46 CFR 15.816 - Automatic radar plotting aids (ARPAs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Automatic radar plotting aids (ARPAs). 15.816 Section 15.816 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN MANNING REQUIREMENTS Computations § 15.816 Automatic radar plotting aids (ARPAs). Every person in the required...
33 CFR 164.38 - Automatic radar plotting aids (ARPA).
Code of Federal Regulations, 2010 CFR
2010-07-01
... ARPA data is clearly visible in general to more than one observer in the conditions of light normally... radar display and, in the case of automatic acquisition, enters within the acquisition area chosen by the observer or, in the case of manual acquisition, has been acquired by the observer, the ARPA should...
33 CFR 164.38 - Automatic radar plotting aids (ARPA).
Code of Federal Regulations, 2012 CFR
2012-07-01
... ARPA data is clearly visible in general to more than one observer in the conditions of light normally... radar display and, in the case of automatic acquisition, enters within the acquisition area chosen by the observer or, in the case of manual acquisition, has been acquired by the observer, the ARPA should...
33 CFR 164.38 - Automatic radar plotting aids (ARPA).
Code of Federal Regulations, 2014 CFR
2014-07-01
... ARPA data is clearly visible in general to more than one observer in the conditions of light normally... radar display and, in the case of automatic acquisition, enters within the acquisition area chosen by the observer or, in the case of manual acquisition, has been acquired by the observer, the ARPA should...
33 CFR 164.38 - Automatic radar plotting aids (ARPA).
Code of Federal Regulations, 2011 CFR
2011-07-01
... ARPA data is clearly visible in general to more than one observer in the conditions of light normally... radar display and, in the case of automatic acquisition, enters within the acquisition area chosen by the observer or, in the case of manual acquisition, has been acquired by the observer, the ARPA should...
Research and Development for Technology Evolution Potential Forecasting System
NASA Astrophysics Data System (ADS)
Gao, Changqing; Cao, Shukun; Wang, Yuzeng; Ai, Changsheng; Ze, Xiangbo
Technology forecasting is a powerful weapon for many enterprises to gain an animate future. Evolutionary potential radar plot is a necessary step of some valuable methods to help the technology managers with right technical strategy. A software system for Technology Evolution Potential Forecasting (TEPF) with automatic radar plot drawing is introduced in this paper. The framework of the system and the date structure describing the concrete evolution pattern are illustrated in details. And the algorithm for radar plot drawing is researched. It is proved that the TEPF system is an effective tool during the technology strategy analyzing process with a referenced case study.
AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar
NASA Astrophysics Data System (ADS)
Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff
2017-09-01
For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.
33 CFR 164.38 - Automatic radar plotting aids (ARPA).
Code of Federal Regulations, 2013 CFR
2013-07-01
... constructed before September 1, 1984, must be equipped with an ARPA, except when it is operating on the Great... when operating on the Great Lakes and their connecting and tributary waters, constructed on or after... range and bearing of any object which appears on the ARPA display. 3.4.12When a target appears on the...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Devices to indicate speed and... speed and distance. (a) Each vessel required to be fitted with an Automatic Radar Plotting Aid (ARPA) under § 164.38 of this part must be fitted with a device to indicate speed and distance of the vessel...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Devices to indicate speed and... speed and distance. (a) Each vessel required to be fitted with an Automatic Radar Plotting Aid (ARPA) under § 164.38 of this part must be fitted with a device to indicate speed and distance of the vessel...
NASA Technical Reports Server (NTRS)
Zaczek, Mariusz P.
2005-01-01
Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.
Automatic integration of data from dissimilar sensors
NASA Astrophysics Data System (ADS)
Citrin, W. I.; Proue, R. W.; Thomas, J. W.
The present investigation is concerned with the automatic integration of radar and electronic support measures (ESM) sensor data, and with the development of a method for the automatical integration of identification friend or foe (IFF) and radar sensor data. On the basis of the two considered proojects, significant advances have been made in the areas of sensor data integration. It is pointed out that the log likelihood approach in sensor data correlation is appropriate for both similar and dissimilar sensor data. Attention is given to the real time integration of radar and ESM sensor data, and a radar ESM correlation simulation program.
Enhanced Weather Radar (EWxR) System
NASA Technical Reports Server (NTRS)
Kronfeld, Kevin M. (Technical Monitor)
2003-01-01
An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.
Subsurface investigation with ground penetrating radar
USDA-ARS?s Scientific Manuscript database
Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...
Code of Federal Regulations, 2011 CFR
2011-01-01
... radar beacon transponder— (1) When deactivation of that equipment is directed by ATC; (2) Unless, as... operate any automatic pressure altitude reporting equipment associated with a radar beacon transponder or...
Hail Size Distribution Mapping
NASA Technical Reports Server (NTRS)
2008-01-01
A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at
NASA Astrophysics Data System (ADS)
Arason, P.; Barsotti, S.; De'Michieli Vitturi, M.; Jónsson, S.; Arngrímsson, H.; Bergsson, B.; Pfeffer, M. A.; Petersen, G. N.; Bjornsson, H.
2016-12-01
Plume height and mass eruption rate are the principal scale parameters of explosive volcanic eruptions. Weather radars are important instruments in estimating plume height, due to their independence of daylight, weather and visibility. The Icelandic Meteorological Office (IMO) operates two fixed position C-band weather radars and two mobile X-band radars. All volcanoes in Iceland can be monitored by IMO's radar network, and during initial phases of an eruption all available radars will be set to a more detailed volcano scan. When the radar volume data is retrived at IMO-headquarters in Reykjavík, an automatic analysis is performed on the radar data above the proximity of the volcano. The plume height is automatically estimated taking into account the radar scanning strategy, beam width, and a likely reflectivity gradient at the plume top. This analysis provides a distribution of the likely plume height. The automatically determined plume height estimates from the radar data are used as input to a numerical suite that calculates the eruptive source parameters through an inversion algorithm. This is done by using the coupled system DAKOTA-PlumeMoM which solves the 1D plume model equations iteratively by varying the input values of vent radius and vertical velocity. The model accounts for the effect of wind on the plume dynamics, using atmospheric vertical profiles extracted from the ECMWF numerical weather prediction model. Finally, the resulting estimates of mass eruption rate are used to initialize the dispersal model VOL-CALPUFF to assess hazard due to tephra fallout, and communicated to London VAAC to support their modelling activity for aviation safety purposes.
Measurement of participation: intersecting person, task, and environment.
Mallinson, Trudy; Hammel, Joy
2010-09-01
The goals of this article are to describe participation as a transaction and issues involved in measuring and intervening using this transactional approach; describe ecologic and systems-based theoretic approaches for conceptualizing person-task-environment transactions; and illustrate examples of an exploratory strategy, radar plots, as a clinical tool for rehabilitation professionals to show this interaction and use it to inform participation-focused interventions with people with disabilities in rehabilitation settings. Participation necessarily occurs at the intersection of what the person can do, wants to do, has the opportunity to do, and is not prevented from doing. It is a transaction that occurs at the nexus of the person-task-environment. Measurement of participation should capture this transactive nature. Radar plots are part of a group of graphic displays frequently referred to as exploratory data analysis. In situations in which theory is not well developed, exploratory techniques such as radar plots may hold promise as ways to explore better the relationship among variables. This article describes strengths and limitations of radar plots and presents an example with data from the Community Participation Database. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...
National Radar Conference, Los Angeles, CA, March 12, 13, 1986, Proceedings
NASA Astrophysics Data System (ADS)
The topics discussed include radar systems, radar subsystems, and radar signal processing. Papers are presented on millimeter wave radar for proximity fuzing of smart munitions, a solid state low pulse power ground surveillance radar, and the Radarsat prototype synthetic-aperture radar signal processor. Consideration is also given to automatic track quality assessment in ADT radar systems instrumentation of RCS measurements of modulation spectra of aircraft blades.
Application of Radar Data to Remote Sensing and Geographical Information Systems
NASA Technical Reports Server (NTRS)
vanZyl, Jakob J.
2000-01-01
The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Radar-T/OC. 32.15-30 Section 32.15-30 Shipping COAST... Navigation Equipment § 32.15-30 Radar—T/OC. All tankships of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar...
NASA Astrophysics Data System (ADS)
Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.
2009-07-01
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.
Automatic Focusing for a 675 GHz Imaging Radar with Target Standoff Distances from 14 to 34 Meters
NASA Technical Reports Server (NTRS)
Tang, Adrian; Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Siegel, Peter H.
2013-01-01
This paper dicusses the issue of limited focal depth for high-resolution imaging radar operating over a wide range of standoff distances. We describe a technique for automatically focusing a THz imaging radar system using translational optics combined with range estimation based on a reduced chirp bandwidth setting. The demonstarted focusing algorithm estimates the correct focal depth for desired targets in the field of view at unknown standoffs and in the presence of clutter to provide good imagery at 14 to 30 meters of standoff.
Missing Aircraft Crash Sites and Spatial Relationships to the Last Radar Fix.
Koester, Robert J; Greatbatch, Ian
2016-02-01
Few studies have examined the spatial characteristics of missing aircraft in actual distress. No previous studies have looked at the distance from the last radar plot to the crash site. The purpose of this study was to characterize this distance and then identify environmental and flight characteristics that might be used to predict the spatial relationship and, therefore, aid search and rescue planners. Detailed records were obtained from the U.S. Air Force Rescue Coordination Center for missing aircraft in distress from 2002 to 2008. The data was combined with information from the National Transportation Safety Board (NTSB) Accident Database. The spatial relationship between the last radar plot and crash site was then determined using GIS analysis. A total of 260 missing aircraft incidents involving 509 people were examined, of which 216 (83%) contained radar information. Among the missing aircraft the mortality rate was 89%; most occurred in mountainous terrain (57%); Part 91 flight accounted for 95% of the incidents; and 50% of the aircraft were found within 0.8 nmi from the last radar plot. Flight characteristics, descent rate, icing conditions, and instrument flight rule vs. visual flight rule flight could be used to predict spatial characteristics. In most circumstances, the last radar position is an excellent predictor of the crash site. However, 5% of aircraft are found further than 45.4 nmi. The flight and environmental conditions were identified and placed into an algorithm to aid search planners in determining how factors should be prioritized.
46 CFR 77.09-1 - When required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SYSTEMS AND EQUIPMENT Radar § 77.09-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5963...
46 CFR 77.09-1 - When required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SYSTEMS AND EQUIPMENT Radar § 77.09-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5963...
33 CFR 83.07 - Risk of collision (Rule 7).
Code of Federal Regulations, 2011 CFR
2011-07-01
... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...
46 CFR 96.25-1 - When required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 96.25-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5964...
33 CFR 83.07 - Risk of collision (Rule 7).
Code of Federal Regulations, 2010 CFR
2010-07-01
... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 96.25-1 - When required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 96.25-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5964...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 96.25-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 96.25-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5964...
46 CFR 96.25-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 96.25-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5964...
46 CFR 77.09-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SYSTEMS AND EQUIPMENT Radar § 77.09-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5963...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 96.25-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 96.25-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5964...
46 CFR 77.09-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SYSTEMS AND EQUIPMENT Radar § 77.09-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5963...
46 CFR 77.09-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SYSTEMS AND EQUIPMENT Radar § 77.09-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5963...
33 CFR 83.07 - Risk of collision (Rule 7).
Code of Federal Regulations, 2013 CFR
2013-07-01
... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
33 CFR 83.07 - Risk of collision (Rule 7).
Code of Federal Regulations, 2014 CFR
2014-07-01
... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...
33 CFR 83.07 - Risk of collision (Rule 7).
Code of Federal Regulations, 2012 CFR
2012-07-01
... exists. If there is any doubt such risk shall be deemed to exist. (b) Radar. Proper use shall be made of radar equipment if fitted and operational, including long-range scanning to obtain early warning of risk of collision and radar plotting or equivalent systematic observation of detected objects. (c) Scanty...
Estimating soil water content from ground penetrating radar coarse root reflections
NASA Astrophysics Data System (ADS)
Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.
2016-12-01
Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at different depths. It is very promising for measuring root-zone-soil-moisture and mapping soil moisture distribution around a shrub or even in field plot scale.
Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment
NASA Technical Reports Server (NTRS)
Tilley, David G.
1991-01-01
Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.
Terrain-analysis procedures for modeling radar backscatter
Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis
1978-01-01
The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.
ADMAP (automatic data manipulation program)
NASA Technical Reports Server (NTRS)
Mann, F. I.
1971-01-01
Instructions are presented on the use of ADMAP, (automatic data manipulation program) an aerospace data manipulation computer program. The program was developed to aid in processing, reducing, plotting, and publishing electric propulsion trajectory data generated by the low thrust optimization program, HILTOP. The program has the option of generating SC4020 electric plots, and therefore requires the SC4020 routines to be available at excution time (even if not used). Several general routines are present, including a cubic spline interpolation routine, electric plotter dash line drawing routine, and single parameter and double parameter sorting routines. Many routines are tailored for the manipulation and plotting of electric propulsion data, including an automatic scale selection routine, an automatic curve labelling routine, and an automatic graph titling routine. Data are accepted from either punched cards or magnetic tape.
2016-08-01
a series on SPY-1 radar spare parts. The SPY-1 radar is an advanced , automatic detect and track radar system . The SPY-1 radar is one of 13 major...the AEGIS Weapon System could be adversely impacted if parts needed to maintain the SPY-1 radars are not transported to the warfighters when...for SPY-1 Radar Sustainment (Report No. DODIG-2016-116) We are providing this report for review and comment. Naval Supply Systems Command Weapon
Automatic detection, tracking and sensor integration
NASA Astrophysics Data System (ADS)
Trunk, G. V.
1988-06-01
This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.
49. COMMAND INFORMATION CENTER (CIC) AFT LOOKING FORWARD PORT ...
49. COMMAND INFORMATION CENTER (CIC) - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING VARIOUS TYPES OF RADAR UNITS, PLOT TABLES AND PLOTTING BOARDS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
Equations for Automotive-Transmission Performance
NASA Technical Reports Server (NTRS)
Chazanoff, S.; Aston, M. B.; Chapman, C. P.
1984-01-01
Curve-fitting procedure ensures high confidence levels. Threedimensional plot represents performance of small automatic transmission coasting in second gear. In equation for plot, PL power loss, S speed and T torque. Equations applicable to manual and automatic transmissions over wide range of speed, torque, and efficiency.
A History of U.S. Navy Periscope Detection Radar, Sensor Design and Development
2014-12-31
A History of U.S. Navy Periscope Detection Radar Sensor Design and Development John G. Shannon Paul M. Moser Rite-Solutions, Inc...superiority through the years. Highly effective radar sensors used for military applications were originally large ground-based units designed, developed...automatically. Until very recently, all fleet operational periscope detection radar (PDR) sensor systems have required a skilled and alert human
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Flinn, Clay
2013-01-01
On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0-hour forecasts against the observations to determine which is the best performing model and then overlay the model forecasts on time-matched observations during the launch countdown to further assess the model performance and forecasts. This paper will demonstrate integration of observed and predicted atmospheric conditions into a decision support tool and demonstrate how the GUI is implemented in operations.
A Method for the Automatic Detection of Insect Clutter in Doppler-Radar Returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke,E.; Kollias, P.; Johnson, K.
2006-06-12
The accurate detection and removal of insect clutter from millimeter wavelength cloud radar (MMCR) returns is of high importance to boundary layer cloud research (e.g., Geerts et al., 2005). When only radar Doppler moments are available, it is difficult to produce a reliable screening of insect clutter from cloud returns because their distributions overlap. Hence, screening of MMCR insect clutter has historically involved a laborious manual process of cross-referencing radar moments against measurements from other collocated instruments, such as lidar. Our study looks beyond traditional radar moments to ask whether analysis of recorded Doppler spectra can serve as the basismore » for reliable, automatic insect clutter screening. We focus on the MMCR operated by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) facility in Oklahoma. Here, archiving of full Doppler spectra began in September 2003, and during the warmer months, a pronounced insect presence regularly introduces clutter into boundary layer returns.« less
Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla
2010-12-01
The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiong, S.; Muller, J.-P.; Carretero, R. C.
2017-09-01
Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.
33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, ...
33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, FD Radar Facilities-FPS-27, Electrical Plot Plan and Duet Details, USACOE, not date. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI
How to Create and Manipulate Radar Range-Doppler Plots
2014-12-01
the radar interacts, we can then also simulate jamming it to produce false targets. We start by setting up the relevant radar equations that allow the...radar at r = 0 for the duration of the scenario, with the target at r = r0 at t = 0. To facilitate later discussion, suppose that t = 0 starts a coherent...interval. The time from the start of one pulse to the next is 100 µs, so that t ≃ 32×100µs. The range difference vtd/2 is then, making use of SI units, vtd
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
..., Airborne Automatic Dead Reckoning Computer Equipment Utilizing Aircraft Heading and Doppler Ground Speed.... ACTION: Notice of cancellation of Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning... . SUPPLEMENTARY INFORMATION: Background Doppler radar is a semiautomatic self-contained dead reckoning navigation...
Analysis of Doppler radar windshear data
NASA Technical Reports Server (NTRS)
Williams, F.; Mckinney, P.; Ozmen, F.
1989-01-01
The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.
28. Site Plan: AF Station P67, Fort Custer, Michigan, Plot ...
28. Site Plan: AF Station P-67, Fort Custer, Michigan, Plot Plan (to accompany FY 1956 project planning report), USACOE, 22 July 1954. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI
Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation
NASA Astrophysics Data System (ADS)
Erofeeva, S.; Kurapov, A. L.; Pasmans, I.
2016-02-01
Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).
1988-03-31
radar operation and data - collection activities, a large data -analysis effort has been under way in support of automatic wind-shear detection algorithm ...REDUCTION AND ALGORITHM DEVELOPMENT 49 A. General-Purpose Software 49 B. Concurrent Computer Systems 49 C. Sun Workstations 51 D. Radar Data Analysis 52...1. Algorithm Verification 52 2. Other Studies 53 3. Translations 54 4. Outside Distributions 55 E. Mesonet/LLWAS Data Analysis 55 1. 1985 Data 55 2
Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.
Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga
2017-07-01
In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.
External Threat Risk Assessment Algorithm (ExTRAA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Troy C.
Two risk assessment algorithms and philosophies have been augmented and combined to form a new algorit hm, the External Threat Risk Assessment Algorithm (ExTRAA), that allows for effective and statistically sound analysis of external threat sources in relation to individual attack methods . In addition to the attack method use probability and the attack method employment consequence, t he concept of defining threat sources is added to the risk assessment process. Sample data is tabulated and depicted in radar plots and bar graphs for algorithm demonstration purposes. The largest success of ExTRAA is its ability to visualize the kind ofmore » r isk posed in a given situation using the radar plot method.« less
NASA Astrophysics Data System (ADS)
Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia
2015-07-01
To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.
Plumbing Coastal Depths in Titan Kraken Mare
2014-11-10
Radar data from NASA's Cassini spacecraft reveal the depth of liquid methane/ethane seas on Saturn's moon Titan. Cassini's Titan flyby on August 21, 2014, included a segment designed to collect altimetry (or height) data, using the spacecraft's radar instrument, along a 120-mile (200-kilometer) shore-to-shore track on Kraken Mare, Titan's largest hydrocarbon sea. For a 25-mile (40-kilometer) stretch of this data, along the sea's eastern shoreline, Cassini's radar beam bounced off the sea bottom and back to the spacecraft, revealing the sea's depth in that area. Observations in this region, near the mouth of a large, flooded river valley, showed depths ranging from 66 to 115 feet (20 to 35 meters). Plots of three radar echoes are shown at left, indicating depths of 89 feet (27 meters), 108 feet (33 meters) and 98 feet (30 meters), respectively. The altimetry echoes show the characteristic double-peaked returns of a bottom-reflection. The tallest peak represents the sea surface; the shorter of the pair represents the sea bottom. The distance between the two peaks is a measure of the liquid's depth. The Synthetic Aperture Radar (SAR) image at right shows successive altimetry observations as black circles. The three blue circles indicate the locations of the three altimetry echoes shown in the plots at left. http://photojournal.jpl.nasa.gov/catalog/PIA19046
Program Aids Creation Of X-Y Plots
NASA Technical Reports Server (NTRS)
Jeletic, James F.
1993-01-01
VEGAS computer program enables application programmers to create X-Y plots in various modes through high-level subroutine calls. Modes consist of passive, autoupdate, and interactive modes. In passive mode, VEGAS takes input data, produces plot, and returns control to application program. In autoupdate mode, forms plots and automatically updates them as more information received. In interactive mode, displays plot and provides popup menus for user to alter appearance of plot or to modify data. Written in FORTRAN 77.
NASA Astrophysics Data System (ADS)
Parker, Jay; Donnellan, Andrea; Glasscoe, Margaret; Fox, Geoffrey; Wang, Jun; Pierce, Marlon; Ma, Yu
2015-08-01
High-resolution maps of earth surface deformation are available in public archives for scientific interpretation, but are primarily available as bulky downloads on the internet. The NASA uninhabited aerial vehicle synthetic aperture radar (UAVSAR) archive of airborne radar interferograms delivers very high resolution images (approximately seven meter pixels) making remote handling of the files that much more pressing. Data exploration requiring data selection and exploratory analysis has been tedious. QuakeSim has implemented an archive of UAVSAR data in a web service and browser system based on GeoServer (http://geoserver.org). This supports a variety of services that supply consistent maps, raster image data and geographic information systems (GIS) objects including standard earthquake faults. Browsing the database is supported by initially displaying GIS-referenced thumbnail images of the radar displacement maps. Access is also provided to image metadata and links for full file downloads. One of the most widely used features is the QuakeSim line-of-sight profile tool, which calculates the radar-observed displacement (from an unwrapped interferogram product) along a line specified through a web browser. Displacement values along a profile are updated to a plot on the screen as the user interactively redefines the endpoints of the line and the sampling density. The profile and also a plot of the ground height are available as CSV (text) files for further examination, without any need to download the full radar file. Additional tools allow the user to select a polygon overlapping the radar displacement image, specify a downsampling rate and extract a modest sized grid of observations for display or for inversion, for example, the QuakeSim simplex inversion tool which estimates a consistent fault geometry and slip model.
Automatic identification of bird targets with radar via patterns produced by wing flapping.
Zaugg, Serge; Saporta, Gilbert; van Loon, Emiel; Schmaljohann, Heiko; Liechti, Felix
2008-09-06
Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.
NASA Astrophysics Data System (ADS)
Koschuch, Richard; Brauner, Michael; Hu, Kaiheng; Hübl, Johannes
2016-04-01
Automatic monitoring of alpine mass movement is a major challenge in dealing with natural hazards. The presented research project shows a new approach in measurment and alarming technology for water level changes an debris flow by using a high-frequency Pulse Doppler RADAR. The detection system was implemented on 3 places (2 in Tirol/Austria within the monitoring systems of the IAN/BOKU; 1 in Dongchuan/China within the monitoring systems of the IMHE/Chinese Academy of Science) in order to prove the applicability of the RADAR in monitoring torrential activities (e.g. debris-flows, mudflows, flash floods, etc.). The main objective is to illustrate the principles and the potential of an innovative RADAR system and its versatility as an automatic detection system for fast (> 1 km/h - 300 km/h) alpine mass movements of any kind. The high frequency RADAR device was already successfully tested for snow avalanches in Sedrun/Switzerland (Lussi et al., 2012), in Ischgl/Austria (Kogelnig et al., 2012). The experience and the data of the five year showed the enormous potential of the presented RADAR technology in use as an independent warning and monitoring system in the field of natural hazard. We have been able to measure water level changes, surface velocities and several debris flows and can compare this data with the other installed systems.
Automatic Target Recognition Based on Cross-Plot
Wong, Kelvin Kian Loong; Abbott, Derek
2011-01-01
Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508
On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere
NASA Technical Reports Server (NTRS)
Rottger, J.; Fu, I. J.; Kuo, F. S.; Liu, C. H.; Chao, J. K.
1986-01-01
The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted.
Automatic Censoring CFAR Detector Based on Ordered Data Difference for Low-Flying Helicopter Safety
Jiang, Wen; Huang, Yulin; Yang, Jianyu
2016-01-01
Being equipped with a millimeter-wave radar allows a low-flying helicopter to sense the surroundings in real time, which significantly increases its safety. However, nonhomogeneous clutter environments, such as a multiple target situation and a clutter edge environment, can dramatically affect the radar signal detection performance. In order to improve the radar signal detection performance in nonhomogeneous clutter environments, this paper proposes a new automatic censored cell averaging CFAR detector. The proposed CFAR detector does not require any prior information about the background environment and uses the hypothesis test of the first-order difference (FOD) result of ordered data to reject the unwanted samples in the reference window. After censoring the unwanted ranked cells, the remaining samples are combined to form an estimate of the background power level, thus getting better radar signal detection performance. The simulation results show that the FOD-CFAR detector provides low loss CFAR performance in a homogeneous environment and also performs robustly in nonhomogeneous environments. Furthermore, the measured results of a low-flying helicopter validate the basic performance of the proposed method. PMID:27399714
Fundamental studies of radar scattering from water surfaces: The Lake Washington experiment
NASA Technical Reports Server (NTRS)
Salam, A.; Bush, D.; Gogineni, S.; Zaide, A.
1991-01-01
The University of Kansas and the University of Washington conducted a series of experiments during July and August of 1989, and July and August of 1990, to study the effects of various geophysical parameters on radar backscatter. The experiments were conducted from a platform in Lake Washington. Measurements of backscattered power and radar range were made by the University of Kansas, and environmental data such as wind speed, wind direction, and air and water temperature were measured by the University of Washington. Results of preliminary data processing are described. Radar data were acquired using two radars, one that operated at C and X bands and another at Ka band. Measurements were made at W and HH antenna polarizations, at different angles of incidence and under various wind conditions. Plots of backscattered power, normalized radar cross section, and wave height, and the Modulation Transfer Functions of selected data are presented.
NASA Astrophysics Data System (ADS)
Wang, Haijiang; Yang, Ling
2014-12-01
In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.
1990-01-01
The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.
Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola
2018-04-09
To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.
NASA Astrophysics Data System (ADS)
Webb, Ryan W.
2017-09-01
Snow is an important environmental variable in headwater systems that controls hydrological processes such as streamflow, groundwater recharge, and evapotranspiration. These processes will be affected by both the amount of snow available for melt and the rate at which it melts. Snow water equivalent (SWE) and snowmelt are known to vary within complex subalpine terrain due to terrain and canopy influences. This study assesses this variability during the melt season using ground penetrating radar to survey multiple plots in northwestern Colorado near a snow telemetry (SNOTEL) station. The plots include south aspect and flat aspect slopes with open, coniferous (subalpine fir, Abies lasiocarpa and engelman spruce, Picea engelmanii), and deciduous (aspen, populous tremuooides) canopy cover. Results show the high variability for both SWE and loss of SWE during spring snowmelt in 2014. The coefficient of variation for SWE tended to increase with time during snowmelt whereas loss of SWE remained similar. Correlation lengths for SWE were between two and five meters with melt having correlation lengths between two and four meters. The SNOTEL station regularly measured higher SWE values relative to the survey plots but was able to reasonably capture the overall mean loss of SWE during melt. Ground Penetrating Radar methods can improve future investigations with the advantage of non-destructive sampling and the ability to estimate depth, density, and SWE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaunaurd, G.; Strifors, H.C.
1996-09-01
Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of themore » WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.« less
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.
1995-09-01
Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly rain gauge data. It makes little difference whether the adjustment is by monthly mean rates or percentiles. Further tests show that 1-h sampling is sufficient to obtain an accurate estimate of monthly rain statistics.
ERIC Educational Resources Information Center
Rigney, Joseph W.; And Others
An individual trainer for giving students in the radar intercept observer (RIO) schools concentrated practice in procedures for air-to-air intercepts was designed around a programmable graphics terminal with two integral minicomputers and 8k of core memory. The trainer automatically administers practice in computing values of variables in the…
Site Characterization for Radar Experiments
1990-08-01
accomplished waz "New Mine Detection Technologies," Mr. Jack Stoll, Principal Investigator. The Environmental Systems Division (EST) of the Environmental...Mr. Steve Bong of Hilton Systems visiting the proposed study site in M’rch to select specific locations for the test plots. The field data coll in...Technology/Lincoln Laboratory (MIT/LL) described an airborne 35-Ghz radar imaging system . The MIT/LL would employ various kinds of processing on the
Simulation of radar reflectivity and surface measurements of rainfall
NASA Technical Reports Server (NTRS)
Chandrasekar, V.; Bringi, V. N.
1987-01-01
Raindrop size distributions (RSDs) are often estimated using surface raindrop sampling devices (e.g., disdrometers) or optical array (2D-PMS) probes. A number of authors have used these measured distributions to compute certain higher-order RSD moments that correspond to radar reflectivity, attenuation, optical extinction, etc. Scatter plots of these RSD moments versus disdrometer-measured rainrates are then used to deduce physical relationships between radar reflectivity, attenuation, etc., which are measured by independent instruments (e.g., radar), and rainrate. In this paper RSDs of the gamma form as well as radar reflectivity (via time series simulation) are simulated to study the correlation structure of radar estimates versus rainrate as opposed to RSD moment estimates versus rainrate. The parameters N0, D0 and m of a gamma distribution are varied over the range normally found in rainfall, as well as varying the device sampling volume. The simulations are used to explain some possible features related to discrepancies which can arise when radar rainfall measurements are compared with surface or aircraft-based sampling devices.
Analytical evaluation of ILM sensors, volume 1
NASA Technical Reports Server (NTRS)
Kirk, R. J.
1975-01-01
The functional requirements and operating environment constraints are defined for an independent landing monitor ILM which provides the flight crew with an independent assessment of the operation of the primary automatic landing system. The capabilities of radars, TV, forward looking infrared radiometers, multilateration, microwave radiometers, interferometers, and nuclear sensing concepts to meet the ILM conditions are analyzed. The most critical need for the ILM appears in the landing sequence from 1000 to 2000 meters from threshold through rollout. Of the sensing concepts analyzed, the following show potential of becoming feasible ILM's: redundant microwave landings systems, precision approach radar, airborne triangulation radar, multilateration with radar altimetry, and nuclear sensing.
Detecting and mitigating wind turbine clutter for airspace radar systems.
Wang, Wen-Qin
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.
Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880
Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment.
Schlee, Winfried; Hall, Deborah A; Edvall, Niklas K; Langguth, Berthold; Canlon, Barbara; Cederroth, Christopher R
2017-01-01
The assessment and treatment of complex disorders is challenged by the multiple domains and instruments used to evaluate clinical outcome. With the large number of assessment tools typically used in complex disorders comes the challenge of obtaining an integrative view of disease status to further evaluate treatment outcome both at the individual level and at the group level. Radar plots appear as an attractive visual tool to display multivariate data on a two-dimensional graphical illustration. Here, we describe the use of radar plots for the visualization of disease characteristics applied in the context of tinnitus, a complex and heterogeneous condition, the treatment of which has shown mixed success. Data from two different cohorts, the Swedish Tinnitus Outreach Project (STOP) and the Tinnitus Research Initiative (TRI) database, were used. STOP is a population-based cohort where cross-sectional data from 1,223 non-tinnitus and 933 tinnitus subjects were analyzed. By contrast, the TRI contained data from 571 patients who underwent various treatments and whose Clinical Global Impression (CGI) score was accessible to infer treatment outcome. In the latter, 34,560 permutations were tested to evaluate whether a particular ordering of the instruments could reflect better the treatment outcome measured with the CGI. Radar plots confirmed that tinnitus subtypes such as occasional and chronic tinnitus from the STOP cohort could be strikingly different, and helped appreciate a gender bias in tinnitus severity. Radar plots with greater surface areas were consistent with greater burden, and enabled a rapid appreciation of the global distress associated with tinnitus in patients categorized according to tinnitus severity. Permutations in the arrangement of instruments allowed to identify a configuration with minimal variance and maximized surface difference between CGI groups from the TRI database, thus affording a means of optimally evaluating the outcomes in individual patients. We anticipate such a tool to become a starting point for more sophisticated measures in clinical outcomes, applicable not only in the context of tinnitus but also in other complex diseases where the integration of multiple variables is needed for a comprehensive evaluation of treatment response.
Automatic Response to Intrusion
2002-10-01
Computing Corporation Sidewinder Firewall [18] SRI EMERALD Basic Security Module (BSM) and EMERALD File Transfer Protocol (FTP) Monitors...the same event TCP Wrappers [24] Internet Security Systems RealSecure [31] SRI EMERALD IDIP monitor NAI Labs Generic Software Wrappers Prototype...included EMERALD , NetRadar, NAI Labs UNIX wrappers, ARGuE, MPOG, NetRadar, CyberCop Server, Gauntlet, RealSecure, and the Cyber Command System
Analysis of scattering behavior and radar penetration in AIRSAR data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Van Zyl, Jakob
1992-01-01
A technique is presented to physically characterize changes in radar backscatter with frequency in multifrequency single polarization radar images that can be used as a first step in the analysis of the data and the retrieval of geophysical parameters. The technique is automatic, relatively independent of the incidence angle, and only requires a good calibration accuracy between the different frequencies. The technique reveals large areas where scattering changes significantly with frequency and whether the surface has the characteristics of a smooth, slightly rough, rough, or very rough surface.
Radar investigation of asteroids
NASA Technical Reports Server (NTRS)
Ostro, S. J.
1983-01-01
For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.
Federal Aviation Administration weather program to improve aviation safety
NASA Technical Reports Server (NTRS)
Wedan, R. W.
1983-01-01
The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.
Sea Ice Movements from Synthetic Aperture Radar
1981-12-01
correlating these components. B-l8 These correlations are also plotted in figure l1. 5.3.3.2 AUlications of the space correlation. The spatial...aperture radar. To appear in J. of Geophys. Res. Hastings, A. D. Jr., 1971. Surface climate of the Arctic Basin. Report ETL- TR-71-5, Earth Sciences Division...Administration Grant NA50-AA-D-00015, which was funded in part by the Global Atmospheric Research Program and the Office of Climate Dynarics, Divisic
Information Encoding on a Pseudo Random Noise Radar Waveform
2013-03-01
quadrature mirror filter bank (QMFB) tree diagram [18] . . . . . . . . . . . 18 2.7 QMFB layer 3 contour plot for 7-bit barker code binary phase shift...test signal . . . . . . . . 20 2.9 Block diagram of the FFT accumulation method (FAM) time smoothing method to estimate the spectral correlation ... Samples A m pl itu de (b) Correlator output for an WGN pulse in a AWGN channel Figure 2.2: Effectiveness of correlation for SNR = -10 dB 10 2.3 Radar
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.
The role of automatic control in future interplanetary spaceflight
NASA Technical Reports Server (NTRS)
Scull, J. R.; Moore, J. W.
1976-01-01
The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.
Software For Calibration Of Polarimetric SAR Data
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce
1994-01-01
POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Poehler, H. A.
1977-01-01
For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.
Digital computer programs for generating oblique orthographic projections and contour plots
NASA Technical Reports Server (NTRS)
Giles, G. L.
1975-01-01
User and programer documentation is presented for two programs for automatic plotting of digital data. One of the programs generates oblique orthographic projections of three-dimensional numerical models and the other program generates contour plots of data distributed in an arbitrary planar region. A general description of the computational algorithms, user instructions, and complete listings of the programs is given. Several plots are included to illustrate various program options, and a single example is described to facilitate learning the use of the programs.
Change in Mars Mid-Latitude Ionosphere After Comet Flyby
2014-11-07
These plots portray data from radar sounding of Mars mid-latitude ionosphere at three times on Oct. 19 and 20, 2014. The data are from the MARSIS instrument on the European Space Agency Mars Express orbiter.
NASA Astrophysics Data System (ADS)
Bowling, R. D.; Laya, J. C.; Everett, M. E.
2018-07-01
The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometre length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which support the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.
NASA Astrophysics Data System (ADS)
Bowling, R. D.; Laya, J. C.; Everett, M. E.
2018-05-01
The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.
Communicating Value in Health Care Using Radar Charts: A Case Study of Prostate Cancer.
Thaker, Nikhil G; Ali, Tariq N; Porter, Michael E; Feeley, Thomas W; Kaplan, Robert S; Frank, Steven J
2016-09-01
The transformation from volume to value will require communication of outcomes and costs of therapies; however, outcomes are usually nonstandardized, and cost of therapy differs among stakeholders. We developed a standardized value framework by using radar charts to visualize and communicate a wide range of patient outcomes and cost for three forms of prostate cancer treatment. We retrospectively reviewed data from men with low-risk prostate cancer who were treated with low-dose rate brachytherapy (LDR-BT), proton beam therapy, or robotic-assisted prostatectomy. Patient-reported outcomes comprised the Expanded Prostate Cancer Index Composite-50 domains for sexual function, urinary incontinence and/or bother, bowel bother, and vitality 12 months after treatment. Costs were measured by time-driven activity-based costing for the first 12 months of the care cycle. Outcome and cost data were plotted on a single radar chart for each treatment modality. Outcome and cost data from patients who were treated with robotic-assisted prostatectomy (n = 381), proton beam therapy (n = 165), and LDR-BT (n = 238) were incorporated into the radar chart. LDR-BT seemed to deliver the highest overall value of the three treatment modalities; however, incorporation of patient preferences regarding outcomes may allow other modalities to be considered high-value treatment options. Standardization and visualization of outcome and cost metrics may allow more comprehensive and collaborative discussions about the value of health care services. Communicating the value framework by using radar charts may be an effective method to present total value and the value of all outcomes and costs in a manner that is accessible to all stakeholders. Variations in plotting of costs and outcomes will require future focus group initiatives. Copyright © 2016 by American Society of Clinical Oncology.
Communicating Value in Health Care Using Radar Charts: A Case Study of Prostate Cancer
Thaker, Nikhil G.; Ali, Tariq N.; Porter, Michael E.; Feeley, Thomas W.; Kaplan, Robert S.
2016-01-01
Purpose: The transformation from volume to value will require communication of outcomes and costs of therapies; however, outcomes are usually nonstandardized, and cost of therapy differs among stakeholders. We developed a standardized value framework by using radar charts to visualize and communicate a wide range of patient outcomes and cost for three forms of prostate cancer treatment. Materials and Methods: We retrospectively reviewed data from men with low-risk prostate cancer who were treated with low-dose rate brachytherapy (LDR-BT), proton beam therapy, or robotic-assisted prostatectomy. Patient-reported outcomes comprised the Expanded Prostate Cancer Index Composite-50 domains for sexual function, urinary incontinence and/or bother, bowel bother, and vitality 12 months after treatment. Costs were measured by time-driven activity-based costing for the first 12 months of the care cycle. Outcome and cost data were plotted on a single radar chart for each treatment modality. Results: Outcome and cost data from patients who were treated with robotic-assisted prostatectomy (n = 381), proton beam therapy (n = 165), and LDR-BT (n = 238) were incorporated into the radar chart. LDR-BT seemed to deliver the highest overall value of the three treatment modalities; however, incorporation of patient preferences regarding outcomes may allow other modalities to be considered high-value treatment options. Conclusion: Standardization and visualization of outcome and cost metrics may allow more comprehensive and collaborative discussions about the value of health care services. Communicating the value framework by using radar charts may be an effective method to present total value and the value of all outcomes and costs in a manner that is accessible to all stakeholders. Variations in plotting of costs and outcomes will require future focus group initiatives. PMID:27577622
AIRSAR Web-Based Data Processing
NASA Technical Reports Server (NTRS)
Chu, Anhua; Van Zyl, Jakob; Kim, Yunjin; Hensley, Scott; Lou, Yunling; Madsen, Soren; Chapman, Bruce; Imel, David; Durden, Stephen; Tung, Wayne
2007-01-01
The AIRSAR automated, Web-based data processing and distribution system is an integrated, end-to-end synthetic aperture radar (SAR) processing system. Designed to function under limited resources and rigorous demands, AIRSAR eliminates operational errors and provides for paperless archiving. Also, it provides a yearly tune-up of the processor on flight missions, as well as quality assurance with new radar modes and anomalous data compensation. The software fully integrates a Web-based SAR data-user request subsystem, a data processing system to automatically generate co-registered multi-frequency images from both polarimetric and interferometric data collection modes in 80/40/20 MHz bandwidth, an automated verification quality assurance subsystem, and an automatic data distribution system for use in the remote-sensor community. Features include Survey Automation Processing in which the software can automatically generate a quick-look image from an entire 90-GB SAR raw data 32-MB/s tape overnight without operator intervention. Also, the software allows product ordering and distribution via a Web-based user request system. To make AIRSAR more user friendly, it has been designed to let users search by entering the desired mission flight line (Missions Searching), or to search for any mission flight line by entering the desired latitude and longitude (Map Searching). For precision image automation processing, the software generates the products according to each data processing request stored in the database via a Queue management system. Users are able to have automatic generation of coregistered multi-frequency images as the software generates polarimetric and/or interferometric SAR data processing in ground and/or slant projection according to user processing requests for one of the 12 radar modes.
Automatic Barometric Updates from Ground-Based Navigational Aids
1990-03-12
ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John
Measuring flood discharge in unstable stream channels using ground-penetrating radar
Spicer, K.R.; Costa, J.E.; Placzek, G.
1997-01-01
Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.
A Strategy for Reforming Avionics Acquisition and Support
1988-07-01
are observable: " Some problems manifest symptoms in one operating mode but not in another. The pilot directly controls some radar operating modes by...for each flight. Their removals occurred in the flight controls , inertial navigation, head-up display, radar, and instru- ments. Although removals...accrue a comparable amount of service time. 6Automatic stations can test 50 LRU types although the Air Force has chosen to test only 37 of them at the
2011-07-01
radar [e.g., synthetic aperture radar (SAR)]. EO/IR includes multi- and hyperspectral imaging. Signal processing of data from nonimaging sensors, such...enhanced recognition ability. Other nonimage -based techniques, such as category theory,45 hierarchical systems,46 and gradient index flow,47 are possible...the battle- field. There is a plethora of imaging and nonimaging sensors on the battlefield that are being networked together for trans- mission of
NASA Astrophysics Data System (ADS)
Nielsen, E.; Schmidt, W.
2014-03-01
In January 1977 a new type of radar aurora experiment named STARE (Scandinavian Twin Aurora Radar Experiment) commenced operation in northern Scandinavia. The purpose of the experiment was two-fold: to make observations of the nature of radar auroras, and to contribute to the study of solar-terrestrial relationships (or space weather). The experiment was designed for automatic continuous operation, and for nearly two and a half decades it provided estimates of electron flows with good spatial coverage and resolution and good time resolution. It was a successful experiment that yielded a wealth of observations and results, pertaining to, and based on, the observed time variations of the electron flows and to the spatial flow pattern observed at any given time. This radar system inspired the creation of a similar system, SABRE (Sweden And Britain Radar Experiment), which increased the field of view towards the southwest of STARE. This system commenced operation in 1982.
Detection of Hail Storms in Radar Imagery Using Deep Learning
NASA Technical Reports Server (NTRS)
Pullman, Melinda; Gurung, Iksha; Ramachandran, Rahul; Maskey, Manil
2017-01-01
In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that leverages radar imagery for automatic detection of hail storms. The technique is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved a precision of 0.848. Hail storms are primarily detected through the visual interpretation of radar imagery (Mrozet al., 2017). With radars providing data every two minutes, the detection of hail storms has become a big data task. As a result, scientists have turned to neural networks that employ computer vision to identify hail-bearing storms (Marzbanet al., 2001). In this study, we propose a deep Convolutional Neural Network (ConvNet) to understand the spatial features and patterns of radar echoes for detecting hailstorms.
Comparison of Three Wind Measuring Systems for Flight Test
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Harvey, Philip O.
2000-01-01
A preliminary field test of the accuracy of wind velocity measurements obtained using global positioning system-tracked rawinsonde balloons has been performed. Wind comparisons have been conducted using global positioning system (GPS) and radio automatic theodolite sounder (RATS) rawinsondes and a high-precision range instrumentation radar-tracked reflector. Wind velocity differences between the GPS rawinsondes and the radar were significantly less than between the RATS rawinsondes and the radar. These limited test results indicate a root-mean-square wind velocity difference from 4.98 kn (2.56 m/sec) for the radar and RATS to 1.09 kn (0.56 m/sec) for the radar and GPS. Differences are influenced by user reporting requirements, data processing techniques, and the inherent tracking accuracies of the system. This brief field test indicates that the GPS sounding system tracking data are more precise than the RATS system. When high-resolution wind data are needed, use of GPS rawinsonde systems can reduce the burden on range radar operations.
Mast, J.E.
1998-08-18
An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.
Mast, Jeffrey E.
1998-01-01
An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.
Pi, Yiming
2017-01-01
The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar. PMID:29267249
Ku-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Magnusson, H. G.; Goff, M. F.
1984-01-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Ku-Band rendezvous radar performance computer simulation model
NASA Astrophysics Data System (ADS)
Magnusson, H. G.; Goff, M. F.
1984-06-01
All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.
Zhou, Zhi; Cao, Zongjie; Pi, Yiming
2017-12-21
The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.
A graphics package for meteorological data, version 1.5
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Suarez, Max; Phillips, Bill; Schemm, Jae-Kyung; Schubert, Siegfried
1989-01-01
A plotting package has been developed to simplify the task of plotting meteorological data. The calling sequences and examples of high level yet flexible routines which allow contouring, vectors and shading of cylindrical, polar, orthographic and Mollweide (egg) projections are given. Routines are also included for contouring pressure-latitude and pressure-longitude fields with linear or log scales in pressure (interpolation to fixed grid interval is done automatically). Also included is a fairly general line plotting routine. The present version (1.5) produces plots on WMS laser printers and uses graphics primitives from WOLFPLOT.
An automatic fall detection framework using data fusion of Doppler radar and motion sensor network.
Liu, Liang; Popescu, Mihail; Skubic, Marjorie; Rantz, Marilyn
2014-01-01
This paper describes the ongoing work of detecting falls in independent living senior apartments. We have developed a fall detection system with Doppler radar sensor and implemented ceiling radar in real senior apartments. However, the detection accuracy on real world data is affected by false alarms inherent in the real living environment, such as motions from visitors. To solve this issue, this paper proposes an improved framework by fusing the Doppler radar sensor result with a motion sensor network. As a result, performance is significantly improved after the data fusion by discarding the false alarms generated by visitors. The improvement of this new method is tested on one week of continuous data from an actual elderly person who frequently falls while living in her senior home.
Development of the Centralized Storm Information System (CSIS) for use in severe weather prediction
NASA Technical Reports Server (NTRS)
Mosher, F. R.
1984-01-01
The centralized storm information system is now capable of ingesting and remapping radar scope presentations on a satellite projection. This can be color enhanced and superposed on other data types. Presentations from more than one radar can be composited on a single image. As with most other data sources, a simple macro establishes the loops and scheduling of the radar ingestions as well as the autodialing. There are approximately 60 NWS network 10 cm radars that can be interrogated. NSSFC forecasters have found this data source to be extremely helpful in severe weather situations. The capability to access lightning frequency data stored in a National Weather Service computer was added. Plans call for an interface with the National Meteorological Center to receive and display prognostic fields from operational computer forecast models. Programs are to be developed to plot and display locations of reported severe local storm events.
Multisensor data fusion for integrated maritime surveillance
NASA Astrophysics Data System (ADS)
Premji, A.; Ponsford, A. M.
1995-01-01
A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.
GrayStar: Web-based pedagogical stellar modeling
NASA Astrophysics Data System (ADS)
Short, C. Ian
2017-01-01
GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.
NASA Technical Reports Server (NTRS)
Fenner, R. G.; Reid, S. C.; Solie, C. H.
1980-01-01
An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.
Work zone speed reduction utilizing dynamic speed signs
DOT National Transportation Integrated Search
2011-08-30
Vast quantities of transportation data are automatically recorded by intelligent transportations infrastructure, such as inductive loop detectors, video cameras, and side-fire radar devices. Such devices are typically deployed by traffic management c...
Director, Operational Test and Evaluation FY 2004 Annual Report
2004-01-01
HIGH) Space Based Radar (SBR) Sensor Fuzed Weapon (SFW) P3I (CBU-97/B) Small Diameter Bomb (SDB) Secure Mobile Anti-Jam Reliable Tactical Terminal...detection, identification, and sampling capability for both fixed-site and mobile operations. The system must automatically detect and identify up to ten...staffing within the Services. SYSTEM DESCRIPTION AND MISSION The Services envision JCAD as a hand-held device that automatically detects, identifies, and
Holographic radar imaging privacy techniques utilizing dual-frequency implementation
NASA Astrophysics Data System (ADS)
McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.
2008-04-01
Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhance the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.
Holographic Radar Imaging Privacy Techniques Utilizing Dual-Frequency Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMakin, Douglas L.; Hall, Thomas E.; Sheen, David M.
2008-04-18
Over the last 15 years, the Pacific Northwest National Laboratory has performed significant research and development activities to enhance the state of the art of holographic radar imaging systems to be used at security checkpoints for screening people for concealed threats hidden under their garments. These enhancement activities included improvements to privacy techniques to remove human features and providing automatic detection of body-worn concealed threats. The enhanced privacy and detection methods used both physical and software imaging techniques. The physical imaging techniques included polarization-diversity illumination and reception, dual-frequency implementation, and high-frequency imaging at 60 GHz. Software imaging techniques to enhancemore » the privacy of the person under surveillance included extracting concealed threat artifacts from the imagery to automatically detect the threat. This paper will focus on physical privacy techniques using dual-frequency implementation.« less
PHASEGO: A toolkit for automatic calculation and plot of phase diagram
NASA Astrophysics Data System (ADS)
Liu, Zhong-Li
2015-06-01
The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.
A computer graphics display and data compression technique
NASA Technical Reports Server (NTRS)
Teague, M. J.; Meyer, H. G.; Levenson, L. (Editor)
1974-01-01
The computer program discussed is intended for the graphical presentation of a general dependent variable X that is a function of two independent variables, U and V. The required input to the program is the variation of the dependent variable with one of the independent variables for various fixed values of the other. The computer program is named CRP, and the output is provided by the SD 4060 plotter. Program CRP is an extremely flexible program that offers the user a wide variety of options. The dependent variable may be presented in either a linear or a logarithmic manner. Automatic centering of the plot is provided in the ordinate direction, and the abscissa is scaled automatically for a logarithmic plot. A description of the carpet plot technique is given along with the coordinates system used in the program. Various aspects of the program logic are discussed and detailed documentation of the data card format is presented.
Parallel line analysis: multifunctional software for the biomedical sciences
NASA Technical Reports Server (NTRS)
Swank, P. R.; Lewis, M. L.; Damron, K. L.; Morrison, D. R.
1990-01-01
An easy to use, interactive FORTRAN program for analyzing the results of parallel line assays is described. The program is menu driven and consists of five major components: data entry, data editing, manual analysis, manual plotting, and automatic analysis and plotting. Data can be entered from the terminal or from previously created data files. The data editing portion of the program is used to inspect and modify data and to statistically identify outliers. The manual analysis component is used to test the assumptions necessary for parallel line assays using analysis of covariance techniques and to determine potency ratios with confidence limits. The manual plotting component provides a graphic display of the data on the terminal screen or on a standard line printer. The automatic portion runs through multiple analyses without operator input. Data may be saved in a special file to expedite input at a future time.
NASA Technical Reports Server (NTRS)
Schmidt, G.; Ruster, R.; Czechowsky, P.
1983-01-01
The SOUSY-VHF-Radar operates at a frequency of 53.5 MHz in a valley in the Harz mountains, Germany, 90 km from Hanover. The radar controller, which is programmed by a 16-bit computer holds 1024 program steps in core and controls, via 8 channels, the whole radar system: in particular the master oscillator, the transmitter, the transmit-receive-switch, the receiver, the analog to digital converter, and the hardware adder. The high-sensitivity receiver has a dynamic range of 70 dB and a video bandwidth of 1 MHz. Phase coding schemes are applied, in particular for investigations at mesospheric heights, in order to carry out measurements with the maximum duty cycle and the maximum height resolution. The computer takes the data from the adder to store it in magnetic tape or disc. The radar controller is programmed by the computer using simple FORTRAN IV statements. After the program has been loaded and the computer has started the radar controller, it runs automatically, stopping at the program end. In case of errors or failures occurring during the radar operation, the radar controller is shut off caused either by a safety circuit or by a power failure circuit or by a parity check system.
Balsillie, J.H.; Donoghue, J.F.; Butler, K.M.; Koch, J.L.
2002-01-01
Two-dimensional plotting tools can be of invaluable assistance in analytical scientific pursuits, and have been widely used in the analysis and interpretation of sedimentologic data. We consider, in this work, the use of arithmetic probability paper (APP). Most statistical computer applications do not allow for the generation of APP plots, because of apparent intractable nonlinearity of the percentile (or probability) axis of the plot. We have solved this problem by identifying an equation(s) for determining plotting positions of Gaussian percentiles (or probabilities), so that APP plots can easily be computer generated. An EXCEL example is presented, and a programmed, simple-to-use EXCEL application template is hereby made publicly available, whereby a complete granulometric analysis including data listing, moment measure calculations, and frequency and cumulative APP plots, is automatically produced.
Facilitating Analysis of Multiple Partial Data Streams
NASA Technical Reports Server (NTRS)
Maimone, Mark W.; Liebersbach, Robert R.
2008-01-01
Robotic Operations Automation: Mechanisms, Imaging, Navigation report Generation (ROAMING) is a set of computer programs that facilitates and accelerates both tactical and strategic analysis of time-sampled data especially the disparate and often incomplete streams of Mars Explorer Rover (MER) telemetry data described in the immediately preceding article. As used here, tactical refers to the activities over a relatively short time (one Martian day in the original MER application) and strategic refers to a longer time (the entire multi-year MER missions in the original application). Prior to installation, ROAMING must be configured with the types of data of interest, and parsers must be modified to understand the format of the input data (many example parsers are provided, including for general CSV files). Thereafter, new data from multiple disparate sources are automatically resampled into a single common annotated spreadsheet stored in a readable space-separated format, and these data can be processed or plotted at any time scale. Such processing or plotting makes it possible to study not only the details of a particular activity spanning only a few seconds, but also longer-term trends. ROAMING makes it possible to generate mission-wide plots of multiple engineering quantities [e.g., vehicle tilt as in Figure 1(a), motor current, numbers of images] that, heretofore could be found only in thousands of separate files. ROAMING also supports automatic annotation of both images and graphs. In the MER application, labels given to terrain features by rover scientists and engineers are automatically plotted in all received images based on their associated camera models (see Figure 2), times measured in seconds are mapped to Mars local time, and command names or arbitrary time-labeled events can be used to label engineering plots, as in Figure 1(b).
Automatic SAR/optical cross-matching for GCP monograph generation
NASA Astrophysics Data System (ADS)
Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa
2016-10-01
Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.
Observations of the marine environment from spaceborne side-looking real aperture radars
NASA Technical Reports Server (NTRS)
Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.
1993-01-01
Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.
Automatic Classification of Station Quality by Image Based Pattern Recognition of Ppsd Plots
NASA Astrophysics Data System (ADS)
Weber, B.; Herrnkind, S.
2017-12-01
The number of seismic stations is growing and it became common practice to share station waveform data in real-time with the main data centers as IRIS, GEOFON, ORFEUS and RESIF. This made analyzing station performance of increasing importance for automatic real-time processing and station selection. The value of a station depends on different factors as quality and quantity of the data, location of the site and general station density in the surrounding area and finally the type of application it can be used for. The approach described by McNamara and Boaz (2006) became standard in the last decade. It incorporates a probability density function (PDF) to display the distribution of seismic power spectral density (PSD). The low noise model (LNM) and high noise model (HNM) introduced by Peterson (1993) are also displayed in the PPSD plots introduced by McNamara and Boaz allowing an estimation of the station quality. Here we describe how we established an automatic station quality classification module using image based pattern recognition on PPSD plots. The plots were split into 4 bands: short-period characteristics (0.1-0.8 s), body wave characteristics (0.8-5 s), microseismic characteristics (5-12 s) and long-period characteristics (12-100 s). The module sqeval connects to a SeedLink server, checks available stations, requests PPSD plots through the Mustang service from IRIS or PQLX/SQLX or from GIS (gempa Image Server), a module to generate different kind of images as trace plots, map plots, helicorder plots or PPSD plots. It compares the image based quality patterns for the different period bands with the retrieved PPSD plot. The quality of a station is divided into 5 classes for each of the 4 bands. Classes A, B, C, D define regular quality between LNM and HNM while the fifth class represents out of order stations with gain problems, missing data etc. Over all period bands about 100 different patterns are required to classify most of the stations available on the IRIS server. The results are written to a file and stations can be filtered by quality. AAAA represents the best quality in all 4 bands. Also a differentiation between instrument types as broad band and short period stations is possible. A regular check using the IRIS SeedLink and Mustang service allow users to be informed about new stations with a specific quality.
Measurement level AIS/radar fusion for maritime surveillance
NASA Astrophysics Data System (ADS)
Habtemariam, Biruk K.; Tharmarasa, R.; Meger, Eric; Kirubarajan, T.
2012-05-01
Using the Automatic Identification System (AIS) ships identify themselves intermittently by broadcasting their location information. However, traditionally radars are used as the primary source of surveillance and AIS is considered as a supplement with a little interaction between these data sets. The data from AIS is much more accurate than radar data with practically no false alarms. But unlike the radar data, the AIS measurements arrive unpredictably, depending on the type and behavior of a ship. The AIS data includes target IDs that can be associated to initialized tracks. In multitarget maritime surveillance environment, for some targets the revisit interval form the AIS could be very large. In addition, the revisit intervals for various targets can be different. In this paper, we proposed a joint probabilistic data association based tracking algorithm that addresses the aforementioned issues to fuse the radar measurements with AIS data. Multiple AIS IDs are assigned to a track, with probabilities updated by both AIS and radar measurements to resolve the ambiguity in the AIS ID source. Experimental results based on simulated data demonstrate the performance the proposed technique.
Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena
2013-01-01
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804
Computational burden resulting from image recognition of high resolution radar sensors.
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena
2013-04-22
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1978-01-01
Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.
NASA Technical Reports Server (NTRS)
Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.
1992-01-01
The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.
ACE Design Study and Experiments
1976-06-01
orthophoto on off-line printer o Automatically compute contours on UNIVAC 1108 and plot on CALCOMP o Manually trace planimetry and drainage from... orthophoto * o Manually edit and trace plotted contours to obtain completed contour manuscript* - Edit errors - Add missing contour detail - Combine...stereomodels - Contours adjusted to drainage chart and spot elevations - Referring to orthophoto , rectified photos, original photos o Normal
Harmonic Phase Response of Nonlinear Radar Targets
2015-10-01
while allowing its harmonics to pass through. The weak harmonic responses are then amplified to allow for easier detection and measurement . 4...where the phase of the 2nd and 3rd harmonic of the received electromagnetic wave from nonlinear targets was measured and plotted against the frequency
NASA Astrophysics Data System (ADS)
Haberlandt, Uwe
2007-01-01
SummaryThe methods kriging with external drift (KED) and indicator kriging with external drift (IKED) are used for the spatial interpolation of hourly rainfall from rain gauges using additional information from radar, daily precipitation of a denser network, and elevation. The techniques are illustrated using data from the storm period of the 10th to the 13th of August 2002 that led to the extreme flood event in the Elbe river basin in Germany. Cross-validation is applied to compare the interpolation performance of the KED and IKED methods using different additional information with the univariate reference methods nearest neighbour (NN) or Thiessen polygons, inverse square distance weighting (IDW), ordinary kriging (OK) and ordinary indicator kriging (IK). Special attention is given to the analysis of the impact of the semivariogram estimation on the interpolation performance. Hourly and average semivariograms are inferred from daily, hourly and radar data considering either isotropic or anisotropic behaviour using automatic and manual fitting procedures. The multivariate methods KED and IKED clearly outperform the univariate ones with the most important additional information being radar, followed by precipitation from the daily network and elevation, which plays only a secondary role here. The best performance is achieved when all additional information are used simultaneously with KED. The indicator-based kriging methods provide, in some cases, smaller root mean square errors than the methods, which use the original data, but at the expense of a significant loss of variance. The impact of the semivariogram on interpolation performance is not very high. The best results are obtained using an automatic fitting procedure with isotropic variograms either from hourly or radar data.
Using phase for radar scatterer classification
NASA Astrophysics Data System (ADS)
Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.
2017-04-01
Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.
A two-dimensional graphing program for the Tektronix 4050-series graphics computers
Kipp, K.L.
1983-01-01
A refined, two-dimensional graph-plotting program was developed for use on Tektronix 4050-series graphics computers. Important features of this program include: any combination of logarithmic and linear axes, optional automatic scaling and numbering of the axes, multiple-curve plots, character or drawn symbol-point plotting, optional cartridge-tape data input and plot-format storage, optional spline fitting for smooth curves, and built-in data-editing options. The program is run while the Tektronix is not connected to any large auxiliary computer, although data from files on an auxiliary computer easily can be transferred to data-cartridge for later plotting. The user is led through the plot-construction process by a series of questions and requests for data input. Five example plots are presented to illustrate program capability and the sequence of program operation. (USGS)
Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data
NASA Technical Reports Server (NTRS)
Eide, Michael C.; Mathews, Bruce
1992-01-01
Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler radar product with signal and data processing algorithms which detect realistic microburst hazards and has demonstrated those algorithms produce no false alerts (or nuisance alerts) in urban airport ground moving vehicle (GMTI) and/or clutter environments.
How Should Blood Glucose Meter System Analytical Performance Be Assessed?
Simmons, David A
2015-08-31
Blood glucose meter system analytical performance is assessed by comparing pairs of meter system and reference instrument blood glucose measurements measured over time and across a broad array of glucose values. Consequently, no single, complete, and ideal parameter can fully describe the difference between meter system and reference results. Instead, a number of assessment tools, both graphical (eg, regression plots, modified Bland-Altman plots, and error grid analysis) and tabular (eg, International Organization for Standardization guidelines, mean absolute difference, and mean absolute relative difference) have been developed to evaluate meter system performance. The strengths and weaknesses of these methods of presenting meter system performance data, including a new method known as Radar Plots, are described here. © 2015 Diabetes Technology Society.
Assessing the performance of a covert automatic target recognition algorithm
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.; Lanterman, Aaron D.
2005-05-01
Passive radar systems exploit illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. Doing so allows them to operate covertly and inexpensively. Our research seeks to enhance passive radar systems by adding automatic target recognition (ATR) capabilities. In previous papers we proposed conducting ATR by comparing the radar cross section (RCS) of aircraft detected by a passive radar system to the precomputed RCS of aircraft in the target class. To effectively model the low-frequency setting, the comparison is made via a Rician likelihood model. Monte Carlo simulations indicate that the approach is viable. This paper builds on that work by developing a method for quickly assessing the potential performance of the ATR algorithm without using exhaustive Monte Carlo trials. This method exploits the relation between the probability of error in a binary hypothesis test under the Bayesian framework to the Chernoff information. Since the data are well-modeled as Rician, we begin by deriving a closed-form approximation for the Chernoff information between two Rician densities. This leads to an approximation for the probability of error in the classification algorithm that is a function of the number of available measurements. We conclude with an application that would be particularly cumbersome to accomplish via Monte Carlo trials, but that can be quickly addressed using the Chernoff information approach. This application evaluates the length of time that an aircraft must be tracked before the probability of error in the ATR algorithm drops below a desired threshold.
Microscale pH Titrations Using an Automatic Pipet.
ERIC Educational Resources Information Center
Flint, Edward B.; Kortz, Carrie L.; Taylor, Max A.
2002-01-01
Presents a microscale pH titration technique that utilizes an automatic pipet. A small aliquot (1-5 mL) of the analyte solution is titrated with repeated additions of titrant, and the pH is determined after each delivery. The equivalence point is determined graphically by either the second derivative method or a Gran plot. The pipet can be…
Faure, D; Payrastre, O; Auchet, P
2005-01-01
Since January 2000, the sewerage network of a very urbanised catchment area in the Greater Nancy Urban Community has been operated according to the alarms generated in real time by a storm alert system using weather radar data. This alert system is based on an automatic identification of intense rain cells in the radar images. This paper presents the characteristics of this alert system and synthesises the main results of two complementary studies realised in 2002 in order to estimate the relevance and the operational effectiveness of the alert system. The first study consisted in an off-line analysis of almost 50,000 intense rain cells detected in four years of historical radar data. The second study was an analysis of the experience feedback after two years of operational use of this alert system. The results of these studies are discussed in function of the initial operational objectives.
Air-to-air radar flight testing
NASA Astrophysics Data System (ADS)
Scott, Randall E.
1988-06-01
This volume in the AGARD Flight Test Techniques Series describes flight test techniques, flight test instrumentation, ground simulation, data reduction and analysis methods used to determine the performance characteristics of a modern air-to-air (a/a) radar system. Following a general coverage of specification requirements, test plans, support requirements, development and operational testing, and management information systems, the report goes into more detailed flight test techniques covering a/a radar capabilities of: detection, manual acquisition, automatic acquisition, tracking a single target, and detection and tracking of multiple targets. There follows a section on additional flight test considerations such as electromagnetic compatibility, electronic countermeasures, displays and controls, degraded and backup modes, radome effects, environmental considerations, and use of testbeds. Other sections cover ground simulation, flight test instrumentation, and data reduction and analysis. The final sections deal with reporting and a discussion of considerations for the future and how they may affect radar flight testing.
NASA Astrophysics Data System (ADS)
Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.
2011-12-01
Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.
NASA Astrophysics Data System (ADS)
Palo, Scott; Vaudrin, Cody
Defined by a minimal RF front-end followed by an analog-to-digital converter (ADC) and con-trolled by a reconfigurable logic device (FPGA), the digital receiver will replace conventional heterodyning analog receivers currently in use by the COBRA meteor radar. A basic hardware overview touches on the major digital receiver components, theory of operation and data han-dling strategies. We address concerns within the community regarding the implementation of digital receivers in small-scale scientific radars, and outline the numerous benefits with a focus on reconfigurability. From a remote sensing viewpoint, having complete visibility into a band of the EM spectrum allows an experiment designer to focus on parameter estimation rather than hardware limitations. Finally, we show some basic multistatic receiver configurations enabled through GPS time synchronization. Currently, the digital receiver is configured to facilitate range and radial velocity determination of meteors in the MLT region for use with the COBRA meteor radar. Initial measurements from data acquired at Platteville, Colorado and Tierra Del Fuego in Argentina will be presented. We show an improvement in detection rates compared to conventional analog systems. Scientific justification for a digital receiver is clearly made by the presentation of RTI plots created using data acquired from the receiver. These plots reveal an interesting phenomenon concerning vacillating power structures in a select number of meteor trails.
Interactive computer programs for the graphic analysis of nucleotide sequence data.
Luckow, V A; Littlewood, R K; Rownd, R H
1984-01-01
A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437
Integrating Satellite, Radar and Surface Observation with Time and Space Matching
NASA Astrophysics Data System (ADS)
Ho, Y.; Weber, J.
2015-12-01
The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.
NASA Astrophysics Data System (ADS)
Shaw, Darren; Stone, Kevin; Ho, K. C.; Keller, James M.; Luke, Robert H.; Burns, Brian P.
2016-05-01
Forward looking ground penetrating radar (FLGPR) has the benefit of detecting objects at a significant standoff distance. The FLGPR signal is radiated over a large surface area and the radar signal return is often weak. Improving detection, especially for buried in road targets, while maintaining an acceptable false alarm rate remains to be a challenging task. Various kinds of features have been developed over the years to increase the FLGPR detection performance. This paper focuses on investigating the use of as many features as possible for detecting buried targets and uses the sequential feature selection technique to automatically choose the features that contribute most for improving performance. Experimental results using data collected at a government test site are presented.
NASA Astrophysics Data System (ADS)
Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar
2013-04-01
The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.
NASA Technical Reports Server (NTRS)
Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)
2001-01-01
The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.
Tropical forest tree stands characterization with L-band polarimetric radar
NASA Technical Reports Server (NTRS)
Wu, Shih-Tseng
1990-01-01
The effectiveness of using L-band polarimetric data to determine tropical tree-stand parameters is discussed with specific attention given to the correction of the radar data. Tree-parameter data from ground studies is compared to L-band polarimetric data (in both uncorrected and topographically corrected forms) for two test areas. The test sites are at two different elevations but both include 81 test plots with topographic data and tree-characteristic data given. Synthetic-aperture radar (SAR) data are found to be related to bole volume and tree volume, and the topographically corrected data show results similar to the uncorrected data. Similar r-values are given for both data sets because the data with incidence-angle values below 35 and above 55 are removed. Topographical correction is important when local incidence angles exceed the limits.
1994-01-01
and subsequent bilateral negotiations entitle the United States to the "free and automatic flowback " of all Japanese "derived technology," defined as...White Paper, US. Departments of Commerce, Defense, and Air Force, May 1991. 3Pree and automatic flowback of derived technology has precedent in licensed...By receiving indigenous Japanese FS-X technology, US. firms may be obligating themselves to provide free flowback to Japan of any modifications they
1996-01-01
INTENSIFICATION (AI2) ATD AERIAL SCOUT SENSORS INTEGRATION (ASSI) BISTATIC RADAR FOR WEAPONS LOCATION (BRWL) ATD CLOSE IN MAN PORTABLE MINE DETECTOR (CIMMD...MS IV PE & LINE #: 1X428010.D107 HI Operations/Support DESCRIPTION: The AN/TTC-39A Circuit Switch is a 744 line mobile , automatic ...SYNOPSIS: AN/TTC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL COMSEC AND MULTIPLEX EQUIPMENT. AN/TTC
Micro-Doppler analysis of multiple frequency continuous wave radar signatures
NASA Astrophysics Data System (ADS)
Anderson, Michael G.; Rogers, Robert L.
2007-04-01
Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.
On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-01-01
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521
On the use of low-cost radar networks for collision warning systems aboard dumpers.
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-02-26
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.
Ground penetrating radar for asparagus detection
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schoebel, Joerg
2016-03-01
Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.
Ultra-Deep Bone Diagnostics with Fat-Skin Overlayers Using New Pulsed Photothermal Radar
NASA Astrophysics Data System (ADS)
Sreekumar, K.; Mandelis, A.
2013-09-01
The constraints imposed by the laser safety (maximum permissible exposure) ceiling on pump laser energy and the strong attenuation of thermal-wave signals in tissues significantly limit the photothermally active depth in most biological specimens to a level which is normally insufficient for practical applications (a few mm below the skin surface). A theoretical approach for improvement of the signal-to-noise ratio (SNR), minimizing the static (dc) component of the photothermal (PT) signal and making use of the PT radiometric nonlinearity has been introduced. At low frequencies fixed-pulse-width chirps of large peak power were found to be superior to all other equal energy modalities, with an SNR improvement by up to two orders of magnitude. Compared to radar peak delay and amplitude, the long-delayed radar output amplitude is found to be more sensitive to subsurface conditions. Two-dimensional spatial plots of this parameter depicting the back-surface conditions of bones with and without fat tissue overlayers are presented. Pulsed-chirp radar thermography has been demonstrated to monitor the degree of demineralization in goat rib bone with a substantial SNR and spatial resolution that is not practicable with harmonic radars of the same energy density.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Gallart, Francesc
2014-05-01
The spatio-temporal variability of throughfall is the result of the interaction of biotic factors, related to the canopy traits, and abiotic factors, linked to the meteorological conditions. This variability may lead to significant differences in the volume of water and solutes that reach the ground in each location, and beyond in the hydrological and biogeochemical dynamics of forest soils. Two forest stands in Mediterranean climatic conditions were studied to analyse the role of biotic and abiotic factors in the temporal and spatial redistribution of throughfall. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42º 12'N, 1º 49'E). The study plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consisted of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover were also automatically recorded. Canopy cover as well as biometric characteristics of the plots were also regularly measured. The results indicate a temporal persistence of throughfall in both stands, as observed elsewhere. However, for the oak plot the seasonal evolution of canopy traits added additional variability, with higher variability in summer and different locations of wet and dry spots depending on the season. Furthermore, this work investigates the influence of canopy structure on the spatial variability of throughfall by analysing a large set of forest parameters, from main canopy traits to detailed leaves and wood characteristics. The analysis includes the consideration of the interaction of main abiotic factors with canopy traits.
HF Surface Wave Radar for Oceanography -- A Review of Activities in Germany
2005-04-14
Environmental and Remote Sensing Center (NERSC). The model and data assimilation technique is described by Breivik and Sætra [2]. Figure 10 shows a...forecasts with the measurements taken at that time, the rms error increases to 20 cm/s. Breivik and Sætra, 2001, present scatter plots and correlations
Limits to the Extraction of Information from Multi-Hop Skywave Radar Signals
2005-04-14
equations to compute the eikonal rays gh a model ionosphere, plotting the resulting tories in the range-height plane. oes received via these multi...kilometres. This extensive database is ideally suited to the sta- tistical analysis of the directional, diurnal, seasonal 0 0 500 1000 1500 2000 2500
Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation
NASA Technical Reports Server (NTRS)
Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta
2017-01-01
A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.
Airborne Doppler radar detection of low altitude windshear
NASA Technical Reports Server (NTRS)
Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.
1990-01-01
As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.
Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation.
Akbar, Ruzbeh; Cosh, Michael H; O'Neill, Peggy E; Entekhabi, Dara; Moghaddam, Mahta
2017-07-01
A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.
NASA Astrophysics Data System (ADS)
Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter
2014-10-01
Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.
Singha, Suman; Vespe, Michele; Trieschmann, Olaf
2013-08-15
Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.
Experimental evaluation of a system for human life detection under debris
NASA Astrophysics Data System (ADS)
Joju, Reshma; Konica, Pimplapure Ramya T.; Alex, Zachariah C.
2017-11-01
It is difficult to for the human beings to be found under debris or behind the walls in case of military applications. Due to which several rescue techniques such as robotic systems, optical devices, and acoustic devices were used. But if victim was unconscious then these rescue system failed. We conducted an experimental analysis on whether the microwaves could detect heart beat and breathing signals of human beings trapped under collapsed debris. For our analysis we used RADAR based on by Doppler shift effect. We calculated the minimum speed that the RADAR could detect. We checked the frequency variation by placing the RADAR at a fixed position and placing the object in motion at different distances. We checked the frequency variation by using objects of different materials as debris behind which the motion was made. The graphs of different analysis were plotted.
Bird radar validation in the field by time-referencing line-transect surveys.
Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel
2013-01-01
Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.
Alsep data processing: How we processed Apollo Lunar Seismic Data
NASA Technical Reports Server (NTRS)
Latham, G. V.; Nakamura, Y.; Dorman, H. J.
1979-01-01
The Apollo lunar seismic station network gathered data continuously at a rate of 3 x 10 to the 8th power bits per day for nearly eight years until the termination in September, 1977. The data were processed and analyzed using a PDP-15 minicomputer. On the average, 1500 long-period seismic events were detected yearly. Automatic event detection and identification schemes proved unsuccessful because of occasional high noise levels and, above all, the risk of overlooking unusual natural events. The processing procedures finally settled on consist of first plotting all the data on a compressed time scale, visually picking events from the plots, transferring event data to separate sets of tapes and performing detailed analyses using the latter. Many problems remain especially for automatically processing extraterrestrial seismic signals.
Forest Clearcutting and Site Preparation on a Saline Soil in East Texas: Impacts on Water Quality
Matthew McBroom; Mingteh Chang; Alexander K. Sayok
2002-01-01
Three 0.02 hectare plot-watersheds were installed on a saline soil in the Davy Crockett National Forest near Apple Springs, Texas. Each plot was installed with an H-flume, FW-1 automatic water level recorder, Coshocton N-1 runoff sampler, and two storage tanks. One watershed was undisturbed forested and served a control, one was clearcut without any site-preparation,...
User Guide for the Anvil Threat Cooridor Forecast Tool V2.4 for AWIPS
NASA Technical Reports Server (NTRS)
Barett, Joe H., III; Bauman, William H., III
2008-01-01
The Anvil Tool GUI allows users to select a Data Type, toggle the map refresh on/off, place labels, and choose the Profiler Type (source of the KSC 50 MHz profiler data), the Date- Time of the data, the Center of Plot, and the Station (location of the RAOB or 50 MHz profiler). If the Data Type is Models, the user selects a Fcst Hour (forecast hour) instead of Station. There are menus for User Profiles, Circle Label Options, and Frame Label Options. Labels can be placed near the center circle of the plot and/or at a specified distance and direction from the center of the circle (Center of Plot). The default selection for the map refresh is "ON". When the user creates a new Anvil Tool map with Refresh Map "ON, the plot is automatically displayed in the AWIPS frame. If another Anvil Tool map is already displayed and the user does not change the existing map number shown at the bottom of the GUI, the new Anvil Tool map will overwrite the old one. If the user turns the Refresh Map "OFF", the new Anvil Tool map is created but not automatically displayed. The user can still display the Anvil Tool map through the Maps dropdown menu* as shown in Figure 4.
MW 08-multi-beam air and surface surveillance radar
NASA Astrophysics Data System (ADS)
1989-09-01
Signal of the Netherlands has developed and is marketing the MW 08, a 3-D radar to be used for short to medium range surveillance, target acquisition, and tracking. MW 08 is a fully automated detecting and tracking radar. It is designed to counter threats from aircraft and low flying antiship missiles. It can also deal with the high level missile threat. MW 08 operates in the 5 cm band using one antenna for both transmitting and receiving. The antenna is an array, consisting of 8 stripline antennas. The received radar energy is processed by 8 receiver channels. These channels come together in the beam forming network, in which 8 virtual beams are formed. From this beam pattern, 6 beams are used for the elevation coverage of 0-70 degrees. MW 08's output signals of the beam former are further handled by FFT and plot processors for target speed information, clutter rejection, and jamming suppression. A general purpose computer handles target track initiation, and tracking. Tracking data are transferred to the command and control systems with 3-D target information for fastest possible lockon.
NASA Technical Reports Server (NTRS)
Liskovich, Diana; Simard, Marc
2011-01-01
Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.
NASA Astrophysics Data System (ADS)
Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.
2016-03-01
A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.
NASA Astrophysics Data System (ADS)
Jones, Ronnie D.; Knittel, George H.; Orlando, Vincent A.
1995-06-01
GPS-Squitter is a technology for surveillance of aircraft via broadcast of their GPS-determined positions to all listeners, using the Mode S data link. It can be used to provide traffic displays, on the ground for controllers and in the cockpit for pilots, and will enhance TCAS performance. It is compatible with the existing ground-based beacon interrogator radar system and is an evolutionary way to more from ground-based-radar surveillance to satellite-based surveillance. GPS-Squitter takes advantage of the substantial investment made by the U.S. in the powerful GPS position-determining system and has the potential to free the Federal Aviation Administration from having to continue maintaining a precise position-determining capability in ground-based radar. This would permit phasing out the ground-based secondary surveillance radar system over a period of 10 to 20 years and replacing it with much simpler ground stations, resulting in cost savings of hundreds of millions of dollars.
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.
2005-07-01
Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.
DOT National Transportation Integrated Search
2010-01-01
Prior to Automatic Dependent SurveillanceBroadcast (ADS-B), non-radar separation was necessary in the Gulf of Mexico due to limited surveillance and air-ground communication. Five nautical mile separation using ADS-B improves capacity and streamli...
Benchmark radar targets for the validation of computational electromagnetics programs
NASA Technical Reports Server (NTRS)
Woo, Alex C.; Wang, Helen T. G.; Schuh, Michael J.; Sanders, Michael L.
1993-01-01
Results are presented of a set of computational electromagnetics validation measurements referring to three-dimensional perfectly conducting smooth targets, performed for the Electromagnetic Code Consortium. Plots are presented for both the low- and high-frequency measurements of the NASA almond, an ogive, a double ogive, a cone-sphere, and a cone-sphere with a gap.
Automatic classification of spectra from the Infrared Astronomical Satellite (IRAS)
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Stutz, John; Self, Matthew; Taylor, William; Goebel, John; Volk, Kevin; Walker, Helen
1989-01-01
A new classification of Infrared spectra collected by the Infrared Astronomical Satellite (IRAS) is presented. The spectral classes were discovered automatically by a program called Auto Class 2. This program is a method for discovering (inducing) classes from a data base, utilizing a Bayesian probability approach. These classes can be used to give insight into the patterns that occur in the particular domain, in this case, infrared astronomical spectroscopy. The classified spectra are the entire Low Resolution Spectra (LRS) Atlas of 5,425 sources. There are seventy-seven classes in this classification and these in turn were meta-classified to produce nine meta-classes. The classification is presented as spectral plots, IRAS color-color plots, galactic distribution plots and class commentaries. Cross-reference tables, listing the sources by IRAS name and by Auto Class class, are also given. These classes show some of the well known classes, such as the black-body class, and silicate emission classes, but many other classes were unsuspected, while others show important subtle differences within the well known classes.
A User Guide for Smoothing Air Traffic Radar Data
NASA Technical Reports Server (NTRS)
Bach, Ralph E.; Paielli, Russell A.
2014-01-01
Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.
Korean national QPE technique development: Analysis of current QPE results and future plan
NASA Astrophysics Data System (ADS)
Cha, Joo Wan
2013-04-01
Korea Meteorological Administration(KMA) has developed a Real-time ADjusted Radar-AWS (Automatic Weather Station) Rainrate (RAD-RAR) system using eleven radars over the South Korea. The procedure of the RAD-RAR system in real time consists of four steps: 1) the quality control of volumetric reflectivity for each radar, 2) the computation of the every 10-min rain gauge rainfall within each radar, 3) the real time (10 min-updated) rainfall estimation by the Z-R relationship minimizing the difference between the 1.5-km constant altitude plan precipitation indicator and rain gauge rainfall based on Window Probability Matching Method(WPMM) and by the real-time bias correction of RAD-RAR conducted at every 10 minutes for each radar by making the bias, and 4) the composition of the 11-radar estimated rainfall data. In addition, a local gauge correction method applies for RAD-RAR system. Therefore, the correlation coefficient of R2 = 0.81 is obtained between the daily accumulated observed and RAD-RAR estimated rainfall in 2012. We like to develop a new QPE system using the multi-sensor(radar, rain gauge, numerical model output, and lightning) data for newly improving Korean national QPE system. We made the prototype QPE system in 2012 and improve the detail techniques now. In the future, the new high performance QPE system will include a dual polarization radar observation technique for providing more accurate and valuable national QPE data
Vegetation survey in Amazonia using LANDSAT data. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Shimabukuro, Y. E.; Dossantos, J. R.; Deaquino, L. C. S.
1982-01-01
Automatic Image-100 analysis of LANDSAT data was performed using the MAXVER classification algorithm. In the pilot area, four vegetation units were mapped automatically in addition to the areas occupied for agricultural activities. The Image-100 classified results together with a soil map and information from RADAR images, permitted the establishment of the final legend with six classes: semi-deciduous tropical forest; low land evergreen tropical forest; secondary vegetation; tropical forest of humid areas, predominant pastureland and flood plains. Two water types were identified based on their sediments indicating different geological and geomorphological aspects.
Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys
Dokter, Adriaan M.; Baptist, Martin J.; Ens, Bruno J.; Krijgsveld, Karen L.; van Loon, E. Emiel
2013-01-01
Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms. PMID:24066103
NASA Astrophysics Data System (ADS)
Gonzalez, Pablo J.
2017-04-01
Automatic interferometric processing of satellite radar data has emerged as a solution to the increasing amount of acquired SAR data. Automatic SAR and InSAR processing ranges from focusing raw echoes to the computation of displacement time series using large stacks of co-registered radar images. However, this type of interferometric processing approach demands the pre-described or adaptive selection of multiple processing parameters. One of the interferometric processing steps that much strongly influences the final results (displacement maps) is the interferometric phase filtering. There are a large number of phase filtering methods, however the "so-called" Goldstein filtering method is the most popular [Goldstein and Werner, 1998; Baran et al., 2003]. The Goldstein filter needs basically two parameters, the size of the window filter and a parameter to indicate the filter smoothing intensity. The modified Goldstein method removes the need to select the smoothing parameter based on the local interferometric coherence level, but still requires to specify the dimension of the filtering window. An optimal filtered phase quality usually requires careful selection of those parameters. Therefore, there is an strong need to develop automatic filtering methods to adapt for automatic processing, while maximizing filtered phase quality. Here, in this paper, I present a recursive adaptive phase filtering algorithm for accurate estimation of differential interferometric ground deformation and local coherence measurements. The proposed filter is based upon the modified Goldstein filter [Baran et al., 2003]. This filtering method improves the quality of the interferograms by performing a recursive iteration using variable (cascade) kernel sizes, and improving the coherence estimation by locally defringing the interferometric phase. The method has been tested using simulations and real cases relevant to the characteristics of the Sentinel-1 mission. Here, I present real examples from C-band interferograms showing strong and weak deformation gradients, with moderate baselines ( 100-200 m) and variable temporal baselines of 70 and 190 days over variable vegetated volcanoes (Mt. Etna, Hawaii and Nyragongo-Nyamulagira). The differential phase of those examples show intense localized volcano deformation and also vast areas of small differential phase variation. The proposed method outperforms the classical Goldstein and modified Goldstein filters by preserving subtle phase variations where the deformation fringe rate is high, and effectively suppressing phase noise in smoothly phase variation regions. Finally, this method also has the additional advantage of not requiring input parameters, except for the maximum filtering kernel size. References: Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., Lilly, P., (2003) A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, No. 9., doi:10.1109/TGRS.2003.817212 Goldstein, R.M., Werner, C.L. (1998) Radar interferogram filtering for geophysical applications, Geophysical Research Letters, vol. 25, No. 21, 4035-4038, doi:10.1029/1998GL900033
Description and availability of airborne Doppler radar data
NASA Technical Reports Server (NTRS)
Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.
1993-01-01
An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.
NASA Technical Reports Server (NTRS)
Marthaler, J. G.; Heighway, J. E.
1979-01-01
An iceberg detection and identification system consisting of a moderate resolution Side Looking Airborne Radar (SLAR) interfaced with a Radar Image Processor (RIP) based on a ROLM 1664 computer with a 32K core memory updatable to 64K is described. The system can be operated in high- or low-resolution sampling modes. Specifically designed algorithms are applied to digitized signal returns to provide automatic target detection and location, geometrically correct video image display and data recording. The real aperture Motorola AN/APS-94D SLAR operates in the X-band and is tunable between 9.10 and 9.40 GHz; its output power is 45 kW peak with a pulse repetition rate of 750 pulses per hour. Schematic diagrams of the system are provided, together with preliminary test data.
NASA Astrophysics Data System (ADS)
Prengaman, R. J.; Thurber, R. E.; Bath, W. G.
The usefulness of radar systems depends on the ability to distinguish between signals returned from desired targets and noise. A retrospective processor uses all contacts (or 'plots') from several past radar scans, taking into account all possible target trajectories formed from stored contacts for each input detection. The processor eliminates many false alarms, while retaining those contacts describing resonable trajectories. The employment of a retrospective processor makes it, therefore, possible to obtain large improvements in detection sensitivity in certain important clutter environments. Attention is given to the retrospective processing concept, a theoretical analysis of the multiscan detection process, the experimental evaluation of retrospective data filter, and aspects of retrospective data filter hardware implementation.
Method of interpretation of remotely sensed data and applications to land use
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. P.; Foresti, C.; Demoraesnovo, E. M. L.; Niero, M.; Lombardo, M. A.
1981-01-01
Instructional material describing a methodology of remote sensing data interpretation and examples of applicatons to land use survey are presented. The image interpretation elements are discussed for different types of sensor systems: aerial photographs, radar, and MSS/LANDSAT. Visual and automatic LANDSAT image interpretation is emphasized.
The 512-channel correlator controller
NASA Technical Reports Server (NTRS)
Brokl, S. S.
1976-01-01
A high-speed correlator for radio and radar observations was developed and a controller was designed so that the correlator could run automatically without computer intervention. The correlator controller assumes the role of bus master and keeps track of data and properly interrupts the computer at the end of the observation.
New Microwave-Based Missions Applications for Rainfed Crops Characterization
NASA Astrophysics Data System (ADS)
Sánchez, N.; Lopez-Sanchez, J. M.; Arias-Pérez, B.; Valcarce-Diñeiro, R.; Martínez-Fernández, J.; Calvo-Heras, J. M.; Camps, A.; González-Zamora, A.; Vicente-Guijalba, F.
2016-06-01
A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar (SAR) and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R) missions. The objective of the experiment was first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators) acquired by Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-derived Normalized Difference Vegetation Index (R>0.60). Regarding the radar observables, the parameters the best characterized were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the correlations found for the different crops under study types suggested a way to a feasible classification of crops.
Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method
NASA Astrophysics Data System (ADS)
Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.
2017-08-01
Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.
NASA Astrophysics Data System (ADS)
Richardson, J.; Graves, K.; Bowling, T.
2014-07-01
Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates (left plot) and will tend to move down and to the left in shape/spin space as the body evolves (right plot), barring other influences such as YORP spin-up [6]. Moderate rotators (Group B: green points) have slopes that are influenced equally by gravity and spin, lie in or near the self-correcting MSS zone (right plot), and will generally experience the lowest erosion rates (left plot). These objects comprise 12 (43%) of the 28 bodies studied, perhaps indicating some prevalence for the MSS zone. On the other hand, a sample of 1300 asteroid shape and spin parameters (small grey points), derived from asteroid lightcurve data [7], do not show this same degree of correlation, perhaps indicating the relative weakness of erosion-driven shape modification as compared to other influences. We will continue to investigate this phenomenon as the number of detailed shape models from ground-based radar and other observations continues to increase.
Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation
NASA Technical Reports Server (NTRS)
Leachman, Jonathan
2010-01-01
A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.
A Unitary ESPRIT Scheme of Joint Angle Estimation for MOTS MIMO Radar
Wen, Chao; Shi, Guangming
2014-01-01
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme. PMID:25106023
A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.
Wen, Chao; Shi, Guangming
2014-08-07
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.
MITHRAS: A Program of Simultaneous Radar Observations of the High-Latitude Auroral Zone.
1982-11-01
Latitude * and Time for Chatanika ..... ................. ... 38 111-5 Cross Polar Cap Potential Versus Solar-Wind Energy Parameter...49 vii 9 III-10 Scatter Plot of Pedersen Conductivities as a Function of Average Energy for Two Levels of Total...Precipitated Energy ....... ....... ......... .. 51 -IIl-1 For Initial Time and Steady State, (a) Latitudinal Profile of the Meridional Electric-Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-25
The U.S. National Transportation Safety Board (NTSB) has recommended that the U.S. Coast Guard (USCG) and Exxon Co. USA require shipmasters assigned to a vessel equipped with an automated radar plotting aid to complete an approved training course before assignment to avoid the recurrence of accidents similar to the collision of the Exxon Chester tankship and the Regal Sword Liberian freighter in the Atlantic Ocean near Cape Cod, Massachusetts, on 6/18/79. Following the explosion, burning, and sinking of the Liberian tankship, Seatiger, at a Sun Oil Terminal Inc. berth in Nederland, Texas on 4/19/79, NTSB also urged USCG to requiremore » foreign and domestic crude oil tankers of 20,000 dwt and above that are equipped with inert systems to place these systems in operation while in US waters, except when cargo tanks are gas-free; instructed Sun Oil Terminals Inc. to provide an emergency communication system between berthed vessels and its terminal office during communication system between berthed vessels and its terminal office during cargo discharging; and recommended that the American Bureau of Shipping instruct tanker surveyors to examine flame screens. Other safety recommendations and responses by federal agencies are also discussed.« less
NASA Technical Reports Server (NTRS)
Peterson, R. C.; Title, A. M.
1975-01-01
A total reduction procedure, notable for its use of a computer-controlled microdensitometer for semi-automatically tracing curved spectra, is applied to distorted high-dispersion echelle spectra recorded by an image tube. Microdensitometer specifications are presented and the FORTRAN, TRACEN and SPOTS programs are outlined. The intensity spectrum of the photographic or electrographic plate is plotted on a graphic display. The time requirements are discussed in detail.
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
Results of a joint Honeywell/NASA-Langley differential GPS/inertial flight test conducted in November 1990 are discussed focusing on postflight data analysis. The test was aimed at acquiring a system performance database and demonstrating automatic landing based on an integrated differential GPS/INS with barometric and radar altimeters. Particular attention is given to characteristics of DGPS/inertial error and the magnitude of the differential corrections and vertical channel performance with and without altimeter augmentation. It is shown that DGPS/inertial integrated with a radar altimeter is capable of providing a precision approach and autoland guidance of manned return space vehicles within the Space Shuttle accuracy requirements.
LANDSAT and radar mapping of intrusive rocks in SE-Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.
1982-01-01
The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.
Analysis of the Meteorology Associated with the 1997 NASA Glenn Twin Otter Icing Events
NASA Technical Reports Server (NTRS)
Bernstein, Ben C.
2000-01-01
This part of the document contains an analysis of the meteorology associated with the premier icing encounters from the January-March 1997 NASA Twin Otter dataset. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A detailed discussion of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type, (7) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (8) Plots of data from individual NEXRAD radars at times and elevation angles that have been matched to Twin Otter flight locations. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).
Data Intensive Systems (DIS) Benchmark Performance Summary
2003-08-01
models assumed by today’s conventional architectures. Such applications include model- based Automatic Target Recognition (ATR), synthetic aperture...radar (SAR) codes, large scale dynamic databases/battlefield integration, dynamic sensor- based processing, high-speed cryptanalysis, high speed...distributed interactive and data intensive simulations, data-oriented problems characterized by pointer- based and other highly irregular data structures
Automatic Rejection Of Multimode Laser Pulses
NASA Technical Reports Server (NTRS)
Tratt, David M.; Menzies, Robert T.; Esproles, Carlos
1991-01-01
Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut
2014-12-10
This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative tomore » an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.« less
Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.; ...
2016-11-08
The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less
Estimation of Forest Fuel Load from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert
2007-01-01
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.
Shin, Young Hoon; Seo, Jiwon
2016-01-01
People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker’s vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing. PMID:27801867
Shin, Young Hoon; Seo, Jiwon
2016-10-29
People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.
Wivell, Charles E.; Olmsted, Coert; Steinwand, Daniel R.; Taylor, Christopher
1993-01-01
Because the pixel location in a line of Synthetic Aperture Radar (SAR) image data is directly related to the distance the pixel is from the radar, terrain elevations cause large displacement errors in the geo-referenced location of the pixel. This is especially true for radar systems with small angles between the nadir and look vectors. Thus, to geo-register a SAR image accurately, the terrain of the area must be taken into account. (Curlander et al., 1987; Kwok et al., 1987, Schreier et al., 1990; Wivell et al., 1992). As part of the 1992 National Aeronautics and Space Administration's Earth Observing System Version 0 activities, a prototype SAR geocod-. ing and terrain correction system was developed at the US. Geological Survey's (USGS) E~os Data Center (EDC) in Sioux Falls, South Dakota. Using this system with 3-arc-second digital elevation models (DEMs) mosaicked at the ED^ Alaska Field Office, 21 ERS-I s.4~ scenes acquired at the Alaska SAR Facility were automatically geocoded, terrain corrected, and mosaicked. The geo-registered scenes were mosaicked using a simple concatenation.
NASA Astrophysics Data System (ADS)
Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.
2016-08-01
Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.
System for critical infrastructure security based on multispectral observation-detection module
NASA Astrophysics Data System (ADS)
Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław
2013-10-01
Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents a structure and some elements of critical infrastructure protection solution which is based on a modular multisensor security system. System description is focused mainly on methodology of selection of sensors parameters. The results of the tests in real conditions are also presented.
An Application of Singularity Analysis to a Heavy Precipitation Event
1993-01-01
difference in this plot. 61 NORMAN RADAR ELEVATION: 3.094 DATE 28 MAY 87 TIM 005342 GUT Cumin a 10 Tpam c CD low am am Io CID e0UC 100 "CC C d~Cc 100...element of fluid shaped like a sphere. Assuming the fluid is friction- less, no tangential stresses or forces are applied to its surface. The pressure
NASA Astrophysics Data System (ADS)
Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang
2018-05-01
Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.
Automated quantification of the synchrogram by recurrence plot analysis.
Nguyen, Chinh Duc; Wilson, Stephen James; Crozier, Stuart
2012-04-01
Recently, the concept of phase synchronization of two weakly coupled oscillators has raised a great research interest and has been applied to characterize synchronization phenomenon in physiological data. Phase synchronization of cardiorespiratory coupling is often studied by a synchrogram analysis, a graphical tool investigating the relationship between instantaneous phases of two signals. Although several techniques have been proposed to automatically quantify the synchrogram, most of them require a preselection of a phase-locking ratio by trial and error. One technique does not require this information; however, it is based on the power spectrum of phase's distribution in the synchrogram, which is vulnerable to noise. This study aims to introduce a new technique to automatically quantify the synchrogram by studying its dynamic structure. Our technique exploits recurrence plot analysis, which is a well-established tool for characterizing recurring patterns and nonstationarities in experiments. We applied our technique to detect synchronization in simulated and measured infants' cardiorespiratory data. Our results suggest that the proposed technique is able to systematically detect synchronization in noisy and chaotic data without preselecting the phase-locking ratio. By embedding phase information of the synchrogram into phase space, the phase-locking ratio is automatically unveiled as the number of attractors.
Nicholls, Barry; Racey, Paul A.
2007-01-01
Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.
The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less
A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations
NASA Astrophysics Data System (ADS)
Tan, H.; Chandra, C. V.; Chen, H.
2016-12-01
Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge network.
NASA Turbulence Technologies In-Service Evaluation: Delta Air Lines Report-Out
NASA Technical Reports Server (NTRS)
Amaral, Christian; Dickson, Steve; Watts, Bill
2007-01-01
Concluding an in-service evaluation of two new turbulence detection technologies developed in the Turbulence Prediction and Warning Systems (TPAWS) element of the NASA Aviation Safety and Security Program's Weather Accident Prevention Project (WxAP), this report documents Delta's experience working with the technologies, feedback gained from pilots and dispatchers concerning current turbulence techniques and procedures, and Delta's recommendations regarding directions for further efforts by the research community. Technologies evaluated included an automatic airborne turbulence encounter reporting technology called the Turbulence Auto PIREP System (TAPS), and a significant enhancement to the ability of modern airborne weather radars to predict and display turbulence of operational significance, called E-Turb radar.
NASA Astrophysics Data System (ADS)
Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.
1988-12-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
Automatic Extraction of Small Spatial Plots from Geo-Registered UAS Imagery
NASA Astrophysics Data System (ADS)
Cherkauer, Keith; Hearst, Anthony
2015-04-01
Accurate extraction of spatial plots from high-resolution imagery acquired by Unmanned Aircraft Systems (UAS), is a prerequisite for accurate assessment of experimental plots in many geoscience fields. If the imagery is correctly geo-registered, then it may be possible to accurately extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. The methods developed are suitable for work in many fields where replicates across time and space are necessary to quantify variability.
Using high-resolution radar images to determine vegetation cover for soil erosion assessments.
Bargiel, D; Herrmann, S; Jadczyszyn, J
2013-07-30
Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.
Harrington, David T; Miner, Thomas J; Ng, Thomas; Charpentier, Kevin P; Richardson, Pam; Cioffi, William G
2015-01-01
One of the challenges for program directors (PDs) is to sort and weight the tidal wave of assessments that training programs create in the modern Milestone era. We evaluated whether the use of a radar plot (RP) would be helpful in sorting data and providing a graphic representation of each resident's progress. Using at least 2 different types of assessments for each of the 16 surgical Milestones, the data were ranked and weighted by a predetermined method embedded in a computerized workbook (Excel). This process created a unique 16-spoked RP for each resident (Fig. below). The RP allowed the faculty to see areas of weakness (shown by concavity) and allowed an overall grade calculated as a ratio of the area of the smooth outer circle (faculty expectations, triangles) and the resident's unique radar shape (resident performance, squares). To help us validate our new tool, we looked at whether residents with recent remedial issues "looked" different from residents without remedial issues. Of our 30 categorical residents, 8 had significant areas of concavities, suggesting possible areas of improvement. Of these 8 residents, 4 had been on a remediation program in the last 18 months. The average ratio of performance/expectations was 0.709. The 4 residents on recent remediation had a ratio of 0.616 when compared with 0.723 for the residents without remedial issues (p < 0.009). Many exciting challenges await PDs, as we evolve to a competency-based evaluation system. The use of an evaluation summary tool using RPs may aid PDs in leading clinical competency discussions and in monitoring a resident's progress over time. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Application of Time-Frequency Representations To Non-Stationary Radar Cross Section
2009-03-01
The three- dimensional plot produced by a TFR allows one to determine which spectral components of a signal vary with time [25... a range bin ( of width cT 2 ) from the stepped frequency waveform. 2. Cancel the clutter (stationary components) by zeroing out points associated with ...generating an infinite number of bilinear Time Frequency distributions based on a generalized equation and a change- able
Impact of Fiber Optics on System Reliability and Maintainability
1988-06-01
200 3-23 Log-normal plot showing the general relationship between emitter lifetime and case temperature . . .. 217 Chapter 4. PHOTODECTORS AND...stereo equipment use infrared signals to transmit the control information. Infrared light is also used in security systems for motion and intrusion...detection. Most modern grocery stores have laser scanners at the checkout line to read the bar code information printed on the packages. Infrared radar
Model-based vision using geometric hashing
NASA Astrophysics Data System (ADS)
Akerman, Alexander, III; Patton, Ronald
1991-04-01
The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.
Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery
NASA Technical Reports Server (NTRS)
McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve
2012-01-01
We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.
NASA Technical Reports Server (NTRS)
Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.
1994-01-01
We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.
Multibeam monopulse radar for airborne sense and avoid system
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-10-01
The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.
Derivation of Z-R equation using Mie approach for a 77 GHz radar
NASA Astrophysics Data System (ADS)
Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni
2017-04-01
The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A sensitivity analysis of a 77 GHz weather radar using such Z-R relation is also studied. The work shows that the right knowledge of Z-R equation is essential to use such a specific radar for the estimation of rainfall. The use Mie scattering theory is necessary for a 77 GHz radar in order to avoid the heavy underestimation of rainfall.
LOFT data acquisition and visual display system (DAVDS) presentation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.G.; Miyasaki, F.S.
1976-03-01
The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots:more » Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described.« less
Estimation of forest fuel load from radar remote sensing
Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.
2007-01-01
Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.
Clustered Multi-Task Learning for Automatic Radar Target Recognition
Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua
2017-01-01
Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267
Automatic Feature Extraction System.
1982-12-01
exploitation. It was used for * processing of black and white and multispectral reconnaissance photography, side-looking synthetic aperture radar imagery...the image data and different software modules for image queing and formatting, the result of the input process will be images in standard AFES file...timely manner. The FFS configuration provides the environment necessary for integrated testing of image processing functions and design and
Combatting Inherent Vulnerabilities of CFAR Algorithms and a New Robust CFAR Design
1993-09-01
elements of any automatic radar system. Unfortunately, CFAR systems are inherently vulnerable to degradation caused by large clutter edges, multiple ...edges, multiple targets, and electronic countermeasures (ECM) environments. 20 Distribution, Availability of Abstract 21 Abstract Security...inherently vulnerable to degradation caused by large clutter edges, multiple targets and jamming environments. This thesis presents eight popular and studied
Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy
NASA Astrophysics Data System (ADS)
John, Cédric M.
2004-04-01
Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.
NASA Astrophysics Data System (ADS)
Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.
2015-12-01
Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-01-01
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-03-07
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.
Automated target recognition using passive radar and coordinated flight models
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.; Lanterman, Aaron D.
2003-09-01
Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.
NASA Astrophysics Data System (ADS)
Garcia-Estringana, P.; Latron, J.; Molina, A. J.; Llorens, P.
2012-04-01
Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory and the soil. The objective of this work is to study the effect of rainfall partitioning on the seasonal and spatial variability of the soil water content in a Mediterranean downy oak forest (Quercus pubescens), located in the Vallcebre research catchments (42° 12'N, 1° 49'E). The monitoring design, started on July 2011, consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. One hundred hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover, in leaf and leafless periods, as well as biometric characteristics of the plot, are also regularly measured. This work presents the first results describing throughfall and soil moisture spatial variability during both the leaf and leafless periods. The main drivers of throughfall variability, as canopy structure and meteorological conditions are also analysed.
Radar signatures of road vehicles: airborne SAR experiments
NASA Astrophysics Data System (ADS)
Palubinskas, G.; Runge, H.; Reinartz, P.
2005-10-01
The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.
Kim, Young-Duk; Son, Guk-Jin; Song, Chan-Ho; Kim, Hee-Kang
2018-03-11
Recently, radar technology has attracted attention for the realization of an intelligent transportation system (ITS) to monitor, track, and manage vehicle traffic on the roads as well as adaptive cruise control (ACC) and automatic emergency braking (AEB) for driving assistance of vehicles. However, when radar is installed on roads or in tunnels, the detection performance is significantly dependent on the deployment conditions and environment around the radar. In particular, in the case of tunnels, the detection accuracy for a moving vehicle drops sharply owing to the diffuse reflection of radio frequency (RF) signals. In this paper, we propose an optimal deployment condition based on height and tilt angle as well as a noise-filtering scheme for RF signals so that the performance of vehicle detection can be robust against external conditions on roads and in tunnels. To this end, first, we gather and analyze the misrecognition patterns of the radar by tracking a number of randomly selected vehicles on real roads. In order to overcome the limitations, we implement a novel road watch module (RWM) that is easily integrated into a conventional radar system such as Delphi ESR. The proposed system is able to perform real-time distributed data processing of the target vehicles by providing independent queues for each object of information that is incoming from the radar RF. Based on experiments with real roads and tunnels, the proposed scheme shows better performance than the conventional method with respect to the detection accuracy and delay time. The implemented system also provides a user-friendly interface to monitor and manage all traffic on roads and in tunnels. This will accelerate the popularization of future ITS services.
Kim, Young-Duk; Son, Guk-Jin; Song, Chan-Ho
2018-01-01
Recently, radar technology has attracted attention for the realization of an intelligent transportation system (ITS) to monitor, track, and manage vehicle traffic on the roads as well as adaptive cruise control (ACC) and automatic emergency braking (AEB) for driving assistance of vehicles. However, when radar is installed on roads or in tunnels, the detection performance is significantly dependent on the deployment conditions and environment around the radar. In particular, in the case of tunnels, the detection accuracy for a moving vehicle drops sharply owing to the diffuse reflection of radio frequency (RF) signals. In this paper, we propose an optimal deployment condition based on height and tilt angle as well as a noise-filtering scheme for RF signals so that the performance of vehicle detection can be robust against external conditions on roads and in tunnels. To this end, first, we gather and analyze the misrecognition patterns of the radar by tracking a number of randomly selected vehicles on real roads. In order to overcome the limitations, we implement a novel road watch module (RWM) that is easily integrated into a conventional radar system such as Delphi ESR. The proposed system is able to perform real-time distributed data processing of the target vehicles by providing independent queues for each object of information that is incoming from the radar RF. Based on experiments with real roads and tunnels, the proposed scheme shows better performance than the conventional method with respect to the detection accuracy and delay time. The implemented system also provides a user-friendly interface to monitor and manage all traffic on roads and in tunnels. This will accelerate the popularization of future ITS services. PMID:29534483
European Scientific Notes. Volume 34, Number 6,
1980-06-30
W.V. Burt Oceanography & Meteorology Mr. T.C. Cheston Underwater Acoustics Radar Dr. P. Fire Communications and Informa- tion Theory Dr. M.A...Schmitz and H.P. world will depend on it for a long Schwefel, KFA, (Jilich); these energy time; (3) Higher energy costs cannot models were recently...from about 1 in 1700 to that the potential for conservation about 50% today. Plotting a nonlinear is large, and that higher prices could function of
pick_xwell, a program for interactive picking of crosswell seismic and radar data
Ellefsen, K.J.
1999-01-01
travel times can be plotted on the computer screen or printed to a file in postscript format. The program is written in the IDL programming language, and it is executed, in command-line mode, within the IDL program. The IDL program must be run from an X-window terminal that is connected to a computer with the Unix operating system. The data must be in the SU format.
Ganalyzer: A tool for automatic galaxy image analysis
NASA Astrophysics Data System (ADS)
Shamir, Lior
2011-05-01
Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.
Analysis and automatic identification of sleep stages using higher order spectra.
Acharya, U Rajendra; Chua, Eric Chern-Pin; Chua, Kuang Chua; Min, Lim Choo; Tamura, Toshiyo
2010-12-01
Electroencephalogram (EEG) signals are widely used to study the activity of the brain, such as to determine sleep stages. These EEG signals are nonlinear and non-stationary in nature. It is difficult to perform sleep staging by visual interpretation and linear techniques. Thus, we use a nonlinear technique, higher order spectra (HOS), to extract hidden information in the sleep EEG signal. In this study, unique bispectrum and bicoherence plots for various sleep stages were proposed. These can be used as visual aid for various diagnostics application. A number of HOS based features were extracted from these plots during the various sleep stages (Wakefulness, Rapid Eye Movement (REM), Stage 1-4 Non-REM) and they were found to be statistically significant with p-value lower than 0.001 using ANOVA test. These features were fed to a Gaussian mixture model (GMM) classifier for automatic identification. Our results indicate that the proposed system is able to identify sleep stages with an accuracy of 88.7%.
NASA Astrophysics Data System (ADS)
Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.
1988-04-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
Forest biomass change estimated from height change in interferometric SAR height models.
Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole-Martin
2014-12-01
There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry. We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly accurate estimates of biomass changes from 2000 to 2011. For 200 m 2 plots we obtained an accuracy of 65 t/ha, which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can be applied without having accurate terrain heights and without having former in-situ biomass data, both of which are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass change map based on interferometry corresponded well to a very accurate map derived from repeated scanning with airborne laser. Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we can estimate temporal changes in biomass and carbon.
NASA Astrophysics Data System (ADS)
Lucas, Célia; Bühler, Yves; Leinss, Silvan; Hajnsek, Irena
2017-04-01
Wet and full-depth glide snow avalanches can be of considerable danger for people and infrastructure in alpine regions. In Switzerland avalanche hazard predictions are performed by the Institute for Snow and Avalanche Research SLF. However these predictions are issued on regional scale and do not yield information about the current status of particular slopes of interest. To investigate the potential of radar technology for avalanche prediction on the slope scale, we performed the following experiment. During the winter seasons 2015/2016 and 2016/2017, a ground-based Ku-band radar was placed in the vicinity of Davos (GR) in order to monitor the Dorfberg slope with 4-minute measurement intervals [1]. With Differential Interferometry [2] line of sight movements on the order of a fraction of the radar wavelength (1.7 cm) can be measured. Applying this technique to the Dorfberg scenario, it was possible to detect snowpack displacement of up to 0.4 m over 3 days in the avalanche release area prior to a snow avalanche event. A proof of concept of this approach was previously made by [3-5]. The analysis of the snowpack displacement history of such release areas shows that an avalanche is generally released after several cycles of acceleration and deceleration of a specific area of the snowpack, followed by an abrupt termination of the movement at the moment of the avalanche release. The acceleration and deceleration trends are related to thawing and refreezing of the snowpack induced by the daily temperature variations. The proposed method for the detection of snowpack displacements as indication for potential wet and full-depth glide snow avalanches is a promising tool to increase avalanche safety on specific slopes putting infrastructure or people at risk. The identification of a singular signature to discriminate the time window immediately prior to the release is still under investigation, but the ability to monitor snowpack displacement allows for mapping of zones prone to wet and full-depth glide snow avalanches in the near future. Therefore in the current winter season, we attempt to automatically detect snowpack displacement and avalanche releases at Dorfberg. Automatic warnings issued by the radar about the presence and amount of displacement and information about location and altitude of creeping regions as well as released avalanches will be combined with simulated LWC (Liquid Water Content) for the observed area. This slope-specific knowledge will be evaluated for inclusion into the more regional avalanche bulletin issued by SLF. Two cameras capture photographs at 1 and 10 minute intervals respectively to reference the opening of optically visible tensile cracks and triggering of avalanches. [1] C. Lucas, Y. Buehler, A. Marino, I. Hajnsek: Investigation of Snow Avalanches wit Ground Based Ku-band Radar, EUSAR 2016; 11th European Conference on Synthetic Aperture Radar; Proceedings of, 2016 [2] R. Bamler, P. Hartl: Synthetic aperture radar interferometry, Inverse Problems, Vol. 14 R1-R54, 1988 [3] Y. Buehler, C. Pielmeier, R. Frauenfelder, C. Jaedicke, G. Bippus, A. Wiesmann and R. Caduff: Improved Alpine Avalanche Forecast Service AAF, Final Report, European Space Agency ESA, 2014 [4] R. Caduff, A. Wiesmann, Y. Buehler, and C. Pielmeier: Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry, Geophysical Research Letters, vol. 42, no. 3, 2015. [5] R. Caduff, A. Wiesmann, Y. Bühler, C. Bieler, and P. Limpach, "Terrestrial radar interferometry for snow glide activity monitoring and its potential as precursor of wet snow," in Interpraevent, 2016, pp. 239-248.
Automatic mine detection based on multiple features
NASA Astrophysics Data System (ADS)
Yu, Ssu-Hsin; Gandhe, Avinash; Witten, Thomas R.; Mehra, Raman K.
2000-08-01
Recent research sponsored by the Army, Navy and DARPA has significantly advanced the sensor technologies for mine detection. Several innovative sensor systems have been developed and prototypes were built to investigate their performance in practice. Most of the research has been focused on hardware design. However, in order for the systems to be in wide use instead of in limited use by a small group of well-trained experts, an automatic process for mine detection is needed to make the final decision process on mine vs. no mine easier and more straightforward. In this paper, we describe an automatic mine detection process consisting of three stage, (1) signal enhancement, (2) pixel-level mine detection, and (3) object-level mine detection. The final output of the system is a confidence measure that quantifies the presence of a mine. The resulting system was applied to real data collected using radar and acoustic technologies.
Detection probability of EBPSK-MODEM system
NASA Astrophysics Data System (ADS)
Yao, Yu; Wu, Lenan
2016-07-01
Since the impacting filter-based receiver is able to transform phase modulation into amplitude peak, a simple threshold decision can detect the Extend-Binary Phase Shift Keying (EBPSK) modulated ranging signal in noise environment. In this paper, an analysis of the EBPSK-MODEM system output gives the probability density function for EBPSK modulated signals plus noise. The equation of detection probability (pd) for fluctuating and non-fluctuating targets has been deduced. Also, a comparison of the pd for the EBPSK-MODEM system and pulse radar receiver is made, and some results are plotted. Moreover, the probability curves of such system with several modulation parameters are analysed. When modulation parameter is not smaller than 6, the detection performance of EBPSK-MODEM system is more excellent than traditional radar system. In addition to theoretical considerations, computer simulations are provided for illustrating the performance.
Wide band stepped frequency ground penetrating radar
Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.
1996-03-12
A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.
Modeling of SAR returns from a red pine stand
NASA Technical Reports Server (NTRS)
Lang, R. H.; Kilic, O.; Chauhan, N. S.; Ranson, J.
1992-01-01
Bright P-band radar returns from red pine forests have been observed on synthetic aperture radar (SAR) images in Bangor, Maine. A plot of red pine trees was selected for the characterization and modeling to understand the cause of the high P-band returns. The red pine stand under study consisted of mature trees. Diameter at breast height (DBH) measurements were made to determine stand density as a function of tree diameter. Soil moisture and bulk density measurements were taken along with ground rough surface profiles. Detailed biomass measurements of the needles, shoots, branches, and trunks were also taken. These site statistics have been used in a distorted Born approximation model of the forest. Computations indicate that the direct-reflected or the double-bounce contributions from the ground are responsible for the high observed P-band returns for HH polarization.
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
System for beaming power from earth to a high altitude platform
Friedman, Herbert W.; Porter, Terry J.
2002-01-01
Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.
1997-11-01
tasks (Gescheider, 1985; Green & Swets, 1966; Macmillan & Creelman , 1991; See & Kuperman, 1995; See, Riegler, Fitzhugh, & Kuperman, 1996; See, Warm...available for designation and the operator’s ensuing proportion of correct localization responses (Hacker & Ratcliff, 1979; Macmillan & Creelman ...substituted for hits (Macmillan & Creelman , 1991). The Present Study The techniques of signal detection theory were applied in the present study in
The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-02-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data are required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜ 575 km2) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental setup. The sensor performance in the experimental setup and the density of the PWS network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low-intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
Urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-04-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data is required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜575 km2}) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental set-up. The sensor performance in the experimental set-up and the density of the PWS-network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS-platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
Dexter: Data Extractor for scanned graphs
NASA Astrophysics Data System (ADS)
Demleitner, Markus
2011-12-01
The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.
A lysimeter-based approach to quantify the impact of climate change on soil hydrological processes
NASA Astrophysics Data System (ADS)
Slawitsch, Veronika; Steffen, Birk; Herndl, Markus
2016-04-01
The predicted climate change involving increasing CO2 concentrations and increasing temperatures will have effects on both vegetation and soil properties and thus on the soil water balance. The aim of this work is to quantify the effects of changes in these climatic factors on soil hydrological processes and parameters. For this purpose data of six high precision weighable lysimeters will be used. The lysimeters are part of a Lysi-T-FACE concept, where free-air will be enriched with CO2 (FACE-Technique) and infrared heaters heat the plots for investigation on effects of increasing temperatures (T-FACE-Technique). The Lysi-T-FACE concept was developed on the „Clim Grass Site" at the HBLFA Raumberg-Gumpenstein (Styria, Austria) in 2011 and 2012 with a total of 54 experimental plots. These include six plots with lysimeters where the two climatic factors are varied in different combinations. On the basis of these grass land lysimeters the soil hydraulic parameters under different experimental conditions will be investigated. The lysimeters are equipped with TDR-Trime sensors and temperature sensors combined with tensiometers in different depths. In addition, a mechanical separation snow cover system is implemented to obtain a correct water balance in winter. To be able to infer differences between the lysimeters reliably a verification of functionalities and a plausibility check of the data from the lysimeters as well as adequate data corrections are needed. Both an automatic and a user-defined control including the recently developed filter method AWAT (Adaptive Window and Adaptive Threshold Filter) are combined with a visualisation tool using the software NI DIAdem. For each lysimeter the raw data is classified in groups of matric potentials, soil water contents and lysimeter weights. Values exceeding technical thresholds are eliminated and marked automatically. The manual data control is employed every day to obtain high precision seepage water weights. The subsequent application of the AWAT Filter reduces up to 80% of the oscillations in the calculated precipitation and evapotranspiration. The filtered data of the reference plot in June 2014 yields a precipitation of about 100 mm, whereas the non-filtered raw data result in approximately 170 mm and thus an obvious overestimation of precipitation. The resulting evapotranspiration amounts to slightly more than 100 mm with filter and 200 mm without filter in the same time period. The total water balance (precipitation minus evapotranspiration) of the year 2014 obtained with the automatic and manual data filter is 470 mm on the reference plot but only 358 mm on a plot where CO2 is enriched and temperature increased. In summary, these first results demonstrate that an adequate data correction is the precondition to identify changes of soil hydrological processes and properties.
E2GPR - Edit your geometry, Execute GprMax2D and Plot the Results!
NASA Astrophysics Data System (ADS)
Pirrone, Daniele; Pajewski, Lara
2015-04-01
In order to predict correctly the Ground Penetrating Radar (GPR) response from a particular scenario, Maxwell's equations have to be solved, subject to the physical and geometrical properties of the considered problem and to its initial conditions. Several techniques have been developed in computational electromagnetics, for the solution of Maxwell's equations. These methods can be classified into two main categories: differential and integral equation solvers, which can be implemented in the time or spectral domain. All of the different methods present compromises between computational efficiency, stability, and the ability to model complex geometries. The Finite-Difference Time-Domain (FDTD) technique has several advantages over alternative approaches: it has inherent simplicity, efficiency and conditional stability; it is suitable to treat impulsive behavior of the electromagnetic field and can provide either ultra-wideband temporal waveforms or the sinusoidal steady-state response at any frequency within the excitation spectrum; it is accurate and highly versatile; and it has become a mature and well-researched technique. Moreover, the FDTD technique is suitable to be executed on parallel-processing CPU-based computers and to exploit the modern computer visualisation capabilities. GprMax [1] is a very well-known and largely validated FDTD software tool, implemented by A. Giannopoulos and available for free public download on www.gprmax.com, together with examples and a detailled user guide. The tool includes two electromagnetic wave simulators, GprMax2D and GprMax3D, for the full-wave simulation of two-dimensional and three-dimensional GPR models. In GprMax, everything can be done with the aid of simple commands that are used to define the model parameters and results to be calculated. These commands need to be entered in a simple ASCII text file. GprMax output files can be stored in ASCII or binary format. The software is provided with MATLAB functions, which can be employed to import synthetic data created by GprMax using the binary-format option into MATLAB, in order to be processed and/or visualized. Further MATLAB procedures for the visualization of GprMax synthetic data have been developed within the COST Action TU1208 [2] and are available for free public download on www.GPRadar.eu. The current version of GprMax3D is compiled with OpenMP, supporting multi-platform shared memory multiprocessing which allows GprMax3D to take advantage of multiple cores/CPUs. GprMax2D, instead, exploits a single core when executed. E2GPR is a new software tool, available free of charge for both academic and commercial use, conceived to: 1) assist in the creation, modification and analysis of GprMax2D models, through a Computer-Aided Design (CAD) system; 2) allow parallel and/or distributed computing with GprMax2D, on a network of computers; 3) automatically plot A-scans and B-scans generated by GprMax2D. The CAD and plotter parts of the tool are implemented in Java and can run on any Java Virtual Machine (JVM) regardless of computer architecture. The part of the tool devoted to supporting parallel and/or distributed computing, instead, requires the set up of a Web-Service (on a server emulator or server); in fact, it is currently configured only for Windows Server and Internet Information Services (IIS). In this work, E2GPR is presented and examples are provided which demonstrate its use. The tool can be currently obtained by contacting the authors. It will soon be possible to download it from www.GPRadar.eu. Acknowledgement This work is a contribution to the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' The authors thank COST for funding the Action TU1208. References [1] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax,' Construction and Building Materials, vol. 19, pp. 755-762, 2005. [2] L. Pajewski, A. Benedetto, X. Dérobert, A. Giannopoulos, A. Loizos, G. Manacorda, M. Marciniak, C. Plati, G. Schettini, I. Trinks, "Applications of Ground Penetrating Radar in Civil Engineering - COST Action TU1208," Proc. 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2-5 July 2013, Nantes, France, pp. 1-6.
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa
2017-12-01
Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.
NASA Astrophysics Data System (ADS)
Drake, V. Alistair; Wang, Haikou
2013-01-01
Two special purpose insect-detecting radar units have operated in inland eastern Australia, in the region where nocturnal migratory movements of Australian plague locusts Chortoicetes terminifera occur, for over 10 years. The fully automatic radars detect individual insects as they fly directly overhead and "interrogate" them to obtain information about their characters (size, shape, and wing beating) and trajectory (speed, direction, and orientation). The character data allow locusts to be distinguished from most other migrant species. A locust index, calculated from the total count of locust-like targets for a night, provides a simple indication of migration intensity. For nights of heavy migration, the variation of numbers, directions, and speeds with both height and time can be examined. Emigration and immigration events can be distinguished, as can "transmigration," the passage overhead of populations originating elsewhere. Movement distances can be inferred, and broad source and (more tentatively) destination regions are identified. Movements were typically over distances of up to 400 km. Interpretation of radar observations requires judgment, and the present two units provide only partial coverage of the locust infestation area, but their capacity to detect major population movements promptly, and to provide information between necessarily infrequent surveys, has proved valuable.
Geometric registration of remotely sensed data with SAMIR
NASA Astrophysics Data System (ADS)
Gianinetto, Marco; Barazzetti, Luigi; Dini, Luigi; Fusiello, Andrea; Toldo, Roberto
2015-06-01
The commercial market offers several software packages for the registration of remotely sensed data through standard one-to-one image matching. Although very rapid and simple, this strategy does not take into consideration all the interconnections among the images of a multi-temporal data set. This paper presents a new scientific software, called Satellite Automatic Multi-Image Registration (SAMIR), able to extend the traditional registration approach towards multi-image global processing. Tests carried out with high-resolution optical (IKONOS) and high-resolution radar (COSMO-SkyMed) data showed that SAMIR can improve the registration phase with a more rigorous and robust workflow without initial approximations, user's interaction or limitation in spatial/spectral data size. The validation highlighted a sub-pixel accuracy in image co-registration for the considered imaging technologies, including optical and radar imagery.
The calibration of an HF radar used for ionospheric research
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1984-02-01
The HF radar on Bribie Island, Australia, uses crossed-fan beams produced by crossed linear transmitter and receiver arrays of 10 elements each to simulate a pencil beam. The beam points vertically when all the array elements are in phase, and is steerable by up to 20 deg off vertical at the central one of the three operating frequencies. Phase and gain changes within the transmitters and receivers are compensated for by an automatic system of adjustment. The 10 transmitting antennas are, as nearly as possible, physically identical as are the 10 receiving antennas. Antenna calibration using high flying aircraft or satellites is not possible. A method is described for using the ionospheric reflections to measure the polar diagram and also to correct for errors in the direction of pointing.
NASA Astrophysics Data System (ADS)
Lavalle, M.; Ahmed, R.
2014-12-01
Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the opportunity to compare our results with the new airborne P-band ECOSAR and L-band DBSAR instruments developed at the NASA Goddard Space Flight Center.
Environmental Support to Space Launch
2006-05-31
in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of...in this study as there were no occurrences. Tomado/Waterapout 0 999 5! FWinds Wath er nots (Convective) (MR** from Sit) Winds GTE 60 Knots (Convective...and Merceret (2004) developed an automatic process to determine cloud boundaries using cloud physics and ground-based radar data. It performs an
Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation
2007-05-30
with large region of attraction about the true minimum. The physical optics models provide features for high confidence identification of stationary...the detection test are used to estimate 3D object scattering; multiple images can be noncoherently combined to reconstruct a more complete object...Proc. SPIE Algorithms for Synthetic Aper- ture Radar Imagery XIII, The International Society for Optical Engineering, April 2006. [40] K. Varshney, M. C
NASA Astrophysics Data System (ADS)
Reichman, Daniël.; Collins, Leslie M.; Malof, Jordan M.
2018-04-01
This work focuses on the development of automatic buried threat detection (BTD) algorithms using ground penetrating radar (GPR) data. Buried threats tend to exhibit unique characteristics in GPR imagery, such as high energy hyperbolic shapes, which can be leveraged for detection. Many recent BTD algorithms are supervised, and therefore they require training with exemplars of GPR data collected over non-threat locations and threat locations, respectively. Frequently, data from non-threat GPR examples will exhibit high energy hyperbolic patterns, similar to those observed from a buried threat. Is it still useful therefore, to include such examples during algorithm training, and encourage an algorithm to label such data as a non-threat? Similarly, some true buried threat examples exhibit very little distinctive threat-like patterns. We investigate whether it is beneficial to treat such GPR data examples as mislabeled, and either (i) relabel them, or (ii) remove them from training. We study this problem using two algorithms to automatically identify mislabeled examples, if they are present, and examine the impact of removing or relabeling them for training. We conduct these experiments on a large collection of GPR data with several state-of-the-art GPR-based BTD algorithms.
NASA Astrophysics Data System (ADS)
Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon
2016-04-01
Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).
Borges, Chad R
2007-07-01
A chemometrics-based data analysis concept has been developed as a substitute for manual inspection of extracted ion chromatograms (XICs), which facilitates rapid, analyst-mediated interpretation of GC- and LC/MS(n) data sets from samples undergoing qualitative batchwise screening for prespecified sets of analytes. Automatic preparation of data into two-dimensional row space-derived scatter plots (row space plots) eliminates the need to manually interpret hundreds to thousands of XICs per batch of samples while keeping all interpretation of raw data directly in the hands of the analyst-saving great quantities of human time without loss of integrity in the data analysis process. For a given analyte, two analyte-specific variables are automatically collected by a computer algorithm and placed into a data matrix (i.e., placed into row space): the first variable is the ion abundance corresponding to scan number x and analyte-specific m/z value y, and the second variable is the ion abundance corresponding to scan number x and analyte-specific m/z value z (a second ion). These two variables serve as the two axes of the aforementioned row space plots. In order to collect appropriate scan number (retention time) information, it is necessary to analyze, as part of every batch, a sample containing a mixture of all analytes to be tested. When pure standard materials of tested analytes are unavailable, but representative ion m/z values are known and retention time can be approximated, data are evaluated based on two-dimensional scores plots from principal component analysis of small time range(s) of mass spectral data. The time-saving efficiency of this concept is directly proportional to the percentage of negative samples and to the total number of samples processed simultaneously.
Kinematic analysis of conically scanned environmental properties
NASA Technical Reports Server (NTRS)
Wilkerson, Thomas D. (Inventor); Sanders, Jason A. (Inventor); Andrus, Ionio Q. (Inventor)
2003-01-01
A method for determining the velocity of features such as wind. The method preferably includes producing sensor signals and projecting the sensor signals sequentially along lines lying on the surface of a cone. The sensor signals may be in the form of lidar, radar or sonar for example. As the sensor signals are transmitted, the signals contact objects and are backscattered. The backscattered sensor signals are received to determine the location of objects as they pass through the transmission path. The speed and direction the object is moving may be calculated using the backscattered data. The data may be plotted in a two dimensional array with a scan angle on one axis and a scan time on the other axis. The prominent curves that appear in the plot may be analyzed to determine the speed and direction the object is traveling.
NASA Technical Reports Server (NTRS)
Lane, John E.; Kasparis, Takis; Jones, W. Linwood; Metzger, Philip T.
2009-01-01
Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.
NASA Technical Reports Server (NTRS)
Norikane, L.; Freeman, A.; Way, J.; Okonek, S.; Casey, R.
1992-01-01
Recent updates to a geographical information system (GIS) called VICAR (Video Image Communication and Retrieval)/IBIS are described. The system is designed to handle data from many different formats (vector, raster, tabular) and many different sources (models, radar images, ground truth surveys, optical images). All the data are referenced to a single georeference plane, and average or typical values for parameters defined within a polygonal region are stored in a tabular file, called an info file. The info file format allows tracking of data in time, maintenance of links between component data sets and the georeference image, conversion of pixel values to `actual' values (e.g., radar cross-section, luminance, temperature), graph plotting, data manipulation, generation of training vectors for classification algorithms, and comparison between actual measurements and model predictions (with ground truth data as input).
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
NASA Technical Reports Server (NTRS)
Wu, S.-T.
1985-01-01
Seasonally compatible data collected by SIR-A and by Landsat 4 TM over the lower coastal plain in Alabama were coregistered, forming a SIR-A/TM multichannel data set with 30 m x 30 m pixel size. Spectral signature plots and histogram analysis of the data were used to observe data characteristics. Radar returns from pine forest classes correlated highly with the tree ages, suggesting the potential utility of microwave remote sensing for forest biomass estimation. As compared with the TM-only data set, the use of SIR-A/TM data set improved classification accuracy of the seven land cover types studied. In addition, the SIR-A/TM classified data support previous finding by Engheta and Elachi (1982) that microwave data appear to be correlated with differing bottomland hardwood forest vegetation as associated with varying water regimens (i.e., wet versus dry).
Wide band stepped frequency ground penetrating radar
Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.
1996-01-01
A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).
AIRSAR South American deployment: Operation plan, version 3.0
NASA Technical Reports Server (NTRS)
Kobrick, M.
1993-01-01
The United States National Aeronautics and Space Administration (NASA) and the Brazilian Commission for Space Activities (COBAE) are undertaking a joint experiment involving NASA's DC-8 research aircraft and the Airborne Synthetic Aperture Radar (AIRSAR) system during late May and June 1993. The research areas motivating these activities are: (1) fundamental research in the role of soils, vegetation, and hydrology in the global carbon cycle; and (2) in cooperation with South American scientists, airborne remote sensing research for the upcoming NASA Spaceborne Imaging Radar (SIR)-C/X-SAR flights on the Space Shuttle. A flight schedule and plans for the deployment that were developed are included. Maps of the site locations and schematic indications of flight routes and dates, plots showing swath locations derived from the flight requests and generated by flight planning software, and, most importantly, a calendar showing which sites will be imaged each day are included.
An initial assessment of the performance achieved by the Seasat-1 radar altimeter
NASA Technical Reports Server (NTRS)
Townsend, W. F.
1980-01-01
The results of an initial on-orbit engineering assessment of the performance achieved by the radar altimeter system flown on SEASAT-1 are presented. Additionally, the general design characteristics of this system are discussed and illustrations of altimeter data product are provided. The instrument consists of a 13.5 GHz monostatic radar system that tracks in range only using a one meter parabolic antenna pointed at the satellite nadir. Two of its unique features are a linear FM transmitter with 320 MHz bandwidth which yields a 3.125 nanosecond time delay resolution, and microprocessor implemented closed loop range tracking, automatic gain control (AGC), and real time estimation of significant wave height (SWH). Results presented show that the altimeter generally performed in accordance with its orginal performance requirments of measuring altitude to a precision of less the 10 cm RMS, significant wave height to an accuracy of + or - 0.5 m or 10%, whichever is greater, and ocean backscatter coefficient to an accuracy of + or - 1 db, all over an SWH range of 1 to 20 meters.
2018-03-10
can be generated using only two sensors in the physical array. In case ofredundancy in the difference coarray, there is more than one antenna pair that...estimation results based on the MUSIC algorithm using multi- frequency co-prime arrays. Both proportional and nonproportional source spectra cases are...be made in this case as well. However, two differences can be noticed by comparing the RMSE plots in Figs. 11 and 13. First, the RMSE takes on lower
The Effects of Laser Phase Noise on Laser Radar Performance
1992-12-01
Laboratory 5. Figure 3 shows Allan variance plots of the above ultrastable C02 laser which has an open Fabry - Perot cavity 5. The open and solid circles...the same measurement time -r) by more than 10 dB. Therefore, the root Allan variance for the Fabry - Perot cavity ultrastable C02 laser can be...variance so that the SSB phase noise for the Fabry - Perot cavity ultrastable CO 2 laser is about 20 dB (because of the squaring operation) below that of the
NASA Technical Reports Server (NTRS)
Bracalente, E. M.; Sweet, J. L.
1984-01-01
The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.
A low-cost inertial smoothing system for landing approach guidance
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1973-01-01
Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.
Wildland resource information system: user's guide
Robert M. Russell; David A. Sharpnack; Elliot L. Amidon
1975-01-01
This user's guide provides detailed information about how to use the computer programs of WRIS, a computer system for storing and manipulating data about land areas. Instructions explain how to prepare maps, digitize by automatic scanners or by hand, produce polygon maps, and combine map layers. Support programs plot maps, store them on tapes, produce summaries,...
The ship-borne infrared searching and tracking system based on the inertial platform
NASA Astrophysics Data System (ADS)
Li, Yan; Zhang, Haibo
2011-08-01
As a result of the radar system got interferenced or in the state of half silent ,it can cause the guided precision drop badly In the modern electronic warfare, therefore it can lead to the equipment depended on electronic guidance cannot strike the incoming goals exactly. It will need to rely on optoelectronic devices to make up for its shortcomings, but when interference is in the process of radar leading ,especially the electro-optical equipment is influenced by the roll, pitch and yaw rotation ,it can affect the target appear outside of the field of optoelectronic devices for a long time, so the infrared optoelectronic equipment can not exert the superiority, and also it cannot get across weapon-control system "reverse bring" missile against incoming goals. So the conventional ship-borne infrared system unable to track the target of incoming quickly , the ability of optoelectronic rivalry declines heavily.Here we provide a brand new controlling algorithm for the semi-automatic searching and infrared tracking based on inertial navigation platform. Now it is applying well in our XX infrared optoelectronic searching and tracking system. The algorithm is mainly divided into two steps: The artificial mode turns into auto-searching when the deviation of guide exceeds the current scene under the course of leading for radar.When the threshold value of the image picked-up is satisfied by the contrast of the target in the searching scene, the speed computed by using the CA model Least Square Method feeds back to the speed loop. And then combine the infrared information to accomplish the closed-loop control of the infrared optoelectronic system tracking. The algorithm is verified via experiment. Target capturing distance is 22.3 kilometers on the great lead deviation by using the algorithm. But without using the algorithm the capturing distance declines 12 kilometers. The algorithm advances the ability of infrared optoelectronic rivalry and declines the target capturing time by using semi-automatic searching and reliable capturing-tracking, when the lead deviation of the radar is great.
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1995-01-01
A brief description of enhancements made to the NASA MSFC coherent lidar model is provided. Notable improvements are the addition of routines to automatically determine the 3 dB misalignment loss angle and the backscatter value at which the probability of a good estimate (for a maximum likelihood estimator) falls to 50%. The ability to automatically generate energy/aperture parametrization (EAP) plots which include the effects of angular misalignment has been added. These EAP plots make it very easy to see that for any practical system where there is some degree of misalignment then there is an optimum telescope diameter for which the laser pulse energy required to achieve a particular sensitivity is minimized. Increasing the telescope diameter above this will result in a reduction of sensitivity. These parameterizations also clearly show that the alignment tolerances at shorter wavelengths are much stricter than those at longer wavelengths. A brief outline of the NASA MSFC AEOLUS program is given and a summary of the lidar designs considered during the program is presented. A discussion of some of the design trades is performed both in the text and in a conference publication attached as an appendix.
Hustoft, Hanne Kolsrud; Brandtzaeg, Ole Kristian; Rogeberg, Magnus; Misaghian, Dorna; Torsetnes, Silje Bøen; Greibrokk, Tyge; Reubsaet, Léon; Wilson, Steven Ray; Lundanes, Elsa
2013-12-16
Reliable, sensitive and automatable analytical methodology is of great value in e.g. cancer diagnostics. In this context, an on-line system for enzymatic cleavage of proteins, subsequent peptide separation by liquid chromatography (LC) with mass spectrometric detection has been developed using "sub-chip" columns (10-20 μm inner diameter, ID). The system could detect attomole amounts of isolated cancer biomarker progastrin-releasing peptide (ProGRP), in a more automatable fashion compared to previous methods. The workflow combines protein digestion using an 20 μm ID immobilized trypsin reactor with a polymeric layer of 2-hydroxyethyl methacrylate-vinyl azlactone (HEMA-VDM), desalting on a polystyrene-divinylbenzene (PS-DVB) monolithic trap column, and subsequent separation of resulting peptides on a 10 μm ID (PS-DVB) porous layer open tubular (PLOT) column. The high resolution of the PLOT columns was maintained in the on-line system, resulting in narrow chromatographic peaks of 3-5 seconds. The trypsin reactors provided repeatable performance and were compatible with long-term storage.
NASA Astrophysics Data System (ADS)
Mönnig, Carsten
2014-05-01
The increasing precision of modern farming systems requires a near-real-time monitoring of agricultural crops in order to estimate soil condition, plant health and potential crop yield. For large sized agricultural plots, satellite imagery or aerial surveys can be used at considerable costs and possible time delays of days or even weeks. However, for small to medium sized plots, these monitoring approaches are cost-prohibitive and difficult to assess. Therefore, we propose within the INTERREG IV A-Project SMART INSPECTORS (Smart Aerial Test Rigs with Infrared Spectrometers and Radar), a cost effective, comparably simple approach to support farmers with a small and lightweight hyperspectral imaging system to collect remotely sensed data in spectral bands in between 400 to 1700nm. SMART INSPECTORS includes the whole remote sensing processing chain of small scale remote sensing from sensor construction, data processing and ground truthing for analysis of the results. The sensors are mounted on a remotely controlled (RC) Octocopter, a fixed wing RC airplane as well as on a two-seated Autogyro for larger plots. The high resolution images up to 5cm on the ground include spectra of visible light, near and thermal infrared as well as hyperspectral imagery. The data will be analyzed using remote sensing software and a Geographic Information System (GIS). The soil condition analysis includes soil humidity, temperature and roughness. Furthermore, a radar sensor is envisaged for the detection of geomorphologic, drainage and soil-plant roughness investigation. Plant health control includes drought stress, vegetation health, pest control, growth condition and canopy temperature. Different vegetation and soil indices will help to determine and understand soil conditions and plant traits. Additional investigation might include crop yield estimation of certain crops like apples, strawberries, pasture land, etc. The quality of remotely sensed vegetation data will be tested with ground truthing tools like a spectrometer, visual inspection and ground control panel. The soil condition will also be monitored with a wireless sensor network installed on the examined plots of interest. Provided with this data, a farmer can respond immediately to potential threats with high local precision. In this presentation, preliminary results of hyperspectral images of distinctive vegetation cover and soil on different pasture test plots are shown. After an evaluation period, the whole processing chain will offer farmers a unique, near real- time, low cost solution for small to mid-sized agricultural plots in order to easily assess crop and soil quality and the estimation of harvest. SMART INSPECTORS remotely sensed data will form the basis for an input in a decision support system which aims to detect crop related issues in order to react quickly and efficiently, saving fertilizer, water or pesticides.
Driver for solar cell I-V characteristic plots
NASA Technical Reports Server (NTRS)
Turner, G. B. (Inventor)
1980-01-01
A bipolar voltage ramp generator which applies a linear voltage through a resistor to a solar cell for plotting its current versus voltage (I-V) characteristic between short circuit and open circuit conditions is disclosed. The generator has automatic stops at the end points. The resistor serves the multiple purpose of providing a current sensing resistor, setting the full-scale current value, and providing a load line with a slope approximately equal to one, such that it will pass through the origin and the approximate center of the I-V curve with about equal distance from that center to each of the end points.
NASA Astrophysics Data System (ADS)
Hearst, Anthony A.
Complex planting schemes are common in experimental crop fields and can make it difficult to extract plots of interest from high-resolution imagery of the fields gathered by Unmanned Aircraft Systems (UAS). This prevents UAS imagery from being applied in High-Throughput Precision Phenotyping and other areas of agricultural research. If the imagery is accurately geo-registered, then it may be possible to extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. Future work will focus on further enhancing the plot extraction accuracy through additional image processing techniques so that it becomes sufficiently accurate for all practical purposes in agricultural research and potentially other areas of research.
An Automatic Weather Station Network for Low-Altitude Wind Shear Investigations
1984-09-18
information exchange. The United States Government assumes no liability for its contents or use thereof. 4 . ... . . . . . . . . . . . ... ° TECHNICAL REPORT...technical issues asso- ciated with unique FAA needs for weather information used by pilots, air traffic controllers and meteorologists. The weather radar...warnings be free of false alarms and be issued in a timely manner. During the summer of 1983, Lincoln began a long term study that places emphasis on
Novel angle estimation for bistatic MIMO radar using an improved MUSIC
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Xiaofei; Chen, Han
2014-09-01
In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.
Research on regional intrusion prevention and control system based on target tracking
NASA Astrophysics Data System (ADS)
Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin
2017-08-01
In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.
Polluter identification with spaceborne radar imagery, AIS and forward drift modeling.
Longépé, N; Mouche, A A; Goacolou, M; Granier, N; Carrere, L; Lebras, J Y; Lozach, P; Besnard, S
2015-12-30
This study defines and assesses a new operational concept to identify the origin of pollution at sea, based on Synthetic Aperture Radar, Automatic Identification System, and a forward drift model. As opposed to traditional methodologies where the SAR detected pollution is backtracked in the past, our approach assumes that all the vessels pollute all along their way. Based on all the AIS data flows, the forward-tracked simulated pollutions are then compared to the detected pollution, and the potential polluter can be finally identified. Case studies are presented to showcase its usefulness in a variety of maritime situations with a focus on orphan pollutions in a dense traffic area. Out of the identification of the suspected polluters, the age and eventually the type of the pollution can be retrieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
QUICK - AN INTERACTIVE SOFTWARE ENVIRONMENT FOR ENGINEERING DESIGN
NASA Technical Reports Server (NTRS)
Schlaifer, R. S.
1994-01-01
QUICK provides the computer user with the facilities of a sophisticated desk calculator which can perform scalar, vector and matrix arithmetic, propagate conic orbits, determine planetary and satellite coordinates and perform other related astrodynamic calculations within a Fortran-like environment. QUICK is an interpreter, therefore eliminating the need to use a compiler or a linker to run QUICK code. QUICK capabilities include options for automated printing of results, the ability to submit operating system commands on some systems, and access to a plotting package (MASL)and a text editor without leaving QUICK. Mathematical and programming features of QUICK include the ability to handle arbitrary algebraic expressions, the capability to define user functions in terms of other functions, built-in constants such as pi, direct access to useful COMMON areas, matrix capabilities, extensive use of double precision calculations, and the ability to automatically load user functions from a standard library. The MASL (The Multi-mission Analysis Software Library) plotting package, included in the QUICK package, is a set of FORTRAN 77 compatible subroutines designed to facilitate the plotting of engineering data by allowing programmers to write plotting device independent applications. Its universality lies in the number of plotting devices it puts at the user's disposal. The MASL package of routines has proved very useful and easy to work with, yielding good plots for most new users on the first or second try. The functions provided include routines for creating histograms, "wire mesh" surface plots and contour plots as well as normal graphs with a large variety of axis types. The library has routines for plotting on cartesian, polar, log, mercator, cyclic, calendar, and stereographic axes, and for performing automatic or explicit scaling. The lengths of the axes of a plot are completely under the control of the program using the library. Programs written to use the MASL subroutines can be made to output to the Calcomp 1055 plotter, the Hewlett-Packard 2648 graphics terminal, the HP 7221, 7475 and 7550 pen plotters, the Tektronix 40xx and 41xx series graphics terminals, the DEC VT125/VT240 graphics terminals, the QMS 800 laser printer, the Sun Microsystems monochrome display, the Ridge Computers monochrome display, the IBM/PC color display, or a "dumb" terminal or printer. Programs using this library can be written so that they always use the same type of plotter or they can allow the choice of plotter type to be deferred until after program execution. QUICK is written in RATFOR for use on Sun4 series computers running SunOS. No source code is provided. The standard distribution medium for this program is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in ASCII format is included on the distribution medium. QUICK was developed in 1991 and is a copyrighted work with all copyright vested in NASA.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.; Henry, M. W.
1984-01-01
The final products generated for the STS-9, which landed on December 8, 1983 are reported. The trajectory reconstruction utilized an anchor epoch of GMT corresponding to an initial altitude of h 356 kft, selected in view of the limited tracking coverage available. The final state utilized IMU2 measurements and was based on processing radar tracking from six C-bands and a single S-band station, plus six photo-theodolite cameras in the vicinity of Runway 17 at Edwards Air Force Base. The final atmosphere (FLAIR9/UN=581199C) was based on a composite of the remote measured data and the 1978 Air Force Reference Atmosphere model. The Extended BET is available as STS9BET/UN=274885C. The AEROBET and MMLE input files created are discussed. Plots of the more relevant parameters from the AEROBET (reel number NL0624) are included. Input parameters, final residual plots, a trajectory listing, and data archival information are defined.
pyMOOGi - python wrapper for MOOG
NASA Astrophysics Data System (ADS)
Adamow, Monika M.
2017-06-01
pyMOOGi is a python wrapper for MOOG. It allows to use MOOG in a classical, interactive way, but with all graphics handled by python libraries. Some MOOG features have been redesigned, like plotting with abfind driver. Also, new funtions have been added, like automatic rescaling of stellar spectrum for synth driver. pyMOOGi is an open source project.
Forest disturbance spurs growth of modeling and technology
NASA Astrophysics Data System (ADS)
Bohrer, G.; Matheny, A. M.; Mirfenderesgi, G.; Morin, T. H.; Rey Sanchez, A. C.; Gough, C. M.; Vogel, C. S.; Nadelhoffer, K. J.; Curtis, P.
2016-12-01
As new opportunities for scientific exploration open, needs for data generate a drive for innovative developments of new research tools. The Forest Accelerated Succession ExperimenT (FASET) was enacted in 2007, continuous flux observations at the University of Michigan Biological Station (UMBS) since 2000. FASET is a large-scale ecological experiment testing the immediate and intermediate term effects of disturbance, and eventually, the role of succession and community composition on forest flux dynamics. Decades-long tree-level observations in the UMBS forest, combined with the long term flux observations allowed us to match the bottom-up accumulated response of individual trees with the top-down whole-plot response measured from the flux tower. However, data describing tree-level canopy structure and hydrological response over an entire plot were not readily available. Unintentionally, FASET became both a motivation and a test-bed for new research tools and approaches. We expanded the operation and analysis approach for a portable canopy LiDARfor 3-D measurements meter-scale canopy structure. We matched canopy LiDAR measurements with root measurements from ground penetrating radar. To study the hydrological effects of the disturbance, we instrumented a large number of trees with Granier-style sap flux sensors. We further developed an approach to use frequency domain reflectometry sensors for continuous measurements of tree water content. We developed an approach to combine plot census, allometry and sap-flux observations in a bottom-up fashion to compare with plot-level EC transpiration rates. We found that while the transpirational water demand in the disturbance plot increased, overall evapotranspiration decreased. This decrease, however, is not uniform across species. A new individual-plant to ecosystem scale hydrodynamic model (FETCH2) demonstrates how specific traits translate to intra-daily differences in plot-level transpiration dynamics.
Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes
NASA Astrophysics Data System (ADS)
Friedl, Barbara; Holbling, Daniel
2015-05-01
This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.
Equipment and techniques for low-altitude aerial sensing of water-vapor concentration and movement
Howell, R.L.
1969-01-01
Progress in the development of equipment and techniques for making rapid measurements of moisture movement through the atmosphere over a large area is described. Airborne sensing elements measure relative humidity, temperature, and air currents. These data are telemetered to a ground-based station and recorded. A radar unit tracks the aircraft and electronically plots its position on a base map of the area being studied. Thus the distribution of atmospheric conditions can be directly related to the underlying terrain and vegetation features. ?? 1969 American Elsevier Publishing Company, Inc.
NASA Astrophysics Data System (ADS)
Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.
2005-01-01
The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE:
NASA Astrophysics Data System (ADS)
Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.
The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE:
An ice-motion tracking system at the Alaska SAR facility
NASA Technical Reports Server (NTRS)
Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross
1990-01-01
An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.
Ships and Maritime Targets Observation Campaigns Using Available C- and X-Band SAR Satellite
NASA Astrophysics Data System (ADS)
Velotto, Domenico; Bentes, Carlos; Lehner, Susanne
2015-04-01
Obviously, radar resolution and swath width are two very important factors when it comes to synthetic aperture radar (SAR) maritime targets detections. The dilemma of using single polarization SAR imagery with higher resolution and coverage or quad- (or dual- polarimetric) imagery with its richness of information, is still unsolved when it comes to this application.In the framework of ESA project MARISS and EU project DOLPHIN, in situ campaigns aimed at solving this dilemma have been carried out. Single and multi- polarimetric SAR data acquired by TerraSAR-X, RADARSAT-2 and COSMO-SkyMed have been acquired with close time gaps and partial coverage overlap. In this way several moving and non-moving maritime targets have been imaged with different polarization, geometry and working frequency. Available ground truth reports provided by Automatic Identification System (AIS) data, nautical chart and wind farm location are used to validate the different types of maritime targets.
NASA Technical Reports Server (NTRS)
Bemra, R. S.; Rastogi, P. K.; Balsley, B. B.
1986-01-01
An analysis of frequency spectra at periods of about 5 days to 5 min from two 20-day sets of velocity measurements in the stratosphere and troposphere region obtained with the Poker Flat mesosphere-stratosphere-troposphere (MST) radar during January and June, 1984 is presented. A technique based on median filtering and averaged order statistics for automatic editing, smoothing and spectral analysis of velocity time series contaminated with spurious data points or outliers is outlined. The validity of this technique and its effects on the inferred spectral index was tested through simulation. Spectra obtained with this technique are discussed. The measured spectral indices show variability with season and height, especially across the tropopause. The discussion briefly outlines the need for obtaining better climatologies of velocity spectra and for the refinements of the existing theories to explain their behavior.
Sea ice type maps from Alaska synthetic aperture radar facility imagery: An assessment
NASA Technical Reports Server (NTRS)
Fetterer, Florence M.; Gineris, Denise; Kwok, Ronald
1994-01-01
Synthetic aperture radar (SAR) imagery received at the Alaskan SAR Facility is routinely and automatically classified on the Geophysical Processor System (GPS) to create ice type maps. We evaluated the wintertime performance of the GPS classification algorithm by comparing ice type percentages from supervised classification with percentages from the algorithm. The root mean square (RMS) difference for multiyear ice is about 6%, while the inconsistency in supervised classification is about 3%. The algorithm separates first-year from multiyear ice well, although it sometimes fails to correctly classify new ice and open water owing to the wide distribution of backscatter for these classes. Our results imply a high degree of accuracy and consistency in the growing archive of multiyear and first-year ice distribution maps. These results have implications for heat and mass balance studies which are furthered by the ability to accurately characterize ice type distributions over a large part of the Arctic.
Validation of crowdsourced automatic rain gauge measurements in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2016-04-01
The increasing number of privately owned weather stations and the facilitating role the internet to make this data publicly available, has led to several online platforms that collect and visualize crowdsourced weather data. This has resulted in ever increasing freely available datasets of weather measurements generated by amateur weather enthusiasts. Because of the lack of quality control and the frequent absence of metadata, these measurements are often considered as unreliable. Given the often large variability of weather variables in space and time, and the generally low number of official weather stations, this growing quantity of crowdsourced data may become an important additional source of information. Amateur weather observations have become more frequent over the past decade due to weather stations becoming more user-friendly and affordable. The variables measured by these weather stations are temperature, pressure and dew point, and in some cases wind and rainfall. Meteorological data from crowdsourced automatic weather stations in cities have primarily been used to examine the urban heat island effect. Thus far, these studies have focused on the comparison of the crowdsourced station temperature measurements with a nearby WMO-standard weather station, which is often located in a rural area or the outskirts of a city, generally not being representative of the city center. Instead of temperature, the rainfall measurements by the stations are examined. This research focuses on the combined ability of a large number of privately owned weather stations in an urban setting to correctly monitor rainfall. A set of 64 automatic weather stations distributed over Amsterdam (The Netherlands) that have at least 3 months of precipitation measurement during one year are evaluated. Precipitation measurements from stations are compared to a merged radar-gauge precipitation product. Disregarding sudden jumps in station measured precipitation, the accumulative rainfall over time in most stations showed an underestimation of rainfall compared to the accumulative values found in the corresponding radar pixel of the reference. Special consideration is given to the identification of faulty measurements without the need to obtain additional meta-data, such as setup and surroundings. This validation will show the potential of crowdsourced automatic weather stations for future urban rainfall monitoring.
Alibrandi, Giuseppe; Fabbrizzi, Luigi; Licchelli, Maurizio; Puglisi, Antonio
2015-01-12
This paper proposes a new type of molecular device that is able to act as an inverse proton sponge to slowly decrease the pH inside a reaction vessel. This makes the automatic monitoring of the concentration of pH-sensitive systems possible. The device is a composite formed of an alkyl chloride, which kinetically produces acidity, and a buffer that thermodynamically modulates the variation in pH value. Profiles of pH versus time (pH-t plots) have been generated under various experimental conditions by computer simulation, and the device has been tested by carrying out automatic spectrophotometric titrations, without using an autoburette. To underline the wide variety of possible applications, this new system has been used to realize and monitor HCl uptake by a di-copper(II) bistren complex in a single run, in a completely automatic experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computer-Aided Teaching Using MATLAB/Simulink for Enhancing an IM Course With Laboratory Tests
ERIC Educational Resources Information Center
Bentounsi, A.; Djeghloud, H.; Benalla, H.; Birem, T.; Amiar, H.
2011-01-01
This paper describes an automatic procedure using MATLAB software to plot the circle diagram for two induction motors (IMs), with wound and squirrel-cage rotors, from no-load and blocked-rotor tests. The advantage of this approach is that it avoids the need for a direct load test in predetermining the IM characteristics under reduced power.…
Ganalyzer: A Tool for Automatic Galaxy Image Analysis
NASA Astrophysics Data System (ADS)
Shamir, Lior
2011-08-01
We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.
DIRT: The Dust InfraRed Toolbox
NASA Astrophysics Data System (ADS)
Pound, M. W.; Wolfire, M. G.; Mundy, L. G.; Teuben, P. J.; Lord, S.
We present DIRT, a Java applet geared toward modeling a variety of processes in envelopes of young and evolved stars. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. The computing cluster for the database is described in the accompanying paper by Teuben et al. (2000). A typical user query will return about 50-100 models, which the user can then interactively filter as a function of 8 model parameters (e.g., extinction, size, flux, luminosity). A flexible, multi-dimensional plotter (Figure 1) allows users to view the models, rotate them, tag specific parameters with color or symbol size, and probe individual model points. For any given model, auxiliary plots such as dust grain properties, radial intensity profiles, and the flux as a function of wavelength and beamsize can be viewed. The user can fit observed data to several models simultaneously and see the results of the fit; the best fit is automatically selected for plotting. The URL for this project is http://dustem.astro.umd.edu.
NASA Technical Reports Server (NTRS)
Sekhon, R.
1981-01-01
Digital SEASAT-1 synthetic aperture radar (SAR) data were used to enhance linear features to extract geologically significant lineaments in the Appalachian region. Comparison of Lineaments thus mapped with an existing lineament map based on LANDSAT MSS images shows that appropriately processed SEASAT-1 SAR data can significantly improve the detection of lineaments. Merge MSS and SAR data sets were more useful fo lineament detection and landcover classification than LANDSAT or SEASAT data alone. About 20 percent of the lineaments plotted from the SEASAT SAR image did not appear on the LANDSAT image. About 6 percent of minor lineaments or parts of lineaments present in the LANDSAT map were missing from the SEASAT map. Improvement in the landcover classification (acreage and spatial estimation accuracy) was attained by using MSS-SAR merged data. The aerial estimation of residential/built-up and forest categories was improved. Accuracy in estimating the agricultural and water categories was slightly reduced.
CDTI target selection criteria
NASA Technical Reports Server (NTRS)
Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.
1984-01-01
A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.
Stepped frequency ground penetrating radar
Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.
1994-01-01
A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.
The effect of vegetation type, microrelief, and incidence angle on radar backscatter
NASA Technical Reports Server (NTRS)
Owe, M.; Oneill, P. E.; Jackson, T. J.; Schmugge, T. J.
1985-01-01
The NASA/JPL Synthetic Aperture Radar (SAR) was flown over a 20 x 110 km test site in the Texas High Plains regions north of Lubbock during February/March 1984. The effect of incidence angle was investigated by comparing the pixel values of the calibrated and uncalibrated images. Ten-pixel-wide transects along the entire azimuth were averaged in each of the two scenes, and plotted against the calculated incidence angle of the center of each range increment. It is evident from the graphs that both the magnitudes and patterns exhibited by the corresponding transect means of the two images are highly dissimilar. For each of the cross-poles, the uncalibrated image displayed very distinct and systematic positive trends through the entire range of incidence angles. The two like-poles, however, exhibited relatively constant returns. In the calibrated image, the cross-poles exhibited a constant return, while the like-poles demonstrated a strong negative trend across the range of look-angles, as might be expected.
Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul
2016-01-01
Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.
Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M
2016-01-01
Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.
Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Michael J.; Cryan, Paul M.
2016-01-01
Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife. PMID:27462989
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc
2015-04-01
Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.
NASA Technical Reports Server (NTRS)
Schiess, James R.; Kerr, Patricia A.; Smith, Olivia C.
1988-01-01
Smooth curves drawn among plotted data easily. Rational-Spline Approximation with Automatic Tension Adjustment algorithm leads to flexible, smooth representation of experimental data. "Tension" denotes mathematical analog of mechanical tension in spline or other mechanical curve-fitting tool, and "spline" as denotes mathematical generalization of tool. Program differs from usual spline under tension, allows user to specify different values of tension between adjacent pairs of knots rather than constant tension over entire range of data. Subroutines use automatic adjustment scheme that varies tension parameter for each interval until maximum deviation of spline from line joining knots less than or equal to amount specified by user. Procedure frees user from drudgery of adjusting individual tension parameters while still giving control over local behavior of spline.
Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)
2015-03-01
the Multi-Trajectory path uses a sphere buffer (with a 350 ft radius) around each time point in the propagated path. Hence, the yellow Xs indicate the...the HUD as well as a matrix/line of Xs on the radar electro optical (REO) display. Enhanced ground clobber (EGC) mechanization was integrated on the F...reachable in the timespan t ∈ [t0, tf ], and dthreshold is a scalar user-defined terrain buffer. For the work de- veloped herein, dthreshold was set to 350
2014-03-27
and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
MAS2-8 radar and digital control unit
NASA Technical Reports Server (NTRS)
Oberg, J. M.; Ulaby, F. T.
1974-01-01
The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.
Application of LANDSAT images in the Minas Gerais tectonic division
NASA Technical Reports Server (NTRS)
Dacunha, R. P.; Demattos, J. T.
1978-01-01
The interpretation of LANDSAT data for a regional geological investigation of Brazil is provided. Radar imagery, aerial photographs and aeromagnetic maps were also used. Automatic interpretation, using LANDSAT OCT's was carried out by the 1-100 equipment. As a primary result a tectonic map was obtained, at 1:1,000,000 scale, of an area of about 143,000 square kilometers, in the central portion of Minas Gerais and Eastern Goias States, known as regions potentially rich in mineral resources.
1945-09-26
study was oiriglnally designed to afford inforafttlon concerning the relationship between Military Occupational Specialty (M. 0. S.:- coded as in TN...Equipment ( Designated Set) u c T 139 139 129 129 119 119 112 111 106 106 56 2 58 8.5 .9.0 28 777 Radio Operator, High Speed...Automatic u T 119 119 46 1 47 29 955 Radar Repairman, Airborne Equipment ( Designated Set) W C U T 119 119 3§ 2 43 30 925
Satellite-based assessment of grassland yields
NASA Astrophysics Data System (ADS)
Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.
2015-04-01
Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.
Interactive computer methods for generating mineral-resource maps
Calkins, James Alfred; Crosby, A.S.; Huffman, T.E.; Clark, A.L.; Mason, G.T.; Bascle, R.J.
1980-01-01
Inasmuch as maps are a basic tool of geologists, the U.S. Geological Survey's CRIB (Computerized Resources Information Bank) was constructed so that the data it contains can be used to generate mineral-resource maps. However, by the standard methods used-batch processing and off-line plotting-the production of a finished map commonly takes 2-3 weeks. To produce computer-generated maps more rapidly, cheaply, and easily, and also to provide an effective demonstration tool, we have devised two related methods for plotting maps as alternatives to conventional batch methods. These methods are: 1. Quick-Plot, an interactive program whose output appears on a CRT (cathode-ray-tube) device, and 2. The Interactive CAM (Cartographic Automatic Mapping system), which combines batch and interactive runs. The output of the Interactive CAM system is final compilation (not camera-ready) paper copy. Both methods are designed to use data from the CRIB file in conjunction with a map-plotting program. Quick-Plot retrieves a user-selected subset of data from the CRIB file, immediately produces an image of the desired area on a CRT device, and plots data points according to a limited set of user-selected symbols. This method is useful for immediate evaluation of the map and for demonstrating how trial maps can be made quickly. The Interactive CAM system links the output of an interactive CRIB retrieval to a modified version of the CAM program, which runs in the batch mode and stores plotting instructions on a disk, rather than on a tape. The disk can be accessed by a CRT, and, thus, the user can view and evaluate the map output on a CRT immediately after a batch run, without waiting 1-3 days for an off-line plot. The user can, therefore, do most of the layout and design work in a relatively short time by use of the CRT, before generating a plot tape and having the map plotted on an off-line plotter.
Integrated approach for automatic target recognition using a network of collaborative sensors.
Mahalanobis, Abhijit; Van Nevel, Alan
2006-10-01
We introduce what is believed to be a novel concept by which several sensors with automatic target recognition (ATR) capability collaborate to recognize objects. Such an approach would be suitable for netted systems in which the sensors and platforms can coordinate to optimize end-to-end performance. We use correlation filtering techniques to facilitate the development of the concept, although other ATR algorithms may be easily substituted. Essentially, a self-configuring geometry of netted platforms is proposed that positions the sensors optimally with respect to each other, and takes into account the interactions among the sensor, the recognition algorithms, and the classes of the objects to be recognized. We show how such a paradigm optimizes overall performance, and illustrate the collaborative ATR scheme for recognizing targets in synthetic aperture radar imagery by using viewing position as a sensor parameter.
Preliminary study of a possible automatic landing system
NASA Technical Reports Server (NTRS)
Sherman, W. L.; Winfrey, S. W.
1974-01-01
Navigation and control laws for a possible automatic landing system have been investigated. The system makes use of data from an inertial table and either an airborne or ground radar to generate signals that guide the airplane to a landing. All landing maneuvers take place within a zone that extends 6000 m out from the touchdown point, 4000 m on each side of the runway center line, and 540 m high. The results show that the system can adequately control the airplane on steep, curved decelerating approaches to a landing that takes place with small errors from the desired landing point and desired airplane attitude. The system studied would interface well with the scanning beam microwave landing system (MLS). The use of this system with the MLS makes it possible to incorporate an independent landing monitor.
Landslide Life-Cycle Monitoring and Failure Prediction using Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Bouali, E. H. Y.; Oommen, T.; Escobar-Wolf, R. P.
2017-12-01
The consequences of slope instability are severe across the world: the US Geological Survey estimates that, each year, the United States spends $3.5B to repair damages caused by landslides, 25-50 deaths occur, real estate values in affected areas are reduced, productivity decreases, and natural environments are destroyed. A 2012 study by D.N. Petley found that loss of life is typically underestimated and, between 2004 and 2010, 2,620 fatal landslides caused 32,322 deaths around the world. These statistics have led research into the study of landslide monitoring and forecasting. More specifically, this presentation focuses on assessing the potential for using satellite-based optical and radar imagery toward overall landslide life-cycle monitoring and prediction. Radar images from multiple satellites (ERS-1, ERS-2, ENVISAT, and COSMO-SkyMed) are processed using the Persistent Scatterer Interferometry (PSI) technique. Optical images, from the Worldview-2 satellite, are orthorectified and processed using the Co-registration of Optically Sensed Images and Correlation (COSI-Corr) algorithm. Both approaches, process stacks of respective images, yield ground displacement rate values. Ground displacement information is used to generate `inverse-velocity vs time' plots, a proxy relationship that is used to estimate landslide occurrence (slope failure) and derived from a relationship quantified by T. Fukuzono in 1985 and B. Voight in 1988 between a material's time of failure and the strain rate applied to that material. Successful laboratory tests have demonstrated the usefulness of `inverse-velocity vs time' plots. This presentation will investigate the applicability of this approach with remote sensing on natural landslides in the western United States.
Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria
2016-06-01
The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less
Toward Automated Generation of Reservoir Water Elevation Changes From Satellite Radar Altimetry.
NASA Astrophysics Data System (ADS)
Okeowo, M. A.; Lee, H.; Hossain, F.
2015-12-01
Until now, processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to contaminated measurements from their surrounding topography. It becomes more challenging if the size of the water body is small and thus the number of available high-rate measurements from the water surface is limited. A manual removal of outliers is time consuming which limits a global generation of reservoir elevation profiles. This has limited a global study of lakes and reservoir elevation profiles for monitoring storage changes and hydrologic modeling. We have proposed a new method to automatically generate a time-series information from raw satellite radar altimetry without user intervention. With this method, scientist with little knowledge of altimetry can now independently process radar altimetry for diverse purposes. The method is based on K-means clustering, backscatter coefficient and statistical analysis of the dataset for outlier detection. The result of this method will be validated using in-situ gauges from US, Indus and Bangladesh reservoirs. In addition, a sensitivity analysis will be done to ascertain the limitations of this algorithm based on the surrounding topography, and the length of altimetry track overlap with the lake/reservoir. Finally, a reservoir storage change will be estimated on the study sites using MODIS and Landsat water classification for estimating the area of reservoir and the height will be estimated using Jason-2 and SARAL/Altika satellites.
Radar Determination of Fault Slip and Location in Partially Decorrelated Images
NASA Astrophysics Data System (ADS)
Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Stough, Timothy; Pierce, Marlon; Wang, Jun
2017-06-01
Faced with the challenge of thousands of frames of radar interferometric images, automated feature extraction promises to spur data understanding and highlight geophysically active land regions for further study. We have developed techniques for automatically determining surface fault slip and location using deformation images from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), which is similar to satellite-based SAR but has more mission flexibility and higher resolution (pixels are approximately 7 m). This radar interferometry provides a highly sensitive method, clearly indicating faults slipping at levels of 10 mm or less. But interferometric images are subject to decorrelation between revisit times, creating spots of bad data in the image. Our method begins with freely available data products from the UAVSAR mission, chiefly unwrapped interferograms, coherence images, and flight metadata. The computer vision techniques we use assume no data gaps or holes; so a preliminary step detects and removes spots of bad data and fills these holes by interpolation and blurring. Detected and partially validated surface fractures from earthquake main shocks, aftershocks, and aseismic-induced slip are shown for faults in California, including El Mayor-Cucapah (M7.2, 2010), the Ocotillo aftershock (M5.7, 2010), and South Napa (M6.0, 2014). Aseismic slip is detected on the San Andreas Fault from the El Mayor-Cucapah earthquake, in regions of highly patterned partial decorrelation. Validation is performed by comparing slip estimates from two interferograms with published ground truth measurements.
Embedded DSP-based telehealth radar system for remote in-door fall detection.
Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique
2015-01-01
Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.
Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets
NASA Astrophysics Data System (ADS)
Thakur, S.; Bruzzone, L.
2017-12-01
Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For cross-validation, the database is compared with radargrams simulated from the analysis of radio wave propagation through geo-electrical models representing the subsurface hypotheses for the RIME targets.
Panesar, Sukhmeet S; Rao, Christopher; Vecht, Joshua A; Mirza, Saqeb B; Netuveli, Gopalakrishnan; Morris, Richard; Rosenthal, Joe; Darzi, Ara; Athanasiou, Thanos
2009-10-01
Meta-analyses may be prone to generating misleading results because of a paucity of experimental studies (especially in surgery); publication bias; and heterogeneity in study design, intervention and the patient population of included studies. When investigating a specific clinical or scientific question on which several relevant meta-analyses may have been published, value judgments must be applied to determine which analysis represents the most robust evidence. These value judgments should be specifically acknowledged. We designed the Veritas plot to explicitly explore important elements of quality and to facilitate decision-making by highlighting specific areas in which meta-analyses are found to be deficient. Furthermore, as a graphic tool, it may be more intuitive than when similar data are presented in a tabular or text format. The Veritas plot is an adaption of the radar plot, a graphic tool for the description of multiattribute data. Key elements of meta-analytical quality such as heterogeneity, publication bias and study design are assessed. Existing qualitative methods such as the Assessment of Multiple Systematic Reviews (AMSTAR) tool have been incorporated in addition to important considerations when interpreting surgical meta-analyses such as the year of publication and population characteristics. To demonstrate the potential of the Veritas plot to inform clinical practice, we apply the Veritas plot to the meta-analytical literature comparing the incidence of 30-day stroke in off-pump coronary artery bypass surgery and conventional coronary artery bypass surgery. We demonstrate that a visually-stimulating and practical evidence-synthesis tool can direct the clinician and scientist to a particular meta-analytical study to inform clinical practice. The Veritas plot is also cumulative and allowed us to assess the quality of evidence over time. We have presented a practical graphic application for scientists and clinicians to identify and interpret variability in meta-analyses. Although further validation of the Veritas plot is required, it may have the potential to contribute to the implementation of evidence-based practice.
Reproducibility Between Brain Uptake Ratio Using Anatomic Standardization and Patlak-Plot Methods.
Shibutani, Takayuki; Onoguchi, Masahisa; Noguchi, Atsushi; Yamada, Tomoki; Tsuchihashi, Hiroko; Nakajima, Tadashi; Kinuya, Seigo
2015-12-01
The Patlak-plot and conventional methods of determining brain uptake ratio (BUR) have some problems with reproducibility. We formulated a method of determining BUR using anatomic standardization (BUR-AS) in a statistical parametric mapping algorithm to improve reproducibility. The objective of this study was to demonstrate the inter- and intraoperator reproducibility of mean cerebral blood flow as determined using BUR-AS in comparison to the conventional-BUR (BUR-C) and Patlak-plot methods. The images of 30 patients who underwent brain perfusion SPECT were retrospectively used in this study. The images were reconstructed using ordered-subset expectation maximization and processed using an automatic quantitative analysis for cerebral blood flow of ECD tool. The mean SPECT count was calculated from axial basal ganglia slices of the normal side (slices 31-40) drawn using a 3-dimensional stereotactic region-of-interest template after anatomic standardization. The mean cerebral blood flow was calculated from the mean SPECT count. Reproducibility was evaluated using coefficient of variation and Bland-Altman plotting. For both inter- and intraoperator reproducibility, the BUR-AS method had the lowest coefficient of variation and smallest error range about the Bland-Altman plot. Mean CBF obtained using the BUR-AS method had the highest reproducibility. Compared with the Patlak-plot and BUR-C methods, the BUR-AS method provides greater inter- and intraoperator reproducibility of cerebral blood flow measurement. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach
NASA Astrophysics Data System (ADS)
Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele
2012-09-01
The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.
ADS's Dexter Data Extraction Applet
NASA Astrophysics Data System (ADS)
Demleitner, M.; Accomazzi, A.; Eichhorn, G.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.
The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template. This contribution both describes the operation of Dexter from a user's point of view and discusses some of the architectural issues we faced during implementation.
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1972-01-01
The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response.
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1972-01-01
A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied; plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer, and the performance curves were automatically plotted by a CalComp plotter unit. Curves are presented on the optimization of the support housing characteristics to attenuate the rotor unbalance response over the entire rotor speed range. The complete transient motion including rotor unbalance was examined by integrating the equations of motion numerically using a modified fourth order Runge-Kutta procedure, and the resulting whirl orbits were plotted by the CalComp plotter unit. The results of the transient analysis are discussed with regards to the design optimization procedure derived from the steady-state analysis.
Method and apparatus for determining minority carrier diffusion length in semiconductors
Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.
1983-07-12
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.
Splatterplots: overcoming overdraw in scatter plots.
Mayorga, Adrian; Gleicher, Michael
2013-09-01
We introduce Splatterplots, a novel presentation of scattered data that enables visualizations that scale beyond standard scatter plots. Traditional scatter plots suffer from overdraw (overlapping glyphs) as the number of points per unit area increases. Overdraw obscures outliers, hides data distributions, and makes the relationship among subgroups of the data difficult to discern. To address these issues, Splatterplots abstract away information such that the density of data shown in any unit of screen space is bounded, while allowing continuous zoom to reveal abstracted details. Abstraction automatically groups dense data points into contours and samples remaining points. We combine techniques for abstraction with perceptually based color blending to reveal the relationship between data subgroups. The resulting visualizations represent the dense regions of each subgroup of the data set as smooth closed shapes and show representative outliers explicitly. We present techniques that leverage the GPU for Splatterplot computation and rendering, enabling interaction with massive data sets. We show how Splatterplots can be an effective alternative to traditional methods of displaying scatter data communicating data trends, outliers, and data set relationships much like traditional scatter plots, but scaling to data sets of higher density and up to millions of points on the screen.
Splatterplots: Overcoming Overdraw in Scatter Plots
Mayorga, Adrian; Gleicher, Michael
2014-01-01
We introduce Splatterplots, a novel presentation of scattered data that enables visualizations that scale beyond standard scatter plots. Traditional scatter plots suffer from overdraw (overlapping glyphs) as the number of points per unit area increases. Overdraw obscures outliers, hides data distributions, and makes the relationship among subgroups of the data difficult to discern. To address these issues, Splatterplots abstract away information such that the density of data shown in any unit of screen space is bounded, while allowing continuous zoom to reveal abstracted details. Abstraction automatically groups dense data points into contours and samples remaining points. We combine techniques for abstraction with with perceptually based color blending to reveal the relationship between data subgroups. The resulting visualizations represent the dense regions of each subgroup of the dataset as smooth closed shapes and show representative outliers explicitly. We present techniques that leverage the GPU for Splatterplot computation and rendering, enabling interaction with massive data sets. We show how splatterplots can be an effective alternative to traditional methods of displaying scatter data communicating data trends, outliers, and data set relationships much like traditional scatter plots, but scaling to data sets of higher density and up to millions of points on the screen. PMID:23846097
Splatterplots: Overcoming Overdraw in Scatter Plots.
Mayorga, Adrian; Gleicher, Michael
2013-03-20
We introduce Splatterplots, a novel presentation of scattered data that enables visualizations that scale beyond standard scatter plots. Traditional scatter plots suffer from overdraw (overlapping glyphs) as the number of points per unit area increases. Overdraw obscures outliers, hides data distributions, and makes the relationship among subgroups of the data difficult to discern. To address these issues, Splatterplots abstract away information such that the density of data shown in any unit of screen space is bounded, while allowing continuous zoom to reveal abstracted details. Abstraction automatically groups dense data points into contours and samples remaining points. We combine techniques for abstraction with with perceptually based color blending to reveal the relationship between data subgroups. The resulting visualizations represent the dense regions of each subgroup of the dataset as smooth closed shapes and show representative outliers explicitly. We present techniques that leverage the GPU for Splatterplot computation and rendering, enabling interaction with massive data sets. We show how splatterplots can be an effective alternative to traditional methods of displaying scatter data communicating data trends, outliers, and data set relationships much like traditional scatter plots, but scaling to data sets of higher density and up to millions of points on the screen.
Robust autofocus algorithm for ISAR imaging of moving targets
NASA Astrophysics Data System (ADS)
Li, Jian; Wu, Renbiao; Chen, Victor C.
2000-08-01
A robust autofocus approach, referred to as AUTOCLEAN (AUTOfocus via CLEAN), is proposed for the motion compensation in ISAR (inverse synthetic aperture radar) imaging of moving targets. It is a parametric algorithm based on a very flexible data model which takes into account arbitrary range migration and arbitrary phase errors across the synthetic aperture that may be induced by unwanted radial motion of the target as well as propagation or system instability. AUTOCLEAN can be classified as a multiple scatterer algorithm (MSA), but it differs considerably from other existing MSAs in several aspects: (1) dominant scatterers are selected automatically in the two-dimensional (2-D) image domain; (2) scatterers may not be well-isolated or very dominant; (3) phase and RCS (radar cross section) information from each selected scatterer are combined in an optimal way; (4) the troublesome phase unwrapping step is avoided. AUTOCLEAN is computationally efficient and involves only a sequence of FFTs (fast Fourier Transforms). Another good feature associated with AUTOCLEAN is that its performance can be progressively improved by assuming a larger number of dominant scatterers for the target. Hence it can be easily configured for real-time applications including, for example, ATR (automatic target recognition) of non-cooperative moving targets, and for some other applications where the image quality is of the major concern but not the computational time including, for example, for the development and maintenance of low observable aircrafts. Numerical and experimental results have shown that AUTOCLEAN is a very robust autofocus tool for ISAR imaging.
Generalized ISAR--part I: an optimal method for imaging large naval vessels.
Given, James A; Schmidt, William R
2005-11-01
We describe a generalized inverse synthetic aperture radar (ISAR) process that performs well under a wide variety of conditions common to the naval ISAR tests of large vessels. In particular, the generalized ISAR process performs well in the presence of moderate intensity ship roll. The process maps localized scatterers onto peaks on the ISAR plot. However, in a generalized ISAR plot, each of the two coordinates of a peak is a fixed linear combination of the three ship coordinates of the scatterer causing the peak. Combining this process with interferometry will then provide high-accuracy three-dimensional location of the important scatterers on a ship. We show that ISAR can be performed in the presence of simultaneous roll and aspect change, provided the two Doppler rates are not too close in magnitude. We derive the equations needed for generalized ISAR, both roll driven and aspect driven, and test them against simulations performed in a variety of conditions, including large roll amplitudes.
Generalized ISAR--part II: interferometric techniques for three-dimensional location of scatterers.
Given, James A; Schmidt, William R
2005-11-01
This paper is the second part of a study dedicated to optimizing diagnostic inverse synthetic aperture radar (ISAR) studies of large naval vessels. The method developed here provides accurate determination of the position of important radio-frequency scatterers by combining accurate knowledge of ship position and orientation with specialized signal processing. The method allows for the simultaneous presence of substantial Doppler returns from both change of roll angle and change of aspect angle by introducing generalized ISAR ates. The first paper provides two modes of interpreting ISAR plots, one valid when roll Doppler is dominant, the other valid when the aspect angle Doppler is dominant. Here, we provide, for each type of ISAR plot technique, a corresponding interferometric ISAR (InSAR) technique. The former, aspect-angle dominated InSAR, is a generalization of standard InSAR; the latter, roll-angle dominated InSAR, seems to be new to this work. Both methods are shown to be efficient at identifying localized scatterers under simulation conditions.
The analysis and kinetic energy balance of an upper-level wind maximum during intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Jedlovec, G. J.
1982-01-01
The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.
Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1986-01-01
The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.
Automatic system for radar echoes filtering based on textural features and artificial intelligence
NASA Astrophysics Data System (ADS)
Hedir, Mehdia; Haddad, Boualem
2017-10-01
Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.
New formulation for interferometric synthetic aperture radar for terrain mapping
NASA Astrophysics Data System (ADS)
Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.
1994-06-01
The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.
Decision-level fusion of SAR and IR sensor information for automatic target detection
NASA Astrophysics Data System (ADS)
Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon
2017-05-01
We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE).
Shekhar, Karthik; Brodin, Petter; Davis, Mark M; Chakraborty, Arup K
2014-01-07
Mass cytometry enables an unprecedented number of parameters to be measured in individual cells at a high throughput, but the large dimensionality of the resulting data severely limits approaches relying on manual "gating." Clustering cells based on phenotypic similarity comes at a loss of single-cell resolution and often the number of subpopulations is unknown a priori. Here we describe ACCENSE, a tool that combines nonlinear dimensionality reduction with density-based partitioning, and displays multivariate cellular phenotypes on a 2D plot. We apply ACCENSE to 35-parameter mass cytometry data from CD8(+) T cells derived from specific pathogen-free and germ-free mice, and stratify cells into phenotypic subpopulations. Our results show significant heterogeneity within the known CD8(+) T-cell subpopulations, and of particular note is that we find a large novel subpopulation in both specific pathogen-free and germ-free mice that has not been described previously. This subpopulation possesses a phenotypic signature that is distinct from conventional naive and memory subpopulations when analyzed by ACCENSE, but is not distinguishable on a biaxial plot of standard markers. We are able to automatically identify cellular subpopulations based on all proteins analyzed, thus aiding the full utilization of powerful new single-cell technologies such as mass cytometry.
Charnock, P; Jones, R; Fazakerley, J; Wilde, R; Dunn, A F
2011-09-01
Data are currently being collected from hospital radiology information systems in the North West of the UK for the purposes of both clinical audit and patient dose audit. Could these data also be used to satisfy quality assurance (QA) requirements according to UK guidance? From 2008 to 2009, 731 653 records were submitted from 8 hospitals from the North West England. For automatic exposure control QA, the protocol from Institute of Physics and Engineering in Medicine (IPEM) report 91 recommends that milliamperes per second can be monitored for repeatability and reproducibility using a suitable phantom, at 70-81 kV. Abdomen AP and chest PA examinations were analysed to find the most common kilovoltage used with these records then used to plot average monthly milliamperes per second with time. IPEM report 91 also recommends that a range of commonly used clinical settings is used to check output reproducibility and repeatability. For each tube, the dose area product values were plotted over time for two most common exposure factor sets. Results show that it is possible to do performance checks of AEC systems; however more work is required to be able to monitor tube output performance. Procedurally, the management system requires work and the benefits to the workflow would need to be demonstrated.
OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems
NASA Technical Reports Server (NTRS)
Kao, David L.; Chan, William M.
2012-01-01
Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.
A non-chemical system for online weed control.
Rueda-Ayala, Victor; Peteinatos, Gerassimos; Gerhards, Roland; Andújar, Dionisio
2015-03-30
Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%-91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide.
A Non-Chemical System for Online Weed Control
Rueda-Ayala, Victor; Peteinatos, Gerassimos; Gerhards, Roland; Andújar, Dionisio
2015-01-01
Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%–91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide. PMID:25831085
Reproducible research in palaeomagnetism
NASA Astrophysics Data System (ADS)
Lurcock, Pontus; Florindo, Fabio
2015-04-01
The reproducibility of research findings is attracting increasing attention across all scientific disciplines. In palaeomagnetism as elsewhere, computer-based analysis techniques are becoming more commonplace, complex, and diverse. Analyses can often be difficult to reproduce from scratch, both for the original researchers and for others seeking to build on the work. We present a palaeomagnetic plotting and analysis program designed to make reproducibility easier. Part of the problem is the divide between interactive and scripted (batch) analysis programs. An interactive desktop program with a graphical interface is a powerful tool for exploring data and iteratively refining analyses, but usually cannot operate without human interaction. This makes it impossible to re-run an analysis automatically, or to integrate it into a larger automated scientific workflow - for example, a script to generate figures and tables for a paper. In some cases the parameters of the analysis process itself are not saved explicitly, making it hard to repeat or improve the analysis even with human interaction. Conversely, non-interactive batch tools can be controlled by pre-written scripts and configuration files, allowing an analysis to be 'replayed' automatically from the raw data. However, this advantage comes at the expense of exploratory capability: iteratively improving an analysis entails a time-consuming cycle of editing scripts, running them, and viewing the output. Batch tools also tend to require more computer expertise from their users. PuffinPlot is a palaeomagnetic plotting and analysis program which aims to bridge this gap. First released in 2012, it offers both an interactive, user-friendly desktop interface and a batch scripting interface, both making use of the same core library of palaeomagnetic functions. We present new improvements to the program that help to integrate the interactive and batch approaches, allowing an analysis to be interactively explored and refined, then saved as a self-contained configuration which can be re-run without human interaction. PuffinPlot can thus be used as a component of a larger scientific workflow, integrated with workflow management tools such as Kepler, without compromising its capabilities as an exploratory tool. Since both PuffinPlot and the platform it runs on (Java) are Free/Open Source software, even the most fundamental components of an analysis can be verified and reproduced.
NASA Technical Reports Server (NTRS)
Jewel, Joseph W., Jr.; Whitten, James B.
1960-01-01
An investigation has been conducted to determine the problems involved in an emergency method of guiding a gliding vehicle from high altitudes to a high key position (initial position) above a landing field. A jet airplane in a simulated flameout condition, conventional ground-tracking radar, and a scaled wire for guidance programming on the radar plotting board were used in the tests. Starting test altitudes varied from 30,000 feet to 46,500 feet, and starting positions ranged 8.4 to 67 nautical miles from the high key. Specified altitudes of the high key were 12,000, 10,000 or 4,000 feet. Lift-drag ratios of the aircraft of either 17, 16, or 6 were held constant during any given flight; however, for a few flights the lift-drag ratio was varied from 11 to 6. Indicated airspeeds were held constant at either 160 or 250 knots. Results from these tests indicate that a gliding vehicle having a lift-drag ratio of 16 and an indicated approach speed of 160 knots can be guided to within 800 feet vertically and 2,400 feet laterally of a high key position. When the lift-drag ratio of the vehicle is reduced to 6 and the indicated approach speed is raised to 250 knots, the radar controller was able to guide the vehicle to within 2,400 feet vertically and au feet laterally of the high key. It was also found that radar stations which give only azimuth-distance information could control the glide path of a gliding vehicle as well as stations that receive azimuth-distance-altitude information, provided that altitude information is supplied by the pilot.
Wood, Curtis R; Chapman, Jason W; Reynolds, Donald R; Barlow, Janet F; Smith, Alan D; Woiwod, Ian P
2006-03-01
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights that are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Meteorological Office's (UKMO) Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps, provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c) on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.
Thermal imaging to detect physiological indicators of stress in humans
NASA Astrophysics Data System (ADS)
Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.
2013-05-01
Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.
NASA Technical Reports Server (NTRS)
1995-01-01
WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.
NASA Technical Reports Server (NTRS)
Viter, V.
1993-01-01
The basic data of the automatic space station ALMAZ-1B is overviewed, including the orbit parameters and maximum power. The principal technical characteristics of its remote sensing equipment is listed for the synthetic aperture and side-looking radar, optoelectronic equipment for stereophotography, high-resolution electronic scanner, middle-resolution optomechanical scanner, spectroradiometer for ocean satellite monitoring, and information transmission and reception. The main objectives and uses of the ALMAZ-1B information are cartography, land monitoring, geology, ecological monitoring, oceanology, pilotage, fishery, and information supply during an emergency such as controlling situation in natural disasters.
Klijn, Sven L; Weijenberg, Matty P; Lemmens, Paul; van den Brandt, Piet A; Lima Passos, Valéria
2017-10-01
Background and objective Group-based trajectory modelling is a model-based clustering technique applied for the identification of latent patterns of temporal changes. Despite its manifold applications in clinical and health sciences, potential problems of the model selection procedure are often overlooked. The choice of the number of latent trajectories (class-enumeration), for instance, is to a large degree based on statistical criteria that are not fail-safe. Moreover, the process as a whole is not transparent. To facilitate class enumeration, we introduce a graphical summary display of several fit and model adequacy criteria, the fit-criteria assessment plot. Methods An R-code that accepts universal data input is presented. The programme condenses relevant group-based trajectory modelling output information of model fit indices in automated graphical displays. Examples based on real and simulated data are provided to illustrate, assess and validate fit-criteria assessment plot's utility. Results Fit-criteria assessment plot provides an overview of fit criteria on a single page, placing users in an informed position to make a decision. Fit-criteria assessment plot does not automatically select the most appropriate model but eases the model assessment procedure. Conclusions Fit-criteria assessment plot is an exploratory, visualisation tool that can be employed to assist decisions in the initial and decisive phase of group-based trajectory modelling analysis. Considering group-based trajectory modelling's widespread resonance in medical and epidemiological sciences, a more comprehensive, easily interpretable and transparent display of the iterative process of class enumeration may foster group-based trajectory modelling's adequate use.
NASA Astrophysics Data System (ADS)
Erdin, R.; Frei, C.; Sideris, I.; Kuensch, H.-R.
2010-09-01
There is an increasing demand for accurate mapping of precipitation at a spatial resolution of kilometers. Radar and rain gauges - the two main precipitation measurement systems - exhibit complementary strengths and weaknesses. Radar offers high spatial and temporal resolution but lacks accuracy of absolute values, whereas rain gauges provide accurate values at their specific point location but suffer from poor spatial representativeness. Methods of geostatistical mapping have been proposed to combine radar and rain gauge data for quantitative precipitation estimation (QPE). The aim is to combine the respective strengths and compensate for the respective weaknesses of the two observation platforms. Several studies have demonstrated the potential of these methods over topography of moderate complexity, but their performance remains unclear for high-mountain regions where rainfall patterns are complex, the representativeness of rain gauge measurements is limited and radar observations are obstructed. In this study we examine the potential and limitations of two frequently used geostatistical mapping methods for the territory of Switzerland, where the mountain chain of the Alps poses particular challenges to QPE. The two geostatistical methods explored are kriging with external drift (KED) using radar as drift variable and ordinary kriging of radar errors (OKRE). The radar data is a composite from three C-band radars using a constant Z-R relationship, advanced correction processings for visibility, ground clutter and beam shielding and a climatological bias adjustment. The rain gauge data originates from an automatic network with a typical inter-station distance of 25 km. Both combination methods are applied to a set of case examples representing typical rainfall situations in the Alps with their inherent challenges at daily and hourly time resolution. The quality of precipitation estimates is assessed by several skill scores calculated from cross validation errors at gauge locations. These scores assess different characteristics such as bias, distinction between dry and wet areas (HK, SLEEPS), accuracy of values at wet locations (SCATTER) and overall performance (RMSE, MAD). Special attention is paid to the subject of appropriate case-dependent transformation of variables in order to fulfill model assumptions. Our analyses show that geostatistical merging techniques can provide significant added value compared to pure radar and pure rain gauge data - also in mountainous terrain. Yet, the high a-priori quality of the radar product may have been essential for the good performance of methods. The comparison between the two combination methods shows better results in general for KED, the more flexible of the two methods. However, there are features, such as the differentiation between wet and dry areas (HK), and situations, such as small isolated convective cells, where OKRE outperforms KED. Our discussion conveys interesting insights into the potential and limitations of the two analyzed methods and leads to suggestions for further improvements of combination techniques.
Creation of lumped parameter thermal model by the use of finite elements
NASA Technical Reports Server (NTRS)
1978-01-01
In the finite difference technique, the thermal network is represented by an analogous electrical network. The development of this network model, which is used to describe a physical system, often requires tedious and mental data preparation and checkout by the analyst which can be greatly reduced through the use of the computer programs to develop automatically the mathematical model and associated input data and graphically display the analytical model to facilitate model verification. Three separate programs are involved which are linked through common mass storage files and data card formats. These programs are SPAR, CINGEN and GEOMPLT, and are used to (1) develop thermal models for the MITAS II thermal analyzer program; (2) produce geometry plots of the thermal network; and (3) produce temperature distribution and time history plots.
Qualitative analysis of precipiation distribution in Poland with use of different data sources
NASA Astrophysics Data System (ADS)
Walawender, J.; Dyras, I.; Łapeta, B.; Serafin-Rek, D.; Twardowski, A.
2008-04-01
Geographical Information Systems (GIS) can be used to integrate data from different sources and in different formats to perform innovative spatial and temporal analysis. GIS can be also applied for climatic research to manage, investigate and display all kinds of weather data. The main objective of this study is to demonstrate that GIS is a useful tool to examine and visualise precipitation distribution obtained from different data sources: ground measurements, satellite and radar data. Three selected days (30 cases) with convective rainfall situations were analysed. Firstly, scalable GRID-based approach was applied to store data from three different sources in comparable layout. Then, geoprocessing algorithm was created within ArcGIS 9.2 environment. The algorithm included: GRID definition, reclassification and raster algebra. All of the calculations and procedures were performed automatically. Finally, contingency tables and pie charts were created to show relationship between ground measurements and both satellite and radar derived data. The results were visualised on maps.
Generation and assessment of turntable SAR data for the support of ATR development
NASA Astrophysics Data System (ADS)
Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby
1998-10-01
Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.
2014-12-01
Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.
Dual-polarization characteristics of the radar ocean return in the presence of rain
NASA Technical Reports Server (NTRS)
Meneghini, R.; Kumagai, H.; Kozu, T.
1992-01-01
Experimental data are presented on the polarimetric and dual-wavelength characteristics of the ocean surface in the presence of rain. To explain a portion of the variability observed in scatter plots under rain conditions, a storm model is used that incorporates measured drop size distributions. The fairly large variability indicates that effects of drop size distribution and the presence of partially melted particles can introduce a significant error in the estimate of attenuation. This effect is especially significant in the case of a 10-GHz radar under high rain rates. A surface reference method at this frequency will tend to overestimate the rain attenuation unless melting layer attenuation is properly taken into account. Observations of the cross-polarization return in stratiform rain over an ocean surface show three distinct components. Two of these correspond to aspherical, nonaligned particles in the melting layer seen in the direct and mirror-image returns. The remaining part depends both on the off-nadir depolarization by the surface and on the rain medium. A possible mechanism for this latter effect is the bistatic scattering from the rain to the surface.
Multitaper spectral analysis of atmospheric radar signals
NASA Astrophysics Data System (ADS)
Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.
2004-11-01
Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.
Pulse stuttering as a remedy for aliased ground backscatter
NASA Astrophysics Data System (ADS)
Bowhill, S. A.
1983-12-01
An algorithm that aides in the removal of ground scatter from low frequency Mesosphere, Stratosphere, Troposphere (MST) radar signals is examined. The unwanted ground scatter is shown as a sequence of velocity plots which are almost typical at the various altitudes. The interpulse period is changed in a cyclic way, thereby destroying the coherence of the unwanted signal. The interpulse period must be changed by an amount at least equal to the transmitted pulse width, and optimum performance is obtained when the number of different interpulse period occupies a time span greater than the coherence time of the unwanted signal. Since a 20-msec pulse width is used, it was found convenient to cycle through 50 pulses, the interpulse period changing from 2 msec to 3 msec during the 1/8-second time. This particular pattern of interpulse periods was provided by a software radar controller. With application of this algorithm, the unwanted scatter signal becomes incoherent from one pulse to the next, and therefore is perceived as noise by the coherent integrator and correlator.
Pulse stuttering as a remedy for aliased ground backscatter
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
An algorithm that aides in the removal of ground scatter from low frequency Mesosphere, Stratosphere, Troposphere (MST) radar signals is examined. The unwanted ground scatter is shown as a sequence of velocity plots which are almost typical at the various altitudes. The interpulse period is changed in a cyclic way, thereby destroying the coherence of the unwanted signal. The interpulse period must be changed by an amount at least equal to the transmitted pulse width, and optimum performance is obtained when the number of different interpulse period occupies a time span greater than the coherence time of the unwanted signal. Since a 20-msec pulse width is used, it was found convenient to cycle through 50 pulses, the interpulse period changing from 2 msec to 3 msec during the 1/8-second time. This particular pattern of interpulse periods was provided by a software radar controller. With application of this algorithm, the unwanted scatter signal becomes incoherent from one pulse to the next, and therefore is perceived as noise by the coherent integrator and correlator.
NASA Astrophysics Data System (ADS)
Lorente, Pablo; Piedracoba, Silvia; Soto-Navarro, Javier; Ruiz, Maria Isabel; Alvarez Fanjul, Enrique
2015-04-01
Over recent years, special attention has been focused on the development of protocols for near real-time quality control (QC) of HF radar derived current measurements. However, no agreement has been worldwide achieved to date to establish a standardized QC methodology, although a number of valuable international initiatives have been launched. In this context, Puertos del Estado (PdE) aims to implement a fully operational HF radar network with four different Codar SeaSonde HF radar systems by means of: - The development of a best-practices robust protocol for data processing and QC procedures to routinely monitor sites performance under a wide variety of ocean conditions. - The execution of validation works with in-situ observations to assess the accuracy of HF radar-derived current measurements. The main goal of the present work is to show this combined methodology for the specific case of Ebro HF radar (although easily expandable to the rest of PdE radar systems), deployed to manage Ebro River deltaic area and promote the conservation of an important aquatic ecosystem exposed to a severe erosion and reshape. To this aim, a web interface has been developed to efficiently monitor in real time the evolution of several diagnostic parameters provided by the manufacturer (CODAR) and used as indicators of HF radar system health. This web, updated automatically every hour, examines sites performance on different time basis in terms of: - Hardware parameters: power and temperature. - Radial parameters, among others: Signal-to-Noise Ratio (SNR), number of radial vectors provided by time step, maximum radial range and bearing. - Total uncertainty metrics provided by CODAR: zonal and meridional standard deviations and covariance between both components. - Additionally, a widget embedded in the web interface executes queries against PdE database, providing the chance to compare current time series observed by Tarragona buoy (located within Ebro HF radar spatial domain) and those measured by the closest radar grid point. A thorough analysis of the temporal evolution of the aforementioned parameters allows to define the standard thresholds for each site within which they are considered to be running optimally. In contrast, a site performance could be categorized as sub-optimal if an erratic and/or anomalous behavior is persistently detected in radial parameters values, related to a significant discrepancy from the mean and clearly outside the limits defined by the associated standard deviations. Consequently, a three colored-based alert system is activated according to each site's current status: green (OK), yellow (acceptable, but issue detected) and red (KO). Since this approach is constrained by the fact that it can not state the intrinsic quality of surface current data, a complementary validation analysis is required: HF radar-derived radial and total vectors are compared with observations from a current meter installed in Tarragona buoy. This validation, conducted for the entire 2014, aims to complete the proposed methodology through the exploration of the existence of bearing errors and the evaluation of intrinsic uncertainties related to HF radar technology by means of objective quality indicators.
NASA Astrophysics Data System (ADS)
Tüchler, Lukas; Meyer, Vera
2013-04-01
The new radar-data and lightning-data based automatic cell identification, tracking and nowcasting tool A-TNT (Austrian Thunderstorm Nowcasting Tool), which has been developed at ZAMG, has been applied to investigate the appearance of thunderstorms at Europe scale. Based on the ec-TRAM-method [1], the algorithm identifies and monitors regions of intense precipitation and lightning activity separately by analyzing sequential two-dimensional intensity maps of radar precipitation rate or lightning densities, respectively. Each data source is processed by a stand-alone identification, tracking and nowcasting procedure. The two tracking results are combined to a "main" cell in a final step. This approach allows that the output derived from the two data sources complement each other giving a more comprehensive picture about the current storm situation. So it is possible to distinguish between pure precipitation cells and thunderstorms, to observe regions, where one data source is not or poorly available, and to compensate for occasional data failures. Consequently, the combined cell-tracks are expected to be more consistent and the cell-tracking more robust. Input data for radar-cell tracking on European Scale is the OPERA radar-composite, which is provided every 15 minutes on a 2 km x 2 km grid, indicating the location and intensity of precipitation over Europe. For the lightning-cell tracking, the lightning-detection data of the EUCLID network is mapped on the OPERA grid. Every five minutes, flash density maps with recorded strokes are created and analyzed. This study will present a detailed investigation of the quality of the identification and tracking results using radar and lightning data. The improvements concerning the robustness and reliability of the cell tracking achieved by combining both data sources will be shown. Analyses about cell tracks and selected storm parameters like frequency, longevity and area will give insight into occurrence, appearance and impact of different severe precipitation events. These studies are performed to support the project HAREN (Hazard Assessment based on Rainfall European Nowcasts, funded by the EC Directorate General for Humanitarian Aid and Civil Protection), which has the objective to improve warnings for hazards induced by precipitation at local scale all over Europe. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.
UAV remote sening for precision agriculture
NASA Astrophysics Data System (ADS)
Vigneau, Nathalie; Chéron, Corentin; Mainfroy, Florent; Faroux, Romain
2014-05-01
Airinov offers to farmers, scientists and experimenters (plant breeders, etc.) its technical skills about UAVs, cartography and agronomic remote sensing. The UAV is a 2-m-wingspan flying wing. It can carry away either a RGB camera or a multispectral sensor, which records reflectance in 4 spectral bands. The spectral characteristics of the sensor are modular. Each spectral band is comprised between 400 and 850 nm and the FWHM (Full Width at Half Maximum) is between 10 and 40 nm. The spatial resolution varies according to sensor, flying height and user needs from 15cm/px for multispectral sensor at 150m to 1.5cm/px for RGB camera at 50m. The flight is totally automatic thanks to on-board autopilot, IMU (Inertial Measurement Unit) and GPS. Data processing (unvignetting, mosaicking, correction in reflectance) leads to agronomic variables as LAI (Leaf Area Index) or chlorophyll content for barley, wheat, rape and maize as well as vegetation indices as NDVI (Normalized Difference Vegetation Index). Using these data, Airinov can product advices for farmers as nitrogen preconisation for rape. For scientists, Airinov offers trial plot monitoring by micro-plots vectorisation and numerical data exctraction micro-plot by micro-plot. This can lead to kinetic curve for LAI or NDVI to compare cover establishment for different genotypes for example. Airinov's system is a new way to monitor plots with a lot of data (biophysical or biochemical parameters) at high rate, high spatial resolution and high precision.
Amir, El-ad David; Davis, Kara L; Tadmor, Michelle D; Simonds, Erin F; Levine, Jacob H; Bendall, Sean C; Shenfeld, Daniel K; Krishnaswamy, Smita; Nolan, Garry P; Pe'er, Dana
2013-06-01
New high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data. viSNE plots individual cells in a visual similar to a scatter plot, while using all pairwise distances in high dimension to determine each cell's location in the plot. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow automatically maps into a consistent shape, whereas leukemia samples map into malformed shapes that are distinct from healthy bone marrow and from each other. We also use viSNE and mass cytometry to compare leukemia diagnosis and relapse samples, and to identify a rare leukemia population reminiscent of minimal residual disease. viSNE can be applied to any multi-dimensional single-cell technology.
NASA Astrophysics Data System (ADS)
Dore, C.; Murphy, M.
2013-02-01
This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.
NASA Astrophysics Data System (ADS)
Notti, Davide; Calò, Fabiana; Cigna, Francesca; Manunta, Michele; Herrera, Gerardo; Berti, Matteo; Meisina, Claudia; Tapete, Deodato; Zucca, Francesco
2015-11-01
Recent advances in multi-temporal Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) have greatly improved our capability to monitor geological processes. Ground motion studies using DInSAR require both the availability of good quality input data and rigorous approaches to exploit the retrieved Time Series (TS) at their full potential. In this work we present a methodology for DInSAR TS analysis, with particular focus on landslides and subsidence phenomena. The proposed methodology consists of three main steps: (1) pre-processing, i.e., assessment of a SAR Dataset Quality Index (SDQI) (2) post-processing, i.e., application of empirical/stochastic methods to improve the TS quality, and (3) trend analysis, i.e., comparative implementation of methodologies for automatic TS analysis. Tests were carried out on TS datasets retrieved from processing of SAR imagery acquired by different radar sensors (i.e., ERS-1/2 SAR, RADARSAT-1, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, COSMO-SkyMed) using advanced DInSAR techniques (i.e., SqueeSAR™, PSInSAR™, SPN and SBAS). The obtained values of SDQI are discussed against the technical parameters of each data stack (e.g., radar band, number of SAR scenes, temporal coverage, revisiting time), the retrieved coverage of the DInSAR results, and the constraints related to the characterization of the investigated geological processes. Empirical and stochastic approaches were used to demonstrate how the quality of the TS can be improved after the SAR processing, and examples are discussed to mitigate phase unwrapping errors, and remove regional trends, noise and anomalies. Performance assessment of recently developed methods of trend analysis (i.e., PS-Time, Deviation Index and velocity TS) was conducted on two selected study areas in Northern Italy affected by land subsidence and landslides. Results show that the automatic detection of motion trends enhances the interpretation of DInSAR data, since it provides an objective picture of the deformation behaviour recorded through TS and therefore contributes to the understanding of the on-going geological processes.
Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations
NASA Astrophysics Data System (ADS)
Hirsch, Michael
During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and broadcast FM passive radar. The fusion of data from coherent radar backscatter and optical data at order 10 ms cadence confirms and further quantifies the relation of strong Langmuir turbulence and streaming plasma upflows in the ionosphere with the finest spatiotemporal auroral dynamics associated with IAW acceleration. The software programs developed in this dissertation solve the century-old problem of automatically discriminating finely structured aurora from other forms and pushes the observational wave-particle science frontiers forward.
From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns
NASA Astrophysics Data System (ADS)
Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael
2017-04-01
Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation patterns show a snowfall gradient consistent with the prevailing wind direction. Deriving snow accumulation based on radar data is challenging as the close-ground precipitation patters cannot be resolved by the radar due to shielding and ground clutter in highly complex terrain. Nonetheless, radar measurements show distinct patterns of snowfall and accumulation, which may be the result of orographic enhancement. Station-based snow accumulation measurements are in reasonable agreement with the estimated large-scale radar snow accumulation. The ADS-based snow accumulation maps feature much smaller scale snow accumulation patterns likely due to close-ground wind effects and snow redistribution on top of an altitudinal gradient. To evaluate microphysical processes and patterns influenced by the topography we run a hydrometeor classification on the radar data. The relative importance of topographically induced effects on snow accumulation patterns is investigated based on vertical cross sections of hydrometeor data and corresponding snow accumulation.
WCPP-THE WOLF PLOTTING AND CONTOURING PACKAGE
NASA Technical Reports Server (NTRS)
Masaki, G. T.
1994-01-01
The WOLF Contouring and Plotting Package provides the user with a complete general purpose plotting and contouring capability. This package is a complete system for producing line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The package has been designed to be highly flexible and easy to use. Any plot from a quick simple plot (which requires only one call to the package) to highly sophisticated plots (including motion picture plots) can be easily generated with only a basic knowledge of FORTRAN and the plot commands. Anyone designing a software system that requires plotted output will find that this package offers many advantages over the standard hardware support packages available. The WCPP package is divided into a plot segment and a contour segment. The plot segment can produce output for any combination of line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The line printer plots allow the user to have plots available immediately after a job is run at a low cost. Although the resolution of line printer plots is low, the quick results allows the user to judge if a high resolution plot of a particular run is desirable. The SC4020 and SD4060 provide high speed high resolution cathode ray plots with film and hard copy output available. The Gerber and Calcomp plotters provide very high quality (of publishable quality) plots of good resolution. Being bed or drum type plotters, the Gerber and Calcomp plotters are usually slow and not suited for large volume plotting. All output for any or all of the plotters can be produced simultaneously. The types of plots supported are: linear, semi-log, log-log, polar, tabular data using the FORTRAN WRITE statement, 3-D perspective linear, and affine transformations. The labeling facility provides for horizontal labels, vertical labels, diagonal labels, vector characters of a requested size (special character fonts are easily implemented), and rotated letters. The gridding routines label the grid lines according to user specification. Special line features include multiple lines, dashed lines, and tic marks. The contour segment of this package is a collection of subroutines which can be used to produce contour plots and perform related functions. The package can contour any data which can be placed on a grid or data which is regularly spaced, including any general affine or polar grid data. The package includes routines which will grid random data. Contour levels can be specified at any values desired. Input data can be smoothed with undefined points being acceptable where data is unreliable or unknown. Plots which are extremely large or detailed can be automatically output in parts to improve resolution or overcome plotter size limitations. The contouring segment uses the plot segment for actual plotting, thus all the features described for the plotting segment are available to the user of the contouring segment. Included with this package are two data bases for producing world map plots in Mercator projection. One data base provides just continent outlines and another provides continent outlines and national borders in great detail. This package is written in FORTRAN IV and IBM OS ASSEMBLER and has been implemented on an IBM 360 with a central memory requirement of approximately 140K of 8 bit bytes. The ASSEMBLER routines are basic plotter interface routines. The WCPP package was developed in 1972.
Geraghty, John P; Grogan, Garry; Ebert, Martin A
2013-04-30
This study investigates the variation in segmentation of several pelvic anatomical structures on computed tomography (CT) between multiple observers and a commercial automatic segmentation method, in the context of quality assurance and evaluation during a multicentre clinical trial. CT scans of two prostate cancer patients ('benchmarking cases'), one high risk (HR) and one intermediate risk (IR), were sent to multiple radiotherapy centres for segmentation of prostate, rectum and bladder structures according to the TROG 03.04 "RADAR" trial protocol definitions. The same structures were automatically segmented using iPlan software for the same two patients, allowing structures defined by automatic segmentation to be quantitatively compared with those defined by multiple observers. A sample of twenty trial patient datasets were also used to automatically generate anatomical structures for quantitative comparison with structures defined by individual observers for the same datasets. There was considerable agreement amongst all observers and automatic segmentation of the benchmarking cases for bladder (mean spatial variations < 0.4 cm across the majority of image slices). Although there was some variation in interpretation of the superior-inferior (cranio-caudal) extent of rectum, human-observer contours were typically within a mean 0.6 cm of automatically-defined contours. Prostate structures were more consistent for the HR case than the IR case with all human observers segmenting a prostate with considerably more volume (mean +113.3%) than that automatically segmented. Similar results were seen across the twenty sample datasets, with disagreement between iPlan and observers dominant at the prostatic apex and superior part of the rectum, which is consistent with observations made during quality assurance reviews during the trial. This study has demonstrated quantitative analysis for comparison of multi-observer segmentation studies. For automatic segmentation algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered.
A Radar Climatology for Germany - a 16-year high resolution precipitation data and its possibilities
NASA Astrophysics Data System (ADS)
Walawender, Ewelina; Winterrath, Tanja; Brendel, Christoph; Hafer, Mario; Junghänel, Thomas; Klameth, Anna; Weigl, Elmar; Becker, Andreas
2017-04-01
One of the main features of heavy precipitation events is their small-scale distribution. Despite a local occurrence, these intensive rainfalls may, however, cause most serious damage and have significant impact on the whole river basin area resulting in e.g. flash floods or urban flooding. Thus, it is of great importance not only to detect the life-cycle of extreme precipitation during its occurrence but also to collect precise climatological information on such events. The German weather service (Deutscher Wetterdienst) operates a very dense network of more than 2000 weather stations collecting data on precipitation. It is however not sufficient for detecting spatially limited phenomena. Thanks to radar data, current monitoring of such events is possible. A quality control process is applied to real-time radar products, however only automatic rain gauges data can be used in the adjustment procedure. To merge both radar data and all available rain gauges data, the radar climatology dataset was established. Within the framework of a project financed by the federal agencies' strategic alliance 'Adaptation to Climate Change', 16 years (2001-2016) of radar data have been reanalyzed in order to gain a homogenous, quality-controlled, high-resolution precipitation data set suitable for analyzing extreme events in a climatological approach. Additional corrections methods (e.g. clutter, spokes and beam height correction) were defined and used for the reprocessing procedure to enhance the data quality. Although the time series is still rather short for a climatology, for the first time the data set allows an insight into e.g. the distribution, size, life cycle, and duration of extreme events that cannot be measured by point measurements alone. All radar climatology products share the same spatial and temporal coverage. The whole dataset has been produced for the area of Germany. With the relatively high spatial resolution of 1km, the data can be used as a component of wide range of spatial analyses: from country to city scale. Multiple events can be investigated in details, depending on the user needs, as temporal resolution differs from 15 years to 1 hour. Apart from standard products such as precipitation sum, the radar climatology will provide its derivatives as well e.g. extreme precipitation characteristics and rain erosivity potential (R factor) map. Employing GIS functionalities into the Radar Climatology dataset has made it universal and interoperable - suitable for integration with a wide range of other geodata formats or services. It can be treated also as input layer for further analyses which demand spatially continuous data on precipitation and for building more integrated products tailored to the user needs. One of the most important concepts may be an application of the Radar Climatology data as a key factor in risk assessment analysis and developing strategies for risk management in urban planning, hydrology, agriculture etc.
Convective Cloud Towers and Precipitation Initiation, Frequency and Intensity
NASA Astrophysics Data System (ADS)
Vant-hull, B.; Mahani, S. E.; Autones, F.; Rabin, R.; Mecikalski, J. R.; Khanbilvardi, R.
2012-12-01
: Geosynchronous satellite retrieval of precipitation is desirable because it would provide continuous observation throughout most of the globe in regions where radar data is not available. In the current work the distribution of precipitation rates is examined as a function of cloud tower area and cloud top temperature. A thunderstorm tracking algorithm developed at Meteo-France is used to track cumulus towers that are matched up with radar data at 5 minute 1 km resolution. It is found that roughly half of the precipitation occurs in the cloud mass that surrounds the towers, and when a tower is first detected the precipitation is already in progress 50% of the time. The average density of precipitation per area is greater as the towers become smaller and colder, yet the averaged shape of the precipitation intensity distribution is remarkably constant in all convective situations with cloud tops warmer than 220 K. This suggests that on average all convective precipitation events look the same, unaffected by the higher frequency of occurrence per area inside the convective towers. Only once the cloud tops are colder than 220 K does the precipitation intensity distribution become weighted towards higher instantaneous intensities. Radar precipitation shown in shades of green to blue, lightning in orange; black diamonds are coldest points in each tower. Ratio of number of pixels of given precipitation inside versus outside the convective towers, for various average cloud top temperatures. A flat plot indicates the distribution of rainfall inside and outside the towers has the same shape.
Rapid Mapping Of Floods Using SAR Data: Opportunities And Critical Aspects
NASA Astrophysics Data System (ADS)
Pulvirenti, Luca; Pierdicca, Nazzareno; Chini, Marco
2013-04-01
The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view, the capability to operate in almost all-weather conditions and during both day time and night time and the sensitivity of the microwave band to water are the key features that make SAR data useful for monitoring inundation events. In addition, their high spatial resolution, which can reach 1m with the new generation of X-band instruments such as TerraSAR-X and COSMO-SkyMed (CSK), allows emergency managers to use flood maps at very high spatial resolution. CSK gives also the possibility of performing frequent observations of regions hit by floods, thanks to the four-satellite constellation. Current research on flood mapping using SAR is focused on the development of automatic algorithms to be used in near real time applications. The approaches are generally based on the low radar return from smooth open water bodies that behave as specular reflectors and appear dark in SAR images. The major advantage of automatic algorithms is the computational efficiency that makes them suitable for rapid mapping purposes. The choice of the threshold value that, in this kind of algorithms, separates flooded from non-flooded areas is a critical aspect because it depends on the characteristics of the observed scenario and on system parameters. To deal with this aspect an algorithm for automatic detection of the regions of low backscatter has been developed. It basically accomplishes three steps: 1) division of the SAR image in a set of non-overlapping sub-images or splits; 2) selection of inhomogeneous sub-images that contain (at least) two populations of pixels, one of which is formed by dark pixels; 3) the application in sequence of an automatic thresholding algorithm and a region growing algorithm in order to produce a homogeneous map of flooded areas. Besides the aforementioned choice of the threshold, rapid mapping of floods may present other critical aspects. Searching for low SAR backscatter areas only may cause inaccuracies because flooded soils do not always act as smooth open water bodies. The presence of wind or of vegetation emerging above the water surface may give rise to an increase of the radar backscatter. In particular, mapping flooded vegetation using SAR data may represent a difficult task since backscattering phenomena in the volume between canopy, trunks and floodwater are quite complex in the presence of vegetation. A typical phenomenon is the double-bounce effect involving soil and stems or trunks, which is generally enhanced by the floodwater, so that flooded vegetation may appear very bright in a SAR image. Even in the absence of dense vegetation or wind, some regions may appear dark because of artefacts due to topography (shadowing), absorption caused by wet snow, and attenuation caused by heavy precipitating clouds (X-band SARs). Examples of the aforementioned effects that may limit the reliability of flood maps will be presented at the conference and some indications to deal with these effects (e.g. presence of vegetation and of artefacts) will be provided.
Olimpio, Joseph R.
2000-01-01
Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.
Drop Size Distribution - Based Separation of Stratiform and Convective Rain
NASA Technical Reports Server (NTRS)
Thurai, Merhala; Gatlin, Patrick; Williams, Christopher
2014-01-01
For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective, depending on whether or not a clearly-defined melting layer is present at an expected height, and if present, maximum reflectivity within the melting layer as well as the corresponding height are determined. We will present results of quantitative comparisons between the XPR observations-based classifications and the simultaneous 2DVD data-based classifications. Time series comparisons will be presented for thirteen events in Huntsville.
Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue
2018-01-01
Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument. PMID:29621142
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; Feng, W.
2017-12-01
InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.
An algorithm for power line detection and warning based on a millimeter-wave radar video.
Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting
2011-12-01
Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm. © 2011 IEEE
Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue
2018-04-05
Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.
Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid
NASA Astrophysics Data System (ADS)
Vollmer, Frederick W.
2018-06-01
Fabric and finite strain analysis, an integral part of studies of geologic structures and orogenic belts, is commonly done by the analysis of particles whose shapes can be approximated as ellipses. Given a sample of such particles, the mean and confidence intervals of particular parameters can be calculated, however, taking the extra step of plotting and contouring the density distribution can identify asymmetries or modes related to sedimentary fabrics or other factors. A common graphical strain analysis technique is to plot final ellipse ratios, Rf , versus orientations, ϕf on polar Elliott or Rf / ϕ plots to examine the density distribution. The plot may be contoured, however, it is desirable to have a contouring method that is rapid, reproducible, and based on the underlying geometry of the data. The unit hyperboloid, H2 , gives a natural parameter space for two-dimensional strain, and various projections, including equal-area and stereographic, have useful properties for examining density distributions for anisotropy. An index, Ia , is given to quantify the magnitude and direction of anisotropy. Elliott and Rf / ϕ plots can be understood by applying hyperbolic geometry and recognizing them as projections of H2 . These both distort area, however, so the equal-area projection is preferred for examining density distributions. The algorithm presented here gives fast, accurate, and reproducible contours of density distributions calculated directly on H2 . The algorithm back-projects the data onto H2 , where the density calculation is done at regular nodes using a weighting value based on the hyperboloid distribution, which is then contoured. It is implemented as an Octave compatible MATLAB function that plots ellipse data using a variety of projections, and calculates and displays contours of their density distribution on H2 .
Meyer, M.T.; Fine, J.M.
1997-01-01
As part of the U.S. Geological Survey's Resource Conservation and Recovery Act, Facilities Investigations at Fort Bragg, North Carolina, selected geophysical techniques were evaluated for their usefulness as assessment tools for determining subsurface geology, delineating the areal extent of potentially contaminated landfill sites, and locating buried objects and debris of potential environmental concern. Two shallow seismic-reflection techniques (compression and shear wave) and two electromagnetic techniques (ground-penetrating radar and terrain conductivity) were evaluated at several sites at the U.S. Army Base. The electromagnetic techniques also were tested for tolerance to cultural noise, such as nearby fences, vehicles, and power lines. For the terrain conductivity tests, two instruments were used--the EM31 and EM34, which have variable depths of exploration. The shallowest reflection event was 70 feet below land surface observed in common-depth point, stacked compression-wave data from 24- and 12-fold shallow-seismic-reflection surveys. Several reflection events consistent with clay-sand interfaces between 70 and 120 feet below land surface, along with basement-saprolite surfaces, were imaged in the 24-fold, common- depth-point stacked data. 12-fold, common-depth-point stacked data set contained considerably more noise than the 24-fold, common-depth-point data, due to reduced shot-to-receiver redundancy. Coherent stacked reflection events were not observed in the 24-fold, common-depth-point stacked shear-wave data because of the partial decoupling of the shear- wave generator from the ground. At one site, ground-penetrating radar effectively delineated a shallow, 2- to 5-foot thick sand unit bounded by thin (less than 1 foot) clay layers. The radar signal was completely attenuated where the overlying and underlying clay units thickened and the sand unit thinned. The pene- tration depth of the radar signal was less than 10 feet below land surface. A slight increase in electromagnetic conductivity across shallow sampling EM31 and EM34 profiles provided corroborative evidence of the shallow, thickening clay units. Plots of raw EM31 and EM34 data provided no direct interpretable information to delineate sand and clay units in the shallow subsurface. At two sites, the ground-penetrating radar effectively delineated the lateral continuity of surficial sand units 5 to 25 feet in thickness and the tops of their underlying clay units. The effective exploration depth of the ground-penetrating radar was limited by the proximity of clay units to the subsurface and their thickness. The ground-penetrating radar delineated the areal extent and depth of cover at a previously unrecognized extension of a trench-like landfill underlying a vehicle salvage yard. Attenuation of the radar signal beneath the landfill cover and the adjacent subsurface clays made these two mediums indistinguishable by ground-penetrating radar; however, EM31 data indicated that the electrical conductivity of the landfill was higher than the subsurface material adjacent to the landfill. The EM31 and EM34 conductivity surveys defined the areal extent of a landfill whose boundaries were inaccurately mapped, and also identified the locations of an old dumpsite and waste incinerator site at another landfill. A follow-up ground-penetrating radar survey of the abandoned dumpsite showed incongruities in some of the shallow radar reflections interpreted as buried refuse dispersed throughout the landfill. The ground-penetrating radar and EM31 effectively delineated a shallow buried fuel-oil tank. Of the three electromagnetic instruments, the ground-penetrating radar with the shielded 100-megahertz antenna was the least affected by cultural noise followed, in order, by the EM31 and EM34. The combination of terrain- conductivity and ground-penetrating radar for the site assessment of the landfill provided a powerful means to identify the areal extent of the landfill, potenti
Random Forest Application for NEXRAD Radar Data Quality Control
NASA Astrophysics Data System (ADS)
Keem, M.; Seo, B. C.; Krajewski, W. F.
2017-12-01
Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e.g., MRMS). They also discuss operational feasibility based on the observed strength and weakness of the method.
Area collapse algorithm computing new curve of 2D geometric objects
NASA Astrophysics Data System (ADS)
Buczek, Michał Mateusz
2017-06-01
The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.
Enhanced Oceanic Situational Awareness for the North Atlantic Corridor
NASA Technical Reports Server (NTRS)
Welch, Bryan; Greenfield, Israel
2004-01-01
Air traffic control (ATC) mandated, aircraft separations over the oceans, impose a limitation of traffic capacity for a given corridor. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. Traffic loading from a specific day are used as a benchmark against which to compare several approaches for coordinating data transmissions from aircraft to the satellites.
1981-08-17
Van Blaricum, "On the Source of Parameter Bias in Prony’s Method," 1980 NEM Conference, Disneyland Hotel, August 1980. Auton, J.R., "An Unbiased...Method for the Estimation of the SEM Parameters of an Electromagnetic System," 1980 NEM Conference, Disneyland Hotel, August 1980. Auton, J.R. and M.L...34 1980 NEM Conference, Disneyland Hotel, August 5-7, 1980. Chuang, C.W. and D.L. Moffatt, "Complex Natural Responances of Radar Targets via Prony’s
Rapid and Reliable Damage Proxy Map from InSAR Coherence
NASA Technical Reports Server (NTRS)
Yun, Sang-Ho; Fielding, Eric; Simons, Mark; Agram, Piyush; Rosen, Paul; Owen, Susan; Webb, Frank
2012-01-01
Future radar satellites will visit SoCal within a day after a disaster event. Data acquisition latency in 2015-2020 is 8 to approx. 15 hours. Data transfer latency that often involves human/agency intervention far exceeds the data acquisition latency. Need interagency cooperation to establish automatic pipeline for data transfer. The algorithm is tested with ALOS PALSAR data of Pasadena, California. Quantitative quality assessment is being pursued: Meeting with Pasadena City Hall computer engineers for a complete list of demolition/construction project 1. Estimate the probability of detection and probability of false alarm 2. Estimate the optimal threshold value.
Multiple-Nozzle Spray Head Applies Foam Insulation
NASA Technical Reports Server (NTRS)
Walls, Joe T.
1993-01-01
Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.
Automatic classification of canine PRG neuronal discharge patterns using K-means clustering.
Zuperku, Edward J; Prkic, Ivana; Stucke, Astrid G; Miller, Justin R; Hopp, Francis A; Stuth, Eckehard A
2015-02-01
Respiratory-related neurons in the parabrachial-Kölliker-Fuse (PB-KF) region of the pons play a key role in the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according to their discharge contours. This report presents a method that automatically classifies neurons according to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional methods for choosing the optimal number of clusters are described. Analysis of the results suggests that the K-means clustering method offers a robust objective means of both automatically categorizing neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge patterns of group of neurons. Published by Elsevier B.V.
Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area
NASA Astrophysics Data System (ADS)
Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.
2018-04-01
Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.
Longépé, Nicolas; Hajduch, Guillaume; Ardianto, Romy; Joux, Romain de; Nhunfat, Béatrice; Marzuki, Marza I; Fablet, Ronan; Hermawan, Indra; Germain, Olivier; Subki, Berny A; Farhan, Riza; Muttaqin, Ahmad Deni; Gaspar, Philippe
2017-10-26
The Indonesian fisheries management system is now equipped with the state-of-the-art technologies to deter and combat Illegal, Unreported and Unregulated (IUU) fishing. Since October 2014, non-cooperative fishing vessels can be detected from spaceborne Vessel Detection System (VDS) based on high resolution radar imagery, which directly benefits to coordinated patrol vessels in operation context. This study attempts to monitor the amount of illegal fishing in the Arafura Sea based on this new source of information. It is analyzed together with Vessel Monitoring System (VMS) and satellite-based Automatic Identification System (Sat-AIS) data, taking into account their own particularities. From October 2014 to March 2015, i.e. just after the establishment of a new moratorium by the Indonesian authorities, the estimated share of fishing vessels not carrying VMS, thus being illegal, ranges from 42 to 47%. One year later in January 2016, this proportion decreases and ranges from 32 to 42%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relative navigation requirements for automatic rendezvous and capture systems
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Chu, William; Montez, Moises
1991-01-01
This paper will discuss in detail the relative navigation system requirements and sensor trade-offs for Automatic Rendezvous and Capture. Rendezvous navigation filter development will be discussed in the context of navigation performance requirements for a 'Phase One' AR&C system capability. Navigation system architectures and the resulting relative navigation performance for both cooperative and uncooperative target vehicles will be assessed. Relative navigation performance using rendezvous radar, star tracker, radiometric, laser and GPS navigation sensors during appropriate phases of the trajectory will be presented. The effect of relative navigation performance on the Integrated AR&C system performance will be addressed. Linear covariance and deterministic simulation results will be used. Evaluation of relative navigation and IGN&C system performance for several representative relative approach profiles will be presented in order to demonstrate the full range of system capabilities. A summary of the sensor requirements and recommendations for AR&C system capabilities for several programs requiring AR&C will be presented.
NASA Astrophysics Data System (ADS)
Jung, H.; Alsdorf, D.
2006-12-01
Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values for Cabaliana and Amazon-Purus, but not in Balbina and is likely an indicator of the annual Amazon flood wave. Each ecological habitat is delineated in the Balbina coherence values plotted with temporal baseline, but only during high water and time-periods less than 2 years is such delineation visible in the Cabaliana and Amazon-Purus regions. Taken together, these observations suggest terre-firme does not have a seasonal variation whereas flooded areas vary with the season.
Scaling up high throughput field phenotyping of corn and soy research plots using ground rovers
NASA Astrophysics Data System (ADS)
Peshlov, Boyan; Nakarmi, Akash; Baldwin, Steven; Essner, Scott; French, Jasenka
2017-05-01
Crop improvement programs require large and meticulous selection processes that effectively and accurately collect and analyze data to generate quality plant products as efficiently as possible, develop superior cropping and/or crop improvement methods. Typically, data collection for such testing is performed by field teams using hand-held instruments or manually-controlled devices. Although steps are taken to reduce error, the data collected in such manner can be unreliable due to human error and fatigue, which reduces the ability to make accurate selection decisions. Monsanto engineering teams have developed a high-clearance mobile platform (Rover) as a step towards high throughput and high accuracy phenotyping at an industrial scale. The rovers are equipped with GPS navigation, multiple cameras and sensors and on-board computers to acquire data and compute plant vigor metrics per plot. The supporting IT systems enable automatic path planning, plot identification, image and point cloud data QA/QC and near real-time analysis where results are streamed to enterprise databases for additional statistical analysis and product advancement decisions. Since the rover program was launched in North America in 2013, the number of research plots we can analyze in a growing season has expanded dramatically. This work describes some of the successes and challenges in scaling up of the rover platform for automated phenotyping to enable science at scale.
Automatic glaucoma diagnosis through medical imaging informatics.
Liu, Jiang; Zhang, Zhuo; Wong, Damon Wing Kee; Xu, Yanwu; Yin, Fengshou; Cheng, Jun; Tan, Ngan Meng; Kwoh, Chee Keong; Xu, Dong; Tham, Yih Chung; Aung, Tin; Wong, Tien Yin
2013-01-01
Computer-aided diagnosis for screening utilizes computer-based analytical methodologies to process patient information. Glaucoma is the leading irreversible cause of blindness. Due to the lack of an effective and standard screening practice, more than 50% of the cases are undiagnosed, which prevents the early treatment of the disease. To design an automatic glaucoma diagnosis architecture automatic glaucoma diagnosis through medical imaging informatics (AGLAIA-MII) that combines patient personal data, medical retinal fundus image, and patient's genome information for screening. 2258 cases from a population study were used to evaluate the screening software. These cases were attributed with patient personal data, retinal images and quality controlled genome data. Utilizing the multiple kernel learning-based classifier, AGLAIA-MII, combined patient personal data, major image features, and important genome single nucleotide polymorphism (SNP) features. Receiver operating characteristic curves were plotted to compare AGLAIA-MII's performance with classifiers using patient personal data, images, and genome SNP separately. AGLAIA-MII was able to achieve an area under curve value of 0.866, better than 0.551, 0.722 and 0.810 by the individual personal data, image and genome information components, respectively. AGLAIA-MII also demonstrated a substantial improvement over the current glaucoma screening approach based on intraocular pressure. AGLAIA-MII demonstrates for the first time the capability of integrating patients' personal data, medical retinal image and genome information for automatic glaucoma diagnosis and screening in a large dataset from a population study. It paves the way for a holistic approach for automatic objective glaucoma diagnosis and screening.
Review of Software Platforms for Agent Based Models
2008-04-01
EINSTein 4.3.2 Battlefield Python (optional, for batch runs) MANA 4.3.3 Battlefield N/A MASON 4.3.4 General Java NetLogo 4.3.5 General Logo-variant...through the use of relatively simple Python scripts. It also has built-in functions for parameter sweeps, and can plot the resulting fitness landscape ac...Nonetheless its ease of use, and support for automatic drawing of agents in 2D or 3D2 makes this a suitable platform for beginner programmers. 2Only in the
Operating System For Numerically Controlled Milling Machine
NASA Technical Reports Server (NTRS)
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
Multi-model stereo restitution
Dueholm, K.S.
1990-01-01
Methods are described that permit simultaneous orientation of many small-frame photogrammetric models in an analytical plotter. The multi-model software program enables the operator to move freely between the oriented models during interpretation and mapping. Models change automatically when the measuring mark is moved from one frame to another, moving to the same ground coordinates in the neighboring model. Thus, data collection and plotting can be performed continuously across model boundaries. The orientation of the models is accomplished by a bundle block adjustment. -from Author
Non-Normal Projectile Penetration in Soil and Rock: User’s Guide for Computer Code PENC02D.
1982-09-01
the path traveled , with projec- tile orientation shown every FREQI projectile lengths. In this run, FREQI was input as 2.5. The horizontal lines...must be a closed surface in the direction of travel ; the bluntness of the nose requires a near 90-deg element for closure. Sheet 3 shows the beginning...plots for this problem. Sheets 1 and 2 automatically verify the projectile shape and path traveled . Sheets 3, 4, and 5 show the axial deceleration
PTBS segmentation scheme for synthetic aperture radar
NASA Astrophysics Data System (ADS)
Friedland, Noah S.; Rothwell, Brian J.
1995-07-01
The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-03-09
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan
2018-01-01
Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.
Huang, Sheng Yu; Chen, Sung Fang; Chen, Chun Hao; Huang, Hsuan Wei; Wu, Wen Guey; Sung, Wang Chou
2014-09-02
Snake venom consists of toxin proteins with multiple disulfide linkages to generate unique structures and biological functions. Determination of these cysteine connections usually requires the purification of each protein followed by structural analysis. In this study, dimethyl labeling coupled with LC-MS/MS and RADAR algorithm was developed to identify the disulfide bonds in crude snake venom. Without any protein separation, the disulfide linkages of several cytotoxins and PLA2 could be solved, including more than 20 disulfide bonds. The results show that this method is capable of analyzing protein mixture. In addition, the approach was also used to compare native cytotoxin 3 (CTX III) and its scrambled isomer, another category of protein mixture, for unknown disulfide bonds. Two disulfide-linked peptides were observed in the native CTX III, and 10 in its scrambled form, X-CTX III. This is the first study that reports a platform for the global cysteine connection analysis on a protein mixture. The proposed method is simple and automatic, offering an efficient tool for structural and functional studies of venom proteins.
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-01-01
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499
A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-01-01
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313
I-FORCAST: Rapid Flight Planning Tool
NASA Technical Reports Server (NTRS)
Oaida, Bogdan; Khan, Mohammed; Mercury, Michael B.
2012-01-01
I-FORCAST (Instrument - Field of Regard Coverage Analysis and Simulation Tool) is a flight planning tool specifically designed for quickly verifying the feasibility and estimating the cost of airborne remote sensing campaigns (see figure). Flights are simulated by being broken into three predefined routing algorithms as necessary: mapping in a snaking pattern, mapping the area around a point target (like a volcano) with a star pattern, and mapping the area between a list of points. The tool has been used to plan missions for radar, lidar, and in-situ atmospheric measuring instruments for a variety of aircraft. It has also been used for global and regional scale campaigns and automatically includes landings when refueling is required. The software has been compared to the flight times of known commercial aircraft route travel times, as well as a UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) campaign, and was within 15% of the actual flight time. Most of the discrepancy is due to non-optimal flight paths taken by actual aircraft to avoid restricted airspace and used to follow landing and take-off corridors.
NASA Astrophysics Data System (ADS)
Yan, Yue
2018-03-01
A synthetic aperture radar (SAR) automatic target recognition (ATR) method based on the convolutional neural networks (CNN) trained by augmented training samples is proposed. To enhance the robustness of CNN to various extended operating conditions (EOCs), the original training images are used to generate the noisy samples at different signal-to-noise ratios (SNRs), multiresolution representations, and partially occluded images. Then, the generated images together with the original ones are used to train a designed CNN for target recognition. The augmented training samples can contrapuntally improve the robustness of the trained CNN to the covered EOCs, i.e., the noise corruption, resolution variance, and partial occlusion. Moreover, the significantly larger training set effectively enhances the representation capability for other conditions, e.g., the standard operating condition (SOC), as well as the stability of the network. Therefore, better performance can be achieved by the proposed method for SAR ATR. For experimental evaluation, extensive experiments are conducted on the Moving and Stationary Target Acquisition and Recognition dataset under SOC and several typical EOCs.
A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-02-25
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.
VizieR Data Extraction Disseminated through Widgets
NASA Astrophysics Data System (ADS)
Landais, G.; Boch, T.; Ochsenbein, F.; Simon, A.-C.
2015-09-01
The CDS widgets are a collection of web applications easily embeddable in web pages. The Apache Shindig framework, relying on OpenSocial specification, enables to reuse code in any web page by giving interactive output and broadcasting capabilities: for instance to use the result of a search widget to populate other widgets. Some of these widgets are already used in the VizieR web application. The “plot widget” is used to illustrate associated data like time-series or spectra coming from publications. The data extracted with a SQL-like language (which can operate with different type of resources like FITS, ASCII files, etc.) are then disseminated in a “plot widge” that is ergonomic and contains evolved customization capabilities. The VizieR photometry viewer is the result of filter gathering and pipeline automatization: the interface use a dedicated widget that integrates three linked views: a photometry point, a sky chart and the VizieR tabular data.
SIG: a general-purpose signal processing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, D.; Azevedo, S.
1986-02-01
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. It also accommodates other representations for data such as transfer function polynomials. Signal processing operations include digital filtering, auto/cross spectral density, transfer function/impulse response, convolution, Fourier transform, and inverse Fourier transform. Graphical operations provide display of signals and spectra, including plotting, cursor zoom, families of curves, and multiple viewport plots. SIG provides two user interfaces with a menu mode for occasional users and a command mode for more experienced users. Capability exits for multiple commands per line, commandmore » files with arguments, commenting lines, defining commands, automatic execution for each item in a repeat sequence, etc. SIG is presently available for VAX(VMS), VAX (BERKELEY 4.2 UNIX), SUN (BERKELEY 4.2 UNIX), DEC-20 (TOPS-20), LSI-11/23 (TSX), and DEC PRO 350 (TSX). 4 refs., 2 figs.« less
Magnetic Transport Barriers in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Kessler, J.; Volpe, F.; Evans, T. E.; Ali, H.; Punjabi, A.
2009-11-01
Large overlapping magnetic islands generate chaotic fields. However, a previous work [1] showed that second or third order perturbations of special topology and strength can also generate magnetic diffusion ``barriers" in the middle of stochastic regions. In the present study, we numerically assess their experimental feasibility at DIII-D. For this, realistic I- and C-coils perturbations are superimposed on the equilibrium field and puncture plots are generated with a field-line tracer. A criterion is defined for the automatic recognition of barriers and successfully tested on earlier symplectic maps in magnetic coordinates. The criterion is systematically applied to the new puncture plots in search for dependencies, e.g. upon the edge safety factor q95, which might be relevant to edge localized mode (ELM) stability, as well as to assess the robustness of barriers against fluctuations of the plasma parameters and coil currents. 8pt [1] H. Ali and A. Punjabi, Plasma Phys. Control. Fusion 49, 1565 (2007).
A flight investigation of oscillating air forces: Equipment and technique
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1975-01-01
The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.
Translator for Optimizing Fluid-Handling Components
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2007-01-01
A software interface has been devised to facilitate optimization of the shapes of valves, elbows, fittings, and other components used to handle fluids under extreme conditions. This software interface translates data files generated by PLOT3D (a NASA grid-based plotting-and- data-display program) and by computational fluid dynamics (CFD) software into a format in which the files can be read by Sculptor, which is a shape-deformation- and-optimization program. Sculptor enables the user to interactively, smoothly, and arbitrarily deform the surfaces and volumes in two- and three-dimensional CFD models. Sculptor also includes design-optimization algorithms that can be used in conjunction with the arbitrary-shape-deformation components to perform automatic shape optimization. In the optimization process, the output of the CFD software is used as feedback while the optimizer strives to satisfy design criteria that could include, for example, improved values of pressure loss, velocity, flow quality, mass flow, etc.
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.
2015-11-01
Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.
Bistatic SAR: Signal Processing and Image Formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahl, Daniel E.; Yocky, David A.
This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013more » on Kirtland Air Force Base, New Mexico.« less
NASA Astrophysics Data System (ADS)
Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.
2016-12-01
It is widely recognised that merging radar rainfall estimates (RRE) with rain gauge data can improve the RRE and provide areal and temporal coverage that rain gauges cannot offer. Many methods to merge radar and rain gauge data are based on kriging and require an assumption of Gaussianity on the variable of interest. In particular, this work looks at kriging with external drift (KED), because it is an efficient, widely used, and well performing merging method. Rainfall, especially at finer temporal scale, does not have a normal distribution and presents a bi-modal skewed distribution. In some applications a Gaussianity assumption is made, without any correction. In other cases, variables are transformed in order to obtain a distribution closer to Gaussian. This work has two objectives: 1) compare different transformation methods in merging applications; 2) evaluate the uncertainty arising when untransformed rainfall data is used in KED. The comparison of transformation methods is addressed under two points of view. On the one hand, the ability to reproduce the original probability distribution after back-transformation of merged products is evaluated with qq-plots, on the other hand the rainfall estimates are compared with an independent set of rain gauge measurements. The tested methods are 1) no transformation, 2) Box-Cox transformations with parameter equal to λ=0.5 (square root), 3) λ=0.25 (square root - square root), and 4) λ=0.1 (almost logarithmic), 5) normal quantile transformation, and 6) singularity analysis. The uncertainty associated with the use of non-transformed data in KED is evaluated in comparison with the best performing product. The methods are tested on a case study in Northern England, using hourly data from 211 tipping bucket rain gauges from the Environment Agency and radar rainfall data at 1 km/5-min resolutions from the UK Met Office. In addition, 25 independent rain gauges from the UK Met Office were used to assess the merged products.
Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020
NASA Astrophysics Data System (ADS)
Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.
2017-12-01
The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic environments. Secondly, we will test our algorithm on experimental data acquired in a semi-controlled environment. Lastly, we will present experimental data acquired during a recent field campaign (July 2017) in the south of France and we will validate our method and illustrate the ability of WISDOM to provide clues about the geological context of a site.
Ghosh, Adarsh; Singh, Tulika; Singla, Veenu; Bagga, Rashmi; Khandelwal, Niranjan
2017-12-01
Apparent diffusion coefficient (ADC) maps are usually generated by builtin software provided by the MRI scanner vendors; however, various open-source postprocessing software packages are available for image manipulation and parametric map generation. The purpose of this study is to establish the reproducibility of absolute ADC values obtained using different postprocessing software programs. DW images with three b values were obtained with a 1.5-T MRI scanner, and the trace images were obtained. ADC maps were automatically generated by the in-line software provided by the vendor during image generation and were also separately generated on postprocessing software. These ADC maps were compared on the basis of ROIs using paired t test, Bland-Altman plot, mountain plot, and Passing-Bablok regression plot. There was a statistically significant difference in the mean ADC values obtained from the different postprocessing software programs when the same baseline trace DW images were used for the ADC map generation. For using ADC values as a quantitative cutoff for histologic characterization of tissues, standardization of the postprocessing algorithm is essential across processing software packages, especially in view of the implementation of vendor-neutral archiving.
NASA Astrophysics Data System (ADS)
Osmanoglu, B.; Ozkan, C.; Sunar, F.
2013-10-01
After air strikes on July 14 and 15, 2006 the Jiyeh Power Station started leaking oil into the eastern Mediterranean Sea. The power station is located about 30 km south of Beirut and the slick covered about 170 km of coastline threatening the neighboring countries Turkey and Cyprus. Due to the ongoing conflict between Israel and Lebanon, cleaning efforts could not start immediately resulting in 12 000 to 15 000 tons of fuel oil leaking into the sea. In this paper we compare results from automatic and semi-automatic slick detection algorithms. The automatic detection method combines the probabilities calculated for each pixel from each image to obtain a joint probability, minimizing the adverse effects of atmosphere on oil spill detection. The method can readily utilize X-, C- and L-band data where available. Furthermore wind and wave speed observations can be used for a more accurate analysis. For this study, we utilize Envisat ASAR ScanSAR data. A probability map is generated based on the radar backscatter, effect of wind and dampening value. The semi-automatic algorithm is based on supervised classification. As a classifier, Artificial Neural Network Multilayer Perceptron (ANN MLP) classifier is used since it is more flexible and efficient than conventional maximum likelihood classifier for multisource and multi-temporal data. The learning algorithm for ANN MLP is chosen as the Levenberg-Marquardt (LM). Training and test data for supervised classification are composed from the textural information created from SAR images. This approach is semiautomatic because tuning the parameters of classifier and composing training data need a human interaction. We point out the similarities and differences between the two methods and their results as well as underlining their advantages and disadvantages. Due to the lack of ground truth data, we compare obtained results to each other, as well as other published oil slick area assessments.
NASA Astrophysics Data System (ADS)
Lane, John; Kasparis, Takis; Michaelides, Silas
2016-04-01
The well-known Z -R power law Z = ARb uses two parameters, A and b, in order to relate rainfall rate R to measured weather radar reflectivity Z. A common method used by researchers is to compute Z and R from disdrometer data and then extract the A-bparameter pair from a log-linear line fit to a scatter plot of Z -R pairs. Even though it may seem far more truthful to extract the parameter pair from a fit of radar ZR versus gauge rainfall rate RG, the extreme difference in spatial and temporal sampling volumes between radar and rain gauge creates a slew of problems that can generally only be solved by using rain gauge arrays and long sampling averages. Disdrometer derived A - b parameters are easily obtained and can provide information for the study of stratiform versus convective rainfall. However, an inconsistency appears when comparing averaged A - b pairs from various researchers. Values of b range from 1.26 to 1.51 for both stratiform and convective events. Paradoxically the values of Afall into three groups: 150 to 200 for convective; 200 to 400 for stratiform; and 400 to 500 again for convective. This apparent inconsistency can be explained by computing the A - b pair using the gamma DSD coupled with a modified drop terminal velocity model, v(D) = αDβ - w, where w is a somewhat artificial constant vertical velocity of the air above the disdrometer. This model predicts three regions of A, corresponding to w < 0, w = 0, and w > 0, which approximately matches observed data.
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-01-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-05-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
Waterway Ice Thickness Measurements
NASA Technical Reports Server (NTRS)
1978-01-01
The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short-pulse radar measurements of ice thickness. The radar data was relayed by a NOAA satellite to a ground station where NOAA analyzed it and created picture maps, such as the one shown at lower left, showing where icebreakers can cut paths easily or where shipping can move through thin ice without the aid of icebreakers. The ice charts were then relayed directly to the wheelhouses of ships operating on the Lakes. Following up the success of the Great Lakes program, the icewarn team applied its system in another demonstration, this one a similarly successful application designed to aid Arctic coast shipping along the Alaskan North Slope. Further improvement of the ice-monitoring system is planned. Although aircraft-mounted radar is effective, satellites could provide more frequent data. After the launch this year of Seasat, an ocean-monitoring satellite, NASA will conduct tests to determine the ice-mapping capability and accuracy of satellite radar images.
NASA Technical Reports Server (NTRS)
Lang, Timothy J.
2015-01-01
At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a larger regional or national picture of precipitating weather systems. Composites, horizontal and vertical crosssections, and combinations thereof are easily displayed using as little as one line of code. MMM-Py can also write to the native MRMS binary format, and sub-sectioning of tiles (or multiple stitched tiles) is anticipated to be in place by the time of this meeting. Thus, MMM-Py also can be used to power the creation of custom mosaics for targeted regional studies. Overlays of other data (e.g., lightning observations) are easily accomplished. Demonstrations of MMM-Py, including the creation of animations, will be shown. Finally, Marshall has done significant work to interface Python-based analysis routines with the U.S. Department of Energy's Py-ART software package for radar data ingest, processing, and analysis. One example of this is the Python Turbulence Detection Algorithm (PyTDA), an MSFC-based implementation of the National Center for Atmospheric Research (NCAR) Turbulence Detection Algorithm (NTDA) for the purposes of convective-scale analysis, situational awareness, and forensic meteorology. PyTDA exploits Py-ART's radar data ingest routines and data model to rapidly produce aviation-relevant turbulence estimates from Doppler radar data. Work toward processing speed optimization and better integration within the Py-ART framework will be highlighted. Python-based analysis within the Py-ART framework is also being done for new research related to intercomparison of ground-based radar data with satellite estimates of ocean winds, as well as research on the electrification of pyrocumulus clouds.
Estimating tropical forest structure using LIDAR AND X-BAND INSAR
NASA Astrophysics Data System (ADS)
Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.
2013-12-01
Tropical forests are considered the most structurally complex of all forests and are experiencing rapid change due to anthropogenic and climatic factors. The high carbon stocks and fluxes make understanding tropical forests highly important to both regional and global studies involving ecosystems and climate. Large and remote areas in the tropics are prime targets for the use of remotely sensed data. Radar and lidar have previously been used to estimate forest structure, with an emphasis on biomass. These two remote sensing methods have the potential to yield much more information about forest structure, specifically through the use of X-band radar and waveform lidar data. We examined forest structure using both field-based and remotely sensed data in the Tapajos National Forest, Para, Brazil. We measured multiple structural parameters for about 70 plots in the field within a 25 x 15 km area that have TanDEM-X single-pass horizontally and vertically polarized radar interferometric data. High resolution airborne lidar were collected over a 22 sq km portion of the same area, within which 33 plots were co-located. Preliminary analyses suggest that X-band interferometric coherence decreases by about a factor of 2 (from 0.95 to 0.45) with increasing field-measured vertical extent (average heights of 7-25 m) and biomass (10-430 Mg/ha) for a vertical wavelength of 39 m, further suggesting, as has been observed at C-band, that interferometric synthetic aperture radar (InSAR) is substantially more sensitive to forest structure/biomass than SAR. Unlike InSAR coherence versus biomass, SAR power at X-band versus biomass shows no trend. Moreover, airborne lidar coherence at the same vertical wavenumbers as InSAR is also shown to decrease as a function of biomass, as well. Although the lidar coherence decrease is about 15% more than the InSAR, implying that lidar penetrates more than InSAR, these preliminary results suggest that X-band InSAR may be useful for structure and biomass estimation over large spatial scales not attainable with airborne lidar. In this study, we employed a set of less commonly used lidar metrics that we consider analogous to field-based measurements, such as the number of canopy maxima, measures of canopy vegetation distribution diversity and evenness (entropy), and estimates of gap fraction. We incorporated these metrics, as well as lidar coherence metrics pulled from discrete Fourier transforms of pseudowaveforms, and hypothetical stand characteristics of best-fit synthetic vegetation profiles into multiple regression analysis of forest biometric properties. Among simple and complex measures of forest structure, ranging from tree density, diameter at breast height, and various canopy geometry parameters, we found strong relationships with lidar canopy vegetation profile parameters. We suggest that the sole use of lidar height is limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties.
NASA Astrophysics Data System (ADS)
Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan
2013-04-01
Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation-quality-index. Subsequently the probability and quality information of the forecast ensemble is available and flexible blending to numerical prediction model for each subarea is possible. Simultaneously with automatic processing the ensemble nowcasting product is visualized in a new innovative way which combines the intensity, probability and quality information for different subareas in one forecast image.
Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests
NASA Technical Reports Server (NTRS)
Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark
2012-01-01
The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.
Großekathöfer, Ulf; Manyakov, Nikolay V.; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S.
2017-01-01
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier. PMID:28261082
Großekathöfer, Ulf; Manyakov, Nikolay V; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S
2017-01-01
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier.
Satellite image based methods for fuels maps updating
NASA Astrophysics Data System (ADS)
Alonso-Benito, Alfonso; Hernandez-Leal, Pedro A.; Arbelo, Manuel; Gonzalez-Calvo, Alejandro; Moreno-Ruiz, Jose A.; Garcia-Lazaro, Jose R.
2016-10-01
Regular updating of fuels maps is important for forest fire management. Nevertheless complex and time consuming field work is usually necessary for this purpose, which prevents a more frequent update. That is why the assessment of the usefulness of satellite data and the development of remote sensing techniques that enable the automatic updating of these maps, is of vital interest. In this work, we have tested the use of the spectral bands of OLI (Operational Land Imager) sensor on board Landsat 8 satellite, for updating the fuels map of El Hierro Island (Spain). From previously digitized map, a set of 200 reference plots for different fuel types was created. A 50% of the plots were randomly used as a training set and the rest were considered for validation. Six supervised and 2 unsupervised classification methods were applied, considering two levels of detail. A first level with only 5 classes (Meadow, Brushwood, Undergrowth canopy cover >50%, Undergrowth canopy cover <15%, and Xeric formations), and the second one containing 19 fuel types. The level 1 classification methods yielded an overall accuracy ranging from 44% for Parellelepided to an 84% for Maximun Likelihood. Meanwhile, level 2 results showed at best, an unacceptable overall accuracy of 34%, which prevents the use of this data for such a detailed characterization. Anyway it has been demonstrated that in some conditions, images of medium spatial resolution, like Landsat 8-OLI, could be a valid tool for an automatic upgrade of fuels maps, minimizing costs and complementing traditional methodologies.
Phase correction system for automatic focusing of synthetic aperture radar
Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.
1990-01-01
A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.
1991-11-01
F-111D RADAR SST TASK NOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST...VOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST WILL BE REPLACED BY DTS...NOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST WILL BE REPLACED BY DTS
SAR/LANDSAT image registration study
NASA Technical Reports Server (NTRS)
Murphrey, S. W. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Temporal registration of synthetic aperture radar data with LANDSAT-MSS data is both feasible (from a technical standpoint) and useful (from an information-content viewpoint). The greatest difficulty in registering aircraft SAR data to corrected LANDSAT-MSS data is control-point location. The differences in SAR and MSS data impact the selection of features that will serve as a good control points. The SAR and MSS data are unsuitable for automatic computer correlation of digital control-point data. The gray-level data can not be compared by the computer because of the different response characteristics of the MSS and SAR images.
NASA Astrophysics Data System (ADS)
Brax, Christoffer; Niklasson, Lars
2009-05-01
Maritime Domain Awareness is important for both civilian and military applications. An important part of MDA is detection of unusual vessel activities such as piracy, smuggling, poaching, collisions, etc. Today's interconnected sensorsystems provide us with huge amounts of information over large geographical areas which can make the operators reach their cognitive capacity and start to miss important events. We propose and agent-based situation management system that automatically analyse sensor information to detect unusual activity and anomalies. The system combines knowledge-based detection with data-driven anomaly detection. The system is evaluated using information from both radar and AIS sensors.
Solberg, Svein; Gizachew, Belachew; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole Martin; Mauya, Ernest William; Olsson, Håkan; Malimbwi, Rogers; Zahabu, Eliakimu
2015-12-01
REDD+ implementation requires establishment of a system for measuring, reporting and verification (MRV) of forest carbon changes. A challenge for MRV is the lack of satellite based methods that can track not only deforestation, but also degradation and forest growth, as well as a lack of historical data that can serve as a basis for a reference emission level. Working in a miombo woodland in Tanzania, we here aim at demonstrating a novel 3D satellite approach based on interferometric processing of radar imagery (InSAR). Forest carbon changes are derived from changes in the forest canopy height obtained from InSAR, i.e. decreases represent carbon loss from logging and increases represent carbon sequestration through forest growth. We fitted a model of above-ground biomass (AGB) against InSAR height, and used this to convert height changes to biomass and carbon changes. The relationship between AGB and InSAR height was weak, as the individual plots were widely scattered around the model fit. However, we consider the approach to be unique and feasible for large-scale MRV efforts in REDD+ because the low accuracy was attributable partly to small plots and other limitations in the data set, and partly to a random pixel-to-pixel variation in trunk forms. Further processing of the InSAR data provides data on the categories of forest change. The combination of InSAR data from the Shuttle RADAR Topography Mission (SRTM) and the TanDEM-X satellite mission provided both historic baseline of change for the period 2000-2011, as well as annual change 2011-2012. A 3D data set from InSAR is a promising tool for MRV in REDD+. The temporal changes seen by InSAR data corresponded well with, but largely supplemented, the changes derived from Landsat data.
CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data
NASA Astrophysics Data System (ADS)
Nelson, David R.
2006-11-01
A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair (commonly 238U 16O +/ 238U +) for session standards. Also displayed with this plot are calculated Pb/U and Pb/Th calibration line regression slopes, y-intercepts, calibration uncertainties, standard 204Pb- and 208Pb-corrected 207Pb/ 206Pb dates and other parameters useful for assessment of the calibration-line data. Calibrated data for Unknowns may be automatically grouped according to calculated date and displayed in color on interactive Wetherill Concordia, Tera-Wasserburg Concordia, Linearized Gaussian ("Probability Paper") and Gaussian-summation probability density diagrams.
Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images
NASA Astrophysics Data System (ADS)
Sohrabi, H.
2012-07-01
In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.
Visual Data Exploration for Balance Quantification in Real-Time During Exergaming.
Soancatl Aguilar, Venustiano; J van de Gronde, Jasper; J C Lamoth, Claudine; van Diest, Mike; M Maurits, Natasha; B T M Roerdink, Jos
2017-01-01
Unintentional injuries are among the ten leading causes of death in older adults; falls cause 60% of these deaths. Despite their effectiveness to improve balance and reduce the risk of falls, balance training programs have several drawbacks in practice, such as lack of engaging elements, boring exercises, and the effort and cost of travelling, ultimately resulting in low adherence. Exergames, that is, digital games controlled by body movements, have been proposed as an alternative to improve balance. One of the main challenges for exergames is to automatically quantify balance during game-play in order to adapt the game difficulty according to the skills of the player. Here we perform a multidimensional exploratory data analysis, using visualization techniques, to find useful measures for quantifying balance in real-time. First, we visualize exergaming data, derived from 400 force plate recordings of 40 participants from 20 to 79 years and 10 trials per participant, as heat maps and violin plots to get quick insight into the nature of the data. Second, we extract known and new features from the data, such as instantaneous speed, measures of dispersion, turbulence measures derived from speed, and curvature values. Finally, we analyze and visualize these features using several visualizations such as a heat map, overlapping violin plots, a parallel coordinate plot, a projection of the two first principal components, and a scatter plot matrix. Our visualizations and findings suggest that heat maps and violin plots can provide quick insight and directions for further data exploration. The most promising measures to quantify balance in real-time are speed, curvature and a turbulence measure, because these measures show age-related changes in balance performance. The next step is to apply the present techniques to data of whole body movements as recorded by devices such as Kinect.
Visual Data Exploration for Balance Quantification in Real-Time During Exergaming
J. van de Gronde, Jasper; J. C. Lamoth, Claudine; van Diest, Mike; M. Maurits, Natasha; B. T. M. Roerdink, Jos
2017-01-01
Unintentional injuries are among the ten leading causes of death in older adults; falls cause 60% of these deaths. Despite their effectiveness to improve balance and reduce the risk of falls, balance training programs have several drawbacks in practice, such as lack of engaging elements, boring exercises, and the effort and cost of travelling, ultimately resulting in low adherence. Exergames, that is, digital games controlled by body movements, have been proposed as an alternative to improve balance. One of the main challenges for exergames is to automatically quantify balance during game-play in order to adapt the game difficulty according to the skills of the player. Here we perform a multidimensional exploratory data analysis, using visualization techniques, to find useful measures for quantifying balance in real-time. First, we visualize exergaming data, derived from 400 force plate recordings of 40 participants from 20 to 79 years and 10 trials per participant, as heat maps and violin plots to get quick insight into the nature of the data. Second, we extract known and new features from the data, such as instantaneous speed, measures of dispersion, turbulence measures derived from speed, and curvature values. Finally, we analyze and visualize these features using several visualizations such as a heat map, overlapping violin plots, a parallel coordinate plot, a projection of the two first principal components, and a scatter plot matrix. Our visualizations and findings suggest that heat maps and violin plots can provide quick insight and directions for further data exploration. The most promising measures to quantify balance in real-time are speed, curvature and a turbulence measure, because these measures show age-related changes in balance performance. The next step is to apply the present techniques to data of whole body movements as recorded by devices such as Kinect. PMID:28135284
NASA Astrophysics Data System (ADS)
Laher, Russ
2012-08-01
Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.
User's manual for computer program BASEPLOT
Sanders, Curtis L.
2002-01-01
The checking and reviewing of daily records of streamflow within the U.S. Geological Survey is traditionally accomplished by hand-plotting and mentally collating tables of data. The process is time consuming, difficult to standardize, and subject to errors in computation, data entry, and logic. In addition, the presentation of flow data on the internet requires more timely and accurate computation of daily flow records. BASEPLOT was developed for checking and review of primary streamflow records within the U.S. Geological Survey. Use of BASEPLOT enables users to (1) provide efficiencies during the record checking and review process, (2) improve quality control, (3) achieve uniformity of checking and review techniques of simple stage-discharge relations, and (4) provide a tool for teaching streamflow computation techniques. The BASEPLOT program produces tables of quality control checks and produces plots of rating curves and discharge measurements; variable shift (V-shift) diagrams; and V-shifts converted to stage-discharge plots, using data stored in the U.S. Geological Survey Automatic Data Processing System database. In addition, the program plots unit-value hydrographs that show unit-value stages, shifts, and datum corrections; input shifts, datum corrections, and effective dates; discharge measurements; effective dates for rating tables; and numeric quality control checks. Checklist/tutorial forms are provided for reviewers to ensure completeness of review and standardize the review process. The program was written for the U.S. Geological Survey SUN computer using the Statistical Analysis System (SAS) software produced by SAS Institute, Incorporated.
Automatic Matching of Large Scale Images and Terrestrial LIDAR Based on App Synergy of Mobile Phone
NASA Astrophysics Data System (ADS)
Xia, G.; Hu, C.
2018-04-01
The digitalization of Cultural Heritage based on ground laser scanning technology has been widely applied. High-precision scanning and high-resolution photography of cultural relics are the main methods of data acquisition. The reconstruction with the complete point cloud and high-resolution image requires the matching of image and point cloud, the acquisition of the homonym feature points, the data registration, etc. However, the one-to-one correspondence between image and corresponding point cloud depends on inefficient manual search. The effective classify and management of a large number of image and the matching of large image and corresponding point cloud will be the focus of the research. In this paper, we propose automatic matching of large scale images and terrestrial LiDAR based on APP synergy of mobile phone. Firstly, we develop an APP based on Android, take pictures and record related information of classification. Secondly, all the images are automatically grouped with the recorded information. Thirdly, the matching algorithm is used to match the global and local image. According to the one-to-one correspondence between the global image and the point cloud reflection intensity image, the automatic matching of the image and its corresponding laser radar point cloud is realized. Finally, the mapping relationship between global image, local image and intensity image is established according to homonym feature point. So we can establish the data structure of the global image, the local image in the global image, the local image corresponding point cloud, and carry on the visualization management and query of image.
NASA Astrophysics Data System (ADS)
Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.
2016-03-01
Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.
Ground-based weather radar remote sensing of volcanic ash explosive eruptions
NASA Astrophysics Data System (ADS)
Marzano, F. S.; Marchiotto, S.; Barbieri, S.; Giuliani, G.; Textor, C.; Schneider, D. J.
2009-04-01
The explosive eruptions of active volcanoes with a consequent formation of ash clouds represent a severe threat in several regions of the urbanized world. During a Plinian or a sub-Plinian eruption the injection of large amounts of fine and coarse rock fragments and corrosive gases into the troposphere and lower stratosphere is usually followed by a long lasting ashfall which can cause a variety of damages. Volcanic ash clouds are an increasing hazard to aviation safety because of growing air traffic volumes that use more efficient and susceptible jet engines. Real-time and areal monitoring of a volcano eruption, in terms of its intensity and dynamics, is not always possible by conventional visual inspections, especially during worse visibility periods which are quite common during eruption activity. Remote sensing techniques both from ground and from space represent unique tools to be exploited. In this respect, microwave weather radars can gather three-dimensional information of atmospheric scattering volumes up several hundreds of kilometers, in all weather conditions, at a fairly high spatial resolution (less than a kilometer) and with a repetition cycle of few minutes. Ground-based radar systems represent one of the best methods for determining the height and volume of volcanic eruption clouds. Single-polarization Doppler radars can measure horizontally-polarized power echo and Doppler shift from which ash content and radial velocity can be, in principle, extracted. In spite of these potentials, there are still several open issues about microwave weather radar capabilities to detect and quantitatively retrieve ash cloud parameters. A major issue is related to the aggregation of volcanic ash particles within the eruption column of explosive eruptions which has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the "umbrella" cloud. Numerical experiments are helpful to explore processes occurring in the eruption column. In this study we use the plume model ATHAM (Active Tracer High Resolution Atmospheric Model) to investigate, in both time and space, processes leading to particle aggregation in the eruption column. In this work a set of numerical simulations of radar reflectivity is performed with the ATHAM model, under the same experimental conditions except for the initial size distribution, i.e. varying the radii of average mass of the two particle dimension modes. A sensitivity analysis is carried out to evaluate the possible impact of aggregate particles on microwave radar reflectivity. It is shown how dimension, composition, temperature and mass concentration are the main characteristics of eruptive cloud particles that contribute to determine different radar reflectivity responses. In order to evaluate Rayleigh scattering approximation accuracy, the ATHAM simulations of radar reflectivity are used to compare in a detailed way the Mie and Rayleigh scattering regimes at S-, C- and X-band. The relationship between radar reflectivity factor and ash concentration has been statistically derived for the various particle classes by applying a new radar reflectivity microphysical model, which was developed starting from results of numerical experiments performed with plume model ATHAM. The ash retrieval physical-statistical algorithm is based on the backscattering microphysical model of volcanic cloud particles, used within a Bayesian classification and optimal regression algorithm. In order to illustrate the potential of this microwave active remote sensing technique, the case study of the eruption of Augustine volcano in Alaska in January 2006 is described. This event was the first time that a significant volcanic eruption was observed within the nominal range of a WSR-88D. The radar data, in conjunction with pilot reports, proved to be crucial in analyzing the height and movement of volcanic ash clouds during and immediately following each eruptive event. This data greatly aided National Weather Service meteorologists in the issuance of timely and accurate warning and advisory products to aviation, public, and marine interests. An application of the retrieval technique has been shown, taking into consideration the eruption of the Augustine volcano. Volume scan data from the NEXRAD WSR-88D S-band radar, which are located 190 km from the volcano vent, are processed to identify and estimate the particles concentration in an automatic fashion. The evolution of the Augustine Vulcanian eruption is discussed in terms of radar measurements products, pointing out the unique features, the current limitations and future improvements of radar remote sensing of volcanic plumes.
Botti, F; Alexander, A; Drygajlo, A
2004-12-02
This paper deals with a procedure to compensate for mismatched recording conditions in forensic speaker recognition, using a statistical score normalization. Bayesian interpretation of the evidence in forensic automatic speaker recognition depends on three sets of recordings in order to perform forensic casework: reference (R) and control (C) recordings of the suspect, and a potential population database (P), as well as a questioned recording (QR) . The requirement of similar recording conditions between suspect control database (C) and the questioned recording (QR) is often not satisfied in real forensic cases. The aim of this paper is to investigate a procedure of normalization of scores, which is based on an adaptation of the Test-normalization (T-norm) [2] technique used in the speaker verification domain, to compensate for the mismatch. Polyphone IPSC-02 database and ASPIC (an automatic speaker recognition system developed by EPFL and IPS-UNIL in Lausanne, Switzerland) were used in order to test the normalization procedure. Experimental results for three different recording condition scenarios are presented using Tippett plots and the effect of the compensation on the evaluation of the strength of the evidence is discussed.
Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws
NASA Astrophysics Data System (ADS)
Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.
2017-11-01
Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.
NASA Astrophysics Data System (ADS)
Manson, A.; Meek, C.; Chshyolkova, T.; Avery, S.; Thorsen, D.; MacDougall, J.; Hocking, W.; Murayama, Y.; Igarashi, K.; Namboothiri, S.; Kishore, P.
2004-02-01
. The newly-installed MFR (medium frequency radar) at Platteville (40N, 105W) has provided the opportunity and impetus to create an operational network of middle- latitude MFRs stretching from W-E. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (N, 81W), Platteville (40N, 105W), Saskatoon (52N, 107W), Wakkanai (45N, 142E) and Yamagawa (31N, 131E). It offers a significant 7000km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14) at two longitudes. Annual climatologies involving both height and frequency versus time contour plots for periods from 8h to 30 days, show that the changes with longitude are very significant and distinctive, often exceeding the local latitudinal variations. Comparisons with models and the recent UARS-HRDI global analysis of tides are discussed. The fits of the horizontal wave numbers of the longer period oscillations are provided in unique frequency versus time contour plots and shown to be consistent with the expected dominant modes. Annual climatologies of planetary waves (16 day, 2 day) and gravity waves reveal strong seasonal and longitudinal variations.
Improvements in the Goddard balloon-borne lidar
NASA Technical Reports Server (NTRS)
Heaps, W. S.
1986-01-01
The Goddard balloon-borne lidar system for the measurement of stratospheric ozone and the hydroxyl radical has made three additional flights since the last laser radar conference. On September 27, 1984, a flight was made from Palestine, Texas obtaining a measurement of hydroxyl diurnal variation at 36 km. These data are presented on the plot which shows hydroxyl concentration as a function of GMT for the range cell closest to the instrument. Local noon corresponds to 18 hours on the plot. The rapid drop in concentration after noon is not predicted by models of stratospheric chemistry. It may represent the effects of contamination of the sample volume by hydrocarbons outgassed from the balloon. The more recent flights on June 30, 1985, and December 6, 1985, focussed on measurements of concentration in the lower stratosphere (less than 30 km). The June flight succeeded in obtaining an average concentration measurement (1.8 + or - 0.0000018 molecules/cubic cm) over the altitude range 21 to 26 km. The December flight obtained measurements down to 24 km with a better signal-to-noise ratio than that obtained in June. Prospects for further improvement in sensitivity and absolute calibration will be discussed.
Structural analysis of vibroacoustical processes
NASA Technical Reports Server (NTRS)
Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.
1973-01-01
The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.
1992-07-01
Figure 24 Type 29 Telereader System 38 Figure 25 Contraves Semi-Automatic Film Reader 38 Figure 26 Typical Impact Plot 41 Figure 27 Delta Range...But they were at a loss as to how to account for the very observable and unpre- dictable pitching and yawing motions of bombs as they separated...nique. Just as had occurred during World War I, aircrews were forced to high altitudes to minimize aircraft losses from enemy defensive fire. And
Beaufort/Bering 1979 microwave remote sensing data catalog report, 14-24 March 1979
NASA Technical Reports Server (NTRS)
Hirstein, W. S.; Hennigar, H. F.; Schaffner, S. K.; Delnore, V. E.; Grantham, W. L.
1983-01-01
The airborne microwave remote sending measurements obtained by the Langley Research Center in support of the 1979 Sea-Ice Radar Experiment (SIRE) in the Beaufort and Bering Seas are discussed. The remote sensing objective of SIRE was to define correlations between both active and passive microwave signatures and ice phenomena assocated with practical applications in the Arctic. The instruments used by Langley during SIRE include the stepped frequency microwave radiometer (SFMR), the airborne microwave scatterometer (AMSCAT), the precision radiation thermometer (PRT-5), and metric aerial photography. Remote sensing data are inventoried and cataloged in a user-friendly format. The data catalog is presented as time-history plots when and where data were obtained as well as the sensor configuration.
NASA Astrophysics Data System (ADS)
Bhonsle, R. V.; et al.
2006-11-01
The Department of Physics, Shivaji University has started M.Sc. (Physics) degree course with a specialization in space science with effect from 1991. Emphasis has been given to the subject of Solar-terrestrial Physics, Astronomy and Astrophysics. The Indian Institute of Geomagnetism, Mumbai and The Physical Research Laboratory, Ahmedabad gave considerable help in starting teaching and research activities by providing instrumentation for experiments related to solar-terrestrial physics. Presently we have Solar Microwave Radiometer, Night Airglow Photometer, Proton Precession Magnetometer, Partial Reflection Radar, Satellite Radio Scintillometer, Automatic Weather Station, Earthquake Prediction and Detection equipments. In addition, there is a Celestron 5” Telescope for optical observations of the Sun, Planets and other celestial phenomena like comets, eclipses etc. With the addition of optical filters such as H-alpha (6563Ao) and Helium-I (10830Ao) filters, solar flares and coronal holes can be monitored using ground based optical telescope. In order to make the experimental setup more complete, a research project proposal is being submitted to DST Govt. of India requesting funds for a Digital Ionosonde, GPS System, Riometer and a Flux-gate Magnetometer and a ST Radar for measurements of wind velocity, waves and turbulence phenomena in the stratosphere and troposphere. This proposed ST Radar and Partial Reflection Radar data can yield valuable data on the dynamics of the middle atmosphere, which is important for the study of sun-weather relationship including chemical and environmental processes in the middle atmosphere. When all the above experiments become operational; a database for STP events can be created with the financial help from DST. Such a database will be a significant contribution from Shivaji University, consistent with the programme of the International Heliophysical Year sponsored by UN/NASA and DST Govt. of India.
NASA Technical Reports Server (NTRS)
Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.
2009-01-01
A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction when geo-locating the radar beam (i.e., beam height and arc distance), including non-standard refraction based on the user-input temperature profile. In addition to temperature profile adaptivity, this paper will also summarize the other requirements for this scan strategy program such as detection of low-level boundaries, detection of anvil clouds, reducing the Cone Of Silence, and allowing for times when deep convective clouds will not occur. The adaptive technique will be carefully compared to and benchmarked against the new fixed scan strategy. Specific environmental scenarios in which the adaptive scan strategy is able to optimize and improve coverage and resolution at critical heights, scan time, and/or sample numbers relative to the fixed scan strategy will be presented.
Tie Points Extraction for SAR Images Based on Differential Constraints
NASA Astrophysics Data System (ADS)
Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.
2018-04-01
Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.
NASA Technical Reports Server (NTRS)
Chartrand, Ryan C.; Jones, Kenneth M.; Allen, Bonnie D.
2012-01-01
The Federal Aviation Administration's Surveillance and Broadcast Services Program has supported implementation of the Automatic Dependant Surveillance Broadcast (ADS-B) In-Trail Procedure (ITP) on commercial revenue flights. ADS-B ITP is intended to be used in non-radar airspace that is employing procedural separation. Through the use of onboard tools, pilots are able to make a new type of altitude change request to an Air Traffic Service Provider (ATSP). The FAA, in partnership with United Airlines, is conducting flight trials of the ITP in revenue service in the Pacific. To support the expansion of flight trials to the rest of the US managed Pacific Airspace Region, a computerized batch study was conducted to investigate the operational impacts and potential benefits that can be gained through the use of the ITP in the Pacific Organized Track System (PACOTS). This study, which simulated the Oakland managed portion of the PACOTS, suggests that potential benefits in the PACOTS are significant with a considerable increase in time spent at optimum altitude and associated fuel savings.
Discrete range clustering using Monte Carlo methods
NASA Technical Reports Server (NTRS)
Chatterji, G. B.; Sridhar, B.
1993-01-01
For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
Reduction of livelihood risk for river bank erosion affected villagers
NASA Astrophysics Data System (ADS)
Majumder, S. Sen; Fox, D. M.; Chakrabari, S.; Bhandari, G.
2014-12-01
Bank erosion process of the Ganga River created a serious livelihood risk for the villagers situated on left bank of the river in Malda district of the State of West Bengal, India since last four decades. Due to the erosion of agriculture land by the river, most of the villagers having agriculture as their only means of livelihood became jobless suddenly. Presently they are living in a miserable condition. One of the main objectives of this paper is to find out an alternative means of livelihood for the victims to improve their miserable socio-economic condition. It has been found from field survey that some erosion affected villagers have started to live and practice agriculture temporarily on the riverine islands (large and stable since thirteen years) as these islands have very fertile soil. If the re-emerged land plots can again be demarcated on the newly formed islands and distributed among the landless people to practice agriculture over there, then it will be a useful alternative livelihood strategy for the victims. The demarcation of re-emerged plots can be achieved by georeferencing the cadastral maps and then overlaying the plots on the present river course. In the present study area geo-referencing process of the cadastral maps became a serious issue as the study area has been very dynamic in terms of land cover and land use. Most of the villages were lost into the river course. Thus the common permanent features, required for geo-referencing, shown in the cadastral maps (surveyed during 1954-1962) were not found in the present satellite images. The second important objective of the present study is to develop a proper methodology for geo-referencing the cadastral maps of this area. The Spatial Adjustment Transformation and Automatic Digitization tools of Arc GIS were used to prepare geo-referenced plot maps. In Projective Transformation method the geometrically corrected block maps having village boundaries were used as source file. Then the georeferenced plot maps were overlaid on the present river course and the plots covered by islands or lands were extracted. For e.g., Gopalpur village contains nearly 29% of its total area as riverine island and 36% of total plots are covered by this island area. These plots can be distributed to the land less people so that they can utilize it and reduce their livelihood risk in future.
NASA Astrophysics Data System (ADS)
Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.
2011-10-01
In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.
Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis
NASA Technical Reports Server (NTRS)
Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.
1988-01-01
The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.
Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN
NASA Astrophysics Data System (ADS)
Hughes, Lloyd H.; Schmitt, Michael; Mou, Lichao; Wang, Yuanyuan; Zhu, Xiao Xiang
2018-05-01
In this letter, we propose a pseudo-siamese convolutional neural network (CNN) architecture that enables to solve the task of identifying corresponding patches in very-high-resolution (VHR) optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross-entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated dataset that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently co-registered 3D point clouds. The satellite images, from which the patches comprising our dataset are extracted, show a complex urban scene containing many elevated objects (i.e. buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development towards a generalized multi-sensor key-point matching procedure. Index Terms-synthetic aperture radar (SAR), optical imagery, data fusion, deep learning, convolutional neural networks (CNN), image matching, deep matching
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David
2018-04-01
The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation
Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo
2015-01-01
This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.
Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo
2015-07-28
This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.