (e.g., move and click mouse). The user interface of Apex automatically generates Program Evaluation Review Technique (PERT) charts, which enable modelers to visualize the complex parallel behavior represented by a model. Because interleaving and the generation of displays to aid visualization are automated, it is now feasible to construct arbitrarily long sequences of behaviors. The process was tested by using Apex to create a CPM-GOMS model of a relatively simple human/computer-interaction task and comparing the time predictions of the model and measurements of the times taken by human users in performing the various steps of the task. The task was to withdraw $80 in cash from an automated teller machine (ATM). For the test, a Visual Basic mockup of an ATM was created, with a provision for input from (and measurement of the performance of) the user via a mouse. The times predicted by the automatically generated model turned out to approximate the measured times fairly well (see figure). While these results are promising, there is need for further development of the process. Moreover, it will also be necessary to test other, more complex models: The actions required of the user in the ATM task are too sequential to involve substantial parallelism and interleaving and, hence, do not serve as an adequate test of the unique strength of CPM-GOMS models to accommodate parallelism and interleaving.

  5. Uncovering effects of self-control and stimulus-driven action selection on the sense of agency.

    PubMed

    Wang, Yuru; Damen, Tom G E; Aarts, Henk

    2017-10-01

    The sense of agency refers to feelings of causing one's own action and resulting effect. Previous research indicates that voluntary action selection is an important factor in shaping the sense of agency. Whereas the volitional nature of the sense of agency is well documented, the present study examined whether agency is modulated when action selection shifts from self-control to a more automatic stimulus-driven process. Seventy-two participants performed an auditory Simon task including congruent and incongruent trials to generate automatic stimulus-driven vs. more self-control driven action, respectively. Responses in the Simon task produced a tone and agency was assessed with the intentional binding task - an implicit measure of agency. Results showed a Simon effect and temporal binding effect. However, temporal binding was independent of congruency. These findings suggest that temporal binding, a window to the sense of agency, emerges for both automatic stimulus-driven actions and self-controlled actions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. On the meaning of meaning when being mean: commentary on Berkowitz's "on the consideration of automatic as well as controlled psychological processes in aggression".

    PubMed

    Dodge, Kenneth A

    2008-01-01

    Berkowitz (this issue) makes a cogent case for his cognitive neo-associationist (CNA) model that some aggressive behaviors occur automatically, emotionally, and through conditioned association with other stimuli. He also proposes that they can occur without "processing," that is, without meaning. He contrasts his position with that of social information processing (SIP) models, which he casts as positing only controlled processing mechanisms for aggressive behavior. However, both CNA and SIP models posit automatic as well as controlled processes in aggressive behavior. Most aggressive behaviors occur through automatic processes, which are nonetheless rule governed. SIP models differ from the CNA model in asserting the essential role of meaning (often through nonconscious, automatic, and emotional processes) in mediating the link between a stimulus and an angry aggressive behavioral response. Copyright 2008 Wiley-Liss, Inc.

  7. Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma.

    PubMed

    Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben

    2016-04-09

    Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated analysis may still aid and improve the pathologists' detection of mitoses in melanoma and possibly other malignancies.

  8. Automatic, Multiple Assessment Options in Undergraduate Meteorology Education

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2017-01-01

    Since 2008, automatic, multiple assessment options have been utilised in selected undergraduate meteorology courses at the University of Wisconsin--Milwaukee. Motivated by a desire to reduce stress among students, the assessment methodology includes examination-heavy and homework-heavy alternatives, differing by an adjustable 15% of the overall…

  9. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  10. Energy Engineering Analysis Program. Lighting Survey of Selected Buildings, Pine Bluff Arsenal, Pine Bluff, Arkansas. Volume 2A: Appendices

    DTIC Science & Technology

    1995-06-01

    Energy efficient, 30 and 40 watt ballasts are Rapid Start, thermally protected, automatic resetting. Class P, high or low power factor as required...BALLASTS Energy efficient, 30 ana 40 watt Rapic Start, thermally protected, automatic resetting. Class P. high power factor, CEM, sound rated A. unless...BALLASTS Energy efficient, 40 Watt Rapid Start, thermally protected, automatic resetting, Class P, high power factor, CBM, sound rated A, unless

  11. Build your own low-cost seismic/bathymetric recorder annotator

    USGS Publications Warehouse

    Robinson, W.

    1994-01-01

    An inexpensive programmable annotator, completely compatible with at least three models of widely used graphic recorders (Raytheon LSR-1811, Raytheon LSR-1807 M, and EDO 550) has been developed to automatically write event marks and print up to sixteen numbers on the paper record. Event mark and character printout intervals, character height and character position are all selectable with front panel switches. Operation is completely compatible with recorders running in either continuous or start-stop mode. ?? 1994.

  12. System and method for knowledge based matching of users in a network

    DOEpatents

    Verspoor, Cornelia Maria [Santa Fe, NM; Sims, Benjamin Hayden [Los Alamos, NM; Ambrosiano, John Joseph [Los Alamos, NM; Cleland, Timothy James [Los Alamos, NM

    2011-04-26

    A knowledge-based system and methods to matchmaking and social network extension are disclosed. The system is configured to allow users to specify knowledge profiles, which are collections of concepts that indicate a certain topic or area of interest selected from an. The system utilizes the knowledge model as the semantic space within which to compare similarities in user interests. The knowledge model is hierarchical so that indications of interest in specific concepts automatically imply interest in more general concept. Similarity measures between profiles may then be calculated based on suitable distance formulas within this space.

  13. Clinical evaluation of new automatic coronary-specific best cardiac phase selection algorithm for single-beat coronary CT angiography.

    PubMed

    Wang, Hui; Xu, Lei; Fan, Zhanming; Liang, Junfu; Yan, Zixu; Sun, Zhonghua

    2017-01-01

    The aim of this study was to evaluate the workflow efficiency of a new automatic coronary-specific reconstruction technique (Smart Phase, GE Healthcare-SP) for selection of the best cardiac phase with least coronary motion when compared with expert manual selection (MS) of best phase in patients with high heart rate. A total of 46 patients with heart rates above 75 bpm who underwent single beat coronary computed tomography angiography (CCTA) were enrolled in this study. CCTA of all subjects were performed on a 256-detector row CT scanner (Revolution CT, GE Healthcare, Waukesha, Wisconsin, US). With the SP technique, the acquired phase range was automatically searched in 2% phase intervals during the reconstruction process to determine the optimal phase for coronary assessment, while for routine expert MS, reconstructions were performed at 5% intervals and a best phase was manually determined. The reconstruction and review times were recorded to measure the workflow efficiency for each method. Two reviewers subjectively assessed image quality for each coronary artery in the MS and SP reconstruction volumes using a 4-point grading scale. The average HR of the enrolled patients was 91.1±19.0bpm. A total of 204 vessels were assessed. The subjective image quality using SP was comparable to that of the MS, 1.45±0.85 vs 1.43±0.81 respectively (p = 0.88). The average time was 246 seconds for the manual best phase selection, and 98 seconds for the SP selection, resulting in average time saving of 148 seconds (60%) with use of the SP algorithm. The coronary specific automatic cardiac best phase selection technique (Smart Phase) improves clinical workflow in high heart rate patients and provides image quality comparable with manual cardiac best phase selection. Reconstruction of single-beat CCTA exams with SP can benefit the users with less experienced in CCTA image interpretation.

  14. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    PubMed

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  15. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1988-01-01

    The objective of automatic programming is to improve the overall environment for describing the program. This improved environment is realized by a reduction in the amount of detail that the programmer needs to know and is exposed to. Furthermore, this improved environment is achieved by a specification language that is more natural to the user's problem domain and to the user's way of thinking and looking at the problem. The goal of this research is to apply the concepts of automatic programming (AP) to modeling discrete event simulation system. Specific emphasis is on the design and development of simulation tools to assist the modeler define or construct a model of the system and to then automatically write the corresponding simulation code in the target simulation language, GPSS/PC. A related goal is to evaluate the feasibility of various languages for constructing automatic programming simulation tools.

  17. Electrophysiological Evidence of Automatic Early Semantic Processing

    ERIC Educational Resources Information Center

    Hinojosa, Jose A.; Martin-Loeches, Manuel; Munoz, Francisco; Casado, Pilar; Pozo, Miguel A.

    2004-01-01

    This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a…

  18. Unsupervised MDP Value Selection for Automating ITS Capabilities

    ERIC Educational Resources Information Center

    Stamper, John; Barnes, Tiffany

    2009-01-01

    We seek to simplify the creation of intelligent tutors by using student data acquired from standard computer aided instruction (CAI) in conjunction with educational data mining methods to automatically generate adaptive hints. In our previous work, we have automatically generated hints for logic tutoring by constructing a Markov Decision Process…

  19. Modeling multi-source flooding disaster and developing simulation framework in Delta

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cui, X.; Zhang, W.

    2016-12-01

    Most Delta regions of the world are densely populated and with advanced economies. However, due to impact of the multi-source flooding (upstream flood, rainstorm waterlogging, storm surge flood), the Delta regions is very vulnerable. The academic circles attach great importance to the multi-source flooding disaster in these areas. The Pearl River Delta urban agglomeration in south China is selected as the research area. Based on analysis of natural and environmental characteristics data of the Delta urban agglomeration(remote sensing data, land use data, topographic map, etc.), hydrological monitoring data, research of the uneven distribution and process of regional rainfall, the relationship between the underlying surface and the parameters of runoff, effect of flood storage pattern, we use an automatic or semi-automatic method for dividing spatial units to reflect the runoff characteristics in urban agglomeration, and develop an Multi-model Ensemble System in changing environment, including urban hydrologic model, parallel computational 1D&2D hydrodynamic model, storm surge forecast model and other professional models, the system will have the abilities like real-time setting a variety of boundary conditions, fast and real-time calculation, dynamic presentation of results, powerful statistical analysis function. The model could be optimized and improved by a variety of verification methods. This work was supported by the National Natural Science Foundation of China (41471427); Special Basic Research Key Fund for Central Public Scientific Research Institutes.

  20. [Modeling and implementation method for the automatic biochemistry analyzer control system].

    PubMed

    Wang, Dong; Ge, Wan-cheng; Song, Chun-lin; Wang, Yun-guang

    2009-03-01

    In this paper the system structure The automatic biochemistry analyzer is a necessary instrument for clinical diagnostics. First of is analyzed. The system problems description and the fundamental principles for dispatch are brought forward. Then this text puts emphasis on the modeling for the automatic biochemistry analyzer control system. The objects model and the communications model are put forward. Finally, the implementation method is designed. It indicates that the system based on the model has good performance.

  1. Automated body weight prediction of dairy cows using 3-dimensional vision.

    PubMed

    Song, X; Bokkers, E A M; van der Tol, P P J; Groot Koerkamp, P W G; van Mourik, S

    2018-05-01

    The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  2. Identification of an urban fractured-rock aquifer dynamics using an evolutionary self-organizing modelling

    NASA Astrophysics Data System (ADS)

    Hong, Yoon-Seok; Rosen, Michael R.

    2002-03-01

    An urban fractured-rock aquifer system, where disposal of storm water is via 'soak holes' drilled directly into the top of fractured-rock basalt, has a highly dynamic nature where theories or knowledge to generate the model are still incomplete and insufficient. Therefore, formulating an accurate mechanistic model, usually based on first principles (physical and chemical laws, mass balance, and diffusion and transport, etc.), requires time- and money-consuming tasks. Instead of a human developing the mechanistic-based model, this paper presents an approach to automatic model evolution in genetic programming (GP) to model dynamic behaviour of groundwater level fluctuations affected by storm water infiltration. This GP evolves mathematical models automatically that have an understandable structure using function tree representation by methods of natural selection ('survival of the fittest') through genetic operators (reproduction, crossover, and mutation). The simulation results have shown that GP is not only capable of predicting the groundwater level fluctuation due to storm water infiltration but also provides insight into the dynamic behaviour of a partially known urban fractured-rock aquifer system by allowing knowledge extraction of the evolved models. Our results show that GP can work as a cost-effective modelling tool, enabling us to create prototype models quickly and inexpensively and assists us in developing accurate models in less time, even if we have limited experience and incomplete knowledge for an urban fractured-rock aquifer system affected by storm water infiltration.

  3. Design of a multiple kernel learning algorithm for LS-SVM by convex programming.

    PubMed

    Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou

    2011-06-01

    As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. An Improved Cochlea Model with a General User Interface

    NASA Astrophysics Data System (ADS)

    Duifhuis, H.; Kruseman, J. M.; van Hengel, P. W. J.

    2003-02-01

    We have developed a flexible 1D cochlea model to test hypotheses and data against physical and mathematical constraints. The model is flexible in the sense that several linear and nonlinear model characteristics can be selected, and different boundary conditions can be tested. The software model runs at a reasonable speed at a modern PC. As an example, we will show the results of the model in comparison with the systematic study of the phase behavior (group delay) of distortion product otoacoustic emissions (DPOAEs) in the guinea pig (S. Schneider, V. Prijs and R. Schoonhoven, [9]). We also will demonstrate the effects of some common non-physical boundary conditions. Finally, we briefly indicate that this model of the auditory periphery provides a superior front end for an ASR (automatic speech recognition)-system.

  5. The Role of Item Models in Automatic Item Generation

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis

    2012-01-01

    Automatic item generation represents a relatively new but rapidly evolving research area where cognitive and psychometric theories are used to produce tests that include items generated using computer technology. Automatic item generation requires two steps. First, test development specialists create item models, which are comparable to templates…

  6. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  7. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    PubMed

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  8. Automatic Fastening Large Structures: a New Approach

    NASA Technical Reports Server (NTRS)

    Lumley, D. F.

    1985-01-01

    The external tank (ET) intertank structure for the space shuttle, a 27.5 ft diameter 22.5 ft long externally stiffened mechanically fastened skin-stringer-frame structure, was a labor intensitive manual structure built on a modified Saturn tooling position. A new approach was developed based on half-section subassemblies. The heart of this manufacturing approach will be 33 ft high vertical automatic riveting system with a 28 ft rotary positioner coming on-line in mid 1985. The Automatic Riveting System incorporates many of the latest automatic riveting technologies. Key features include: vertical columns with two sets of independently operating CNC drill-riveting heads; capability of drill, insert and upset any one piece fastener up to 3/8 inch diameter including slugs without displacing the workpiece offset bucking ram with programmable rotation and deep retraction; vision system for automatic parts program re-synchronization and part edge margin control; and an automatic rivet selection/handling system.

  9. The effect of conscious intention to act on the Bereitschaftspotential.

    PubMed

    Takashima, Shiro; Cravo, André M; Sameshima, Koichi; Ramos, Renato T

    2018-06-02

    The current study investigated the effect of conscious intention to act on the Bereitschaftspotential. Situations in which the awareness of acting is minimally expressed were generated by asking 16 participants to press a button after performing a mental imagery task based on animal pictures (automatic condition). The affective responses induced by the pictures were controlled by selecting the animals according to different valences, threatening and neutral. The Bereitschaftspotential associated with the button presses was compared to the observed when similar movements were performed under the basic instructions of the self-paced movement paradigm (willed condition). Enhanced Bereitschaftspotential amplitudes were observed in the willed condition with respect to the automatic condition. This effect was manifested as a negative slope at medial frontocentral sites during the last 500 ms before movement onset. The valence of the pictures did not affect the motor preparatory potentials. The results suggest that significant part of the NS' subcomponent of the readiness potential is associated with the attention to-and, presumably, awareness of-intention to move, possibly reflecting cortical activation from supplementary motor areas. Secondarily, our findings supports that the feeling of threat does not influence the Bereitschaftspotential associated with automatic movements. Regarding methodological issues, the behavioural model of spontaneous voluntary movements proposed in automatic condition can benefit investigations on purely motor (or non-cognitive) subcomponents of the Bereitschaftspotential.

  10. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    PubMed

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  11. New theoretical models and ratio imaging techniques associated with the NASA earth resources spectral information system

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1974-01-01

    Four independent investigations are reported; in general these are concerned with improving and utilizing the correlation between the physical properties of natural materials as evidenced in laboratory spectra and spectral data collected by multispectral scanners. In one investigation, two theoretical models were devised that permit the calculation of spectral emittance spectra for rock and mineral surfaces of various particle sizes. The simpler of the two models can be used to qualitatively predict the effect of texture on the spectral emittance of rocks and minerals; it is also potentially useful as an aid in predicting the identification of natural atmospheric aerosol constituents. The second investigation determined, via an infrared ratio imaging technique, the best pair of infrared filters for silicate rock-type discrimination. In a third investigation, laboratory spectra of natural materials were compressed into 11-digit ratio codes for use in feature selection, in searches for false alarm candidates, and eventually for use as training sets in completely automatic data processors. In the fourth investigation, general outlines of a ratio preprocessor and an automatic recognition map processor are developed for on-board data processing in the space shuttle era.

  12. Adaptive inferential sensors based on evolving fuzzy models.

    PubMed

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the challenges of the modern advanced process industry.

  13. The impact of manual threshold selection in medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Koivisto, Juha; Karhu, Kalle; Forouzanfar, Tymour; Wolff, Jan

    2017-04-01

    Medical additive manufacturing requires standard tessellation language (STL) models. Such models are commonly derived from computed tomography (CT) images using thresholding. Threshold selection can be performed manually or automatically. The aim of this study was to assess the impact of manual and default threshold selection on the reliability and accuracy of skull STL models using different CT technologies. One female and one male human cadaver head were imaged using multi-detector row CT, dual-energy CT, and two cone-beam CT scanners. Four medical engineers manually thresholded the bony structures on all CT images. The lowest and highest selected mean threshold values and the default threshold value were used to generate skull STL models. Geometric variations between all manually thresholded STL models were calculated. Furthermore, in order to calculate the accuracy of the manually and default thresholded STL models, all STL models were superimposed on an optical scan of the dry female and male skulls ("gold standard"). The intra- and inter-observer variability of the manual threshold selection was good (intra-class correlation coefficients >0.9). All engineers selected grey values closer to soft tissue to compensate for bone voids. Geometric variations between the manually thresholded STL models were 0.13 mm (multi-detector row CT), 0.59 mm (dual-energy CT), and 0.55 mm (cone-beam CT). All STL models demonstrated inaccuracies ranging from -0.8 to +1.1 mm (multi-detector row CT), -0.7 to +2.0 mm (dual-energy CT), and -2.3 to +4.8 mm (cone-beam CT). This study demonstrates that manual threshold selection results in better STL models than default thresholding. The use of dual-energy CT and cone-beam CT technology in its present form does not deliver reliable or accurate STL models for medical additive manufacturing. New approaches are required that are based on pattern recognition and machine learning algorithms.

  14. Lymph node detection in IASLC-defined zones on PET/CT images

    NASA Astrophysics Data System (ADS)

    Song, Yihua; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape. In this paper, we propose several novel ideas which are combined into a system to operate on positron emission tomography/ computed tomography (PET/CT) images to detect abnormal thoracic nodes. First, our previous Automatic Anatomy Recognition (AAR) approach is modified where lymph node zones predominantly following International Association for the Study of Lung Cancer (IASLC) specifications are modeled as objects arranged in a hierarchy along with key anatomic anchor objects. This fuzzy anatomy model built from diagnostic CT images is then deployed on PET/CT images for automatically recognizing the zones. A novel globular filter (g-filter) to detect blob-like objects over a specified range of sizes is designed to detect the most likely locations and sizes of diseased nodes. Abnormal nodes within each automatically localized zone are subsequently detected via combined use of different items of information at various scales: lymph node zone model poses found at recognition indicating the geographic layout at the global level of node clusters, g-filter response which hones in on and carefully selects node-like globular objects at the node level, and CT and PET gray value but within only the most plausible nodal regions for node presence at the voxel level. The models are built from 25 diagnostic CT scans and refined for an object hierarchy based on a separate set of 20 diagnostic CT scans. Node detection is tested on an additional set of 20 PET/CT scans. Our preliminary results indicate node detection sensitivity and specificity at around 90% and 85%, respectively.

  15. Integrating hidden Markov model and PRAAT: a toolbox for robust automatic speech transcription

    NASA Astrophysics Data System (ADS)

    Kabir, A.; Barker, J.; Giurgiu, M.

    2010-09-01

    An automatic time-aligned phone transcription toolbox of English speech corpora has been developed. Especially the toolbox would be very useful to generate robust automatic transcription and able to produce phone level transcription using speaker independent models as well as speaker dependent models without manual intervention. The system is based on standard Hidden Markov Models (HMM) approach and it was successfully experimented over a large audiovisual speech corpus namely GRID corpus. One of the most powerful features of the toolbox is the increased flexibility in speech processing where the speech community would be able to import the automatic transcription generated by HMM Toolkit (HTK) into a popular transcription software, PRAAT, and vice-versa. The toolbox has been evaluated through statistical analysis on GRID data which shows that automatic transcription deviates by an average of 20 ms with respect to manual transcription.

  16. A simulator evaluation of an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, D. A.

    1983-01-01

    The automatic terminal approach system (ATAS) is a concept for improving the pilot/machine interface with cockpit automation. The ATAS can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane avionics, control the airplane's autopilot, and display status information to the pilot. A piloted simulation study was conducted to determine the feasibility of an ATAS, determine pilot acceptance, and examine pilot/ATAS interaction. Seven instrument-rated pilots each flew four instrument approaches with a base-line heading select autopilot mode. The ATAS runs resulted in lower flight technical error, lower pilot workload, and fewer blunders than with the baseline autopilot. The ATAS status display enabled the pilots to maintain situational awareness during the automatic approaches. The system was well accepted by the pilots.

  17. ADMAP (automatic data manipulation program)

    NASA Technical Reports Server (NTRS)

    Mann, F. I.

    1971-01-01

    Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.

  18. MIPS: analysis and annotation of genome information in 2007

    PubMed Central

    Mewes, H. W.; Dietmann, S.; Frishman, D.; Gregory, R.; Mannhaupt, G.; Mayer, K. F. X.; Münsterkötter, M.; Ruepp, A.; Spannagl, M.; Stümpflen, V.; Rattei, T.

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:18158298

  19. MIPS: analysis and annotation of genome information in 2007.

    PubMed

    Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  20. Automatic target validation based on neuroscientific literature mining for tractography

    PubMed Central

    Vasques, Xavier; Richardet, Renaud; Hill, Sean L.; Slater, David; Chappelier, Jean-Cedric; Pralong, Etienne; Bloch, Jocelyne; Draganski, Bogdan; Cif, Laura

    2015-01-01

    Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/. PMID:26074781

  1. Automatic vibration mode selection and excitation; combining modal filtering with autoresonance

    NASA Astrophysics Data System (ADS)

    Davis, Solomon; Bucher, Izhak

    2018-02-01

    Autoresonance is a well-known nonlinear feedback method used for automatically exciting a system at its natural frequency. Though highly effective in exciting single degree of freedom systems, in its simplest form it lacks a mechanism for choosing the mode of excitation when more than one is present. In this case a single mode will be automatically excited, but this mode cannot be chosen or changed. In this paper a new method for automatically exciting a general second-order system at any desired natural frequency using Autoresonance is proposed. The article begins by deriving a concise expression for the frequency of the limit cycle induced by an Autoresonance feedback loop enclosed on the system. The expression is based on modal decomposition, and provides valuable insight into the behavior of a system controlled in this way. With this expression, a method for selecting and exciting a desired mode naturally follows by combining Autoresonance with Modal Filtering. By taking various linear combinations of the sensor signals, by orthogonality one can "filter out" all the unwanted modes effectively. The desired mode's natural frequency is then automatically reflected in the limit cycle. In experiment the technique has proven extremely robust, even if the amplitude of the desired mode is significantly smaller than the others and the modal filters are greatly inaccurate.

  2. Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks

    PubMed Central

    Richter, Philipp; Toledano-Ayala, Manuel

    2015-01-01

    Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996

  3. Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data

    PubMed Central

    Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-01

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803

  4. Model structure identification for wastewater treatment simulation based on computational fluid dynamics.

    PubMed

    Alex, J; Kolisch, G; Krause, K

    2002-01-01

    The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.

  5. Do the Contents of Visual Working Memory Automatically Influence Attentional Selection during Visual Search?

    ERIC Educational Resources Information Center

    Woodman, Geoffrey F.; Luck, Steven J.

    2007-01-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by…

  6. Study of the Acquisition of Peripheral Equipment for Use with Automatic Data Processing Systems.

    ERIC Educational Resources Information Center

    Comptroller General of the U.S., Washington, DC.

    The General Accounting Office (GAO) performed this study because: preliminary indications showed that significant savings could be achieved in the procurement of selected computer components; the Federal Government is investing increasing amounts of money in Automatic Data Processing (ADP) equipment; and there is a widespread congressional…

  7. Automatic Data Processing, 4-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    These two texts and student workbook for a secondary/postsecondary-level correspondence course in automatic data processing comprise one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose stated for the individualized, self-paced…

  8. Automatic Detection of Pearlite Spheroidization Grade of Steel Using Optical Metallography.

    PubMed

    Chen, Naichao; Chen, Yingchao; Ai, Jun; Ren, Jianxin; Zhu, Rui; Ma, Xingchi; Han, Jun; Ma, Qingqian

    2016-02-01

    To eliminate the effect of subjective factors during manually determining the pearlite spheroidization grade of steel by analysis of optical metallography images, a novel method combining image mining and artificial neural networks (ANN) is proposed. The four co-occurrence matrices of angular second moment, contrast, correlation, and entropy are adopted to objectively characterize the images. ANN is employed to establish a mathematical model between the four co-occurrence matrices and the corresponding spheroidization grade. Three materials used in coal-fired power plants (ASTM A315-B steel, ASTM A335-P12 steel, and ASTM A355-P11 steel) were selected as the samples to test the validity of our proposed method. The results indicate that the accuracies of the calculated spheroidization grades reach 99.05, 95.46, and 93.63%, respectively. Hence, our newly proposed method is adequate for automatically detecting the pearlite spheroidization grade of steel using optical metallography.

  9. Global quasi-linearization (GQL) versus QSSA for a hydrogen-air auto-ignition problem.

    PubMed

    Yu, Chunkan; Bykov, Viatcheslav; Maas, Ulrich

    2018-04-25

    A recently developed automatic reduction method for systems of chemical kinetics, the so-called Global Quasi-Linearization (GQL) method, has been implemented to study and reduce the dimensions of a homogeneous combustion system. The results of application of the GQL and the Quasi-Steady State Assumption (QSSA) are compared. A number of drawbacks of the QSSA are discussed, i.e. the selection criteria of QSS-species and its sensitivity to system parameters, initial conditions, etc. To overcome these drawbacks, the GQL approach has been developed as a robust, automatic and scaling invariant method for a global analysis of the system timescale hierarchy and subsequent model reduction. In this work the auto-ignition problem of the hydrogen-air system is considered in a wide range of system parameters and initial conditions. The potential of the suggested approach to overcome most of the drawbacks of the standard approaches is illustrated.

  10. Automatic reference selection for quantitative EEG interpretation: identification of diffuse/localised activity and the active earlobe reference, iterative detection of the distribution of EEG rhythms.

    PubMed

    Wang, Bei; Wang, Xingyu; Ikeda, Akio; Nagamine, Takashi; Shibasaki, Hiroshi; Nakamura, Masatoshi

    2014-01-01

    EEG (Electroencephalograph) interpretation is important for the diagnosis of neurological disorders. The proper adjustment of the montage can highlight the EEG rhythm of interest and avoid false interpretation. The aim of this study was to develop an automatic reference selection method to identify a suitable reference. The results may contribute to the accurate inspection of the distribution of EEG rhythms for quantitative EEG interpretation. The method includes two pre-judgements and one iterative detection module. The diffuse case is initially identified by pre-judgement 1 when intermittent rhythmic waveforms occur over large areas along the scalp. The earlobe reference or averaged reference is adopted for the diffuse case due to the effect of the earlobe reference depending on pre-judgement 2. An iterative detection algorithm is developed for the localised case when the signal is distributed in a small area of the brain. The suitable averaged reference is finally determined based on the detected focal and distributed electrodes. The presented technique was applied to the pathological EEG recordings of nine patients. One example of the diffuse case is introduced by illustrating the results of the pre-judgements. The diffusely intermittent rhythmic slow wave is identified. The effect of active earlobe reference is analysed. Two examples of the localised case are presented, indicating the results of the iterative detection module. The focal and distributed electrodes are detected automatically during the repeating algorithm. The identification of diffuse and localised activity was satisfactory compared with the visual inspection. The EEG rhythm of interest can be highlighted using a suitable selected reference. The implementation of an automatic reference selection method is helpful to detect the distribution of an EEG rhythm, which can improve the accuracy of EEG interpretation during both visual inspection and automatic interpretation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. DeepInfer: open-source deep learning deployment toolkit for image-guided therapy

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-03-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  12. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.

    PubMed

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-02-11

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  13. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy

    PubMed Central

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-01-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794

  14. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    PubMed

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  15. Approaches to the automatic generation and control of finite element meshes

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.

  16. Fermentation process tracking through enhanced spectral calibration modeling.

    PubMed

    Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah

    2007-06-15

    The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.

  17. Accuracy of computerized automatic identification of cephalometric landmarks by a designed software.

    PubMed

    Shahidi, Sh; Shahidi, S; Oshagh, M; Gozin, F; Salehi, P; Danaei, S M

    2013-01-01

    The purpose of this study was to design software for localization of cephalometric landmarks and to evaluate its accuracy in finding landmarks. 40 digital cephalometric radiographs were randomly selected. 16 landmarks which were important in most cephalometric analyses were chosen to be identified. Three expert orthodontists manually identified landmarks twice. The mean of two measurements of each landmark was defined as the baseline landmark. The computer was then able to compare the automatic system's estimate of a landmark with the baseline landmark. The software was designed using Delphi and Matlab programming languages. The techniques were template matching, edge enhancement and some accessory techniques. The total mean error between manually identified and automatically identified landmarks was 2.59 mm. 12.5% of landmarks had mean errors less than 1 mm. 43.75% of landmarks had mean errors less than 2 mm. The mean errors of all landmarks except the anterior nasal spine were less than 4 mm. This software had significant accuracy for localization of cephalometric landmarks and could be used in future applications. It seems that the accuracy obtained with the software which was developed in this study is better than previous automated systems that have used model-based and knowledge-based approaches.

  18. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation

    PubMed Central

    Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron

    2015-01-01

    Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381

  19. A Motion Planning Approach to Automatic Obstacle Avoidance during Concentric Tube Robot Teleoperation.

    PubMed

    Torres, Luis G; Kuntz, Alan; Gilbert, Hunter B; Swaney, Philip J; Hendrick, Richard J; Webster, Robert J; Alterovitz, Ron

    2015-05-01

    Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.

  20. Automatic video summarization driven by a spatio-temporal attention model

    NASA Astrophysics Data System (ADS)

    Barland, R.; Saadane, A.

    2008-02-01

    According to the literature, automatic video summarization techniques can be classified in two parts, following the output nature: "video skims", which are generated using portions of the original video and "key-frame sets", which correspond to the images, selected from the original video, having a significant semantic content. The difference between these two categories is reduced when we consider automatic procedures. Most of the published approaches are based on the image signal and use either pixel characterization or histogram techniques or image decomposition by blocks. However, few of them integrate properties of the Human Visual System (HVS). In this paper, we propose to extract keyframes for video summarization by studying the variations of salient information between two consecutive frames. For each frame, a saliency map is produced simulating the human visual attention by a bottom-up (signal-dependent) approach. This approach includes three parallel channels for processing three early visual features: intensity, color and temporal contrasts. For each channel, the variations of the salient information between two consecutive frames are computed. These outputs are then combined to produce the global saliency variation which determines the key-frames. Psychophysical experiments have been defined and conducted to analyze the relevance of the proposed key-frame extraction algorithm.

  1. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  2. Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images.

    PubMed

    Nandy, Kaustav; Gudla, Prabhakar R; Amundsen, Ryan; Meaburn, Karen J; Misteli, Tom; Lockett, Stephen J

    2012-09-01

    Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. Published 2012 Wiley Periodicals, Inc.

  3. Automatic programming of arc welding robots

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Srikanth

    Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.

  4. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  5. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation.

    PubMed

    Kim, Ji Chul

    2017-01-01

    Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.

  6. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.

    PubMed

    Chen, Qi; Meng, Zhaopeng; Liu, Xinyi; Jin, Qianguo; Su, Ran

    2018-06-15

    Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.

  7. The construction of ``realistic'' four-dimensional strings through orbifolds

    NASA Astrophysics Data System (ADS)

    Font, A.; Ibáñez, L. E.; Quevedo, F.; Sierra, A.

    1990-02-01

    We discuss the construction of "realistic" lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3) × SU(2) × U(1) models as well as models incorporating a left-right SU(2) L × SU(2) R × U(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 × Z 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 × Z 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory.

  8. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  9. The Automatic Conservative: Ideology-Based Attentional Asymmetries in the Processing of Valenced Information

    PubMed Central

    Carraro, Luciana; Castelli, Luigi; Macchiella, Claudia

    2011-01-01

    Research has widely explored the differences between conservatives and liberals, and it has been also recently demonstrated that conservatives display different reactions toward valenced stimuli. However, previous studies have not yet fully illuminated the cognitive underpinnings of these differences. In the current work, we argued that political ideology is related to selective attention processes, so that negative stimuli are more likely to automatically grab the attention of conservatives as compared to liberals. In Experiment 1, we demonstrated that negative (vs. positive) information impaired the performance of conservatives, more than liberals, in an Emotional Stroop Task. This finding was confirmed in Experiment 2 and in Experiment 3 employing a Dot-Probe Task, demonstrating that threatening stimuli were more likely to attract the attention of conservatives. Overall, results support the conclusion that people embracing conservative views of the world display an automatic selective attention for negative stimuli. PMID:22096486

  10. Development of A Two-Stage Procedure for the Automatic Recognition of Dysfluencies in the Speech of Children Who Stutter: I. Psychometric Procedures Appropriate for Selection of Training Material for Lexical Dysfluency Classifiers

    PubMed Central

    Howell, Peter; Sackin, Stevie; Glenn, Kazan

    2007-01-01

    This program of work is intended to develop automatic recognition procedures to locate and assess stuttered dysfluencies. This and the following article together, develop and test recognizers for repetitions and prolongations. The automatic recognizers classify the speech in two stages: In the first, the speech is segmented and in the second the segments are categorized. The units that are segmented are words. Here assessments by human judges on the speech of 12 children who stutter are described using a corresponding procedure. The accuracy of word boundary placement across judges, categorization of the words as fluent, repetition or prolongation, and duration of the different fluency categories are reported. These measures allow reliable instances of repetitions and prolongations to be selected for training and assessing the recognizers in the subsequent paper. PMID:9328878

  11. A Multiple-range Self-balancing Thermocouple Potentiometer

    NASA Technical Reports Server (NTRS)

    Warshawsky, I; Estrin, M

    1951-01-01

    A multiple-range potentiometer circuit is described that provides automatic measurement of temperatures or temperature differences with any one of several thermocouple-material pairs. Techniques of automatic reference junction compensation, span adjustment, and zero suppression are described that permit rapid selection of range and wire material, without the necessity for restandardization, by setting of two external tap switches.

  12. Chinese Journal of Lasers (Selected Articles),

    DTIC Science & Technology

    1986-04-22

    properties We first investigated silicate based glasses, then the other inorganic glasses such as borate, phosphate, germanate. tellurate ...of the growth of high melting temperature I.~ oxides, several upward pulling single crystal furnaces with nigh precision mechanical movement and high...automatic electronic weighting systems, and programmable automatic movement correction systems. The reliability of most of these control systems

  13. An automatic camera device for measuring waterfowl use

    USGS Publications Warehouse

    Cowardin, L.M.; Ashe, J.E.

    1965-01-01

    A Yashica Sequelle camera was modified and equipped with a timing device so that it would take pictures automatically at 15-minute intervals. Several of these cameras were used to photograph randomly selected quadrats located in different marsh habitats. The number of birds photographed in the different areas was used as an index of waterfowl use.

  14. Dissociating Working Memory Updating and Automatic Updating: The Reference-Back Paradigm

    ERIC Educational Resources Information Center

    Rac-Lubashevsky, Rachel; Kessler, Yoav

    2016-01-01

    Working memory (WM) updating is a controlled process through which relevant information in the environment is selected to enter the gate to WM and substitute its contents. We suggest that there is also an automatic form of updating, which influences performance in many tasks and is primarily manifested in reaction time sequential effects. The goal…

  15. Kernel learning at the first level of inference.

    PubMed

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimizing Input/Output Using Adaptive File System Policies

    NASA Technical Reports Server (NTRS)

    Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.

    1996-01-01

    Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.

  17. Automatic thermal control switches. [for use in Space Shuttle borne Get Away Special container

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1982-01-01

    Two automatic, flexible connection thermal control switches have been designed and tested in a thermal vacuum facility and in the Get Away Special (GAS) container flown on the third Shuttle flight. The switches are complementary in that one switch passes heat when the plate on which it is mounted exceeds some selected temperature and the other switch will pass heat only when the mounting plate temperature is below the selected value. Both switches are driven and controlled by phase-change capsule motors and require no other power source or thermal sensors.

  18. Automatic discovery of the communication network topology for building a supercomputer model

    NASA Astrophysics Data System (ADS)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  19. Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process

    NASA Astrophysics Data System (ADS)

    Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.

    2016-12-01

    Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.

  20. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    PubMed

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  1. A Flexible Statechart-to-Model-Checker Translator

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas; Dunphy, Julia; Feather, Martin S.

    2000-01-01

    Many current-day software design tools offer some variant of statechart notation for system specification. We, like others, have built an automatic translator from (a subset of) statecharts to a model checker, for use to validate behavioral requirements. Our translator is designed to be flexible. This allows us to quickly adjust the translator to variants of statechart semantics, including problem-specific notational conventions that designers employ. Our system demonstration will be of interest to the following two communities: (1) Potential end-users: Our demonstration will show translation from statecharts created in a commercial UML tool (Rational Rose) to Promela, the input language of Holzmann's model checker SPIN. The translation is accomplished automatically. To accommodate the major variants of statechart semantics, our tool offers user-selectable choices among semantic alternatives. Options for customized semantic variants are also made available. The net result is an easy-to-use tool that operates on a wide range of statechart diagrams to automate the pathway to model-checking input. (2) Other researchers: Our translator embodies, in one tool, ideas and approaches drawn from several sources. Solutions to the major challenges of statechart-to-model-checker translation (e.g., determining which transition(s) will fire, handling of concurrent activities) are retired in a uniform, fully mechanized, setting. The way in which the underlying architecture of the translator itself facilitates flexible and customizable translation will also be evident.

  2. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    PubMed

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  3. Automatic liver segmentation in computed tomography using general-purpose shape modeling methods.

    PubMed

    Spinczyk, Dominik; Krasoń, Agata

    2018-05-29

    Liver segmentation in computed tomography is required in many clinical applications. The segmentation methods used can be classified according to a number of criteria. One important criterion for method selection is the shape representation of the segmented organ. The aim of the work is automatic liver segmentation using general purpose shape modeling methods. As part of the research, methods based on shape information at various levels of advancement were used. The single atlas based segmentation method was used as the simplest shape-based method. This method is derived from a single atlas using the deformable free-form deformation of the control point curves. Subsequently, the classic and modified Active Shape Model (ASM) was used, using medium body shape models. As the most advanced and main method generalized statistical shape models, Gaussian Process Morphable Models was used, which are based on multi-dimensional Gaussian distributions of the shape deformation field. Mutual information and sum os square distance were used as similarity measures. The poorest results were obtained for the single atlas method. For the ASM method in 10 analyzed cases for seven test images, the Dice coefficient was above 55[Formula: see text], of which for three of them the coefficient was over 70[Formula: see text], which placed the method in second place. The best results were obtained for the method of generalized statistical distribution of the deformation field. The DICE coefficient for this method was 88.5[Formula: see text] CONCLUSIONS: This value of 88.5 [Formula: see text] Dice coefficient can be explained by the use of general-purpose shape modeling methods with a large variance of the shape of the modeled object-the liver and limitations on the size of our training data set, which was limited to 10 cases. The obtained results in presented fully automatic method are comparable with dedicated methods for liver segmentation. In addition, the deforamtion features of the model can be modeled mathematically by using various kernel functions, which allows to segment the liver on a comparable level using a smaller learning set.

  4. Model-Based Reasoning in Humans Becomes Automatic with Training.

    PubMed

    Economides, Marcos; Kurth-Nelson, Zeb; Lübbert, Annika; Guitart-Masip, Marc; Dolan, Raymond J

    2015-09-01

    Model-based and model-free reinforcement learning (RL) have been suggested as algorithmic realizations of goal-directed and habitual action strategies. Model-based RL is more flexible than model-free but requires sophisticated calculations using a learnt model of the world. This has led model-based RL to be identified with slow, deliberative processing, and model-free RL with fast, automatic processing. In support of this distinction, it has recently been shown that model-based reasoning is impaired by placing subjects under cognitive load--a hallmark of non-automaticity. Here, using the same task, we show that cognitive load does not impair model-based reasoning if subjects receive prior training on the task. This finding is replicated across two studies and a variety of analysis methods. Thus, task familiarity permits use of model-based reasoning in parallel with other cognitive demands. The ability to deploy model-based reasoning in an automatic, parallelizable fashion has widespread theoretical implications, particularly for the learning and execution of complex behaviors. It also suggests a range of important failure modes in psychiatric disorders.

  5. Automatic staging of bladder cancer on CT urography

    NASA Astrophysics Data System (ADS)

    Garapati, Sankeerth S.; Hadjiiski, Lubomir M.; Cha, Kenny H.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Alva, Ajjai; Paramagul, Chintana; Wei, Jun; Zhou, Chuan

    2016-03-01

    Correct staging of bladder cancer is crucial for the decision of neoadjuvant chemotherapy treatment and minimizing the risk of under- or over-treatment. Subjectivity and variability of clinicians in utilizing available diagnostic information may lead to inaccuracy in staging bladder cancer. An objective decision support system that merges the information in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate and consistent staging assessments. In this study, we developed a preliminary method to stage bladder cancer. With IRB approval, 42 bladder cancer cases with CTU scans were collected from patient files. The cases were classified into two classes based on pathological stage T2, which is the decision threshold for neoadjuvant chemotherapy treatment (i.e. for stage >=T2) clinically. There were 21 cancers below stage T2 and 21 cancers at stage T2 or above. All 42 lesions were automatically segmented using our auto-initialized cascaded level sets (AI-CALS) method. Morphological features were extracted, which were selected and merged by linear discriminant analysis (LDA) classifier. A leave-one-case-out resampling scheme was used to train and test the classifier using the 42 lesions. The classification accuracy was quantified using the area under the ROC curve (Az). The average training Az was 0.97 and the test Az was 0.85. The classifier consistently selected the lesion volume, a gray level feature and a contrast feature. This predictive model shows promise for assisting in assessing the bladder cancer stage.

  6. Predictive features of breast cancer on Mexican screening mammography patients

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rojas, Juan; Garza-Montemayor, Margarita; Trevino-Alvarado, Victor; Tamez-Pena, José Gerardo

    2013-02-01

    Breast cancer is the most common type of cancer worldwide. In response, breast cancer screening programs are becoming common around the world and public programs now serve millions of women worldwide. These programs are expensive, requiring many specialized radiologists to examine all images. Nevertheless, there is a lack of trained radiologists in many countries as in Mexico, which is a barrier towards decreasing breast cancer mortality, pointing at the need of a triaging system that prioritizes high risk cases for prompt interpretation. Therefore we explored in an image database of Mexican patients whether high risk cases can be distinguished using image features. We collected a set of 200 digital screening mammography cases from a hospital in Mexico, and assigned low or high risk labels according to its BIRADS score. Breast tissue segmentation was performed using an automatic procedure. Image features were obtained considering only the segmented region on each view and comparing the bilateral di erences of the obtained features. Predictive combinations of features were chosen using a genetic algorithms based feature selection procedure. The best model found was able to classify low-risk and high-risk cases with an area under the ROC curve of 0.88 on a 150-fold cross-validation test. The features selected were associated to the differences of signal distribution and tissue shape on bilateral views. The model found can be used to automatically identify high risk cases and trigger the necessary measures to provide prompt treatment.

  7. Self-paced model learning for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Huang, Wenhui; Gu, Jason; Ma, Xin; Li, Yibin

    2017-01-01

    In visual tracking, learning a robust and efficient appearance model is a challenging task. Model learning determines both the strategy and the frequency of model updating, which contains many details that could affect the tracking results. Self-paced learning (SPL) has recently been attracting considerable interest in the fields of machine learning and computer vision. SPL is inspired by the learning principle underlying the cognitive process of humans, whose learning process is generally from easier samples to more complex aspects of a task. We propose a tracking method that integrates the learning paradigm of SPL into visual tracking, so reliable samples can be automatically selected for model learning. In contrast to many existing model learning strategies in visual tracking, we discover the missing link between sample selection and model learning, which are combined into a single objective function in our approach. Sample weights and model parameters can be learned by minimizing this single objective function. Additionally, to solve the real-valued learning weight of samples, an error-tolerant self-paced function that considers the characteristics of visual tracking is proposed. We demonstrate the robustness and efficiency of our tracker on a recent tracking benchmark data set with 50 video sequences.

  8. Selecting Cases for Intensive Analysis: A Diversity of Goals and Methods

    ERIC Educational Resources Information Center

    Gerring, John; Cojocaru, Lee

    2016-01-01

    This study revisits the task of case selection in case study research, proposing a new typology of strategies that is explicit, disaggregated, and relatively comprehensive. A secondary goal is to explore the prospects for case selection by "algorithm," aka "ex ante," "automatic," "quantitative,"…

  9. Efficient Word Reading: Automaticity of Print-Related Skills Indexed by Rapid Automatized Naming through Cusp-Catastrophe Modeling

    ERIC Educational Resources Information Center

    Sideridis, Georgios D.; Simos, Panagiotis; Mouzaki, Angeliki; Stamovlasis, Dimitrios

    2016-01-01

    The study explored the moderating role of rapid automatized naming (RAN) in reading achievement through a cusp-catastrophe model grounded on nonlinear dynamic systems theory. Data were obtained from a community sample of 496 second through fourth graders who were followed longitudinally over 2 years and split into 2 random subsamples (validation…

  10. Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology

    PubMed Central

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175

  11. Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.

    PubMed

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.

  12. WE-G-BRD-04: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An Integrated Model-Based Intrafractional Organ Motion Tracking Approach with Dynamic MRI in Head and Neck Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Dolly, S; Anastasio, M

    Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) wasmore » first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first time allows to automatically identify the H&N upper airway and quantify in-treatment H&N internal motion in real-time. This approach can be applied to track other structures’ motion, and provide guidance on patient-specific prediction of intra-/inter-fractional structure displacements.« less

  13. Symbiosis of executive and selective attention in working memory

    PubMed Central

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved. PMID:25152723

  14. Symbiosis of executive and selective attention in working memory.

    PubMed

    Vandierendonck, André

    2014-01-01

    The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  15. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  16. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    PubMed

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  17. Automatic sleep scoring: a search for an optimal combination of measures.

    PubMed

    Krakovská, Anna; Mezeiová, Kristína

    2011-09-01

    The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. The adopted multidimensional analysis involved quadratic discriminant analysis, forward selection procedure, and selection by the best subset procedure. Two situations were considered: the use of four polysomnographic signals (EEG, EMG, EOG, and ECG) and the use of the EEG alone. For the given database, the best automatic sleep classifier achieved approximately an 81% agreement with the hypnograms of experts. The classifier was based on the next 14 features of polysomnographic signals: the ratio of powers in the beta and delta frequency range (EEG, channel C3), the fractal exponent (EMG), the variance (EOG), the absolute power in the sigma 1 band (EEG, C3), the relative power in the delta 2 band (EEG, O2), theta/gamma (EEG, C3), theta/alpha (EEG, O1), sigma/gamma (EEG, C4), the coherence in the delta 1 band (EEG, O1-O2), the entropy (EMG), the absolute theta 2 (EEG, Fp1), theta/alpha (EEG, Fp1), the sigma 2 coherence (EEG, O1-C3), and the zero-crossing rate (ECG); however, even with only four features, we could perform sleep scoring with a 74% accuracy, which is comparable to the inter-rater agreement between two independent specialists. We have shown that 4-14 carefully selected polysomnographic features were sufficient for successful sleep scoring. The efficiency of the corresponding automatic classifiers was verified and conclusively demonstrated on all-night recordings from healthy adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Automatic color preference correction for color reproduction

    NASA Astrophysics Data System (ADS)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  19. Automatic Registration of GF4 Pms: a High Resolution Multi-Spectral Sensor on Board a Satellite on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Gao, M.; Li, J.

    2018-04-01

    Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.

  20. Image segmentation using local shape and gray-level appearance models

    NASA Astrophysics Data System (ADS)

    Seghers, Dieter; Loeckx, Dirk; Maes, Frederik; Suetens, Paul

    2006-03-01

    A new generic model-based segmentation scheme is presented, which can be trained from examples akin to the Active Shape Model (ASM) approach in order to acquire knowledge about the shape to be segmented and about the gray-level appearance of the object in the image. Because in the ASM approach the intensity and shape models are typically applied alternately during optimizing as first an optimal target location is selected for each landmark separately based on local gray-level appearance information only to which the shape model is fitted subsequently, the ASM may be misled in case of wrongly selected landmark locations. Instead, the proposed approach optimizes for shape and intensity characteristics simultaneously. Local gray-level appearance information at the landmark points extracted from feature images is used to automatically detect a number of plausible candidate locations for each landmark. The shape information is described by multiple landmark-specific statistical models that capture local dependencies between adjacent landmarks on the shape. The shape and intensity models are combined in a single cost function that is optimized non-iteratively using dynamic programming which allows to find the optimal landmark positions using combined shape and intensity information, without the need for initialization.

  1. CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang

    2014-06-01

    Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.

  2. Development of a cerebral circulation model for the automatic control of brain physiology.

    PubMed

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  3. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  4. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.

    2013-01-01

    profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.

  5. Segmentation of left atrial intracardiac ultrasound images for image guided cardiac ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Stephens, T.; Holmes, D. R.; Linte, C.; Packer, D. L.; Robb, R. A.

    2013-03-01

    Intracardiac echocardiography (ICE), a technique in which structures of the heart are imaged using a catheter navigated inside the cardiac chambers, is an important imaging technique for guidance in cardiac ablation therapy. Automatic segmentation of these images is valuable for guidance and targeting of treatment sites. In this paper, we describe an approach to segment ICE images by generating an empirical model of blood pool and tissue intensities. Normal, Weibull, Gamma, and Generalized Extreme Value (GEV) distributions are fit to histograms of tissue and blood pool pixels from a series of ICE scans. A total of 40 images from 4 separate studies were evaluated. The model was trained and tested using two approaches. In the first approach, the model was trained on all images from 3 studies and subsequently tested on the 40 images from the 4th study. This procedure was repeated 4 times using a leave-one-out strategy. This is termed the between-subjects approach. In the second approach, the model was trained on 10 randomly selected images from a single study and tested on the remaining 30 images in that study. This is termed the within-subjects approach. For both approaches, the model was used to automatically segment ICE images into blood and tissue regions. Each pixel is classified using the Generalized Liklihood Ratio Test across neighborhood sizes ranging from 1 to 49. Automatic segmentation results were compared against manual segmentations for all images. In the between-subjects approach, the GEV distribution using a neighborhood size of 17 was found to be the most accurate with a misclassification rate of approximately 17%. In the within-subjects approach, the GEV distribution using a neighborhood size of 19 was found to be the most accurate with a misclassification rate of approximately 15%. As expected, the majority of misclassified pixels were located near the boundaries between tissue and blood pool regions for both methods.

  6. The Effect of Automatization of the Phonological Component on the Reading Comprehension of ESP Students

    ERIC Educational Resources Information Center

    Khatib, Mohammad; Fat'hi, Jalil

    2011-01-01

    Prompted by the recent shift of attention from just focusing on the top-down processing in L2 reading towards considering the basic component, bottom-up processing, the role of phonological component has also enjoyed popularity among a selected circle of SLA investigators (Koda, 2005). This study investigated the effect of the automatization of…

  7. Exploring the Developmental Changes in Automatic Two-Digit Number Processing

    ERIC Educational Resources Information Center

    Chan, Winnie Wai Lan; Au, Terry K.; Tang, Joey

    2011-01-01

    Even when two-digit numbers are irrelevant to the task at hand, adults process them. Do children process numbers automatically, and if so, what kind of information is activated? In a novel dot-number Stroop task, children (Grades 1-5) and adults were shown two different two-digit numbers made up of dots. Participants were asked to select the…

  8. Automatic and controlled attentional orienting in the elderly: A dual-process view of the positivity effect.

    PubMed

    Gronchi, G; Righi, S; Pierguidi, L; Giovannelli, F; Murasecco, I; Viggiano, M P

    2018-04-01

    The positivity effect in the elderly consists of an attentional preference for positive information as well as avoidance of negative information. Extant theories predict either that the positivity effect depends on controlled attentional processes (socio-emotional selectivity theory), or on an automatic gating selection mechanism (dynamic integration theory). This study examined the role of automatic and controlled attention in the positivity effect. Two dot-probe tasks (with the duration of the stimuli lasting 100 ms and 500 ms, respectively) were employed to compare the attentional bias of 35 elderly people to that of 35 young adults. The stimuli used were expressive faces displaying neutral, disgusted, fearful, and happy expressions. In comparison to young people, the elderly allocated more attention to happy faces at 100 ms and they tended to avoid fearful faces at 500 ms. The findings are not predicted by either theory taken alone, but support the hypothesis that the positivity effect in the elderly is driven by two different processes: an automatic attention bias toward positive stimuli, and a controlled mechanism that diverts attention away from negative stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Assessment of NDE reliability data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.

    1975-01-01

    Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.

  10. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.

  11. The development of an automatic recognition system for earmark and earprint comparisons.

    PubMed

    Junod, Stéphane; Pasquier, Julien; Champod, Christophe

    2012-10-10

    The value of earmarks as an efficient means of personal identification is still subject to debate. It has been argued that the field is lacking a firm systematic and structured data basis to help practitioners to form their conclusions. Typically, there is a paucity of research guiding as to the selectivity of the features used in the comparison process between an earmark and reference earprints taken from an individual. This study proposes a system for the automatic comparison of earprints and earmarks, operating without any manual extraction of key-points or manual annotations. For each donor, a model is created using multiple reference prints, hence capturing the donor within source variability. For each comparison between a mark and a model, images are automatically aligned and a proximity score, based on a normalized 2D correlation coefficient, is calculated. Appropriate use of this score allows deriving a likelihood ratio that can be explored under known state of affairs (both in cases where it is known that the mark has been left by the donor that gave the model and conversely in cases when it is established that the mark originates from a different source). To assess the system performance, a first dataset containing 1229 donors elaborated during the FearID research project was used. Based on these data, for mark-to-print comparisons, the system performed with an equal error rate (EER) of 2.3% and about 88% of marks are found in the first 3 positions of a hitlist. When performing print-to-print transactions, results show an equal error rate of 0.5%. The system was then tested using real-case data obtained from police forces. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Towards Automatic Semantic Labelling of 3D City Models

    NASA Astrophysics Data System (ADS)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  13. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  14. Intelligent Weather Agent

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor)

    2006-01-01

    Method and system for automatically displaying, visually and/or audibly and/or by an audible alarm signal, relevant weather data for an identified aircraft pilot, when each of a selected subset of measured or estimated aviation situation parameters, corresponding to a given aviation situation, has a value lying in a selected range. Each range for a particular pilot may be a default range, may be entered by the pilot and/or may be automatically determined from experience and may be subsequently edited by the pilot to change a range and to add or delete parameters describing a situation for which a display should be provided. The pilot can also verbally activate an audible display or visual display of selected information by verbal entry of a first command or a second command, respectively, that specifies the information required.

  15. A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques

    NASA Astrophysics Data System (ADS)

    Techo, Jakkrit; Nattee, Cholwich; Theeramunkong, Thanaruk

    While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naïve Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.93±0.50% when the first rank is selected while it gains 97.26±0.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naïve Bayes classifier and the vanilla version. Another result on applying only best features show 93.93±0.22% and up to 98.85±0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.

  16. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method

    PubMed Central

    Chen, Meizhu; Li, Jichun; Zhang, Encai

    2017-01-01

    As a nonintrusive method, the retina imaging provides us with a better way for the diagnosis of ophthalmologic diseases. Extracting the vessel profile automatically from the retina image is an important step in analyzing retina images. A novel hybrid active contour model is proposed to segment the fundus image automatically in this paper. It combines the signed pressure force function introduced by the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model with the local intensity property introduced by the Local Binary fitting (LBF) model to overcome the difficulty of the low contrast in segmentation process. It is more robust to the initial condition than the traditional methods and is easily implemented compared to the supervised vessel extraction methods. Proposed segmentation method was evaluated on two public datasets, DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured Analysis of the Retina) (the average accuracy of 0.9390 with 0.7358 sensitivity and 0.9680 specificity on DRIVE datasets and average accuracy of 0.9409 with 0.7449 sensitivity and 0.9690 specificity on STARE datasets). The experimental results show that our method is effective and our method is also robust to some kinds of pathology images compared with the traditional level set methods. PMID:28840122

  18. Of truth and pathways: chasing bits of information through myriads of articles.

    PubMed

    Krauthammer, Michael; Kra, Pauline; Iossifov, Ivan; Gomez, Shawn M; Hripcsak, George; Hatzivassiloglou, Vasileios; Friedman, Carol; Rzhetsky, Andrey

    2002-01-01

    Knowledge on interactions between molecules in living cells is indispensable for theoretical analysis and practical applications in modern genomics and molecular biology. Building such networks relies on the assumption that the correct molecular interactions are known or can be identified by reading a few research articles. However, this assumption does not necessarily hold, as truth is rather an emerging property based on many potentially conflicting facts. This paper explores the processes of knowledge generation and publishing in the molecular biology literature using modelling and analysis of real molecular interaction data. The data analysed in this article were automatically extracted from 50000 research articles in molecular biology using a computer system called GeneWays containing a natural language processing module. The paper indicates that truthfulness of statements is associated in the minds of scientists with the relative importance (connectedness) of substances under study, revealing a potential selection bias in the reporting of research results. Aiming at understanding the statistical properties of the life cycle of biological facts reported in research articles, we formulate a stochastic model describing generation and propagation of knowledge about molecular interactions through scientific publications. We hope that in the future such a model can be useful for automatically producing consensus views of molecular interaction data.

  19. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules

    PubMed Central

    Ashkenazy, Haim; Abadi, Shiran; Martz, Eric; Chay, Ofer; Mayrose, Itay; Pupko, Tal; Ben-Tal, Nir

    2016-01-01

    The degree of evolutionary conservation of an amino acid in a protein or a nucleic acid in DNA/RNA reflects a balance between its natural tendency to mutate and the overall need to retain the structural integrity and function of the macromolecule. The ConSurf web server (http://consurf.tau.ac.il), established over 15 years ago, analyses the evolutionary pattern of the amino/nucleic acids of the macromolecule to reveal regions that are important for structure and/or function. Starting from a query sequence or structure, the server automatically collects homologues, infers their multiple sequence alignment and reconstructs a phylogenetic tree that reflects their evolutionary relations. These data are then used, within a probabilistic framework, to estimate the evolutionary rates of each sequence position. Here we introduce several new features into ConSurf, including automatic selection of the best evolutionary model used to infer the rates, the ability to homology-model query proteins, prediction of the secondary structure of query RNA molecules from sequence, the ability to view the biological assembly of a query (in addition to the single chain), mapping of the conservation grades onto 2D RNA models and an advanced view of the phylogenetic tree that enables interactively rerunning ConSurf with the taxa of a sub-tree. PMID:27166375

  20. 11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. MOVABLE BED SEDIMENTATION MODELS. AUTOMATIC SEDIMENT FEEDER DESIGNED AND BUILT BY WES. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  1. Hidden Markov models in automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Wrzoskowicz, Adam

    1993-11-01

    This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.

  2. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  3. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    PubMed

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  4. Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models

    NASA Astrophysics Data System (ADS)

    Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.

    2012-04-01

    The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation process as a sequence of discrete equations which are assembled and solved. It is the coupling of the respective abstractions employed by libadjoint and the FEniCS project which produces the adjoint model automatically, without further intervention from the model developer. This presentation will demonstrate this new technology through linear and non-linear shallow water test cases. The exceptionally simple model syntax will be highlighted and the correctness of the resulting adjoint simulations will be demonstrated using rigorous convergence tests.

  5. The use of database management systems and artificial intelligence in automating the planning of optical navigation pictures

    NASA Technical Reports Server (NTRS)

    Davis, Robert P.; Underwood, Ian M.

    1987-01-01

    The use of database management systems (DBMS) and AI to minimize human involvement in the planning of optical navigation pictures for interplanetary space probes is discussed, with application to the Galileo mission. Parameters characterizing the desirability of candidate pictures, and the program generating them, are described. How these parameters automatically build picture records in a database, and the definition of the database structure, are then discussed. The various rules, priorities, and constraints used in selecting pictures are also described. An example is provided of an expert system, written in Prolog, for automatically performing the selection process.

  6. Automatically operable self-leveling load table

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1974-01-01

    A self-leveling load table is described which is automatically maintained level by selectively opening and closing solenoid valves for inserting and removing air from chambers under the table. The table is floated in a fluid by nine air chambers beneath the top of the table. These chambers are open at the bottom and four oppositely located chambers are used for leveling the table by having the air increased or decreased by means of a flexible hose. Air bearing pendulums are used for selectively energizing solenoid valves which either apply pressurized air to the chamber or evacuate air from the chamber by means of a vacuum source.

  7. MASGOMAS PROJECT, New automatic-tool for cluster search on IR photometric surveys

    NASA Astrophysics Data System (ADS)

    Rübke, K.; Herrero, A.; Borissova, J.; Ramirez-Alegria, S.; García, M.; Marin-Franch, A.

    2015-05-01

    The Milky Way is expected to contain a large number of young massive (few x 1000 solar masses) stellar clusters, borne in dense cores of gas and dust. Yet, their known number remains small. We have started a programme to search for such clusters, MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS). Initially, we selected promising candidates by means of visual inspection of infrared images. In a second phase of the project we have presented a semi-automatic method to search for obscured massive clusters that resulted in the identification of new massive clusters, like MASGOMAS-1 (with more than 10,000 solar masses) and MASGOMAS-4 (a double-cored association of about 3,000 solar masses). We have now developped a new automatic tool for MASGOMAS that allows the identification of a large number of massive cluster candidates from the 2MASS and VVV catalogues. Cluster candidates fulfilling criteria appropriated for massive OB stars are thus selected in an efficient and objective way. We present the results from this tool and the observations of the first selected cluster, and discuss the implications for the Milky Way structure.

  8. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials

    NASA Astrophysics Data System (ADS)

    Imbalzano, Giulio; Anelli, Andrea; Giofré, Daniele; Klees, Sinja; Behler, Jörg; Ceriotti, Michele

    2018-06-01

    Machine learning of atomic-scale properties is revolutionizing molecular modeling, making it possible to evaluate inter-atomic potentials with first-principles accuracy, at a fraction of the costs. The accuracy, speed, and reliability of machine learning potentials, however, depend strongly on the way atomic configurations are represented, i.e., the choice of descriptors used as input for the machine learning method. The raw Cartesian coordinates are typically transformed in "fingerprints," or "symmetry functions," that are designed to encode, in addition to the structure, important properties of the potential energy surface like its invariances with respect to rotation, translation, and permutation of like atoms. Here we discuss automatic protocols to select a number of fingerprints out of a large pool of candidates, based on the correlations that are intrinsic to the training data. This procedure can greatly simplify the construction of neural network potentials that strike the best balance between accuracy and computational efficiency and has the potential to accelerate by orders of magnitude the evaluation of Gaussian approximation potentials based on the smooth overlap of atomic positions kernel. We present applications to the construction of neural network potentials for water and for an Al-Mg-Si alloy and to the prediction of the formation energies of small organic molecules using Gaussian process regression.

  9. In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.

    PubMed

    De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C

    1999-05-01

    Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.

  10. Mathematical algorithm for the automatic recognition of intestinal parasites.

    PubMed

    Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H; Sheen, Patricia; Zimic, Mirko

    2017-01-01

    Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity.

  11. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.

    PubMed

    Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J

    2015-10-01

    The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.

  12. Mathematical algorithm for the automatic recognition of intestinal parasites

    PubMed Central

    Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H.; Sheen, Patricia; Zimic, Mirko

    2017-01-01

    Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity. PMID:28410387

  13. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  14. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds.

    PubMed

    Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco

    2014-09-17

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  15. Advanced Machine Learning Emulators of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  16. A Dynamic Integration Method for Borderland Database using OSM data

    NASA Astrophysics Data System (ADS)

    Zhou, X.-G.; Jiang, Y.; Zhou, K.-X.; Zeng, L.

    2013-11-01

    Spatial data is the fundamental of borderland analysis of the geography, natural resources, demography, politics, economy, and culture. As the spatial region used in borderland researching usually covers several neighboring countries' borderland regions, the data is difficult to achieve by one research institution or government. VGI has been proven to be a very successful means of acquiring timely and detailed global spatial data at very low cost. Therefore VGI will be one reasonable source of borderland spatial data. OpenStreetMap (OSM) has been known as the most successful VGI resource. But OSM data model is far different from the traditional authoritative geographic information. Thus the OSM data needs to be converted to the scientist customized data model. With the real world changing fast, the converted data needs to be updated. Therefore, a dynamic integration method for borderland data is presented in this paper. In this method, a machine study mechanism is used to convert the OSM data model to the user data model; a method used to select the changed objects in the researching area over a given period from OSM whole world daily diff file is presented, the change-only information file with designed form is produced automatically. Based on the rules and algorithms mentioned above, we enabled the automatic (or semiautomatic) integration and updating of the borderland database by programming. The developed system was intensively tested.

  17. The Study of Cognitive Change Process on Depression during Aerobic Exercises.

    PubMed

    Sadeghi, Kheirollah; Ahmadi, Seyed Mojtaba; Moghadam, Arash Parsa; Parvizifard, Aliakbar

    2017-04-01

    Several studies have shown that aerobic exercise is effective in treating the depression and improving the mental health. There are various theories which explains why aerobic exercise is effective in the treatment of depression and improve mental health, but there are limited studies to show how cognitive components and depression improve during aerobic exercises. The current study was carried out to investigate the cognitive change process during aerobic exercises in depressed students. This study was conducted through structural equation modeling; the study sample included 85 depressed students. Participants were selected through purposive sampling method. Beck Depression Inventory (BDI-II), Automatic Negative Thoughts (ATQ), and the Dysfunctional Attitude Scale (DAS) were used as the data collection instruments. The participants received eight sessions of aerobic exercise (three times a week). The obtained data was analysed by AMOS-18 & SPSS 18 software. The results showed that depression (p=0.001), automatic thoughts (ferquency p=0.413, beliefs p=0.676) and dysfunctional assumptions (p=0.219) reduce during aerobic exercise; however, it was only meaningful for the depression. The casual and consequential models were not fit to the data and partially and fully interactive models provided an adequate fit to the data. Fully interactive model provided the best fit of the data. It seems that aerobic exercise reduced cognitive components separately leading to reduce depression.

  18. Best-next-view algorithm for three-dimensional scene reconstruction using range images

    NASA Astrophysics Data System (ADS)

    Banta, J. E.; Zhien, Yu; Wang, X. Z.; Zhang, G.; Smith, M. T.; Abidi, Mongi A.

    1995-10-01

    The primary focus of the research detailed in this paper is to develop an intelligent sensing module capable of automatically determining the optimal next sensor position and orientation during scene reconstruction. To facilitate a solution to this problem, we have assembled a system for reconstructing a 3D model of an object or scene from a sequence of range images. Candidates for the best-next-view position are determined by detecting and measuring occlusions to the range camera's view in an image. Ultimately, the candidate which will reveal the greatest amount of unknown scene information is selected as the best-next-view position. Our algorithm uses ray tracing to determine how much new information a given sensor perspective will reveal. We have tested our algorithm successfully on several synthetic range data streams, and found the system's results to be consistent with an intuitive human search. The models recovered by our system from range data compared well with the ideal models. Essentially, we have proven that range information of physical objects can be employed to automatically reconstruct a satisfactory dynamic 3D computer model at a minimal computational expense. This has obvious implications in the contexts of robot navigation, manufacturing, and hazardous materials handling. The algorithm we developed takes advantage of no a priori information in finding the best-next-view position.

  19. Software for Partly Automated Recognition of Targets

    NASA Technical Reports Server (NTRS)

    Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark; Selinsky, T.

    2002-01-01

    The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user's tendencies while the user is selecting targets and to increase the user's productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.

  20. Wind Energy Conversion System Analysis Model (WECSAM) computer program documentation

    NASA Astrophysics Data System (ADS)

    Downey, W. T.; Hendrick, P. L.

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation.

  1. The "Vsoil Platform" : a tool to integrate the various physical, chemical and biological processes contributing to the soil functioning at the local scale.

    NASA Astrophysics Data System (ADS)

    Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Moitrier, Nicolas; Balesdent, Jérome; bruckler, Laurent; Moitrier, Nathalie; Nouguier, Cédric; Richard, Guy

    2014-05-01

    Models describing the soil functioning are valuable tools for addressing challenging issues related to agricultural production, soil protection or biogeochemical cycles. Coupling models that address different scientific fields is actually required in order to develop numerical tools able to simulate the complex interactions and feed-backs occurring within a soil profile in interaction with climate and human activities. We present here a component-based modelling platform named "VSoil", that aims at designing, developing, implementing and coupling numerical representation of biogeochemical and physical processes in soil, from the aggregate to the profile scales. The platform consists of four softwares, i) Vsoil_Processes dedicated to the conceptual description of processes and of their inputs and outputs, ii) Vsoil_Modules devoted to the development of numerical representation of elementary processes as modules, iii) Vsoil_Models which permits the coupling of modules to create models, iv) Vsoil_Player for the run of the model and the primary analysis of results. The platform is designed to be a collaborative tool, helping scientists to share not only their models, but also the scientific knowledge on which the models are built. The platform is based on the idea that processes of any kind can be described and characterized by their inputs (state variables required) and their outputs. The links between the processes are automatically detected by the platform softwares. For any process, several numerical representations (modules) can be developed and made available to platform users. When developing modules, the platform takes care of many aspects of the development task so that the user can focus on numerical calculations. Fortran2008 and C++ are the supported languages and existing codes can be easily incorporated into platform modules. Building a model from available modules simply requires selecting the processes being accounted for and for each process a module. During this task, the platform displays available modules and checks the compatibility between the modules. The model (main program) is automatically created when compatible modules have been selected for all the processes. A GUI is automatically generated to help the user providing parameters and initial situations. Numerical results can be immediately visualized, archived and exported. The platform also provides facilities to carry out sensitivity analysis. Parameters estimation and links with databases are being developed. The platform can be freely downloaded from the web site (http://www.inra.fr/sol_virtuel/) with a set of processes, variables, modules and models. However, it is designed so that any user can add its own components. Theses adds-on can be shared with co-workers by means of an export/import mechanism using the e-mail. The adds-on can also be made available to the whole community of platform users when developers asked for. A filtering tool is available to explore the content of the platform (processes, variables, modules, models).

  2. SU-E-T-497: Semi-Automated in Vivo Radiochromic Film Dosimetry Using a Novel Image Processing Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyhan, M; Yue, N

    Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation.more » Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help minimize user interaction and processing time of radiochromic film used for in vivo dosimetry.« less

  3. Group Cooperation without Group Selection: Modest Punishment Can Recruit Much Cooperation.

    PubMed

    Krasnow, Max M; Delton, Andrew W; Cosmides, Leda; Tooby, John

    2015-01-01

    Humans everywhere cooperate in groups to achieve benefits not attainable by individuals. Individual effort is often not automatically tied to a proportionate share of group benefits. This decoupling allows for free-riding, a strategy that (absent countermeasures) outcompetes cooperation. Empirically and formally, punishment potentially solves the evolutionary puzzle of group cooperation. Nevertheless, standard analyses appear to show that punishment alone is insufficient, because second-order free riders (those who cooperate but do not punish) can be shown to outcompete punishers. Consequently, many have concluded that other processes, such as cultural or genetic group selection, are required. Here, we present a series of agent-based simulations that show that group cooperation sustained by punishment easily evolves by individual selection when you introduce into standard models more biologically plausible assumptions about the social ecology and psychology of ancestral humans. We relax three unrealistic assumptions of past models. First, past models assume all punishers must punish every act of free riding in their group. We instead allow punishment to be probabilistic, meaning punishers can evolve to only punish some free riders some of the time. This drastically lowers the cost of punishment as group size increases. Second, most models unrealistically do not allow punishment to recruit labor; punishment merely reduces the punished agent's fitness. We instead realistically allow punished free riders to cooperate in the future to avoid punishment. Third, past models usually restrict agents to interact in a single group their entire lives. We instead introduce realistic social ecologies in which agents participate in multiple, partially overlapping groups. Because of this, punitive tendencies are more expressed and therefore more exposed to natural selection. These three moves toward greater model realism reveal that punishment and cooperation easily evolve by direct selection--even in sizeable groups.

  4. Automated selection of trabecular bone regions in knee radiographs.

    PubMed

    Podsiadlo, P; Wolski, M; Stachowiak, G W

    2008-05-01

    Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the "gold standard" that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8 x 12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI) = 0.83 (medial) and 0.81 (lateral) and the offset =[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions with an accuracy that is sufficient for fractal analyses of bone texture.

  5. Automaticity and localisation of concurrents predicts colour area activity in grapheme-colour synaesthesia.

    PubMed

    Gould van Praag, Cassandra D; Garfinkel, Sarah; Ward, Jamie; Bor, Daniel; Seth, Anil K

    2016-07-29

    In grapheme-colour synaesthesia (GCS), the presentation of letters or numbers induces an additional 'concurrent' experience of colour. Early functional MRI (fMRI) investigations of GCS reported activation in colour-selective area V4 during the concurrent experience. However, others have failed to replicate this key finding. We reasoned that individual differences in synaesthetic phenomenology might explain this inconsistency in the literature. To test this hypothesis, we examined fMRI BOLD responses in a group of grapheme-colour synaesthetes (n=20) and matched controls (n=20) while characterising the individual phenomenology of the synaesthetes along dimensions of 'automaticity' and 'localisation'. We used an independent functional localiser to identify colour-selective areas in both groups. Activations in these areas were then assessed during achromatic synaesthesia-inducing, and non-inducing conditions; we also explored whole brain activations, where we sought to replicate the existing literature regarding synaesthesia effects. Controls showed no significant activations in the contrast of inducing > non-inducing synaesthetic stimuli, in colour-selective ROIs or at the whole brain level. In the synaesthete group, we correlated activation within colour-selective ROIs with individual differences in phenomenology using the Coloured Letters and Numbers (CLaN) questionnaire which measures, amongst other attributes, the subjective automaticity/attention in synaesthetic concurrents, and their spatial localisation. Supporting our hypothesis, we found significant correlations between individual measures of synaesthetic phenomenology and BOLD responses in colour-selective areas, when contrasting inducing against non-inducing stimuli. Specifically, left-hemisphere colour area responses were stronger for synaesthetes scoring high on phenomenological localisation and automaticity/attention, while right-hemisphere colour area responses showed a relationship with localisation only. In exploratory whole brain analyses, the BOLD response within several other areas was also correlated with these phenomenological factors, including the intra-parietal sulcus, insula, precentral and supplementary motor areas. Our findings reveal a network of regions underlying synaesthetic phenomenology and they help reconcile the diversity of previous results regarding colour-selective BOLD responses during synaesthesia, by establishing a bridge between neural responses and individual synaesthetic phenomenology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Predictors of Change Following Cognitive-Behavioral Treatment of Children with Anxiety Problems: A Preliminary Investigation on Negative Automatic Thoughts and Anxiety Control

    ERIC Educational Resources Information Center

    Muris, Peter; Mayer, Birgit; den Adel, Madelon; Roos, Tamara; van Wamelen, Julie

    2009-01-01

    The purpose of the present study was to evaluate negative automatic thoughts and anxiety control as predictors of change produced by cognitive-behavioral treatment of youths with anxiety disorders. Forty-five high-anxious children aged between 9 and 12 years who were selected from the primary school population, received a standardized CBT…

  7. AFETR Instrumentation Handbook

    DTIC Science & Technology

    1971-09-01

    of time. From this, vehicle velocity and acceleration can be computed. LOCATION Three Askanias are mobile and may be located at selected universal...Being mobile , these cinetheodolites may be placed for optimum launch coverage. Preprogrammed focusing is provided for automatic focus from 2000 and 8000...console trailer. IR (lead sulfide sensor ) Automatic Tracking System with 1 to 20 miles range. Elevation range: -10 deg to +90 deg Azimuth range: 350

  8. Automatic processing influences free recall: converging evidence from the process dissociation procedure and remember-know judgments.

    PubMed

    McCabe, David P; Roediger, Henry L; Karpicke, Jeffrey D

    2011-04-01

    Dual-process theories of retrieval suggest that controlled and automatic processing contribute to memory performance. Free recall tests are often considered pure measures of recollection, assessing only the controlled process. We report two experiments demonstrating that automatic processes also influence free recall. Experiment 1 used inclusion and exclusion tasks to estimate recollection and automaticity in free recall, adopting a new variant of the process dissociation procedure. Dividing attention during study selectively reduced the recollection estimate but did not affect the automatic component. In Experiment 2, we replicated the results of Experiment 1, and subjects additionally reported remember-know-guess judgments during recall in the inclusion condition. In the latter task, dividing attention during study reduced remember judgments for studied items, but know responses were unaffected. Results from both methods indicated that free recall is partly driven by automatic processes. Thus, we conclude that retrieval in free recall tests is not driven solely by conscious recollection (or remembering) but also by automatic influences of the same sort believed to drive priming on implicit memory tests. Sometimes items come to mind without volition in free recall.

  9. Chemical name extraction based on automatic training data generation and rich feature set.

    PubMed

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  10. Automated 3D Phenotype Analysis Using Data Mining

    PubMed Central

    Plyusnin, Ilya; Evans, Alistair R.; Karme, Aleksis; Gionis, Aristides; Jernvall, Jukka

    2008-01-01

    The ability to analyze and classify three-dimensional (3D) biological morphology has lagged behind the analysis of other biological data types such as gene sequences. Here, we introduce the techniques of data mining to the study of 3D biological shapes to bring the analyses of phenomes closer to the efficiency of studying genomes. We compiled five training sets of highly variable morphologies of mammalian teeth from the MorphoBrowser database. Samples were labeled either by dietary class or by conventional dental types (e.g. carnassial, selenodont). We automatically extracted a multitude of topological attributes using Geographic Information Systems (GIS)-like procedures that were then used in several combinations of feature selection schemes and probabilistic classification models to build and optimize classifiers for predicting the labels of the training sets. In terms of classification accuracy, computational time and size of the feature sets used, non-repeated best-first search combined with 1-nearest neighbor classifier was the best approach. However, several other classification models combined with the same searching scheme proved practical. The current study represents a first step in the automatic analysis of 3D phenotypes, which will be increasingly valuable with the future increase in 3D morphology and phenomics databases. PMID:18320060

  11. Predictors of situation awareness in student registered nurse anesthetists.

    PubMed

    Wright, Suzanne M; Fallacaro, Michael D

    2011-12-01

    Situation awareness (SA) is defined as one's perception of the elements of the environment, the comprehension of their meaning, and the projection of their status in the near future. The concept of SA is well known in the aviation industry, which is characterized by complexity and dynamism. The discipline of anesthesia shares these same environmental characteristics, yet the study of SA in this setting is in its infancy. Guided by Endsley's theory of SA, the purpose of this study was to provide educators with a best-evidence predictor model of SA in student registered nurse anesthetists (SRNAs). Seventy-one SRNAs were randomly selected from 3 US universities. A nonexperimental, correlational design and multiple regression analysis were used to measure the relationship between memory, cognition, and automaticity and SA. Findings from this study reveal cognition as the best predictor of SA in graduate SRNAs, with the addition of memory and automaticity contributing no additional predictive value to the model. The results of this study have the potential to make a positive impact on the admission, education, and training of SRNAs. This study contributes evidence for further research examining the use of high-fidelity simulation in promoting SA in SRNAs.

  12. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    PubMed

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  13. Automatic weight determination in nonlinear model predictive control of wind turbines using swarm optimization technique

    NASA Astrophysics Data System (ADS)

    Tofighi, Elham; Mahdizadeh, Amin

    2016-09-01

    This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.

  14. Automatic facial animation parameters extraction in MPEG-4 visual communication

    NASA Astrophysics Data System (ADS)

    Yang, Chenggen; Gong, Wanwei; Yu, Lu

    2002-01-01

    Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.

  15. Automatic comparison of striation marks and automatic classification of shoe prints

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac

    1995-09-01

    A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.

  16. Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations

    PubMed Central

    Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W.

    2016-01-01

    Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures. PMID:26904094

  17. Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations.

    PubMed

    Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W

    2016-01-01

    Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures.

  18. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy?

    PubMed Central

    Papageorgiou, Eirini; Nieuwenhuys, Angela; Desloovere, Kaat

    2017-01-01

    Background This study aimed to improve the automatic probabilistic classification of joint motion gait patterns in children with cerebral palsy by using the expert knowledge available via a recently developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and Logistic Regression classification with varying degrees of usage of the expert knowledge (expert-defined and discretized features). A database of 356 patients and 1719 gait trials was used to validate the classification performance of eleven joint motions. Hypotheses Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can be automatically classified following a probabilistic approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of clinical expert knowledge in the selection of relevant gait features and the discretization of continuous features increases the performance of automatic probabilistic joint motion classification. Findings This study provided objective evidence supporting the first hypothesis. Automatic probabilistic gait classification using the expert knowledge available from the Delphi-consensus study resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher accuracy than that obtained with non-expert raters (78%). Regarding the second hypothesis, this study demonstrated that the use of more advanced machine learning techniques such as automatic feature selection and discretization instead of expert-defined and discretized features can result in slightly higher joint motion classification performance. However, the increase in performance is limited and does not outweigh the additional computational cost and the higher risk of loss of clinical interpretability, which threatens the clinical acceptance and applicability. PMID:28570616

  19. A new method for automatic discontinuity traces sampling on rock mass 3D model

    NASA Astrophysics Data System (ADS)

    Umili, G.; Ferrero, A.; Einstein, H. H.

    2013-02-01

    A new automatic method for discontinuity traces mapping and sampling on a rock mass digital model is described in this work. The implemented procedure allows one to automatically identify discontinuity traces on a Digital Surface Model: traces are detected directly as surface breaklines, by means of maximum and minimum principal curvature values of the vertices that constitute the model surface. Color influence and user errors, that usually characterize the trace mapping on images, are eliminated. Also trace sampling procedures based on circular windows and circular scanlines have been implemented: they are used to infer trace data and to calculate values of mean trace length, expected discontinuity diameter and intensity of rock discontinuities. The method is tested on a case study: results obtained applying the automatic procedure on the DSM of a rock face are compared to those obtained performing a manual sampling on the orthophotograph of the same rock face.

  20. Application of nonlinear transformations to automatic flight control

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Su, R.; Hunt, L. R.

    1984-01-01

    The theory of transformations of nonlinear systems to linear ones is applied to the design of an automatic flight controller for the UH-1H helicopter. The helicopter mathematical model is described and it is shown to satisfy the necessary and sufficient conditions for transformability. The mapping is constructed, taking the nonlinear model to canonical form. The performance of the automatic control system in a detailed simulation on the flight computer is summarized.

  1. FURTHER ANALYSIS OF SUBTYPES OF AUTOMATICALLY REINFORCED SIB: A REPLICATION AND QUANTITATIVE ANALYSIS OF PUBLISHED DATASETS

    PubMed Central

    Hagopian, Louis P.; Rooker, Griffin W.; Zarcone, Jennifer R.; Bonner, Andrew C.; Arevalo, Alexander R.

    2017-01-01

    Hagopian, Rooker, and Zarcone (2015) evaluated a model for subtyping automatically reinforced self-injurious behavior (SIB) based on its sensitivity to changes in functional analysis conditions and the presence of self-restraint. The current study tested the generality of the model by applying it to all datasets of automatically reinforced SIB published from 1982 to 2015. We identified 49 datasets that included sufficient data to permit subtyping. Similar to the original study, Subtype-1 SIB was generally amenable to treatment using reinforcement alone, whereas Subtype-2 SIB was not. Conclusions could not be drawn about Subtype-3 SIB due to the small number of datasets. Nevertheless, the findings support the generality of the model and suggest that sensitivity of SIB to disruption by alternative reinforcement is an important dimension of automatically reinforced SIB. Findings also suggest that automatically reinforced SIB should no longer be considered a single category and that additional research is needed to better understand and treat Subtype-2 SIB. PMID:28032344

  2. A Clonal Selection Algorithm for Minimizing Distance Travel and Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit

    2018-03-01

    The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.

  3. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  4. Trust, control strategies and allocation of function in human-machine systems.

    PubMed

    Lee, J; Moray, N

    1992-10-01

    As automated controllers supplant human intervention in controlling complex systems, the operators' role often changes from that of an active controller to that of a supervisory controller. Acting as supervisors, operators can choose between automatic and manual control. Improperly allocating function between automatic and manual control can have negative consequences for the performance of a system. Previous research suggests that the decision to perform the job manually or automatically depends, in part, upon the trust the operators invest in the automatic controllers. This paper reports an experiment to characterize the changes in operators' trust during an interaction with a semi-automatic pasteurization plant, and investigates the relationship between changes in operators' control strategies and trust. A regression model identifies the causes of changes in trust, and a 'trust transfer function' is developed using time series analysis to describe the dynamics of trust. Based on a detailed analysis of operators' strategies in response to system faults we suggest a model for the choice between manual and automatic control, based on trust in automatic controllers and self-confidence in the ability to control the system manually.

  5. Multi-frame super-resolution with quality self-assessment for retinal fundus videos.

    PubMed

    Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P

    2014-01-01

    This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.

  6. Concept and development of a computerized positioning of prosthetic teeth for complete dentures.

    PubMed

    Busch, M; Kordass, B

    2006-04-01

    To date, CAD/CAM technology has made no noteworthy inroads into removable dentures. We want to present a new area of application for this in our study. Models of the maxilla and edentulous mandible were 3D scanned. The software detects and automatically reconstructs the reference structures that are anatomically important for the set-up of artificial teeth, such as the alveolar ridge centerlines and the interalveolar relations between the alveolar ridges. In a further step, the occlusal plane is semiautomatically defined and the front dental arch is designed. After these design features have been determined, artificial teeth are selected from a database and set up automatically. The dental technician can assess the esthetics and function of the suggested dental set-up on the computer screen and make slight corrections if necessary. Summarizing: The interplay of hardware and software components within on integrated solution including conversion of the "virtual" into a real positioning of prosthetic teeth is presented.

  7. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.

    PubMed

    Garnotel, M; Bastian, T; Romero-Ugalde, H M; Maire, A; Dugas, J; Zahariev, A; Doron, M; Jallon, P; Charpentier, G; Franc, S; Blanc, S; Bonnet, S; Simon, C

    2018-03-01

    Accelerometry is increasingly used to quantify physical activity (PA) and related energy expenditure (EE). Linear regression models designed to derive PAEE from accelerometry-counts have shown their limits, mostly due to the lack of consideration of the nature of activities performed. Here we tested whether a model coupling an automatic activity/posture recognition (AAR) algorithm with an activity-specific count-based model, developed in 61 subjects in laboratory conditions, improved PAEE and total EE (TEE) predictions from a hip-worn triaxial-accelerometer (ActigraphGT3X+) in free-living conditions. Data from two independent subject groups of varying body mass index and age were considered: 20 subjects engaged in a 3-h urban-circuit, with activity-by-activity reference PAEE from combined heart-rate and accelerometry monitoring (Actiheart); and 56 subjects involved in a 14-day trial, with PAEE and TEE measured using the doubly-labeled water method. PAEE was estimated from accelerometry using the activity-specific model coupled to the AAR algorithm (AAR model), a simple linear model (SLM), and equations provided by the companion-software of used activity-devices (Freedson and Actiheart models). AAR-model predictions were in closer agreement with selected references than those from other count-based models, both for PAEE during the urban-circuit (RMSE = 6.19 vs 7.90 for SLM and 9.62 kJ/min for Freedson) and for EE over the 14-day trial, reaching Actiheart performances in the latter (PAEE: RMSE = 0.93 vs. 1.53 for SLM, 1.43 for Freedson, 0.91 MJ/day for Actiheart; TEE: RMSE = 1.05 vs. 1.57 for SLM, 1.70 for Freedson, 0.95 MJ/day for Actiheart). Overall, the AAR model resulted in a 43% increase of daily PAEE variance explained by accelerometry predictions. NEW & NOTEWORTHY Although triaxial accelerometry is widely used in free-living conditions to assess the impact of physical activity energy expenditure (PAEE) on health, its precision and accuracy are often debated. Here we developed and validated an activity-specific model which, coupled with an automatic activity-recognition algorithm, improved the variance explained by the predictions from accelerometry counts by 43% of daily PAEE compared with models relying on a simple relationship between accelerometry counts and EE.

  8. Automatic updating and 3D modeling of airport information from high resolution images using GIS and LIDAR data

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng

    2007-11-01

    As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.

  9. Classification of independent components of EEG into multiple artifact classes.

    PubMed

    Frølich, Laura; Andersen, Tobias S; Mørup, Morten

    2015-01-01

    In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them. Copyright © 2014 Society for Psychophysiological Research.

  10. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2017-04-01

    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  11. Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise

    NASA Astrophysics Data System (ADS)

    Castro, Nicolás; Protopapas, Pavlos; Pichara, Karim

    2018-01-01

    Automatic classification methods applied to sky surveys have revolutionized the astronomical target selection process. Most surveys generate a vast amount of time series, or “lightcurves,” that represent the brightness variability of stellar objects in time. Unfortunately, lightcurves’ observations take several years to be completed, producing truncated time series that generally remain without the application of automatic classifiers until they are finished. This happens because state-of-the-art methods rely on a variety of statistical descriptors or features that present an increasing degree of dispersion when the number of observations decreases, which reduces their precision. In this paper, we propose a novel method that increases the performance of automatic classifiers of variable stars by incorporating the deviations that scarcity of observations produces. Our method uses Gaussian process regression to form a probabilistic model of each lightcurve’s observations. Then, based on this model, bootstrapped samples of the time series features are generated. Finally, a bagging approach is used to improve the overall performance of the classification. We perform tests on the MAssive Compact Halo Object (MACHO) and Optical Gravitational Lensing Experiment (OGLE) catalogs, results show that our method effectively classifies some variability classes using a small fraction of the original observations. For example, we found that RR Lyrae stars can be classified with ~80% accuracy just by observing the first 5% of the whole lightcurves’ observations in the MACHO and OGLE catalogs. We believe these results prove that, when studying lightcurves, it is important to consider the features’ error and how the measurement process impacts it.

  12. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Devlin, P; Hansen, J

    2014-06-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curvedmore » surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high level of positioning accuracy. Implementation of this technique has potential to decrease the planning time and may improve overall quality in superficial brachytherapy.« less

  13. The effect of morphometric atlas selection on multi-atlas-based automatic brachial plexus segmentation.

    PubMed

    Van de Velde, Joris; Wouters, Johan; Vercauteren, Tom; De Gersem, Werner; Achten, Eric; De Neve, Wilfried; Van Hoof, Tom

    2015-12-23

    The present study aimed to measure the effect of a morphometric atlas selection strategy on the accuracy of multi-atlas-based BP autosegmentation using the commercially available software package ADMIRE® and to determine the optimal number of selected atlases to use. Autosegmentation accuracy was measured by comparing all generated automatic BP segmentations with anatomically validated gold standard segmentations that were developed using cadavers. Twelve cadaver computed tomography (CT) atlases were included in the study. One atlas was selected as a patient in ADMIRE®, and multi-atlas-based BP autosegmentation was first performed with a group of morphometrically preselected atlases. In this group, the atlases were selected on the basis of similarity in the shoulder protraction position with the patient. The number of selected atlases used started at two and increased up to eight. Subsequently, a group of randomly chosen, non-selected atlases were taken. In this second group, every possible combination of 2 to 8 random atlases was used for multi-atlas-based BP autosegmentation. For both groups, the average Dice similarity coefficient (DSC), Jaccard index (JI) and Inclusion index (INI) were calculated, measuring the similarity of the generated automatic BP segmentations and the gold standard segmentation. Similarity indices of both groups were compared using an independent sample t-test, and the optimal number of selected atlases was investigated using an equivalence trial. For each number of atlases, average similarity indices of the morphometrically selected atlas group were significantly higher than the random group (p < 0,05). In this study, the highest similarity indices were achieved using multi-atlas autosegmentation with 6 selected atlases (average DSC = 0,598; average JI = 0,434; average INI = 0,733). Morphometric atlas selection on the basis of the protraction position of the patient significantly improves multi-atlas-based BP autosegmentation accuracy. In this study, the optimal number of selected atlases used was six, but for definitive conclusions about the optimal number of atlases and to improve the autosegmentation accuracy for clinical use, more atlases need to be included.

  14. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  15. Examination of a cognitive model of stress, burnout, and intention to resign for Japanese nurses.

    PubMed

    Ohue, Takashi; Moriyama, Michiko; Nakaya, Takashi

    2011-06-01

    A reduction in burnout is required to decrease the voluntary turnover of nurses. This study was carried out with the aim of establishing a cognitive model of stress, burnout, and intention to resign for nurses. A questionnaire survey was administered to 336 nurses (27 male and 309 female) who had worked for ≤5 years at a hospital with multiple departments. The survey included an evaluation of burnout (Maslach Burnout Inventory), stress (Nursing Job Stressor Scale), automatic thoughts (Automatic Thoughts Questionnaire-Revised), and irrational beliefs (Japanese Irrational Belief Test), in addition to the intention to resign. The stressors that affected burnout in the nurses included conflict with other nursing staff, nursing role conflict, qualitative workload, quantitative workload, and conflict with patients. The irrational beliefs that were related to burnout included dependence, problem avoidance, and helplessness. In order to examine the automatic thoughts affecting burnout, groups with low and high negative automatic thoughts and low and high positive automatic thoughts were established. A two-way ANOVA showed a significant interaction of these factors with emotional exhaustion, but no significant interaction with depersonalization and a personal sense of accomplishment. Only the major effect was significant. The final model showed a process of "stressor → irrational beliefs → negative automatic thoughts/positive automatic thoughts → burnout". In addition, a relationship between burnout and an intention to resign was shown. These results suggest that stress and burnout in nurses might be prevented and that the number of nurses who leave their position could be decreased by changing irrational beliefs to rational beliefs, decreasing negative automatic thoughts, and facilitating positive automatic thoughts. © 2010 The Authors. Japan Journal of Nursing Science © 2010 Japan Academy of Nursing Science.

  16. Morphometric Atlas Selection for Automatic Brachial Plexus Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be; Department of Radiotherapy, Ghent University, Ghent; Wouters, Johan

    Purpose: The purpose of this study was to determine the effects of atlas selection based on different morphometric parameters, on the accuracy of automatic brachial plexus (BP) segmentation for radiation therapy planning. The segmentation accuracy was measured by comparing all of the generated automatic segmentations with anatomically validated gold standard atlases developed using cadavers. Methods and Materials: Twelve cadaver computed tomography (CT) atlases (3 males, 9 females; mean age: 73 years) were included in the study. One atlas was selected to serve as a patient, and the other 11 atlases were registered separately onto this “patient” using deformable image registration. Thismore » procedure was repeated for every atlas as a patient. Next, the Dice and Jaccard similarity indices and inclusion index were calculated for every registered BP with the original gold standard BP. In parallel, differences in several morphometric parameters that may influence the BP segmentation accuracy were measured for the different atlases. Specific brachial plexus-related CT-visible bony points were used to define the morphometric parameters. Subsequently, correlations between the similarity indices and morphometric parameters were calculated. Results: A clear negative correlation between difference in protraction-retraction distance and the similarity indices was observed (mean Pearson correlation coefficient = −0.546). All of the other investigated Pearson correlation coefficients were weak. Conclusions: Differences in the shoulder protraction-retraction position between the atlas and the patient during planning CT influence the BP autosegmentation accuracy. A greater difference in the protraction-retraction distance between the atlas and the patient reduces the accuracy of the BP automatic segmentation result.« less

  17. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  18. Scalable gastroscopic video summarization via similar-inhibition dictionary selection.

    PubMed

    Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin

    2016-01-01

    This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  20. RoboTAP: Target priorities for robotic microlensing observations

    NASA Astrophysics Data System (ADS)

    Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Horne, K.; Bozza, V.; Bramich, D. M.; Cassan, A.; D'Ago, G.; Figuera Jaimes, R.; Kains, N.; Ranc, C.; Schmidt, R. W.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Mao, S.; Ment, K.; Menzies, J.; Li, Z.; Cross, S.; Maoz, D.; Shvartzvald, Y.

    2018-01-01

    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims: Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods: Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results: We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys.

  1. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  2. Management of natural resources through automatic cartographic inventory

    NASA Technical Reports Server (NTRS)

    Rey, P. A.; Gourinard, Y.; Cambou, F. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Significant correspondence codes relating ERTS imagery to ground truth from vegetation and geology maps have been established. The use of color equidensity and color composite methods for selecting zones of equal densitometric value on ERTS imagery was perfected. Primary interest of temporal color composite is stressed. A chain of transfer operations from ERTS imagery to the automatic mapping of natural resources was developed.

  3. Feature extraction and descriptor calculation methods for automatic georeferencing of Philippines' first microsatellite imagery

    NASA Astrophysics Data System (ADS)

    Tupas, M. E. A.; Dasallas, J. A.; Jiao, B. J. D.; Magallon, B. J. P.; Sempio, J. N. H.; Ramos, M. K. F.; Aranas, R. K. D.; Tamondong, A. M.

    2017-10-01

    The FAST-SIFT corner detector and descriptor extractor combination was used to automatically georeference DIWATA-1 Spaceborne Multispectral Imager images. Features from the Fast Accelerated Segment Test (FAST) algorithm detects corners or keypoints in an image, and these robustly detected keypoints have well-defined positions. Descriptors were computed using Scale-Invariant Feature Transform (SIFT) extractor. FAST-SIFT method effectively SMI same-subscene images detected by the NIR sensor. The method was also tested in stitching NIR images with varying subscene swept by the camera. The slave images were matched to the master image. The keypoints served as the ground control points. Random sample consensus was used to eliminate fall-out matches and ensure accuracy of the feature points from which the transformation parameters were derived. Keypoints are matched based on their descriptor vector. Nearest-neighbor matching is employed based on a metric distance between the descriptors. The metrics include Euclidean and city block, among others. Rough matching outputs not only the correct matches but also the faulty matches. A previous work in automatic georeferencing incorporates a geometric restriction. In this work, we applied a simplified version of the learning method. RANSAC was used to eliminate fall-out matches and ensure accuracy of the feature points. This method identifies if a point fits the transformation function and returns inlier matches. The transformation matrix was solved by Affine, Projective, and Polynomial models. The accuracy of the automatic georeferencing method were determined by calculating the RMSE of interest points, selected randomly, between the master image and transformed slave image.

  4. The analysis of selected orientation methods of architectural objects' scans

    NASA Astrophysics Data System (ADS)

    Markiewicz, Jakub S.; Kajdewicz, Irmina; Zawieska, Dorota

    2015-05-01

    The terrestrial laser scanning is commonly used in different areas, inter alia in modelling architectural objects. One of the most important part of TLS data processing is scans registration. It significantly affects the accuracy of generation of high resolution photogrammetric documentation. This process is time consuming, especially in case of a large number of scans. It is mostly based on an automatic detection and a semi-automatic measurement of control points placed on the object. In case of the complicated historical buildings, sometimes it is forbidden to place survey targets on an object or it may be difficult to distribute survey targets in the optimal way. Such problems encourage the search for the new methods of scan registration which enable to eliminate the step of placing survey targets on the object. In this paper the results of target-based registration method are presented The survey targets placed on the walls of historical chambers of the Museum of King Jan III's Palace at Wilanów and on the walls of ruins of the Bishops Castle in Iłża were used for scan orientation. Several variants of orientation were performed, taking into account different placement and different number of survey marks. Afterwards, during next research works, raster images were generated from scans and the SIFT and SURF algorithms for image processing were used to automatically search for corresponding natural points. The case of utilisation of automatically identified points for TLS data orientation was analysed. The results of both methods for TLS data registration were summarized and presented in numerical and graphical forms.

  5. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morshed, Nader; Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Echols, Nathaniel, E-mail: nechols@lbl.gov

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here,more » the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crain, Steven P.; Yang, Shuang-Hong; Zha, Hongyuan

    Access to health information by consumers is ham- pered by a fundamental language gap. Current attempts to close the gap leverage consumer oriented health information, which does not, however, have good coverage of slang medical terminology. In this paper, we present a Bayesian model to automatically align documents with different dialects (slang, com- mon and technical) while extracting their semantic topics. The proposed diaTM model enables effective information retrieval, even when the query contains slang words, by explicitly modeling the mixtures of dialects in documents and the joint influence of dialects and topics on word selection. Simulations us- ing consumermore » questions to retrieve medical information from a corpus of medical documents show that diaTM achieves a 25% improvement in information retrieval relevance by nDCG@5 over an LDA baseline.« less

  7. Detection of fraudulent financial statements using the hybrid data mining approach.

    PubMed

    Chen, Suduan

    2016-01-01

    The purpose of this study is to construct a valid and rigorous fraudulent financial statement detection model. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements between the years 2002 and 2013. In the first stage, two decision tree algorithms, including the classification and regression trees (CART) and the Chi squared automatic interaction detector (CHAID) are applied in the selection of major variables. The second stage combines CART, CHAID, Bayesian belief network, support vector machine and artificial neural network in order to construct fraudulent financial statement detection models. According to the results, the detection performance of the CHAID-CART model is the most effective, with an overall accuracy of 87.97 % (the FFS detection accuracy is 92.69 %).

  8. Automatic Detection of Student Mental Models during Prior Knowledge Activation in MetaTutor

    ERIC Educational Resources Information Center

    Rus, Vasile; Lintean, Mihai; Azevedo, Roger

    2009-01-01

    This paper presents several methods to automatically detecting students' mental models in MetaTutor, an intelligent tutoring system that teaches students self-regulatory processes during learning of complex science topics. In particular, we focus on detecting students' mental models based on student-generated paragraphs during prior knowledge…

  9. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  10. [Development of a Compared Software for Automatically Generated DVH in Eclipse TPS].

    PubMed

    Xie, Zhao; Luo, Kelin; Zou, Lian; Hu, Jinyou

    2016-03-01

    This study is to automatically calculate the dose volume histogram(DVH) for the treatment plan, then to compare it with requirements of doctor's prescriptions. The scripting language Autohotkey and programming language C# were used to develop a compared software for automatically generated DVH in Eclipse TPS. This software is named Show Dose Volume Histogram (ShowDVH), which is composed of prescription documents generation, operation functions of DVH, software visualization and DVH compared report generation. Ten cases in different cancers have been separately selected, in Eclipse TPS 11.0 ShowDVH could not only automatically generate DVH reports but also accurately determine whether treatment plans meet the requirements of doctor’s prescriptions, then reports gave direction for setting optimization parameters of intensity modulated radiated therapy. The ShowDVH is an user-friendly and powerful software, and can automatically generated compared DVH reports fast in Eclipse TPS 11.0. With the help of ShowDVH, it greatly saves plan designing time and improves working efficiency of radiation therapy physicists.

  11. Separating Automatic and Intentional Inhibitory Mechanisms of Attention in Adults with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Roberts, Walter; Fillmore, Mark T.; Milich, Richard

    2011-01-01

    Researchers in the cognitive sciences recognize a fundamental distinction between automatic and intentional mechanisms of inhibitory control. The use of eye-tracking tasks to assess selective attention has led to a better understanding of this distinction in specific populations such as children with attention-deficit/hyperactivity disorder (ADHD). This study examined automatic and intentional inhibitory control mechanisms in adults with ADHD using a saccadic interference (SI) task and a delayed ocular response (DOR) task. Thirty adults with ADHD were compared to 27 comparison adults on measures of inhibitory control. The DOR task showed that adults with ADHD were less able than comparison adults to inhibit a reflexive saccade towards the sudden appearance of a stimulus in the periphery. However, SI task performance showed that the ADHD group did not differ significantly from the comparison group on a measure of automatic inhibitory control. These findings suggest a dissociation between automatic and intentional inhibitory deficits in adults with ADHD. PMID:21058752

  12. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  13. A Model-Based Method for Content Validation of Automatically Generated Test Items

    ERIC Educational Resources Information Center

    Zhang, Xinxin; Gierl, Mark

    2016-01-01

    The purpose of this study is to describe a methodology to recover the item model used to generate multiple-choice test items with a novel graph theory approach. Beginning with the generated test items and working backward to recover the original item model provides a model-based method for validating the content used to automatically generate test…

  14. Age-related differences in the automatic processing of single letters: implications for selective attention.

    PubMed

    Daffner, Kirk R; Alperin, Brittany R; Mott, Katherine K; Holcomb, Phillip J

    2014-01-22

    Older adults exhibit diminished ability to inhibit the processing of visual stimuli that are supposed to be ignored. The extent to which age-related changes in early visual processing contribute to impairments in selective attention remains to be determined. Here, 103 adults, 18-85 years of age, completed a color selective attention task in which they were asked to attend to a specified color and respond to designated target letters. An optimal approach would be to initially filter according to color and then process letter forms in the attend color to identify targets. An asymmetric N170 ERP component (larger amplitude over left posterior hemisphere sites) was used as a marker of the early automatic processing of letter forms. Young and middle-aged adults did not generate an asymmetric N170 component. In contrast, young-old and old-old adults produced a larger N170 over the left hemisphere. Furthermore, older adults generated a larger N170 to letter than nonletter stimuli over the left, but not right hemisphere. More asymmetric N170 responses predicted greater allocation of late selection resources to target letters in the ignore color, as indexed by P3b amplitude. These results suggest that unlike their younger counterparts, older adults automatically process stimuli as letters early in the selection process, when it would be more efficient to attend to color only. The inability to ignore letters early in the processing stream helps explain the age-related increase in subsequent processing of target letter forms presented in the ignore color.

  15. Automatic mathematical modeling for real time simulation system

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Purinton, Steve

    1988-01-01

    A methodology for automatic mathematical modeling and generating simulation models is described. The models will be verified by running in a test environment using standard profiles with the results compared against known results. The major objective is to create a user friendly environment for engineers to design, maintain, and verify their model and also automatically convert the mathematical model into conventional code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine Simulation. It is written in LISP and MACSYMA and runs on a Symbolic 3670 Lisp Machine. The program provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. It contains an initial set of component process elements for the Space Shuttle Main Engine Simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. The system is then able to automatically generate the model and FORTRAN code. The future goal which is under construction is to download the FORTRAN code to VAX/VMS system for conventional computation. The SSME mathematical model will be verified in a test environment and the solution compared with the real data profile. The use of artificial intelligence techniques has shown that the process of the simulation modeling can be simplified.

  16. Model Checking Satellite Operational Procedures

    NASA Astrophysics Data System (ADS)

    Cavaliere, Federico; Mari, Federico; Melatti, Igor; Minei, Giovanni; Salvo, Ivano; Tronci, Enrico; Verzino, Giovanni; Yushtein, Yuri

    2011-08-01

    We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.

  17. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  18. Do the Contents of Visual Working Memory Automatically Influence Attentional Selection During Visual Search?

    PubMed Central

    Woodman, Geoffrey F.; Luck, Steven J.

    2007-01-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing. PMID:17469973

  19. Do the contents of visual working memory automatically influence attentional selection during visual search?

    PubMed

    Woodman, Geoffrey F; Luck, Steven J

    2007-04-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing.

  20. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  1. SIRTF Tools for DIRT

    NASA Astrophysics Data System (ADS)

    Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.

    2003-12-01

    The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS, located at http://dustem.astro.umd.edu) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 5 years. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. We are adding new functionality to DIRT to support new missions like SIRTF and SOFIA. A new Instrument module allows for plotting of the model points convolved with the spatial and spectral responses of the selected instrument. This lets users better fit data from specific instruments. Currently, we have implemented modules for the Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) on SIRTF.

  2. Chain-Wise Generalization of Road Networks Using Model Selection

    NASA Astrophysics Data System (ADS)

    Bulatov, D.; Wenzel, S.; Häufel, G.; Meidow, J.

    2017-05-01

    Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using circlePeucker and finally, model selection is used to decide whether two neighboring segments should be fused to a new geometric entity. Thereby, we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set with many traffic roundabouts indicate the benefits of the proposed procedure.

  3. Integration of Web-based and PC-based clinical research databases.

    PubMed

    Brandt, C A; Sun, K; Charpentier, P; Nadkarni, P M

    2004-01-01

    We have created a Web-based repository or data library of information about measurement instruments used in studies of multi-factorial geriatric health conditions (the Geriatrics Research Instrument Library - GRIL) based upon existing features of two separate clinical study data management systems. GRIL allows browsing, searching, and selecting measurement instruments based upon criteria such as keywords and areas of applicability. Measurement instruments selected can be printed and/or included in an automatically generated standalone microcomputer database application, which can be downloaded by investigators for use in data collection and data management. Integration of database applications requires the creation of a common semantic model, and mapping from each system to this model. Various database schema conflicts at the table and attribute level must be identified and resolved prior to integration. Using a conflict taxonomy and a mapping schema facilitates this process. Critical conflicts at the table level that required resolution included name and relationship differences. A major benefit of integration efforts is the sharing of features and cross-fertilization of applications created for similar purposes in different operating environments. Integration of applications mandates some degree of metadata model unification.

  4. Heuristic Analysis Model of Nitrided Layers’ Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence

    PubMed Central

    Wójcicki, Tomasz; Nowicki, Michał

    2016-01-01

    The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389

  5. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    NASA Astrophysics Data System (ADS)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  6. Bridging automatic speech recognition and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition (L)

    NASA Astrophysics Data System (ADS)

    Scharenborg, Odette; ten Bosch, Louis; Boves, Lou; Norris, Dennis

    2003-12-01

    This letter evaluates potential benefits of combining human speech recognition (HSR) and automatic speech recognition by building a joint model of an automatic phone recognizer (APR) and a computational model of HSR, viz., Shortlist [Norris, Cognition 52, 189-234 (1994)]. Experiments based on ``real-life'' speech highlight critical limitations posed by some of the simplifying assumptions made in models of human speech recognition. These limitations could be overcome by avoiding hard phone decisions at the output side of the APR, and by using a match between the input and the internal lexicon that flexibly copes with deviations from canonical phonemic representations.

  7. Automatic seed selection for segmentation of liver cirrhosis in laparoscopic sequences

    NASA Astrophysics Data System (ADS)

    Sinha, Rahul; Marcinczak, Jan Marek; Grigat, Rolf-Rainer

    2014-03-01

    For computer aided diagnosis based on laparoscopic sequences, image segmentation is one of the basic steps which define the success of all further processing. However, many image segmentation algorithms require prior knowledge which is given by interaction with the clinician. We propose an automatic seed selection algorithm for segmentation of liver cirrhosis in laparoscopic sequences which assigns each pixel a probability of being cirrhotic liver tissue or background tissue. Our approach is based on a trained classifier using SIFT and RGB features with PCA. Due to the unique illumination conditions in laparoscopic sequences of the liver, a very low dimensional feature space can be used for classification via logistic regression. The methodology is evaluated on 718 cirrhotic liver and background patches that are taken from laparoscopic sequences of 7 patients. Using a linear classifier we achieve a precision of 91% in a leave-one-patient-out cross-validation. Furthermore, we demonstrate that with logistic probability estimates, seeds with high certainty of being cirrhotic liver tissue can be obtained. For example, our precision of liver seeds increases to 98.5% if only seeds with more than 95% probability of being liver are used. Finally, these automatically selected seeds can be used as priors in Graph Cuts which is demonstrated in this paper.

  8. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  9. Shape classification of malignant lymphomas and leukemia by morphological watersheds and ARMA modeling

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Song, Yinglei; Ma, Limin; Zhou, Min

    2003-05-01

    A new algorithm that can be used to automatically recognize and classify malignant lymphomas and lukemia is proposed in this paper. The algorithm utilizes the morphological watershed to extract boundaries of cells from their grey-level images. It generates a sequence of Euclidean distances by selecting pixels in clockwise direction on the boundary of the cell and calculating the Euclidean distances of the selected pixels from the centroid of the cell. A feature vector associated with each cell is then obtained by applying the auto-regressive moving-average (ARMA) model to the generated sequence of Euclidean distances. The clustering measure J3=trace{inverse(Sw-1)Sm} involving the within (Sw) and mixed (Sm) class-scattering matrices is computed for both cell classes to provide an insight into the extent to which different cell classes in the training data are separated. Our test results suggest that the algorithm is highly accurate for the development of an interactive, computer-assisted diagnosis (CAD) tool.

  10. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  11. The influence of the level formants on the perception of synthetic vowel sounds

    NASA Astrophysics Data System (ADS)

    Kubzdela, Henryk; Owsianny, Mariuz

    A computer model of a generator of periodic complex sounds simulating consonants was developed. The system makes possible independent regulation of the level of each of the formants and instant generation of the sound. A trapezoid approximates the curve of the spectrum within the range of the formant. In using this model, each person in a group of six listeners experimentally selected synthesis parameters for six sounds that to him seemed optimal approximations of Polish consonants. From these, another six sounds were selected that were identified by a majority of the six persons and several additional listeners as being best qualified to serve as prototypes of Polish consonants. These prototypes were then used to randomly create sounds with various combinations at the level of the second and third formant and these were presented to seven listeners for identification. The results of the identifications are presented in table form in three variants and are described from the point of view of the requirements of automatic recognition of consonants in continuous speech.

  12. Time perception, attention, and memory: a selective review.

    PubMed

    Block, Richard A; Gruber, Ronald P

    2014-06-01

    This article provides a selective review of time perception research, mainly focusing on the authors' research. Aspects of psychological time include simultaneity, successiveness, temporal order, and duration judgments. In contrast to findings at interstimulus intervals or durations less than 3.0-5.0 s, there is little evidence for an "across-senses" effect of perceptual modality (visual vs. auditory) at longer intervals or durations. In addition, the flow of time (events) is a pervasive perceptual illusion, and we review evidence on that. Some temporal information is encoded All rights reserved. relatively automatically into memory: People can judge time-related attributes such as recency, frequency, temporal order, and duration of events. Duration judgments in prospective and retrospective paradigms reveal differences between them, as well as variables that moderate the processes involved. An attentional-gate model is needed to account for prospective judgments, and a contextual-change model is needed to account for retrospective judgments. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Interplay between Automatic and Control Processes in Reading.

    ERIC Educational Resources Information Center

    Walczyk, Jeffrey J.

    2000-01-01

    Reviews prominent reading theories in light of their accounts of how automatic and control processes combine to produce successful text comprehension, and the trade-offs between the two. Presents the Compensatory-Encoding Model of reading, which explicates how, when, and why automatic and control processes interact. Notes important educational…

  14. The Selective Task Trainer: The Expert Solution.

    ERIC Educational Resources Information Center

    Gerson, Charles W.

    1995-01-01

    Examines simulator classification and design in light of new technology, current research, and a changing focus for using flight simulators in the military, and proposes a selective task trainer that addresses the expert's performance needs. Highlights include motor skill physiology; retention; automaticity skills; the novice to expert…

  15. Automatic Target Recognition: Statistical Feature Selection of Non-Gaussian Distributed Target Classes

    DTIC Science & Technology

    2011-06-01

    implementing, and evaluating many feature selection algorithms. Mucciardi and Gose compared seven different techniques for choosing subsets of pattern...122 THIS PAGE INTENTIONALLY LEFT BLANK 123 LIST OF REFERENCES [1] A. Mucciardi and E. Gose , “A comparison of seven techniques for

  16. Does Visuomotor Adaptation Proceed in Stages? An Examination of the Learning Model by Chein and Schneider (2012).

    PubMed

    Simon, Anja; Bock, Otmar

    2015-01-01

    A new 3-stage model based on neuroimaging evidence is proposed by Chein and Schneider (2012). Each stage is associated with different brain regions, and draws on cognitive abilities: the first stage on creativity, the second on selective attention, and the third on automatic processing. The purpose of the present study was to scrutinize the validity of this model for 1 popular learning paradigm, visuomotor adaptation. Participants completed tests for creativity, selective attention and automated processing before attending in a pointing task with adaptation to a 60° rotation of visual feedback. To examine the relationship between cognitive abilities and motor learning at different times of practice, associations between cognitive and adaptation scores were calculated repeatedly throughout adaptation. The authors found no benefit of high creativity for adaptive performance. High levels of selective attention were positively associated with early adaptation, but hardly with late adaptation and de-adaptation. High levels of automated execution were beneficial for late adaptation, but hardly for early and de-adaptation. From this we conclude that Chein and Schneider's first learning stage is difficult to confirm by research on visuomotor adaptation, and that the other 2 learning stages rather relate to workaround strategies than to actual adaptive recalibration.

  17. Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Dongyue; Lin, Jianhui; Li, Yanping

    2018-06-01

    Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.

  18. An intelligent identification algorithm for the monoclonal picking instrument

    NASA Astrophysics Data System (ADS)

    Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun

    2017-11-01

    The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.

  19. GAFFE: a gaze-attentive fixation finding engine.

    PubMed

    Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K

    2008-04-01

    The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.

  20. Data driven model generation based on computational intelligence

    NASA Astrophysics Data System (ADS)

    Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus

    2010-05-01

    The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.

  1. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  2. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  3. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  4. Automation of cellular therapy product manufacturing: results of a split validation comparing CD34 selection of peripheral blood stem cell apheresis product with a semi-manual vs. an automatic procedure.

    PubMed

    Hümmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard

    2016-03-16

    Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.

  5. A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging

    PubMed Central

    Boulanger, Jérôme; Gidon, Alexandre; Kervran, Charles; Salamero, Jean

    2010-01-01

    Automatic detection and characterization of molecular behavior in large data sets obtained by fast imaging in advanced light microscopy become key issues to decipher the dynamic architectures and their coordination in the living cell. Automatic quantification of the number of sudden and transient events observed in fluorescence microscopy is discussed in this paper. We propose a calibrated method based on the comparison of image patches expected to distinguish sudden appearing/vanishing fluorescent spots from other motion behaviors such as lateral movements. We analyze the performances of two statistical control procedures and compare the proposed approach to a frame difference approach using the same controls on a benchmark of synthetic image sequences. We have then selected a molecular model related to membrane trafficking and considered real image sequences obtained in cells stably expressing an endocytic-recycling trans-membrane protein, the Langerin-YFP, for validation. With this model, we targeted the efficient detection of fast and transient local fluorescence concentration arising in image sequences from a data base provided by two different microscopy modalities, wide field (WF) video microscopy using maximum intensity projection along the axial direction and total internal reflection fluorescence microscopy. Finally, the proposed detection method is briefly used to statistically explore the effect of several perturbations on the rate of transient events detected on the pilot biological model. PMID:20976222

  6. Alternative face models for 3D face registration

    NASA Astrophysics Data System (ADS)

    Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale

    2007-01-01

    3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.

  7. Man vs. Machine: An interactive poll to evaluate hydrological model performance of a manual and an automatic calibration

    NASA Astrophysics Data System (ADS)

    Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten

    2017-04-01

    In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.

  8. Reevaluation of pollen quantitation by an automatic pollen counter.

    PubMed

    Muradil, Mutarifu; Okamoto, Yoshitaka; Yonekura, Syuji; Chazono, Hideaki; Hisamitsu, Minako; Horiguchi, Shigetoshi; Hanazawa, Toyoyuki; Takahashi, Yukie; Yokota, Kunihiko; Okumura, Satoshi

    2010-01-01

    Accurate and detailed pollen monitoring is useful for selection of medication and for allergen avoidance in patients with allergic rhinitis. Burkard and Durham pollen samplers are commonly used, but are labor and time intensive. In contrast, automatic pollen counters allow simple real-time pollen counting; however, these instruments have difficulty in distinguishing pollen from small nonpollen airborne particles. Misidentification and underestimation rates for an automatic pollen counter were examined to improve the accuracy of the pollen count. The characteristics of the automatic pollen counter were determined in a chamber study with exposure to cedar pollens or soil grains. The cedar pollen counts were monitored in 2006 and 2007, and compared with those from a Durham sampler. The pollen counts from the automatic counter showed a good correlation (r > 0.7) with those from the Durham sampler when pollen dispersal was high, but a poor correlation (r < 0.5) when pollen dispersal was low. The new correction method, which took into account the misidentification and underestimation, improved this correlation to r > 0.7 during the pollen season. The accuracy of automatic pollen counting can be improved using a correction to include rates of underestimation and misidentification in a particular geographical area.

  9. Combining MEDLINE and publisher data to create parallel corpora for the automatic translation of biomedical text

    PubMed Central

    2013-01-01

    Background Most of the institutional and research information in the biomedical domain is available in the form of English text. Even in countries where English is an official language, such as the United States, language can be a barrier for accessing biomedical information for non-native speakers. Recent progress in machine translation suggests that this technique could help make English texts accessible to speakers of other languages. However, the lack of adequate specialized corpora needed to train statistical models currently limits the quality of automatic translations in the biomedical domain. Results We show how a large-sized parallel corpus can automatically be obtained for the biomedical domain, using the MEDLINE database. The corpus generated in this work comprises article titles obtained from MEDLINE and abstract text automatically retrieved from journal websites, which substantially extends the corpora used in previous work. After assessing the quality of the corpus for two language pairs (English/French and English/Spanish) we use the Moses package to train a statistical machine translation model that outperforms previous models for automatic translation of biomedical text. Conclusions We have built translation data sets in the biomedical domain that can easily be extended to other languages available in MEDLINE. These sets can successfully be applied to train statistical machine translation models. While further progress should be made by incorporating out-of-domain corpora and domain-specific lexicons, we believe that this work improves the automatic translation of biomedical texts. PMID:23631733

  10. A comparison of conscious and automatic memory processes for picture and word stimuli: a process dissociation analysis.

    PubMed

    McBride, Dawn M; Anne Dosher, Barbara

    2002-09-01

    Four experiments were conducted to evaluate explanations of picture superiority effects previously found for several tasks. In a process dissociation procedure (Jacoby, 1991) with word stem completion, picture fragment completion, and category production tasks, conscious and automatic memory processes were compared for studied pictures and words with an independent retrieval model and a generate-source model. The predictions of a transfer appropriate processing account of picture superiority were tested and validated in "process pure" latent measures of conscious and unconscious, or automatic and source, memory processes. Results from both model fits verified that pictures had a conceptual (conscious/source) processing advantage over words for all tasks. The effects of perceptual (automatic/word generation) compatibility depended on task type, with pictorial tasks favoring pictures and linguistic tasks favoring words. Results show support for an explanation of the picture superiority effect that involves an interaction of encoding and retrieval processes.

  11. Automatic lumbar vertebrae detection based on feature fusion deep learning for partial occluded C-arm X-ray images.

    PubMed

    Yang Li; Wei Liang; Yinlong Zhang; Haibo An; Jindong Tan

    2016-08-01

    Automatic and accurate lumbar vertebrae detection is an essential step of image-guided minimally invasive spine surgery (IG-MISS). However, traditional methods still require human intervention due to the similarity of vertebrae, abnormal pathological conditions and uncertain imaging angle. In this paper, we present a novel convolutional neural network (CNN) model to automatically detect lumbar vertebrae for C-arm X-ray images. Training data is augmented by DRR and automatic segmentation of ROI is able to reduce the computational complexity. Furthermore, a feature fusion deep learning (FFDL) model is introduced to combine two types of features of lumbar vertebrae X-ray images, which uses sobel kernel and Gabor kernel to obtain the contour and texture of lumbar vertebrae, respectively. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model performs more accurate in abnormal cases with pathologies and surgical implants in multi-angle views.

  12. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  13. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.

    PubMed

    Olivera, André Rodrigues; Roesler, Valter; Iochpe, Cirano; Schmidt, Maria Inês; Vigo, Álvaro; Barreto, Sandhi Maria; Duncan, Bruce Bartholow

    2017-01-01

    Type 2 diabetes is a chronic disease associated with a wide range of serious health complications that have a major impact on overall health. The aims here were to develop and validate predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task. Comparison of machine-learning algorithms to develop predictive models using data from ELSA-Brasil. After selecting a subset of 27 candidate variables from the literature, models were built and validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; (ii) automatic variable selection using forward selection, a wrapper strategy with four different machine-learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; (iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) generalization testing on an independent dataset. The models were created with the following machine-learning algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. The best models were created using artificial neural networks and logistic regression. -These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation step and 74.17% and 74.41% in the generalization testing step. Most of the predictive models produced similar results, and demonstrated the feasibility of identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained clinical data.

  14. SU-F-T-352: Development of a Knowledge Based Automatic Lung IMRT Planning Algorithm with Non-Coplanar Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W; Wu, Q; Yuan, L

    Purpose: To improve the robustness of a knowledge based automatic lung IMRT planning method and to further validate the reliability of this algorithm by utilizing for the planning of clinical cases with non-coplanar beams. Methods: A lung IMRT planning method which automatically determines both plan optimization objectives and beam configurations with non-coplanar beams has been reported previously. A beam efficiency index map is constructed to guide beam angle selection in this algorithm. This index takes into account both the dose contributions from individual beams and the combined effect of multiple beams which is represented by a beam separation score. Wemore » studied the effect of this beam separation score on plan quality and determined the optimal weight for this score.14 clinical plans were re-planned with the knowledge-based algorithm. Significant dosimetric metrics for the PTV and OARs in the automatic plans are compared with those in the clinical plans by the two-sample t-test. In addition, a composite dosimetric quality index was defined to obtain the relationship between the plan quality and the beam separation score. Results: On average, we observed more than 15% reduction on conformity index and homogeneity index for PTV and V{sub 40}, V{sub 60} for heart while an 8% and 3% increase on V{sub 5}, V{sub 20} for lungs, respectively. The variation curve of the composite index as a function of angle spread score shows that 0.6 is the best value for the weight of the beam separation score. Conclusion: Optimal value for beam angle spread score in automatic lung IMRT planning is obtained. With this value, model can result in statistically the “best” achievable plans. This method can potentially improve the quality and planning efficiency for IMRT plans with no-coplanar angles.« less

  15. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Baochun; Huang, Cheng; Zhou, Shoujun

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.« less

  16. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    PubMed

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.

  17. Group Cooperation without Group Selection: Modest Punishment Can Recruit Much Cooperation

    PubMed Central

    Cosmides, Leda; Tooby, John

    2015-01-01

    Humans everywhere cooperate in groups to achieve benefits not attainable by individuals. Individual effort is often not automatically tied to a proportionate share of group benefits. This decoupling allows for free-riding, a strategy that (absent countermeasures) outcompetes cooperation. Empirically and formally, punishment potentially solves the evolutionary puzzle of group cooperation. Nevertheless, standard analyses appear to show that punishment alone is insufficient, because second-order free riders (those who cooperate but do not punish) can be shown to outcompete punishers. Consequently, many have concluded that other processes, such as cultural or genetic group selection, are required. Here, we present a series of agent-based simulations that show that group cooperation sustained by punishment easily evolves by individual selection when you introduce into standard models more biologically plausible assumptions about the social ecology and psychology of ancestral humans. We relax three unrealistic assumptions of past models. First, past models assume all punishers must punish every act of free riding in their group. We instead allow punishment to be probabilistic, meaning punishers can evolve to only punish some free riders some of the time. This drastically lowers the cost of punishment as group size increases. Second, most models unrealistically do not allow punishment to recruit labor; punishment merely reduces the punished agent’s fitness. We instead realistically allow punished free riders to cooperate in the future to avoid punishment. Third, past models usually restrict agents to interact in a single group their entire lives. We instead introduce realistic social ecologies in which agents participate in multiple, partially overlapping groups. Because of this, punitive tendencies are more expressed and therefore more exposed to natural selection. These three moves toward greater model realism reveal that punishment and cooperation easily evolve by direct selection—even in sizeable groups. PMID:25893241

  18. Automatic peak selection by a Benjamini-Hochberg-based algorithm.

    PubMed

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.

  19. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    PubMed Central

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. PMID:23308147

  20. A prototype system to support evidence-based practice.

    PubMed

    Demner-Fushman, Dina; Seckman, Charlotte; Fisher, Cheryl; Hauser, Susan E; Clayton, Jennifer; Thoma, George R

    2008-11-06

    Translating evidence into clinical practice is a complex process that depends on the availability of evidence, the environment into which the research evidence is translated, and the system that facilitates the translation. This paper presents InfoBot, a system designed for automatic delivery of patient-specific information from evidence-based resources. A prototype system has been implemented to support development of individualized patient care plans. The prototype explores possibilities to automatically extract patients problems from the interdisciplinary team notes and query evidence-based resources using the extracted terms. Using 4,335 de-identified interdisciplinary team notes for 525 patients, the system automatically extracted biomedical terminology from 4,219 notes and linked resources to 260 patient records. Sixty of those records (15 each for Pediatrics, Oncology & Hematology, Medical & Surgical, and Behavioral Health units) have been selected for an ongoing evaluation of the quality of automatically proactively delivered evidence and its usefulness in development of care plans.

  1. Automatic inference of indexing rules for MEDLINE

    PubMed Central

    Névéol, Aurélie; Shooshan, Sonya E; Claveau, Vincent

    2008-01-01

    Background: Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. Methods: In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Results: Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. Conclusion: We expect the sets of ILP rules obtained in this experiment to be integrated into MTI. PMID:19025687

  2. Automatic inference of indexing rules for MEDLINE.

    PubMed

    Névéol, Aurélie; Shooshan, Sonya E; Claveau, Vincent

    2008-11-19

    Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. We expect the sets of ILP rules obtained in this experiment to be integrated into MTI.

  3. Automatic Sleep Stage Determination by Multi-Valued Decision Making Based on Conditional Probability with Optimal Parameters

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi

    Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.

  4. A Prototype System to Support Evidence-based Practice

    PubMed Central

    Demner-Fushman, Dina; Seckman, Charlotte; Fisher, Cheryl; Hauser, Susan E.; Clayton, Jennifer; Thoma, George R.

    2008-01-01

    Translating evidence into clinical practice is a complex process that depends on the availability of evidence, the environment into which the research evidence is translated, and the system that facilitates the translation. This paper presents InfoBot, a system designed for automatic delivery of patient-specific information from evidence-based resources. A prototype system has been implemented to support development of individualized patient care plans. The prototype explores possibilities to automatically extract patients’ problems from the interdisciplinary team notes and query evidence-based resources using the extracted terms. Using 4,335 de-identified interdisciplinary team notes for 525 patients, the system automatically extracted biomedical terminology from 4,219 notes and linked resources to 260 patient records. Sixty of those records (15 each for Pediatrics, Oncology & Hematology, Medical & Surgical, and Behavioral Health units) have been selected for an ongoing evaluation of the quality of automatically proactively delivered evidence and its usefulness in development of care plans. PMID:18998835

  5. Towards Automatic Processing of Virtual City Models for Simulations

    NASA Astrophysics Data System (ADS)

    Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2016-10-01

    Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.

  6. Automatic Coding of Short Text Responses via Clustering in Educational Assessment

    ERIC Educational Resources Information Center

    Zehner, Fabian; Sälzer, Christine; Goldhammer, Frank

    2016-01-01

    Automatic coding of short text responses opens new doors in assessment. We implemented and integrated baseline methods of natural language processing and statistical modelling by means of software components that are available under open licenses. The accuracy of automatic text coding is demonstrated by using data collected in the "Programme…

  7. A System for Automatically Generating Scheduling Heuristics

    NASA Technical Reports Server (NTRS)

    Morris, Robert

    1996-01-01

    The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.

  8. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  9. Automatic Determination of the Conic Coronal Mass Ejection Model Parameters

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Oates, T.; Taktakishvili, A.

    2009-01-01

    Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis

  10. Water Mapping Using Multispectral Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  11. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  12. Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging.

    PubMed

    Charbonnier, S; Zoubek, L; Lesecq, S; Chapotot, F

    2011-06-01

    An automatic sleep/wake stages classifier that deals with the presence of artifacts and that provides a confidence index with each decision is proposed. The decision system is composed of two stages: the first stage checks the 20s epoch of polysomnographic signals (EEG, EOG and EMG) for the presence of artifacts and selects the artifact-free signals. The second stage classifies the epoch using one classifier selected out of four, using feature inputs extracted from the artifact-free signals only. A confidence index is associated with each decision made, depending on the classifier used and on the class assigned, so that the user's confidence in the automatic decision is increased. The two-stage system was tested on a large database of 46 night recordings. It reached 85.5% of overall accuracy with improved ability to discern NREM I stage from REM sleep. It was shown that only 7% of the database was classified with a low confidence index, and thus should be re-evaluated by a physiologist expert, which makes the system an efficient decision-support tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1.46%) and margin error (0.49  ±  0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. Conclusions: The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.« less

  14. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    PubMed

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1.46%) and margin error (0.49  ±  0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.

  15. Software for Partly Automated Recognition of Targets

    NASA Technical Reports Server (NTRS)

    Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark

    2003-01-01

    The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user s tendencies while the user is selecting targets and to increase the user s productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.

  16. A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.

    PubMed

    Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig

    2017-01-01

    The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldegunde, Manuel, E-mail: M.A.Aldegunde-Rodriguez@warwick.ac.uk; Kermode, James R., E-mail: J.R.Kermode@warwick.ac.uk; Zabaras, Nicholas

    This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set butmore » a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.« less

  18. Discovering relevance knowledge in data: a growing cell structures approach.

    PubMed

    Azuaje, F; Dubitzky, W; Black, N; Adamson, K

    2000-01-01

    Both information retrieval and case-based reasoning systems rely on effective and efficient selection of relevant data. Typically, relevance in such systems is approximated by similarity or indexing models. However, the definition of what makes data items similar or how they should be indexed is often nontrivial and time-consuming. Based on growing cell structure artificial neural networks, this paper presents a method that automatically constructs a case retrieval model from existing data. Within the case-based reasoning (CBR) framework, the method is evaluated for two medical prognosis tasks, namely, colorectal cancer survival and coronary heart disease risk prognosis. The results of the experiments suggest that the proposed method is effective and robust. To gain a deeper insight and understanding of the underlying mechanisms of the proposed model, a detailed empirical analysis of the models structural and behavioral properties is also provided.

  19. Improvement of the modeling of the low-temperature oxidation of n-butane: study of the primary reactions.

    PubMed

    Cord, Maximilien; Sirjean, Baptiste; Fournet, René; Tomlin, Alison; Ruiz-Lopez, Manuel; Battin-Leclerc, Frédérique

    2012-06-21

    This paper revisits the primary reactions involved in the oxidation of n-butane from low to intermediate temperatures (550-800 K) including the negative temperature coefficient (NTC) zone. A model that was automatically generated is used as a starting point and a large number of thermochemical and kinetic data are then re-estimated. The kinetic data of the isomerization of alkylperoxy radicals giving (•)QOOH radicals and the subsequent decomposition to give cyclic ethers has been calculated at the CBS-QB3 level of theory. The newly obtained model allows a satisfactory prediction of experimental data recently obtained in a jet-stirred reactor and in rapid compression machines. A considerable improvement of the prediction of the selectivity of cyclic ethers is especially obtained compared to previous models. Linear and global sensitivity analyses have been performed to better understand which reactions are of influence in the NTC zone.

  20. Assembling old tricks for new tasks: a neural model of instructional learning and control.

    PubMed

    Huang, Tsung-Ren; Hazy, Thomas E; Herd, Seth A; O'Reilly, Randall C

    2013-06-01

    We can learn from the wisdom of others to maximize success. However, it is unclear how humans take advice to flexibly adapt behavior. On the basis of data from neuroanatomy, neurophysiology, and neuroimaging, a biologically plausible model is developed to illustrate the neural mechanisms of learning from instructions. The model consists of two complementary learning pathways. The slow-learning parietal pathway carries out simple or habitual stimulus-response (S-R) mappings, whereas the fast-learning hippocampal pathway implements novel S-R rules. Specifically, the hippocampus can rapidly encode arbitrary S-R associations, and stimulus-cued responses are later recalled into the basal ganglia-gated pFC to bias response selection in the premotor and motor cortices. The interactions between the two model learning pathways explain how instructions can override habits and how automaticity can be achieved through motor consolidation.

Top