Sample records for automatic text classification

  1. The impact of OCR accuracy on automated cancer classification of pathology reports.

    PubMed

    Zuccon, Guido; Nguyen, Anthony N; Bergheim, Anton; Wickman, Sandra; Grayson, Narelle

    2012-01-01

    To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.

  2. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.

    PubMed

    Sarker, Abeed; Gonzalez, Graciela

    2015-02-01

    Automatic detection of adverse drug reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media-where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing (NLP) approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Portable Automatic Text Classification for Adverse Drug Reaction Detection via Multi-corpus Training

    PubMed Central

    Gonzalez, Graciela

    2014-01-01

    Objective Automatic detection of Adverse Drug Reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media — where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. Methods One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. Results Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. Conclusions Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future. PMID:25451103

  4. Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports

    PubMed Central

    Yim, Wen-wai; Kwan, Sharon W; Johnson, Guy; Yetisgen, Meliha

    2017-01-01

    Cancer stage information is important for clinical research. However, they are not always explicitly noted in electronic medical records. In this paper, we present our work on automatic classification of hepatocellular carcinoma (HCC) stages from free-text clinical and radiology notes. To accomplish this, we defined 11 stage parameters used in the three HCC staging systems, American Joint Committee on Cancer (AJCC), Barcelona Clinic Liver Cancer (BCLC), and Cancer of the Liver Italian Program (CLIP). After aggregating stage parameters to the patient-level, the final stage classifications were achieved using an expert-created decision logic. Each stage parameter relevant for staging was extracted using several classification methods, e.g. sentence classification and automatic information structuring, to identify and normalize text as cancer stage parameter values. Stage parameter extraction for the test set performed at 0.81 F1. Cancer stage prediction for AJCC, BCLC, and CLIP stage classifications were 0.55, 0.50, and 0.43 F1.

  5. Automatic topic identification of health-related messages in online health community using text classification.

    PubMed

    Lu, Yingjie

    2013-01-01

    To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.

  6. Automatic Classification of Medical Text: The Influence of Publication Form1

    PubMed Central

    Cole, William G.; Michael, Patricia A.; Stewart, James G.; Blois, Marsden S.

    1988-01-01

    Previous research has shown that within the domain of medical journal abstracts the statistical distribution of words is neither random nor uniform, but is highly characteristic. Many words are used mainly or solely by one medical specialty or when writing about one particular level of description. Due to this regularity of usage, automatic classification within journal abstracts has proved quite successful. The present research asks two further questions. It investigates whether this statistical regularity and automatic classification success can also be achieved in medical textbook chapters. It then goes on to see whether the statistical distribution found in textbooks is sufficiently similar to that found in abstracts to permit accurate classification of abstracts based solely on previous knowledge of textbooks. 14 textbook chapters and 45 MEDLINE abstracts were submitted to an automatic classification program that had been trained only on chapters drawn from a standard textbook series. Statistical analysis of the properties of abstracts vs. chapters revealed important differences in word use. Automatic classification performance was good for chapters, but poor for abstracts.

  7. Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion.

    PubMed

    Agarwal, Shashank; Yu, Hong

    2009-12-01

    Biomedical texts can be typically represented by four rhetorical categories: Introduction, Methods, Results and Discussion (IMRAD). Classifying sentences into these categories can benefit many other text-mining tasks. Although many studies have applied different approaches for automatically classifying sentences in MEDLINE abstracts into the IMRAD categories, few have explored the classification of sentences that appear in full-text biomedical articles. We first evaluated whether sentences in full-text biomedical articles could be reliably annotated into the IMRAD format and then explored different approaches for automatically classifying these sentences into the IMRAD categories. Our results show an overall annotation agreement of 82.14% with a Kappa score of 0.756. The best classification system is a multinomial naïve Bayes classifier trained on manually annotated data that achieved 91.95% accuracy and an average F-score of 91.55%, which is significantly higher than baseline systems. A web version of this system is available online at-http://wood.ims.uwm.edu/full_text_classifier/.

  8. Prediction of cause of death from forensic autopsy reports using text classification techniques: A comparative study.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa

    2018-07-01

    Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Biomedical literature classification using encyclopedic knowledge: a Wikipedia-based bag-of-concepts approach.

    PubMed

    Mouriño García, Marcos Antonio; Pérez Rodríguez, Roberto; Anido Rifón, Luis E

    2015-01-01

    Automatic classification of text documents into a set of categories has a lot of applications. Among those applications, the automatic classification of biomedical literature stands out as an important application for automatic document classification strategies. Biomedical staff and researchers have to deal with a lot of literature in their daily activities, so it would be useful a system that allows for accessing to documents of interest in a simple and effective way; thus, it is necessary that these documents are sorted based on some criteria-that is to say, they have to be classified. Documents to classify are usually represented following the bag-of-words (BoW) paradigm. Features are words in the text-thus suffering from synonymy and polysemy-and their weights are just based on their frequency of occurrence. This paper presents an empirical study of the efficiency of a classifier that leverages encyclopedic background knowledge-concretely Wikipedia-in order to create bag-of-concepts (BoC) representations of documents, understanding concept as "unit of meaning", and thus tackling synonymy and polysemy. Besides, the weighting of concepts is based on their semantic relevance in the text. For the evaluation of the proposal, empirical experiments have been conducted with one of the commonly used corpora for evaluating classification and retrieval of biomedical information, OHSUMED, and also with a purpose-built corpus of MEDLINE biomedical abstracts, UVigoMED. Results obtained show that the Wikipedia-based bag-of-concepts representation outperforms the classical bag-of-words representation up to 157% in the single-label classification problem and up to 100% in the multi-label problem for OHSUMED corpus, and up to 122% in the single-label classification problem and up to 155% in the multi-label problem for UVigoMED corpus.

  10. Text Classification for Organizational Researchers

    PubMed Central

    Kobayashi, Vladimer B.; Mol, Stefan T.; Berkers, Hannah A.; Kismihók, Gábor; Den Hartog, Deanne N.

    2017-01-01

    Organizations are increasingly interested in classifying texts or parts thereof into categories, as this enables more effective use of their information. Manual procedures for text classification work well for up to a few hundred documents. However, when the number of documents is larger, manual procedures become laborious, time-consuming, and potentially unreliable. Techniques from text mining facilitate the automatic assignment of text strings to categories, making classification expedient, fast, and reliable, which creates potential for its application in organizational research. The purpose of this article is to familiarize organizational researchers with text mining techniques from machine learning and statistics. We describe the text classification process in several roughly sequential steps, namely training data preparation, preprocessing, transformation, application of classification techniques, and validation, and provide concrete recommendations at each step. To help researchers develop their own text classifiers, the R code associated with each step is presented in a tutorial. The tutorial draws from our own work on job vacancy mining. We end the article by discussing how researchers can validate a text classification model and the associated output. PMID:29881249

  11. Enhancing navigation in biomedical databases by community voting and database-driven text classification

    PubMed Central

    Duchrow, Timo; Shtatland, Timur; Guettler, Daniel; Pivovarov, Misha; Kramer, Stefan; Weissleder, Ralph

    2009-01-01

    Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at . PMID:19799796

  12. Automatic Identification of Critical Follow-Up Recommendation Sentences in Radiology Reports

    PubMed Central

    Yetisgen-Yildiz, Meliha; Gunn, Martin L.; Xia, Fei; Payne, Thomas H.

    2011-01-01

    Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports. PMID:22195225

  13. Automatic identification of critical follow-up recommendation sentences in radiology reports.

    PubMed

    Yetisgen-Yildiz, Meliha; Gunn, Martin L; Xia, Fei; Payne, Thomas H

    2011-01-01

    Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports.

  14. A New Method for Measuring Text Similarity in Learning Management Systems Using WordNet

    ERIC Educational Resources Information Center

    Alkhatib, Bassel; Alnahhas, Ammar; Albadawi, Firas

    2014-01-01

    As text sources are getting broader, measuring text similarity is becoming more compelling. Automatic text classification, search engines and auto answering systems are samples of applications that rely on text similarity. Learning management systems (LMS) are becoming more important since electronic media is getting more publicly available. As…

  15. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  16. EUCLID: automatic classification of proteins in functional classes by their database annotations.

    PubMed

    Tamames, J; Ouzounis, C; Casari, G; Sander, C; Valencia, A

    1998-01-01

    A tool is described for the automatic classification of sequences in functional classes using their database annotations. The Euclid system is based on a simple learning procedure from examples provided by human experts. Euclid is freely available for academics at http://www.gredos.cnb.uam.es/EUCLID, with the corresponding dictionaries for the generation of three, eight and 14 functional classes. E-mail: valencia@cnb.uam.es The results of the EUCLID classification of different genomes are available at http://www.sander.ebi.ac. uk/genequiz/. A detailed description of the different applications mentioned in the text is available at http://www.gredos.cnb.uam. es/EUCLID/Full_Paper

  17. Biomedical literature classification using encyclopedic knowledge: a Wikipedia-based bag-of-concepts approach

    PubMed Central

    Pérez Rodríguez, Roberto; Anido Rifón, Luis E.

    2015-01-01

    Automatic classification of text documents into a set of categories has a lot of applications. Among those applications, the automatic classification of biomedical literature stands out as an important application for automatic document classification strategies. Biomedical staff and researchers have to deal with a lot of literature in their daily activities, so it would be useful a system that allows for accessing to documents of interest in a simple and effective way; thus, it is necessary that these documents are sorted based on some criteria—that is to say, they have to be classified. Documents to classify are usually represented following the bag-of-words (BoW) paradigm. Features are words in the text—thus suffering from synonymy and polysemy—and their weights are just based on their frequency of occurrence. This paper presents an empirical study of the efficiency of a classifier that leverages encyclopedic background knowledge—concretely Wikipedia—in order to create bag-of-concepts (BoC) representations of documents, understanding concept as “unit of meaning”, and thus tackling synonymy and polysemy. Besides, the weighting of concepts is based on their semantic relevance in the text. For the evaluation of the proposal, empirical experiments have been conducted with one of the commonly used corpora for evaluating classification and retrieval of biomedical information, OHSUMED, and also with a purpose-built corpus of MEDLINE biomedical abstracts, UVigoMED. Results obtained show that the Wikipedia-based bag-of-concepts representation outperforms the classical bag-of-words representation up to 157% in the single-label classification problem and up to 100% in the multi-label problem for OHSUMED corpus, and up to 122% in the single-label classification problem and up to 155% in the multi-label problem for UVigoMED corpus. PMID:26468436

  18. Towards Automatic Classification of Wikipedia Content

    NASA Astrophysics Data System (ADS)

    Szymański, Julian

    Wikipedia - the Free Encyclopedia encounters the problem of proper classification of new articles everyday. The process of assignment of articles to categories is performed manually and it is a time consuming task. It requires knowledge about Wikipedia structure, which is beyond typical editor competence, which leads to human-caused mistakes - omitting or wrong assignments of articles to categories. The article presents application of SVM classifier for automatic classification of documents from The Free Encyclopedia. The classifier application has been tested while using two text representations: inter-documents connections (hyperlinks) and word content. The results of the performed experiments evaluated on hand crafted data show that the Wikipedia classification process can be partially automated. The proposed approach can be used for building a decision support system which suggests editors the best categories that fit new content entered to Wikipedia.

  19. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry

    PubMed Central

    AAlAbdulsalam, Abdulrahman K.; Garvin, Jennifer H.; Redd, Andrew; Carter, Marjorie E.; Sweeny, Carol; Meystre, Stephane M.

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%–98.4% and classification sensitivity: 83.5%–87%). PMID:29888032

  20. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry.

    PubMed

    AAlAbdulsalam, Abdulrahman K; Garvin, Jennifer H; Redd, Andrew; Carter, Marjorie E; Sweeny, Carol; Meystre, Stephane M

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%-98.4% and classification sensitivity: 83.5%-87%).

  1. Automated Classification of Selected Data Elements from Free-text Diagnostic Reports for Clinical Research.

    PubMed

    Löpprich, Martin; Krauss, Felix; Ganzinger, Matthias; Senghas, Karsten; Riezler, Stefan; Knaup, Petra

    2016-08-05

    In the Multiple Myeloma clinical registry at Heidelberg University Hospital, most data are extracted from discharge letters. Our aim was to analyze if it is possible to make the manual documentation process more efficient by using methods of natural language processing for multiclass classification of free-text diagnostic reports to automatically document the diagnosis and state of disease of myeloma patients. The first objective was to create a corpus consisting of free-text diagnosis paragraphs of patients with multiple myeloma from German diagnostic reports, and its manual annotation of relevant data elements by documentation specialists. The second objective was to construct and evaluate a framework using different NLP methods to enable automatic multiclass classification of relevant data elements from free-text diagnostic reports. The main diagnoses paragraph was extracted from the clinical report of one third randomly selected patients of the multiple myeloma research database from Heidelberg University Hospital (in total 737 selected patients). An EDC system was setup and two data entry specialists performed independently a manual documentation of at least nine specific data elements for multiple myeloma characterization. Both data entries were compared and assessed by a third specialist and an annotated text corpus was created. A framework was constructed, consisting of a self-developed package to split multiple diagnosis sequences into several subsequences, four different preprocessing steps to normalize the input data and two classifiers: a maximum entropy classifier (MEC) and a support vector machine (SVM). In total 15 different pipelines were examined and assessed by a ten-fold cross-validation, reiterated 100 times. For quality indication the average error rate and the average F1-score were conducted. For significance testing the approximate randomization test was used. The created annotated corpus consists of 737 different diagnoses paragraphs with a total number of 865 coded diagnosis. The dataset is publicly available in the supplementary online files for training and testing of further NLP methods. Both classifiers showed low average error rates (MEC: 1.05; SVM: 0.84) and high F1-scores (MEC: 0.89; SVM: 0.92). However the results varied widely depending on the classified data element. Preprocessing methods increased this effect and had significant impact on the classification, both positive and negative. The automatic diagnosis splitter increased the average error rate significantly, even if the F1-score decreased only slightly. The low average error rates and high average F1-scores of each pipeline demonstrate the suitability of the investigated NPL methods. However, it was also shown that there is no best practice for an automatic classification of data elements from free-text diagnostic reports.

  2. An Evaluation Method of Words Tendency Depending on Time-Series Variation and Its Improvements.

    ERIC Educational Resources Information Center

    Atlam, El-Sayed; Okada, Makoto; Shishibori, Masami; Aoe, Jun-ichi

    2002-01-01

    Discussion of word frequency and keywords in text focuses on a method to estimate automatically the stability classes that indicate a word's popularity with time-series variations based on the frequency change in past electronic text data. Compares the evaluation of decision tree stability class results with manual classification results.…

  3. Automatic classification of diseases from free-text death certificates for real-time surveillance.

    PubMed

    Koopman, Bevan; Karimi, Sarvnaz; Nguyen, Anthony; McGuire, Rhydwyn; Muscatello, David; Kemp, Madonna; Truran, Donna; Zhang, Ming; Thackway, Sarah

    2015-07-15

    Death certificates provide an invaluable source for mortality statistics which can be used for surveillance and early warnings of increases in disease activity and to support the development and monitoring of prevention or response strategies. However, their value can be realised only if accurate, quantitative data can be extracted from death certificates, an aim hampered by both the volume and variable nature of certificates written in natural language. This study aims to develop a set of machine learning and rule-based methods to automatically classify death certificates according to four high impact diseases of interest: diabetes, influenza, pneumonia and HIV. Two classification methods are presented: i) a machine learning approach, where detailed features (terms, term n-grams and SNOMED CT concepts) are extracted from death certificates and used to train a set of supervised machine learning models (Support Vector Machines); and ii) a set of keyword-matching rules. These methods were used to identify the presence of diabetes, influenza, pneumonia and HIV in a death certificate. An empirical evaluation was conducted using 340,142 death certificates, divided between training and test sets, covering deaths from 2000-2007 in New South Wales, Australia. Precision and recall (positive predictive value and sensitivity) were used as evaluation measures, with F-measure providing a single, overall measure of effectiveness. A detailed error analysis was performed on classification errors. Classification of diabetes, influenza, pneumonia and HIV was highly accurate (F-measure 0.96). More fine-grained ICD-10 classification effectiveness was more variable but still high (F-measure 0.80). The error analysis revealed that word variations as well as certain word combinations adversely affected classification. In addition, anomalies in the ground truth likely led to an underestimation of the effectiveness. The high accuracy and low cost of the classification methods allow for an effective means for automatic and real-time surveillance of diabetes, influenza, pneumonia and HIV deaths. In addition, the methods are generally applicable to other diseases of interest and to other sources of medical free-text besides death certificates.

  4. Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.

    PubMed

    Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun

    2018-06-01

    Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.

  5. Computer-assisted liver graft steatosis assessment via learning-based texture analysis.

    PubMed

    Moccia, Sara; Mattos, Leonardo S; Patrini, Ilaria; Ruperti, Michela; Poté, Nicolas; Dondero, Federica; Cauchy, François; Sepulveda, Ailton; Soubrane, Olivier; De Momi, Elena; Diaspro, Alberto; Cesaretti, Manuela

    2018-05-23

    Fast and accurate graft hepatic steatosis (HS) assessment is of primary importance for lowering liver dysfunction risks after transplantation. Histopathological analysis of biopsied liver is the gold standard for assessing HS, despite being invasive and time consuming. Due to the short time availability between liver procurement and transplantation, surgeons perform HS assessment through clinical evaluation (medical history, blood tests) and liver texture visual analysis. Despite visual analysis being recognized as challenging in the clinical literature, few efforts have been invested to develop computer-assisted solutions for HS assessment. The objective of this paper is to investigate the automatic analysis of liver texture with machine learning algorithms to automate the HS assessment process and offer support for the surgeon decision process. Forty RGB images of forty different donors were analyzed. The images were captured with an RGB smartphone camera in the operating room (OR). Twenty images refer to livers that were accepted and 20 to discarded livers. Fifteen randomly selected liver patches were extracted from each image. Patch size was [Formula: see text]. This way, a balanced dataset of 600 patches was obtained. Intensity-based features (INT), histogram of local binary pattern ([Formula: see text]), and gray-level co-occurrence matrix ([Formula: see text]) were investigated. Blood-sample features (Blo) were included in the analysis, too. Supervised and semisupervised learning approaches were investigated for feature classification. The leave-one-patient-out cross-validation was performed to estimate the classification performance. With the best-performing feature set ([Formula: see text]) and semisupervised learning, the achieved classification sensitivity, specificity, and accuracy were 95, 81, and 88%, respectively. This research represents the first attempt to use machine learning and automatic texture analysis of RGB images from ubiquitous smartphone cameras for the task of graft HS assessment. The results suggest that is a promising strategy to develop a fully automatic solution to assist surgeons in HS assessment inside the OR.

  6. Automatic classification of radiological reports for clinical care.

    PubMed

    Gerevini, Alfonso Emilio; Lavelli, Alberto; Maffi, Alessandro; Maroldi, Roberto; Minard, Anne-Lyse; Serina, Ivan; Squassina, Guido

    2018-06-07

    Radiological reporting generates a large amount of free-text clinical narratives, a potentially valuable source of information for improving clinical care and supporting research. The use of automatic techniques to analyze such reports is necessary to make their content effectively available to radiologists in an aggregated form. In this paper we focus on the classification of chest computed tomography reports according to a classification schema proposed for this task by radiologists of the Italian hospital ASST Spedali Civili di Brescia. The proposed system is built exploiting a training data set containing reports annotated by radiologists. Each report is classified according to the schema developed by radiologists and textual evidences are marked in the report. The annotations are then used to train different machine learning based classifiers. We present in this paper a method based on a cascade of classifiers which make use of a set of syntactic and semantic features. The resulting system is a novel hierarchical classification system for the given task, that we have experimentally evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2017-01-01

    Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.

  8. Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection

    PubMed Central

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2017-01-01

    Objectives Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Methods Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Results Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. Conclusion The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports. PMID:28166263

  9. Coupling System Design Optimization : A Survey and Assessment of Automatic Coupling Concepts for Rail Freight Cars : Volume 2. Text and Appendices.

    DOT National Transportation Integrated Search

    1978-05-01

    The purpose of this study is to provide an independent identification, classification, and analysis of significant freight car coupling system concepts offering potential for improved safety and operating costs over the present system. The basic meth...

  10. Classification of Swedish Learner Essays by CEFR Levels

    ERIC Educational Resources Information Center

    Volodina, Elena; Pilán, Ildikó; Alfter, David

    2016-01-01

    The paper describes initial efforts on creating a system for the automatic assessment of Swedish second language (L2) learner essays from two points of view: holistic evaluation of the reached level according to the Common European Framework of Reference (CEFR), and the lexical analysis of texts for receptive and productive vocabulary per CEFR…

  11. Using clustering and a modified classification algorithm for automatic text summarization

    NASA Astrophysics Data System (ADS)

    Aries, Abdelkrime; Oufaida, Houda; Nouali, Omar

    2013-01-01

    In this paper we describe a modified classification method destined for extractive summarization purpose. The classification in this method doesn't need a learning corpus; it uses the input text to do that. First, we cluster the document sentences to exploit the diversity of topics, then we use a learning algorithm (here we used Naive Bayes) on each cluster considering it as a class. After obtaining the classification model, we calculate the score of a sentence in each class, using a scoring model derived from classification algorithm. These scores are used, then, to reorder the sentences and extract the first ones as the output summary. We conducted some experiments using a corpus of scientific papers, and we have compared our results to another summarization system called UNIS.1 Also, we experiment the impact of clustering threshold tuning, on the resulted summary, as well as the impact of adding more features to the classifier. We found that this method is interesting, and gives good performance, and the addition of new features (which is simple using this method) can improve summary's accuracy.

  12. Automatic evidence quality prediction to support evidence-based decision making.

    PubMed

    Sarker, Abeed; Mollá, Diego; Paris, Cécile

    2015-06-01

    Evidence-based medicine practice requires practitioners to obtain the best available medical evidence, and appraise the quality of the evidence when making clinical decisions. Primarily due to the plethora of electronically available data from the medical literature, the manual appraisal of the quality of evidence is a time-consuming process. We present a fully automatic approach for predicting the quality of medical evidence in order to aid practitioners at point-of-care. Our approach extracts relevant information from medical article abstracts and utilises data from a specialised corpus to apply supervised machine learning for the prediction of the quality grades. Following an in-depth analysis of the usefulness of features (e.g., publication types of articles), they are extracted from the text via rule-based approaches and from the meta-data associated with the articles, and then applied in the supervised classification model. We propose the use of a highly scalable and portable approach using a sequence of high precision classifiers, and introduce a simple evaluation metric called average error distance (AED) that simplifies the comparison of systems. We also perform elaborate human evaluations to compare the performance of our system against human judgments. We test and evaluate our approaches on a publicly available, specialised, annotated corpus containing 1132 evidence-based recommendations. Our rule-based approach performs exceptionally well at the automatic extraction of publication types of articles, with F-scores of up to 0.99 for high-quality publication types. For evidence quality classification, our approach obtains an accuracy of 63.84% and an AED of 0.271. The human evaluations show that the performance of our system, in terms of AED and accuracy, is comparable to the performance of humans on the same data. The experiments suggest that our structured text classification framework achieves evaluation results comparable to those of human performance. Our overall classification approach and evaluation technique are also highly portable and can be used for various evidence grading scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Label-indicator morpheme growth on LSTM for Chinese healthcare question department classification.

    PubMed

    Hu, Yang; Wen, Guihua; Ma, Jiajiong; Li, Danyang; Wang, Changjun; Li, Huihui; Huan, Eryang

    2018-04-26

    Current Chinese medicine has an urgent demand for convenient medical services. When facing a large number of patients, understanding patients' questions automatically and precisely is useful. Different from the high professional medical text, patients' questions contain only a small amount of descriptions regarding the symptoms, and the questions are slightly professional and colloquial. The aim of this paper is to implement a department classification system for patient questions. Patients' questions will be classified into 11 departments, such as surgery and others. This paper presents a morpheme growth model that enhances the memories of key elements in questions, and later extracts the "label-indicators" and germinates the expansion vectors around them. Finally, the model inputs the expansion vectors into a neural network to assign department labels for patients' questions. All compared methods are validated by experiments on three datasets that are composed of real patient questions. The proposed method has some ability to improve the performance of the classification. The proposed method is effective for the departments classification of patients questions and serves as a useful system for the automatic understanding of patient questions. Copyright © 2018. Published by Elsevier Inc.

  14. Identifying Wrist Fracture Patients with High Accuracy by Automatic Categorization of X-ray Reports

    PubMed Central

    de Bruijn, Berry; Cranney, Ann; O’Donnell, Siobhan; Martin, Joel D.; Forster, Alan J.

    2006-01-01

    The authors performed this study to determine the accuracy of several text classification methods to categorize wrist x-ray reports. We randomly sampled 751 textual wrist x-ray reports. Two expert reviewers rated the presence (n = 301) or absence (n = 450) of an acute fracture of wrist. We developed two information retrieval (IR) text classification methods and a machine learning method using a support vector machine (TC-1). In cross-validation on the derivation set (n = 493), TC-1 outperformed the two IR based methods and six benchmark classifiers, including Naive Bayes and a Neural Network. In the validation set (n = 258), TC-1 demonstrated consistent performance with 93.8% accuracy; 95.5% sensitivity; 92.9% specificity; and 87.5% positive predictive value. TC-1 was easy to implement and superior in performance to the other classification methods. PMID:16929046

  15. Use of an automatic procedure for determination of classes of land use in the Teste Araras area of the peripheral Paulist depression

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Valeriano, D. D.

    1981-01-01

    An evaluation of the multispectral image analyzer (system Image 1-100), using automatic classification, is presented. The region studied is situated. The automatic was carried out using the maximum likelihood (MAXVER) classification system. The following classes were established: urban area, bare soil, sugar cane, citrus culture (oranges), pastures, and reforestation. The classification matrix of the test sites indicate that the percentage of correct classification varied between 63% and 100%.

  16. The ACODEA Framework: Developing Segmentation and Classification Schemes for Fully Automatic Analysis of Online Discussions

    ERIC Educational Resources Information Center

    Mu, Jin; Stegmann, Karsten; Mayfield, Elijah; Rose, Carolyn; Fischer, Frank

    2012-01-01

    Research related to online discussions frequently faces the problem of analyzing huge corpora. Natural Language Processing (NLP) technologies may allow automating this analysis. However, the state-of-the-art in machine learning and text mining approaches yields models that do not transfer well between corpora related to different topics. Also,…

  17. Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Dept. of Computer Science.

    Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…

  18. Multimodal Excitatory Interfaces with Automatic Content Classification

    NASA Astrophysics Data System (ADS)

    Williamson, John; Murray-Smith, Roderick

    We describe a non-visual interface for displaying data on mobile devices, based around active exploration: devices are shaken, revealing the contents rattling around inside. This combines sample-based contact sonification with event playback vibrotactile feedback for a rich and compelling display which produces an illusion much like balls rattling inside a box. Motion is sensed from accelerometers, directly linking the motions of the user to the feedback they receive in a tightly closed loop. The resulting interface requires no visual attention and can be operated blindly with a single hand: it is reactive rather than disruptive. This interaction style is applied to the display of an SMS inbox. We use language models to extract salient features from text messages automatically. The output of this classification process controls the timbre and physical dynamics of the simulated objects. The interface gives a rapid semantic overview of the contents of an inbox, without compromising privacy or interrupting the user.

  19. Distinguishing Man from Molecules: The Distinctiveness of Medical Concepts at Different Levels of Description

    PubMed Central

    Cole, William G.; Michael, Patricia; Blois, Marsden S.

    1987-01-01

    A computer program was created to use information about the statistical distribution of words in journal abstracts to make probabilistic judgments about the level of description (e.g. molecular, cell, organ) of medical text. Statistical analysis of 7,409 journal abstracts taken from three medical journals representing distinct levels of description revealed that many medical words seem to be highly specific to one or another level of description. For example, the word adrenoreceptors occurred only in the American Journal of Physiology, never in Journal of Biological Chemistry or in Journal of American Medical Association. Such highly specific words occured so frequently that the automatic classification program was able to classify correctly 45 out of 45 test abstracts, with 100% confidence. These findings are interpreted in terms of both a theory of the structure of medical knowledge and the pragmatics of automatic classification.

  20. Text mining and natural language processing approaches for automatic categorization of lay requests to web-based expert forums.

    PubMed

    Himmel, Wolfgang; Reincke, Ulrich; Michelmann, Hans Wilhelm

    2009-07-22

    Both healthy and sick people increasingly use electronic media to obtain medical information and advice. For example, Internet users may send requests to Web-based expert forums, or so-called "ask the doctor" services. To automatically classify lay requests to an Internet medical expert forum using a combination of different text-mining strategies. We first manually classified a sample of 988 requests directed to a involuntary childlessness forum on the German website "Rund ums Baby" ("Everything about Babies") into one or more of 38 categories belonging to two dimensions ("subject matter" and "expectations"). After creating start and synonym lists, we calculated the average Cramer's V statistic for the association of each word with each category. We also used principle component analysis and singular value decomposition as further text-mining strategies. With these measures we trained regression models and determined, on the basis of best regression models, for any request the probability of belonging to each of the 38 different categories, with a cutoff of 50%. Recall and precision of a test sample were calculated as a measure of quality for the automatic classification. According to the manual classification of 988 documents, 102 (10%) documents fell into the category "in vitro fertilization (IVF)," 81 (8%) into the category "ovulation," 79 (8%) into "cycle," and 57 (6%) into "semen analysis." These were the four most frequent categories in the subject matter dimension (consisting of 32 categories). The expectation dimension comprised six categories; we classified 533 documents (54%) as "general information" and 351 (36%) as a wish for "treatment recommendations." The generation of indicator variables based on the chi-square analysis and Cramer's V proved to be the best approach for automatic classification in about half of the categories. In combination with the two other approaches, 100% precision and 100% recall were realized in 18 (47%) out of the 38 categories in the test sample. For 35 (92%) categories, precision and recall were better than 80%. For some categories, the input variables (ie, "words") also included variables from other categories, most often with a negative sign. For example, absence of words predictive for "menstruation" was a strong indicator for the category "pregnancy test." Our approach suggests a way of automatically classifying and analyzing unstructured information in Internet expert forums. The technique can perform a preliminary categorization of new requests and help Internet medical experts to better handle the mass of information and to give professional feedback.

  1. Symbolic rule-based classification of lung cancer stages from free-text pathology reports.

    PubMed

    Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni

    2010-01-01

    To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.

  2. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    NASA Astrophysics Data System (ADS)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.

  3. A linear-RBF multikernel SVM to classify big text corpora.

    PubMed

    Romero, R; Iglesias, E L; Borrajo, L

    2015-01-01

    Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.

  4. Analyzing Collaborative Learning Processes Automatically: Exploiting the Advances of Computational Linguistics in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Rose, Carolyn; Wang, Yi-Chia; Cui, Yue; Arguello, Jaime; Stegmann, Karsten; Weinberger, Armin; Fischer, Frank

    2008-01-01

    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners' interactions is a…

  5. TEXT CLASSIFICATION FOR AUTOMATIC DETECTION OF E-CIGARETTE USE AND USE FOR SMOKING CESSATION FROM TWITTER: A FEASIBILITY PILOT.

    PubMed

    Aphinyanaphongs, Yin; Lulejian, Armine; Brown, Duncan Penfold; Bonneau, Richard; Krebs, Paul

    2016-01-01

    Rapid increases in e-cigarette use and potential exposure to harmful byproducts have shifted public health focus to e-cigarettes as a possible drug of abuse. Effective surveillance of use and prevalence would allow appropriate regulatory responses. An ideal surveillance system would collect usage data in real time, focus on populations of interest, include populations unable to take the survey, allow a breadth of questions to answer, and enable geo-location analysis. Social media streams may provide this ideal system. To realize this use case, a foundational question is whether we can detect e-cigarette use at all. This work reports two pilot tasks using text classification to identify automatically Tweets that indicate e-cigarette use and/or e-cigarette use for smoking cessation. We build and define both datasets and compare performance of 4 state of the art classifiers and a keyword search for each task. Our results demonstrate excellent classifier performance of up to 0.90 and 0.94 area under the curve in each category. These promising initial results form the foundation for further studies to realize the ideal surveillance solution.

  6. Using statistical text classification to identify health information technology incidents

    PubMed Central

    Chai, Kevin E K; Anthony, Stephen; Coiera, Enrico; Magrabi, Farah

    2013-01-01

    Objective To examine the feasibility of using statistical text classification to automatically identify health information technology (HIT) incidents in the USA Food and Drug Administration (FDA) Manufacturer and User Facility Device Experience (MAUDE) database. Design We used a subset of 570 272 incidents including 1534 HIT incidents reported to MAUDE between 1 January 2008 and 1 July 2010. Text classifiers using regularized logistic regression were evaluated with both ‘balanced’ (50% HIT) and ‘stratified’ (0.297% HIT) datasets for training, validation, and testing. Dataset preparation, feature extraction, feature selection, cross-validation, classification, performance evaluation, and error analysis were performed iteratively to further improve the classifiers. Feature-selection techniques such as removing short words and stop words, stemming, lemmatization, and principal component analysis were examined. Measurements κ statistic, F1 score, precision and recall. Results Classification performance was similar on both the stratified (0.954 F1 score) and balanced (0.995 F1 score) datasets. Stemming was the most effective technique, reducing the feature set size to 79% while maintaining comparable performance. Training with balanced datasets improved recall (0.989) but reduced precision (0.165). Conclusions Statistical text classification appears to be a feasible method for identifying HIT reports within large databases of incidents. Automated identification should enable more HIT problems to be detected, analyzed, and addressed in a timely manner. Semi-supervised learning may be necessary when applying machine learning to big data analysis of patient safety incidents and requires further investigation. PMID:23666777

  7. An automatic agricultural zone classification procedure for crop inventory satellite images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J.; Velasco, F. R. D.; Deoliveira, M. O. B.

    1982-01-01

    A classification procedure for assessing crop areal proportion in multispectral scanner image is discussed. The procedure is into four parts: labeling; classification; proportion estimation; and evaluation. The procedure also has the following characteristics: multitemporal classification; the need for a minimum field information; and verification capability between automatic classification and analyst labeling. The processing steps and the main algorithms involved are discussed. An outlook on the future of this technology is also presented.

  8. Automatic document classification of biological literature

    PubMed Central

    Chen, David; Müller, Hans-Michael; Sternberg, Paul W

    2006-01-01

    Background Document classification is a wide-spread problem with many applications, from organizing search engine snippets to spam filtering. We previously described Textpresso, a text-mining system for biological literature, which marks up full text according to a shallow ontology that includes terms of biological interest. This project investigates document classification in the context of biological literature, making use of the Textpresso markup of a corpus of Caenorhabditis elegans literature. Results We present a two-step text categorization algorithm to classify a corpus of C. elegans papers. Our classification method first uses a support vector machine-trained classifier, followed by a novel, phrase-based clustering algorithm. This clustering step autonomously creates cluster labels that are descriptive and understandable by humans. This clustering engine performed better on a standard test-set (Reuters 21578) compared to previously published results (F-value of 0.55 vs. 0.49), while producing cluster descriptions that appear more useful. A web interface allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept. Conclusion We have demonstrated a simple method to classify biological documents that embodies an improvement over current methods. While the classification results are currently optimized for Caenorhabditis elegans papers by human-created rules, the classification engine can be adapted to different types of documents. We have demonstrated this by presenting a web interface that allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept. PMID:16893465

  9. Automating document classification for the Immune Epitope Database

    PubMed Central

    Wang, Peng; Morgan, Alexander A; Zhang, Qing; Sette, Alessandro; Peters, Bjoern

    2007-01-01

    Background The Immune Epitope Database contains information on immune epitopes curated manually from the scientific literature. Like similar projects in other knowledge domains, significant effort is spent on identifying which articles are relevant for this purpose. Results We here report our experience in automating this process using Naïve Bayes classifiers trained on 20,910 abstracts classified by domain experts. Improvements on the basic classifier performance were made by a) utilizing information stored in PubMed beyond the abstract itself b) applying standard feature selection criteria and c) extracting domain specific feature patterns that e.g. identify peptides sequences. We have implemented the classifier into the curation process determining if abstracts are clearly relevant, clearly irrelevant, or if no certain classification can be made, in which case the abstracts are manually classified. Testing this classification scheme on an independent dataset, we achieve 95% sensitivity and specificity in the 51.1% of abstracts that were automatically classified. Conclusion By implementing text classification, we have sped up the reference selection process without sacrificing sensitivity or specificity of the human expert classification. This study provides both practical recommendations for users of text classification tools, as well as a large dataset which can serve as a benchmark for tool developers. PMID:17655769

  10. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy?

    PubMed Central

    Papageorgiou, Eirini; Nieuwenhuys, Angela; Desloovere, Kaat

    2017-01-01

    Background This study aimed to improve the automatic probabilistic classification of joint motion gait patterns in children with cerebral palsy by using the expert knowledge available via a recently developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and Logistic Regression classification with varying degrees of usage of the expert knowledge (expert-defined and discretized features). A database of 356 patients and 1719 gait trials was used to validate the classification performance of eleven joint motions. Hypotheses Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can be automatically classified following a probabilistic approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of clinical expert knowledge in the selection of relevant gait features and the discretization of continuous features increases the performance of automatic probabilistic joint motion classification. Findings This study provided objective evidence supporting the first hypothesis. Automatic probabilistic gait classification using the expert knowledge available from the Delphi-consensus study resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher accuracy than that obtained with non-expert raters (78%). Regarding the second hypothesis, this study demonstrated that the use of more advanced machine learning techniques such as automatic feature selection and discretization instead of expert-defined and discretized features can result in slightly higher joint motion classification performance. However, the increase in performance is limited and does not outweigh the additional computational cost and the higher risk of loss of clinical interpretability, which threatens the clinical acceptance and applicability. PMID:28570616

  11. Effective biomedical document classification for identifying publications relevant to the mouse Gene Expression Database (GXD).

    PubMed

    Jiang, Xiangying; Ringwald, Martin; Blake, Judith; Shatkay, Hagit

    2017-01-01

    The Gene Expression Database (GXD) is a comprehensive online database within the Mouse Genome Informatics resource, aiming to provide available information about endogenous gene expression during mouse development. The information stems primarily from many thousands of biomedical publications that database curators must go through and read. Given the very large number of biomedical papers published each year, automatic document classification plays an important role in biomedical research. Specifically, an effective and efficient document classifier is needed for supporting the GXD annotation workflow. We present here an effective yet relatively simple classification scheme, which uses readily available tools while employing feature selection, aiming to assist curators in identifying publications relevant to GXD. We examine the performance of our method over a large manually curated dataset, consisting of more than 25 000 PubMed abstracts, of which about half are curated as relevant to GXD while the other half as irrelevant to GXD. In addition to text from title-and-abstract, we also consider image captions, an important information source that we integrate into our method. We apply a captions-based classifier to a subset of about 3300 documents, for which the full text of the curated articles is available. The results demonstrate that our proposed approach is robust and effectively addresses the GXD document classification. Moreover, using information obtained from image captions clearly improves performance, compared to title and abstract alone, affirming the utility of image captions as a substantial evidence source for automatically determining the relevance of biomedical publications to a specific subject area. www.informatics.jax.org. © The Author(s) 2017. Published by Oxford University Press.

  12. AI User Support System for SAP ERP

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Chebotareva, Victoria; Rakhimov, Marat; Kruglikov, Sergey

    2017-10-01

    An intelligent system for SAP ERP user support is proposed in this paper. It enables automatic replies on users’ requests for support, saving time for problem analysis and resolution and improving responsiveness for end users. The system is based on an ensemble of machine learning algorithms of multiclass text classification, providing efficient question understanding, and a special framework for evidence retrieval, providing the best answer derivation.

  13. Breaking the Cost Barrier in Automatic Classification.

    ERIC Educational Resources Information Center

    Doyle, L. B.

    A low-cost automatic classification method is reported that uses computer time in proportion to NlogN, where N is the number of information items and the base is a parameter, some barriers besides cost are treated briefly in the opening section, including types of intellectual resistance to the idea of doing classification by content-word…

  14. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  15. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    NASA Astrophysics Data System (ADS)

    Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine

    2009-12-01

    This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  16. Automatic classification of sleep stages based on the time-frequency image of EEG signals.

    PubMed

    Bajaj, Varun; Pachori, Ram Bilas

    2013-12-01

    In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Text Mining and Natural Language Processing Approaches for Automatic Categorization of Lay Requests to Web-Based Expert Forums

    PubMed Central

    Reincke, Ulrich; Michelmann, Hans Wilhelm

    2009-01-01

    Background Both healthy and sick people increasingly use electronic media to obtain medical information and advice. For example, Internet users may send requests to Web-based expert forums, or so-called “ask the doctor” services. Objective To automatically classify lay requests to an Internet medical expert forum using a combination of different text-mining strategies. Methods We first manually classified a sample of 988 requests directed to a involuntary childlessness forum on the German website “Rund ums Baby” (“Everything about Babies”) into one or more of 38 categories belonging to two dimensions (“subject matter” and “expectations”). After creating start and synonym lists, we calculated the average Cramer’s V statistic for the association of each word with each category. We also used principle component analysis and singular value decomposition as further text-mining strategies. With these measures we trained regression models and determined, on the basis of best regression models, for any request the probability of belonging to each of the 38 different categories, with a cutoff of 50%. Recall and precision of a test sample were calculated as a measure of quality for the automatic classification. Results According to the manual classification of 988 documents, 102 (10%) documents fell into the category “in vitro fertilization (IVF),” 81 (8%) into the category “ovulation,” 79 (8%) into “cycle,” and 57 (6%) into “semen analysis.” These were the four most frequent categories in the subject matter dimension (consisting of 32 categories). The expectation dimension comprised six categories; we classified 533 documents (54%) as “general information” and 351 (36%) as a wish for “treatment recommendations.” The generation of indicator variables based on the chi-square analysis and Cramer’s V proved to be the best approach for automatic classification in about half of the categories. In combination with the two other approaches, 100% precision and 100% recall were realized in 18 (47%) out of the 38 categories in the test sample. For 35 (92%) categories, precision and recall were better than 80%. For some categories, the input variables (ie, “words”) also included variables from other categories, most often with a negative sign. For example, absence of words predictive for “menstruation” was a strong indicator for the category “pregnancy test.” Conclusions Our approach suggests a way of automatically classifying and analyzing unstructured information in Internet expert forums. The technique can perform a preliminary categorization of new requests and help Internet medical experts to better handle the mass of information and to give professional feedback. PMID:19632978

  18. A vectorial semantics approach to personality assessment.

    PubMed

    Neuman, Yair; Cohen, Yochai

    2014-04-23

    Personality assessment and, specifically, the assessment of personality disorders have traditionally been indifferent to computational models. Computational personality is a new field that involves the automatic classification of individuals' personality traits that can be compared against gold-standard labels. In this context, we introduce a new vectorial semantics approach to personality assessment, which involves the construction of vectors representing personality dimensions and disorders, and the automatic measurements of the similarity between these vectors and texts written by human subjects. We evaluated our approach by using a corpus of 2468 essays written by students who were also assessed through the five-factor personality model. To validate our approach, we measured the similarity between the essays and the personality vectors to produce personality disorder scores. These scores and their correspondence with the subjects' classification of the five personality factors reproduce patterns well-documented in the psychological literature. In addition, we show that, based on the personality vectors, we can predict each of the five personality factors with high accuracy.

  19. A Vectorial Semantics Approach to Personality Assessment

    NASA Astrophysics Data System (ADS)

    Neuman, Yair; Cohen, Yochai

    2014-04-01

    Personality assessment and, specifically, the assessment of personality disorders have traditionally been indifferent to computational models. Computational personality is a new field that involves the automatic classification of individuals' personality traits that can be compared against gold-standard labels. In this context, we introduce a new vectorial semantics approach to personality assessment, which involves the construction of vectors representing personality dimensions and disorders, and the automatic measurements of the similarity between these vectors and texts written by human subjects. We evaluated our approach by using a corpus of 2468 essays written by students who were also assessed through the five-factor personality model. To validate our approach, we measured the similarity between the essays and the personality vectors to produce personality disorder scores. These scores and their correspondence with the subjects' classification of the five personality factors reproduce patterns well-documented in the psychological literature. In addition, we show that, based on the personality vectors, we can predict each of the five personality factors with high accuracy.

  20. A Vectorial Semantics Approach to Personality Assessment

    PubMed Central

    Neuman, Yair; Cohen, Yochai

    2014-01-01

    Personality assessment and, specifically, the assessment of personality disorders have traditionally been indifferent to computational models. Computational personality is a new field that involves the automatic classification of individuals' personality traits that can be compared against gold-standard labels. In this context, we introduce a new vectorial semantics approach to personality assessment, which involves the construction of vectors representing personality dimensions and disorders, and the automatic measurements of the similarity between these vectors and texts written by human subjects. We evaluated our approach by using a corpus of 2468 essays written by students who were also assessed through the five-factor personality model. To validate our approach, we measured the similarity between the essays and the personality vectors to produce personality disorder scores. These scores and their correspondence with the subjects' classification of the five personality factors reproduce patterns well-documented in the psychological literature. In addition, we show that, based on the personality vectors, we can predict each of the five personality factors with high accuracy. PMID:24755833

  1. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.

    PubMed

    Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing

    2017-11-01

    Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.

  2. Feature generation and representations for protein-protein interaction classification.

    PubMed

    Lan, Man; Tan, Chew Lim; Su, Jian

    2009-10-01

    Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.

  3. PDF text classification to leverage information extraction from publication reports.

    PubMed

    Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha

    2016-06-01

    Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Detecting experimental techniques and selecting relevant documents for protein-protein interactions from biomedical literature.

    PubMed

    Wang, Xinglong; Rak, Rafal; Restificar, Angelo; Nobata, Chikashi; Rupp, C J; Batista-Navarro, Riza Theresa B; Nawaz, Raheel; Ananiadou, Sophia

    2011-10-03

    The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest's Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task's development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew's Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance.

  5. Automatic detection of sleep macrostructure based on a sensorized T-shirt.

    PubMed

    Bianchi, Anna M; Mendez, Martin O

    2010-01-01

    In the present work we apply a fully automatic procedure to the analysis of signal coming from a sensorized T-shit, worn during the night, for sleep evaluation. The goodness and reliability of the signals recorded trough the T-shirt was previously tested, while the employed algorithms for feature extraction and sleep classification were previously developed on standard ECG recordings and the obtained classification was compared to the standard clinical practice based on polysomnography (PSG). In the present work we combined T-shirt recordings and automatic classification and could obtain reliable sleep profiles, i.e. the sleep classification in WAKE, REM (rapid eye movement) and NREM stages, based on heart rate variability (HRV), respiration and movement signals.

  6. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA.

    PubMed

    Schomburg, Ida; Chang, Antje; Placzek, Sandra; Söhngen, Carola; Rother, Michael; Lang, Maren; Munaretto, Cornelia; Ulas, Susanne; Stelzer, Michael; Grote, Andreas; Scheer, Maurice; Schomburg, Dietmar

    2013-01-01

    The BRENDA (BRaunschweig ENzyme DAtabase) enzyme portal (http://www.brenda-enzymes.org) is the main information system of functional biochemical and molecular enzyme data and provides access to seven interconnected databases. BRENDA contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalysed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models.

  7. Metric learning for automatic sleep stage classification.

    PubMed

    Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung

    2013-01-01

    We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.

  8. On-Line Retrieval II.

    ERIC Educational Resources Information Center

    Kurtz, Peter; And Others

    This report is concerned with the implementation of two interrelated computer systems: an automatic document analysis and classification package, and an on-line interactive information retrieval system which utilizes the information gathered during the automatic classification phase. Well-known techniques developed by Salton and Dennis have been…

  9. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  10. Design of Automatic Extraction Algorithm of Knowledge Points for MOOCs

    PubMed Central

    Chen, Haijian; Han, Dongmei; Zhao, Lina

    2015-01-01

    In recent years, Massive Open Online Courses (MOOCs) are very popular among college students and have a powerful impact on academic institutions. In the MOOCs environment, knowledge discovery and knowledge sharing are very important, which currently are often achieved by ontology techniques. In building ontology, automatic extraction technology is crucial. Because the general methods of text mining algorithm do not have obvious effect on online course, we designed automatic extracting course knowledge points (AECKP) algorithm for online course. It includes document classification, Chinese word segmentation, and POS tagging for each document. Vector Space Model (VSM) is used to calculate similarity and design the weight to optimize the TF-IDF algorithm output values, and the higher scores will be selected as knowledge points. Course documents of “C programming language” are selected for the experiment in this study. The results show that the proposed approach can achieve satisfactory accuracy rate and recall rate. PMID:26448738

  11. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations

    PubMed Central

    Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.

    2016-01-01

    Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941

  12. Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter.

    PubMed

    Sarker, Abeed; O'Connor, Karen; Ginn, Rachel; Scotch, Matthew; Smith, Karen; Malone, Dan; Gonzalez, Graciela

    2016-03-01

    Prescription medication overdose is the fastest growing drug-related problem in the USA. The growing nature of this problem necessitates the implementation of improved monitoring strategies for investigating the prevalence and patterns of abuse of specific medications. Our primary aims were to assess the possibility of utilizing social media as a resource for automatic monitoring of prescription medication abuse and to devise an automatic classification technique that can identify potentially abuse-indicating user posts. We collected Twitter user posts (tweets) associated with three commonly abused medications (Adderall(®), oxycodone, and quetiapine). We manually annotated 6400 tweets mentioning these three medications and a control medication (metformin) that is not the subject of abuse due to its mechanism of action. We performed quantitative and qualitative analyses of the annotated data to determine whether posts on Twitter contain signals of prescription medication abuse. Finally, we designed an automatic supervised classification technique to distinguish posts containing signals of medication abuse from those that do not and assessed the utility of Twitter in investigating patterns of abuse over time. Our analyses show that clear signals of medication abuse can be drawn from Twitter posts and the percentage of tweets containing abuse signals are significantly higher for the three case medications (Adderall(®): 23 %, quetiapine: 5.0 %, oxycodone: 12 %) than the proportion for the control medication (metformin: 0.3 %). Our automatic classification approach achieves 82 % accuracy overall (medication abuse class recall: 0.51, precision: 0.41, F measure: 0.46). To illustrate the utility of automatic classification, we show how the classification data can be used to analyze abuse patterns over time. Our study indicates that social media can be a crucial resource for obtaining abuse-related information for medications, and that automatic approaches involving supervised classification and natural language processing hold promises for essential future monitoring and intervention tasks.

  13. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    PubMed

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  14. Does semi-automatic bone-fragment segmentation improve the reproducibility of the Letournel acetabular fracture classification?

    PubMed

    Boudissa, M; Orfeuvre, B; Chabanas, M; Tonetti, J

    2017-09-01

    The Letournel classification of acetabular fracture shows poor reproducibility in inexperienced observers, despite the introduction of 3D imaging. We therefore developed a method of semi-automatic segmentation based on CT data. The present prospective study aimed to assess: (1) whether semi-automatic bone-fragment segmentation increased the rate of correct classification; (2) if so, in which fracture types; and (3) feasibility using the open-source itksnap 3.0 software package without incurring extra cost for users. Semi-automatic segmentation of acetabular fractures significantly increases the rate of correct classification by orthopedic surgery residents. Twelve orthopedic surgery residents classified 23 acetabular fractures. Six used conventional 3D reconstructions provided by the center's radiology department (conventional group) and 6 others used reconstructions obtained by semi-automatic segmentation using the open-source itksnap 3.0 software package (segmentation group). Bone fragments were identified by specific colors. Correct classification rates were compared between groups on Chi 2 test. Assessment was repeated 2 weeks later, to determine intra-observer reproducibility. Correct classification rates were significantly higher in the "segmentation" group: 114/138 (83%) versus 71/138 (52%); P<0.0001. The difference was greater for simple (36/36 (100%) versus 17/36 (47%); P<0.0001) than complex fractures (79/102 (77%) versus 54/102 (53%); P=0.0004). Mean segmentation time per fracture was 27±3min [range, 21-35min]. The segmentation group showed excellent intra-observer correlation coefficients, overall (ICC=0.88), and for simple (ICC=0.92) and complex fractures (ICC=0.84). Semi-automatic segmentation, identifying the various bone fragments, was effective in increasing the rate of correct acetabular fracture classification on the Letournel system by orthopedic surgery residents. It may be considered for routine use in education and training. III: prospective case-control study of a diagnostic procedure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Use of LANDSAT data for automatic classification and area estimation of sugarcane plantation in Sao Paulo state, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1980-01-01

    Ten segments of the size 20 x 10 km were aerially photographed and used as training areas for automatic classifications. The study areas was covered by four LANDSAT paths: 235, 236, 237, and 238. The percentages of overall correct classification for these paths range from 79.56 percent for path 238 to 95.59 percent for path 237.

  16. An automatic aerosol classification for earlinet: application and results

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Amiridis, Vassilis; Binietoglou, Ioannis; D'Amico, Giuseppe; Guma-Claramunt, P.; Schwarz, Anja; Alados-Arboledas, Lucas; Amodeo, Aldo; Apituley, Arnoud; Baars, Holger; Bortoli, Daniele; Comeron, Adolfo; Guerrero-Rascado, Juan Luis; Kokkalis, Panos; Nicolae, Doina; Papayannis, Alex; Pappalardo, Gelsomina; Wandinger, Ulla; Wiegner, Matthias

    2018-04-01

    Aerosol typing is essential for understanding the impact of the different aerosol sources on climate, weather system and air quality. An aerosol classification method for EARLINET (European Aerosol Research Lidar Network) measurements is introduced which makes use the Mahalanobis distance classifier. The performance of the automatic classification is tested against manually classified EARLINET data. Results of the application of the method to an extensive aerosol dataset will be presented.

  17. Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users

    PubMed Central

    Shatkay, Hagit; Pan, Fengxia; Rzhetsky, Andrey; Wilbur, W. John

    2008-01-01

    Motivation: Much current research in biomedical text mining is concerned with serving biologists by extracting certain information from scientific text. We note that there is no ‘average biologist’ client; different users have distinct needs. For instance, as noted in past evaluation efforts (BioCreative, TREC, KDD) database curators are often interested in sentences showing experimental evidence and methods. Conversely, lab scientists searching for known information about a protein may seek facts, typically stated with high confidence. Text-mining systems can target specific end-users and become more effective, if the system can first identify text regions rich in the type of scientific content that is of interest to the user, retrieve documents that have many such regions, and focus on fact extraction from these regions. Here, we study the ability to characterize and classify such text automatically. We have recently introduced a multi-dimensional categorization and annotation scheme, developed to be applicable to a wide variety of biomedical documents and scientific statements, while intended to support specific biomedical retrieval and extraction tasks. Results: The annotation scheme was applied to a large corpus in a controlled effort by eight independent annotators, where three individual annotators independently tagged each sentence. We then trained and tested machine learning classifiers to automatically categorize sentence fragments based on the annotation. We discuss here the issues involved in this task, and present an overview of the results. The latter strongly suggest that automatic annotation along most of the dimensions is highly feasible, and that this new framework for scientific sentence categorization is applicable in practice. Contact: shatkay@cs.queensu.ca PMID:18718948

  18. Supporting the education evidence portal via text mining

    PubMed Central

    Ananiadou, Sophia; Thompson, Paul; Thomas, James; Mu, Tingting; Oliver, Sandy; Rickinson, Mark; Sasaki, Yutaka; Weissenbacher, Davy; McNaught, John

    2010-01-01

    The UK Education Evidence Portal (eep) provides a single, searchable, point of access to the contents of the websites of 33 organizations relating to education, with the aim of revolutionizing work practices for the education community. Use of the portal alleviates the need to spend time searching multiple resources to find relevant information. However, the combined content of the websites of interest is still very large (over 500 000 documents and growing). This means that searches using the portal can produce very large numbers of hits. As users often have limited time, they would benefit from enhanced methods of performing searches and viewing results, allowing them to drill down to information of interest more efficiently, without having to sift through potentially long lists of irrelevant documents. The Joint Information Systems Committee (JISC)-funded ASSIST project has produced a prototype web interface to demonstrate the applicability of integrating a number of text-mining tools and methods into the eep, to facilitate an enhanced searching, browsing and document-viewing experience. New features include automatic classification of documents according to a taxonomy, automatic clustering of search results according to similar document content, and automatic identification and highlighting of key terms within documents. PMID:20643679

  19. Five-way smoking status classification using text hot-spot identification and error-correcting output codes.

    PubMed

    Cohen, Aaron M

    2008-01-01

    We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.

  20. Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.

    PubMed

    Kassiri, Hossein; Chemparathy, Aditi; Salam, M Tariqus; Boyce, Richard; Adamantidis, Antoine; Genov, Roman

    2017-02-01

    First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.

  1. Open Dataset for the Automatic Recognition of Sedentary Behaviors.

    PubMed

    Possos, William; Cruz, Robinson; Cerón, Jesús D; López, Diego M; Sierra-Torres, Carlos H

    2017-01-01

    Sedentarism is associated with the development of noncommunicable diseases (NCD) such as cardiovascular diseases (CVD), type 2 diabetes, and cancer. Therefore, the identification of specific sedentary behaviors (TV viewing, sitting at work, driving, relaxing, etc.) is especially relevant for planning personalized prevention programs. To build and evaluate a public a dataset for the automatic recognition (classification) of sedentary behaviors. The dataset included data from 30 subjects, who performed 23 sedentary behaviors while wearing a commercial wearable on the wrist, a smartphone on the hip and another in the thigh. Bluetooth Low Energy (BLE) beacons were used in order to improve the automatic classification of different sedentary behaviors. The study also compared six well know data mining classification techniques in order to identify the more precise method of solving the classification problem of the 23 defined behaviors. A better classification accuracy was obtained using the Random Forest algorithm and when data were collected from the phone on the hip. Furthermore, the use of beacons as a reference for obtaining the symbolic location of the individual improved the precision of the classification.

  2. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  3. Cascaded deep decision networks for classification of endoscopic images

    NASA Astrophysics Data System (ADS)

    Murthy, Venkatesh N.; Singh, Vivek; Sun, Shanhui; Bhattacharya, Subhabrata; Chen, Terrence; Comaniciu, Dorin

    2017-02-01

    Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review process or to have automatic indication for highly suspicious areas during an online guidance. This also applies to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role. Image classification is a standard pattern recognition problem and is well studied in the literature. However, performance on the challenging endoscopic images still has room for improvement. In this paper, we present a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard Deep neural network based methods. During the learning phase, CDDN automatically builds a network which discards samples that are classified with high confidence scores by a previously trained network and concentrates only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%. In addition, CDDN can also be applied to other image classification problems.

  4. Research on Automatic Classification, Indexing and Extracting. Annual Progress Report.

    ERIC Educational Resources Information Center

    Baker, F.T.; And Others

    In order to contribute to the success of several studies for automatic classification, indexing and extracting currently in progress, as well as to further the theoretical and practical understanding of textual item distributions, the development of a frequency program capable of supplying these types of information was undertaken. The program…

  5. Automatic interpretation of ERTS data for forest management

    NASA Technical Reports Server (NTRS)

    Kirvida, L.; Johnson, G. R.

    1973-01-01

    Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wild life management, forest inventory and forest condition monitoring. Automatic procedures based on both multi-spectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74% was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 99% was obtained.

  6. Automatic detection of Parkinson's disease in running speech spoken in three different languages.

    PubMed

    Orozco-Arroyave, J R; Hönig, F; Arias-Londoño, J D; Vargas-Bonilla, J F; Daqrouq, K; Skodda, S; Rusz, J; Nöth, E

    2016-01-01

    The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.

  7. A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification

    NASA Astrophysics Data System (ADS)

    Wang, Suge; Li, Deyu; Wei, Yingjie; Li, Hongxia

    With the rapid growth of e-commerce, product reviews on the Web have become an important information source for customers' decision making when they intend to buy some product. As the reviews are often too many for customers to go through, how to automatically classify them into different sentiment orientation categories (i.e. positive/negative) has become a research problem. In this paper, based on Fisher's discriminant ratio, an effective feature selection method is proposed for product review text sentiment classification. In order to validate the validity of the proposed method, we compared it with other methods respectively based on information gain and mutual information while support vector machine is adopted as the classifier. In this paper, 6 subexperiments are conducted by combining different feature selection methods with 2 kinds of candidate feature sets. Under 1006 review documents of cars, the experimental results indicate that the Fisher's discriminant ratio based on word frequency estimation has the best performance with F value 83.3% while the candidate features are the words which appear in both positive and negative texts.

  8. An analysis of metropolitan land-use by machine processing of earth resources technology satellite data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.

    1976-01-01

    A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.

  9. Automatic classification of atypical lymphoid B cells using digital blood image processing.

    PubMed

    Alférez, S; Merino, A; Mujica, L E; Ruiz, M; Bigorra, L; Rodellar, J

    2014-08-01

    There are automated systems for digital peripheral blood (PB) cell analysis, but they operate most effectively in nonpathological blood samples. The objective of this work was to design a methodology to improve the automatic classification of abnormal lymphoid cells. We analyzed 340 digital images of individual lymphoid cells from PB films obtained in the CellaVision DM96:150 chronic lymphocytic leukemia (CLL) cells, 100 hairy cell leukemia (HCL) cells, and 90 normal lymphocytes (N). We implemented the Watershed Transformation to segment the nucleus, the cytoplasm, and the peripheral cell region. We extracted 44 features and then the clustering Fuzzy C-Means (FCM) was applied in two steps for the lymphocyte classification. The images were automatically clustered in three groups, one of them with 98% of the HCL cells. The set of the remaining cells was clustered again using FCM and texture features. The two new groups contained 83.3% of the N cells and 71.3% of the CLL cells, respectively. The approach has been able to automatically classify with high precision three types of lymphoid cells. The addition of more descriptors and other classification techniques will allow extending the classification to other classes of atypical lymphoid cells. © 2013 John Wiley & Sons Ltd.

  10. Detecting experimental techniques and selecting relevant documents for protein-protein interactions from biomedical literature

    PubMed Central

    2011-01-01

    Background The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest’s Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. Results We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task’s development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew’s Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Conclusions Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance. PMID:22151769

  11. Automatic grade classification of Barretts Esophagus through feature enhancement

    NASA Astrophysics Data System (ADS)

    Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid

    2017-03-01

    Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.

  12. Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets

    PubMed Central

    2012-01-01

    Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695

  13. The contribution of the vaccine adverse event text mining system to the classification of possible Guillain-Barré syndrome reports.

    PubMed

    Botsis, T; Woo, E J; Ball, R

    2013-01-01

    We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of an-aphylaxis for post-marketing safety surveillance of vaccines. To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority.

  14. SYRIAC: The systematic review information automated collection system a data warehouse for facilitating automated biomedical text classification.

    PubMed

    Yang, Jianji J; Cohen, Aaron M; Cohen, Aaron; McDonagh, Marian S

    2008-11-06

    Automatic document classification can be valuable in increasing the efficiency in updating systematic reviews (SR). In order for the machine learning process to work well, it is critical to create and maintain high-quality training datasets consisting of expert SR inclusion/exclusion decisions. This task can be laborious, especially when the number of topics is large and source data format is inconsistent.To approach this problem, we build an automated system to streamline the required steps, from initial notification of update in source annotation files to loading the data warehouse, along with a web interface to monitor the status of each topic. In our current collection of 26 SR topics, we were able to standardize almost all of the relevance judgments and recovered PMIDs for over 80% of all articles. Of those PMIDs, over 99% were correct in a manual random sample study. Our system performs an essential function in creating training and evaluation data sets for SR text mining research.

  15. SYRIAC: The SYstematic Review Information Automated Collection System A Data Warehouse for Facilitating Automated Biomedical Text Classification

    PubMed Central

    Yang, Jianji J.; Cohen, Aaron M.; McDonagh, Marian S.

    2008-01-01

    Automatic document classification can be valuable in increasing the efficiency in updating systematic reviews (SR). In order for the machine learning process to work well, it is critical to create and maintain high-quality training datasets consisting of expert SR inclusion/exclusion decisions. This task can be laborious, especially when the number of topics is large and source data format is inconsistent. To approach this problem, we build an automated system to streamline the required steps, from initial notification of update in source annotation files to loading the data warehouse, along with a web interface to monitor the status of each topic. In our current collection of 26 SR topics, we were able to standardize almost all of the relevance judgments and recovered PMIDs for over 80% of all articles. Of those PMIDs, over 99% were correct in a manual random sample study. Our system performs an essential function in creating training and evaluation datasets for SR text mining research. PMID:18999194

  16. Automatic photointerpretation for plant species and stress identification (ERTS-A1)

    NASA Technical Reports Server (NTRS)

    Swanlund, G. D. (Principal Investigator); Kirvida, L.; Johnson, G. R.

    1973-01-01

    The author has identified the following significant results. Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wildlife management, forest inventory, and forest condition monitoring. Automatic procedures based on both multispectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74 percent was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 90 percent was obtained.

  17. Automatic liver volume segmentation and fibrosis classification

    NASA Astrophysics Data System (ADS)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  18. Towards an Automatic Classification System for Supporting the Development of Critical Reflective Skills in L2 Learning

    ERIC Educational Resources Information Center

    Cheng, Gary

    2017-01-01

    This study aimed to develop an automatic classification system, namely ACTIVE, for generating immediate and individualised feedback on students' reflective entries about their second language (L2) learning experiences. It also aimed to explore students' attitudes towards using the system to support the development of their reflective skills in L2…

  19. An Automatic Multidocument Text Summarization Approach Based on Naïve Bayesian Classifier Using Timestamp Strategy

    PubMed Central

    Ramanujam, Nedunchelian; Kaliappan, Manivannan

    2016-01-01

    Nowadays, automatic multidocument text summarization systems can successfully retrieve the summary sentences from the input documents. But, it has many limitations such as inaccurate extraction to essential sentences, low coverage, poor coherence among the sentences, and redundancy. This paper introduces a new concept of timestamp approach with Naïve Bayesian Classification approach for multidocument text summarization. The timestamp provides the summary an ordered look, which achieves the coherent looking summary. It extracts the more relevant information from the multiple documents. Here, scoring strategy is also used to calculate the score for the words to obtain the word frequency. The higher linguistic quality is estimated in terms of readability and comprehensibility. In order to show the efficiency of the proposed method, this paper presents the comparison between the proposed methods with the existing MEAD algorithm. The timestamp procedure is also applied on the MEAD algorithm and the results are examined with the proposed method. The results show that the proposed method results in lesser time than the existing MEAD algorithm to execute the summarization process. Moreover, the proposed method results in better precision, recall, and F-score than the existing clustering with lexical chaining approach. PMID:27034971

  20. Automatic speech recognition using a predictive echo state network classifier.

    PubMed

    Skowronski, Mark D; Harris, John G

    2007-04-01

    We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.

  1. Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.

    PubMed

    Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo

    2017-10-01

    Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.

  2. Text Mining of UU-ITE Implementation in Indonesia

    NASA Astrophysics Data System (ADS)

    Hakim, Lukmanul; Kusumasari, Tien F.; Lubis, Muharman

    2018-04-01

    At present, social media and networks act as one of the main platforms for sharing information, idea, thought and opinions. Many people share their knowledge and express their views on the specific topics or current hot issues that interest them. The social media texts have rich information about the complaints, comments, recommendation and suggestion as the automatic reaction or respond to government initiative or policy in order to overcome certain issues.This study examines the sentiment from netizensas part of citizen who has vocal sound about the implementation of UU ITE as the first cyberlaw in Indonesia as a means to identify the current tendency of citizen perception. To perform text mining techniques, this study used Twitter Rest API while R programming was utilized for the purpose of classification analysis based on hierarchical cluster.

  3. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.

    PubMed

    Mane, Vijay Mahadeo; Jadhav, D V

    2017-05-24

    Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.

  4. "Rate My Therapist": Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing.

    PubMed

    Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis G; Atkins, David C; Narayanan, Shrikanth S

    2015-01-01

    The technology for evaluating patient-provider interactions in psychotherapy-observational coding-has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies.

  5. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    PubMed

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  6. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  7. Automatic Classification of Time-variable X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  8. Classification and Quality Evaluation of Tobacco Leaves Based on Image Processing and Fuzzy Comprehensive Evaluation

    PubMed Central

    Zhang, Fan; Zhang, Xinhong

    2011-01-01

    Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744

  9. Emotion Recognition of Weblog Sentences Based on an Ensemble Algorithm of Multi-label Classification and Word Emotions

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ren, Fuji

    Weblogs have greatly changed the communication ways of mankind. Affective analysis of blog posts is found valuable for many applications such as text-to-speech synthesis or computer-assisted recommendation. Traditional emotion recognition in text based on single-label classification can not satisfy higher requirements of affective computing. In this paper, the automatic identification of sentence emotion in weblogs is modeled as a multi-label text categorization task. Experiments are carried out on 12273 blog sentences from the Chinese emotion corpus Ren_CECps with 8-dimension emotion annotation. An ensemble algorithm RAKEL is used to recognize dominant emotions from the writer's perspective. Our emotion feature using detailed intensity representation for word emotions outperforms the other main features such as the word frequency feature and the traditional lexicon-based feature. In order to deal with relatively complex sentences, we integrate grammatical characteristics of punctuations, disjunctive connectives, modification relations and negation into features. It achieves 13.51% and 12.49% increases for Micro-averaged F1 and Macro-averaged F1 respectively compared to the traditional lexicon-based feature. Result shows that multiple-dimension emotion representation with grammatical features can efficiently classify sentence emotion in a multi-label problem.

  10. An examination of the potential applications of automatic classification techniques to Georgia management problems

    NASA Technical Reports Server (NTRS)

    Rado, B. Q.

    1975-01-01

    Automatic classification techniques are described in relation to future information and natural resource planning systems with emphasis on application to Georgia resource management problems. The concept, design, and purpose of Georgia's statewide Resource AS Assessment Program is reviewed along with participation in a workshop at the Earth Resources Laboratory. Potential areas of application discussed include: agriculture, forestry, water resources, environmental planning, and geology.

  11. Presentation video retrieval using automatically recovered slide and spoken text

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew

    2013-03-01

    Video is becoming a prevalent medium for e-learning. Lecture videos contain text information in both the presentation slides and lecturer's speech. This paper examines the relative utility of automatically recovered text from these sources for lecture video retrieval. To extract the visual information, we automatically detect slides within the videos and apply optical character recognition to obtain their text. Automatic speech recognition is used similarly to extract spoken text from the recorded audio. We perform controlled experiments with manually created ground truth for both the slide and spoken text from more than 60 hours of lecture video. We compare the automatically extracted slide and spoken text in terms of accuracy relative to ground truth, overlap with one another, and utility for video retrieval. Results reveal that automatically recovered slide text and spoken text contain different content with varying error profiles. Experiments demonstrate that automatically extracted slide text enables higher precision video retrieval than automatically recovered spoken text.

  12. Automated retinal vessel type classification in color fundus images

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  13. "What is relevant in a text document?": An interpretable machine learning approach

    PubMed Central

    Arras, Leila; Horn, Franziska; Montavon, Grégoire; Müller, Klaus-Robert

    2017-01-01

    Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text’s category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications. PMID:28800619

  14. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  15. Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine.

    PubMed

    Zare, Marzieh; Rezvani, Zahra; Benasich, April A

    2016-07-01

    This study assesses the ability of a novel, "automatic classification" approach to facilitate identification of infants at highest familial risk for language-learning disorders (LLD) and to provide converging assessments to enable earlier detection of developmental disorders that disrupt language acquisition. Network connectivity measures derived from 62-channel electroencephalogram (EEG) recording were used to identify selected features within two infant groups who differed on LLD risk: infants with a family history of LLD (FH+) and typically-developing infants without such a history (FH-). A support vector machine was deployed; global efficiency and global and local clustering coefficients were computed. A novel minimum spanning tree (MST) approach was also applied. Cross-validation was employed to assess the resultant classification. Infants were classified with about 80% accuracy into FH+ and FH- groups with 89% specificity and precision of 92%. Clustering patterns differed by risk group and MST network analysis suggests that FH+ infants' EEG complexity patterns were significantly different from FH- infants. The automatic classification techniques used here were shown to be both robust and reliable and should provide valuable information when applied to early identification of risk or clinical groups. The ability to identify infants at highest risk for LLD using "automatic classification" strategies is a novel convergent approach that may facilitate earlier diagnosis and remediation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Image classification of human carcinoma cells using complex wavelet-based covariance descriptors.

    PubMed

    Keskin, Furkan; Suhre, Alexander; Kose, Kivanc; Ersahin, Tulin; Cetin, A Enis; Cetin-Atalay, Rengul

    2013-01-01

    Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-assisted classification of cancer cells can alleviate the burden of manual labeling and help cancer research. In this paper, we present a novel computerized method for cancer cell line image classification. The aim is to automatically classify 14 different classes of cell lines including 7 classes of breast and 7 classes of liver cancer cells. Microscopic images containing irregular carcinoma cell patterns are represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance descriptor utilizing the dual-tree complex wavelet transform (DT-[Formula: see text]WT) coefficients and several morphological attributes are computed. Directionally selective DT-[Formula: see text]WT feature parameters are preferred primarily because of their ability to characterize edges at multiple orientations which is the characteristic feature of carcinoma cell line images. A Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel is employed for final classification. Over a dataset of 840 images, we achieve an accuracy above 98%, which outperforms the classical covariance-based methods. The proposed system can be used as a reliable decision maker for laboratory studies. Our tool provides an automated, time- and cost-efficient analysis of cancer cell morphology to classify different cancer cell lines using image-processing techniques, which can be used as an alternative to the costly short tandem repeat (STR) analysis. The data set used in this manuscript is available as supplementary material through http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html.

  17. Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques.

    PubMed

    Caixinha, Miguel; Santos, Mário; Santos, Jaime

    2016-04-01

    To demonstrate the feasibility of a new methodology for cataract hardness characterization and automatic classification using ultrasound techniques, different cataract degrees were induced in 210 porcine lenses. A 25-MHz ultrasound transducer was used to obtain acoustical parameters (velocity and attenuation) and backscattering signals. B-Scan and parametric Nakagami images were constructed. Ninety-seven parameters were extracted and subjected to a Principal Component Analysis. Bayes, K-Nearest-Neighbours, Fisher Linear Discriminant and Support Vector Machine (SVM) classifiers were used to automatically classify the different cataract severities. Statistically significant increases with cataract formation were found for velocity, attenuation, mean brightness intensity of the B-Scan images and mean Nakagami m parameter (p < 0.01). The four classifiers showed a good performance for healthy versus cataractous lenses (F-measure ≥ 92.68%), while for initial versus severe cataracts the SVM classifier showed the higher performance (90.62%). The results showed that ultrasound techniques can be used for non-invasive cataract hardness characterization and automatic classification. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Automated compound classification using a chemical ontology.

    PubMed

    Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz

    2012-12-29

    Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.

  19. Automated compound classification using a chemical ontology

    PubMed Central

    2012-01-01

    Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256

  20. Classification of cloud fields based on textural characteristics

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Chen, D. W.

    1987-01-01

    The present study reexamines the applicability of texture-based features for automatic cloud classification using very high spatial resolution (57 m) Landsat multispectral scanner digital data. It is concluded that cloud classification can be accomplished using only a single visible channel.

  1. Automatic comparison of striation marks and automatic classification of shoe prints

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac

    1995-09-01

    A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.

  2. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Hoynck, Michael

    2005-01-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  3. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Höynck, Michael

    2004-12-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  4. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.

  5. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  6. TEXTINFO: a tool for automatic determination of patient clinical profiles using text analysis.

    PubMed Central

    Borst, F.; Lyman, M.; Nhàn, N. T.; Tick, L. J.; Sager, N.; Scherrer, J. R.

    1991-01-01

    The clinical data contained in narrative patient documents is made available via grammatical and semantic processing. Retrievals from the resulting relational database tables are matched against a set of clinical descriptors to obtain clinical profiles of the patients in terms of the descriptors present in the documents. Discharge summaries of 57 Dept. of Digestive Surgery patients were processed in this manner. Factor analysis and discriminant analysis procedures were then applied, showing the profiles to be useful for diagnosis definitions (by establishing relations between diagnoses and clinical findings), for diagnosis assessment (by viewing the match between a definition and observed events recorded in a patient text), and potentially for outcome evaluation based on the classification abilities of clinical signs. PMID:1807679

  7. Automatic Text Structuring and Summarization.

    ERIC Educational Resources Information Center

    Salton, Gerard; And Others

    1997-01-01

    Discussion of the use of information retrieval techniques for automatic generation of semantic hypertext links focuses on automatic text summarization. Topics include World Wide Web links, text segmentation, and evaluation of text summarization by comparing automatically generated abstracts with manually prepared abstracts. (Author/LRW)

  8. Linguistically informed digital fingerprints for text

    NASA Astrophysics Data System (ADS)

    Uzuner, Özlem

    2006-02-01

    Digital fingerprinting, watermarking, and tracking technologies have gained importance in the recent years in response to growing problems such as digital copyright infringement. While fingerprints and watermarks can be generated in many different ways, use of natural language processing for these purposes has so far been limited. Measuring similarity of literary works for automatic copyright infringement detection requires identifying and comparing creative expression of content in documents. In this paper, we present a linguistic approach to automatically fingerprinting novels based on their expression of content. We use natural language processing techniques to generate "expression fingerprints". These fingerprints consist of both syntactic and semantic elements of language, i.e., syntactic and semantic elements of expression. Our experiments indicate that syntactic and semantic elements of expression enable accurate identification of novels and their paraphrases, providing a significant improvement over techniques used in text classification literature for automatic copy recognition. We show that these elements of expression can be used to fingerprint, label, or watermark works; they represent features that are essential to the character of works and that remain fairly consistent in the works even when works are paraphrased. These features can be directly extracted from the contents of the works on demand and can be used to recognize works that would not be correctly identified either in the absence of pre-existing labels or by verbatim-copy detectors.

  9. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  10. Automatic Screening and Grading of Age-Related Macular Degeneration from Texture Analysis of Fundus Images

    PubMed Central

    Phan, Thanh Vân; Seoud, Lama; Chakor, Hadi; Cheriet, Farida

    2016-01-01

    Age-related macular degeneration (AMD) is a disease which causes visual deficiency and irreversible blindness to the elderly. In this paper, an automatic classification method for AMD is proposed to perform robust and reproducible assessments in a telemedicine context. First, a study was carried out to highlight the most relevant features for AMD characterization based on texture, color, and visual context in fundus images. A support vector machine and a random forest were used to classify images according to the different AMD stages following the AREDS protocol and to evaluate the features' relevance. Experiments were conducted on a database of 279 fundus images coming from a telemedicine platform. The results demonstrate that local binary patterns in multiresolution are the most relevant for AMD classification, regardless of the classifier used. Depending on the classification task, our method achieves promising performances with areas under the ROC curve between 0.739 and 0.874 for screening and between 0.469 and 0.685 for grading. Moreover, the proposed automatic AMD classification system is robust with respect to image quality. PMID:27190636

  11. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  12. Using machine learning classifiers to assist healthcare-related decisions: classification of electronic patient records.

    PubMed

    Pollettini, Juliana T; Panico, Sylvia R G; Daneluzzi, Julio C; Tinós, Renato; Baranauskas, José A; Macedo, Alessandra A

    2012-12-01

    Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.

  13. Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.

    ERIC Educational Resources Information Center

    Griffiths, Alan; And Others

    1984-01-01

    Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…

  14. Automated ancillary cancer history classification for mesothelioma patients from free-text clinical reports

    PubMed Central

    Wilson, Richard A.; Chapman, Wendy W.; DeFries, Shawn J.; Becich, Michael J.; Chapman, Brian E.

    2010-01-01

    Background: Clinical records are often unstructured, free-text documents that create information extraction challenges and costs. Healthcare delivery and research organizations, such as the National Mesothelioma Virtual Bank, require the aggregation of both structured and unstructured data types. Natural language processing offers techniques for automatically extracting information from unstructured, free-text documents. Methods: Five hundred and eight history and physical reports from mesothelioma patients were split into development (208) and test sets (300). A reference standard was developed and each report was annotated by experts with regard to the patient’s personal history of ancillary cancer and family history of any cancer. The Hx application was developed to process reports, extract relevant features, perform reference resolution and classify them with regard to cancer history. Two methods, Dynamic-Window and ConText, for extracting information were evaluated. Hx’s classification responses using each of the two methods were measured against the reference standard. The average Cohen’s weighted kappa served as the human benchmark in evaluating the system. Results: Hx had a high overall accuracy, with each method, scoring 96.2%. F-measures using the Dynamic-Window and ConText methods were 91.8% and 91.6%, which were comparable to the human benchmark of 92.8%. For the personal history classification, Dynamic-Window scored highest with 89.2% and for the family history classification, ConText scored highest with 97.6%, in which both methods were comparable to the human benchmark of 88.3% and 97.2%, respectively. Conclusion: We evaluated an automated application’s performance in classifying a mesothelioma patient’s personal and family history of cancer from clinical reports. To do so, the Hx application must process reports, identify cancer concepts, distinguish the known mesothelioma from ancillary cancers, recognize negation, perform reference resolution and determine the experiencer. Results indicated that both information extraction methods tested were dependant on the domain-specific lexicon and negation extraction. We showed that the more general method, ConText, performed as well as our task-specific method. Although Dynamic- Window could be modified to retrieve other concepts, ConText is more robust and performs better on inconclusive concepts. Hx could greatly improve and expedite the process of extracting data from free-text, clinical records for a variety of research or healthcare delivery organizations. PMID:21031012

  15. Automatic classification of time-variable X-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less

  16. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  17. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define... years after the date of its original classification with the exception of specific information exempt...

  18. Automatic breast density classification using a convolutional neural network architecture search procedure

    NASA Astrophysics Data System (ADS)

    Fonseca, Pablo; Mendoza, Julio; Wainer, Jacques; Ferrer, Jose; Pinto, Joseph; Guerrero, Jorge; Castaneda, Benjamin

    2015-03-01

    Breast parenchymal density is considered a strong indicator of breast cancer risk and therefore useful for preventive tasks. Measurement of breast density is often qualitative and requires the subjective judgment of radiologists. Here we explore an automatic breast composition classification workflow based on convolutional neural networks for feature extraction in combination with a support vector machines classifier. This is compared to the assessments of seven experienced radiologists. The experiments yielded an average kappa value of 0.58 when using the mode of the radiologists' classifications as ground truth. Individual radiologist performance against this ground truth yielded kappa values between 0.56 and 0.79.

  19. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.

    PubMed

    Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed

    2018-01-01

    The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Workshop on Algorithms for Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    Protopapas, Pavlos

    2012-04-01

    abstract-type="normal">SummaryThis Workshop covered the four major subjects listed below in two 90-minute sessions. Each talk or tutorial allowed questions, and concluded with a discussion. Classification: Automatic classification using machine-learning methods is becoming a standard in surveys that generate large datasets. Ashish Mahabal (Caltech) reviewed various methods, and presented examples of several applications. Time-Series Modelling: Suzanne Aigrain (Oxford University) discussed autoregressive models and multivariate approaches such as Gaussian Processes. Meta-classification/mixture of expert models: Karim Pichara (Pontificia Universidad Católica, Chile) described the substantial promise which machine-learning classification methods are now showing in automatic classification, and discussed how the various methods can be combined together. Event Detection: Pavlos Protopapas (Harvard) addressed methods of fast identification of events with low signal-to-noise ratios, enlarging on the characterization and statistical issues of low signal-to-noise ratios and rare events.

  1. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  2. The Contribution of the Vaccine Adverse Event Text Mining System to the Classification of Possible Guillain-Barré Syndrome Reports

    PubMed Central

    Botsis, T.; Woo, E. J.; Ball, R.

    2013-01-01

    Background We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of an-aphylaxis for post-marketing safety surveillance of vaccines. Objective To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). Methods We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. Results MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. Conclusion For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority. PMID:23650490

  3. Text mining for neuroanatomy using WhiteText with an updated corpus and a new web application

    PubMed Central

    French, Leon; Liu, Po; Marais, Olivia; Koreman, Tianna; Tseng, Lucia; Lai, Artemis; Pavlidis, Paul

    2015-01-01

    We describe the WhiteText project, and its progress towards automatically extracting statements of neuroanatomical connectivity from text. We review progress to date on the three main steps of the project: recognition of brain region mentions, standardization of brain region mentions to neuroanatomical nomenclature, and connectivity statement extraction. We further describe a new version of our manually curated corpus that adds 2,111 connectivity statements from 1,828 additional abstracts. Cross-validation classification within the new corpus replicates results on our original corpus, recalling 67% of connectivity statements at 51% precision. The resulting merged corpus provides 5,208 connectivity statements that can be used to seed species-specific connectivity matrices and to better train automated techniques. Finally, we present a new web application that allows fast interactive browsing of the over 70,000 sentences indexed by the system, as a tool for accessing the data and assisting in further curation. Software and data are freely available at http://www.chibi.ubc.ca/WhiteText/. PMID:26052282

  4. "Rate My Therapist": Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing

    PubMed Central

    Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis G.; Atkins, David C.; Narayanan, Shrikanth S.

    2015-01-01

    The technology for evaluating patient-provider interactions in psychotherapy–observational coding–has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies. PMID:26630392

  5. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  6. Preliminary clinical evaluation of semi-automated nailfold capillaroscopy in the assessment of patients with Raynaud's phenomenon.

    PubMed

    Murray, Andrea K; Feng, Kaiyan; Moore, Tonia L; Allen, Phillip D; Taylor, Christopher J; Herrick, Ariane L

    2011-08-01

      Nailfold capillaroscopy is well established in screening patients with Raynaud's phenomenon for underlying SSc-spectrum disorders, by identifying abnormal capillaries. Our aim was to compare semi-automatic feature measurement from newly developed software with manual measurements, and determine the degree to which semi-automated data allows disease group classification.   Images from 46 healthy controls, 21 patients with PRP and 49 with SSc were preprocessed, and semi-automated measurements of intercapillary distance and capillary width, tortuosity, and derangement were performed. These were compared with manual measurements. Features were used to classify images into the three subject groups.   Comparison of automatic and manual measures for distance, width, tortuosity, and derangement had correlations of r=0.583, 0.624, 0.495 (p<0.001), and 0.195 (p=0.040). For automatic measures, correlations were found between width and intercapillary distance, r=0.374, and width and tortuosity, r=0.573 (p<0.001). Significant differences between subject groups were found for all features (p<0.002). Overall, 75% of images correctly matched clinical classification using semi-automated features, compared with 71% for manual measurements.   Semi-automatic and manual measurements of distance, width, and tortuosity showed moderate (but statistically significant) correlations. Correlation for derangement was weaker. Semi-automatic measurements are faster than manual measurements. Semi-automatic parameters identify differences between groups, and are as good as manual measurements for between-group classification. © 2011 John Wiley & Sons Ltd.

  7. Extracting Information from Electronic Medical Records to Identify the Obesity Status of a Patient Based on Comorbidities and Bodyweight Measures.

    PubMed

    Figueroa, Rosa L; Flores, Christopher A

    2016-08-01

    Obesity is a chronic disease with an increasing impact on the world's population. In this work, we present a method of identifying obesity automatically using text mining techniques and information related to body weight measures and obesity comorbidities. We used a dataset of 3015 de-identified medical records that contain labels for two classification problems. The first classification problem distinguishes between obesity, overweight, normal weight, and underweight. The second classification problem differentiates between obesity types: super obesity, morbid obesity, severe obesity and moderate obesity. We used a Bag of Words approach to represent the records together with unigram and bigram representations of the features. We implemented two approaches: a hierarchical method and a nonhierarchical one. We used Support Vector Machine and Naïve Bayes together with ten-fold cross validation to evaluate and compare performances. Our results indicate that the hierarchical approach does not work as well as the nonhierarchical one. In general, our results show that Support Vector Machine obtains better performances than Naïve Bayes for both classification problems. We also observed that bigram representation improves performance compared with unigram representation.

  8. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.

  9. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    PubMed

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.

  10. Automatic detection of confusion in elderly users of a web-based health instruction video.

    PubMed

    Postma-Nilsenová, Marie; Postma, Eric; Tates, Kiek

    2015-06-01

    Because of cognitive limitations and lower health literacy, many elderly patients have difficulty understanding verbal medical instructions. Automatic detection of facial movements provides a nonintrusive basis for building technological tools supporting confusion detection in healthcare delivery applications on the Internet. Twenty-four elderly participants (70-90 years old) were recorded while watching Web-based health instruction videos involving easy and complex medical terminology. Relevant fragments of the participants' facial expressions were rated by 40 medical students for perceived level of confusion and analyzed with automatic software for facial movement recognition. A computer classification of the automatically detected facial features performed more accurately and with a higher sensitivity than the human observers (automatic detection and classification, 64% accuracy, 0.64 sensitivity; human observers, 41% accuracy, 0.43 sensitivity). A drill-down analysis of cues to confusion indicated the importance of the eye and eyebrow region. Confusion caused by misunderstanding of medical terminology is signaled by facial cues that can be automatically detected with currently available facial expression detection technology. The findings are relevant for the development of Web-based services for healthcare consumers.

  11. Crescent Evaluation : appendix D : crescent computer system components evaluation report

    DOT National Transportation Integrated Search

    1994-02-01

    In 1990, Lockheed Integrated Systems Company (LISC) was awarded a contract, under the Crescent Demonstration Project, to demonstrate the integration of Weigh In Motion (WIM), Automatic Vehicle Classification (AVC) and Automatic Vehicle Identification...

  12. Mining protein function from text using term-based support vector machines

    PubMed Central

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  13. [Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].

    PubMed

    Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong

    2016-10-01

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

  14. Material classification and automatic content enrichment of images using supervised learning and knowledge bases

    NASA Astrophysics Data System (ADS)

    Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.

    2011-02-01

    In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.

  15. Second Language Writing Classification System Based on Word-Alignment Distribution

    ERIC Educational Resources Information Center

    Kotani, Katsunori; Yoshimi, Takehiko

    2010-01-01

    The present paper introduces an automatic classification system for assisting second language (L2) writing evaluation. This system, which classifies sentences written by L2 learners as either native speaker-like or learner-like sentences, is constructed by machine learning algorithms using word-alignment distributions as classification features…

  16. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    ERIC Educational Resources Information Center

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  17. Fever detection from free-text clinical records for biosurveillance.

    PubMed

    Chapman, Wendy W; Dowling, John N; Wagner, Michael M

    2004-04-01

    Automatic detection of cases of febrile illness may have potential for early detection of outbreaks of infectious disease either by identification of anomalous numbers of febrile illness or in concert with other information in diagnosing specific syndromes, such as febrile respiratory syndrome. At most institutions, febrile information is contained only in free-text clinical records. We compared the sensitivity and specificity of three fever detection algorithms for detecting fever from free-text. Keyword CC and CoCo classified patients based on triage chief complaints; Keyword HP classified patients based on dictated emergency department reports. Keyword HP was the most sensitive (sensitivity 0.98, specificity 0.89), and Keyword CC was the most specific (sensitivity 0.61, specificity 1.0). Because chief complaints are available sooner than emergency department reports, we suggest a combined application that classifies patients based on their chief complaint followed by classification based on their emergency department report, once the report becomes available.

  18. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  19. Automated Feature Identification and Classification Using Automated Feature Weighted Self Organizing Map (FWSOM)

    NASA Astrophysics Data System (ADS)

    Starkey, Andrew; Usman Ahmad, Aliyu; Hamdoun, Hassan

    2017-10-01

    This paper investigates the application of a novel method for classification called Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a converged standard Self Organizing Map (SOM) to automatically guide the selection of important inputs during training for improved classification of data with redundant inputs, examined against two traditional approaches namely neural networks and Support Vector Machines (SVM) for the classification of EEG data as presented in previous work. In particular, the novel method looks to identify the features that are important for classification automatically, and in this way the important features can be used to improve the diagnostic ability of any of the above methods. The paper presents the results and shows how the automated identification of the important features successfully identified the important features in the dataset and how this results in an improvement of the classification results for all methods apart from linear discriminatory methods which cannot separate the underlying nonlinear relationship in the data. The FWSOM in addition to achieving higher classification accuracy has given insights into what features are important in the classification of each class (left and right-hand movements), and these are corroborated by already published work in this area.

  20. Classification of independent components of EEG into multiple artifact classes.

    PubMed

    Frølich, Laura; Andersen, Tobias S; Mørup, Morten

    2015-01-01

    In this study, we aim to automatically identify multiple artifact types in EEG. We used multinomial regression to classify independent components of EEG data, selecting from 65 spatial, spectral, and temporal features of independent components using forward selection. The classifier identified neural and five nonneural types of components. Between subjects within studies, high classification performances were obtained. Between studies, however, classification was more difficult. For neural versus nonneural classifications, performance was on par with previous results obtained by others. We found that automatic separation of multiple artifact classes is possible with a small feature set. Our method can reduce manual workload and allow for the selective removal of artifact classes. Identifying artifacts during EEG recording may be used to instruct subjects to refrain from activity causing them. Copyright © 2014 Society for Psychophysiological Research.

  1. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.

    PubMed

    Xu, Kele; Feng, Dawei; Mi, Haibo

    2017-11-23

    The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.

  2. Automatic classification for mammogram backgrounds based on bi-rads complexity definition and on a multi content analysis framework

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric

    2011-03-01

    Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.

  3. Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs

    NASA Astrophysics Data System (ADS)

    Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio

    2017-03-01

    The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.

  4. Zone analysis in biology articles as a basis for information extraction.

    PubMed

    Mizuta, Yoko; Korhonen, Anna; Mullen, Tony; Collier, Nigel

    2006-06-01

    In the field of biomedicine, an overwhelming amount of experimental data has become available as a result of the high throughput of research in this domain. The amount of results reported has now grown beyond the limits of what can be managed by manual means. This makes it increasingly difficult for the researchers in this area to keep up with the latest developments. Information extraction (IE) in the biological domain aims to provide an effective automatic means to dynamically manage the information contained in archived journal articles and abstract collections and thus help researchers in their work. However, while considerable advances have been made in certain areas of IE, pinpointing and organizing factual information (such as experimental results) remains a challenge. In this paper we propose tackling this task by incorporating into IE information about rhetorical zones, i.e. classification of spans of text in terms of argumentation and intellectual attribution. As the first step towards this goal, we introduce a scheme for annotating biological texts for rhetorical zones and provide a qualitative and quantitative analysis of the data annotated according to this scheme. We also discuss our preliminary research on automatic zone analysis, and its incorporation into our IE framework.

  5. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    PubMed

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Using binary classification to prioritize and curate articles for the Comparative Toxicogenomics Database.

    PubMed

    Vishnyakova, Dina; Pasche, Emilie; Ruch, Patrick

    2012-01-01

    We report on the original integration of an automatic text categorization pipeline, so-called ToxiCat (Toxicogenomic Categorizer), that we developed to perform biomedical documents classification and prioritization in order to speed up the curation of the Comparative Toxicogenomics Database (CTD). The task can be basically described as a binary classification task, where a scoring function is used to rank a selected set of articles. Then components of a question-answering system are used to extract CTD-specific annotations from the ranked list of articles. The ranking function is generated using a Support Vector Machine, which combines three main modules: an information retrieval engine for MEDLINE (EAGLi), a gene normalization service (NormaGene) developed for a previous BioCreative campaign and finally, a set of answering components and entity recognizer for diseases and chemicals. The main components of the pipeline are publicly available both as web application and web services. The specific integration performed for the BioCreative competition is available via a web user interface at http://pingu.unige.ch:8080/Toxicat.

  7. Adaptive video-based vehicle classification technique for monitoring traffic : [executive summary].

    DOT National Transportation Integrated Search

    2015-08-01

    Federal Highway Administration (FHWA) recommends axle-based classification standards to map : passenger vehicles, single unit trucks, and multi-unit trucks, at Automatic Traffic Recorder (ATR) stations : statewide. Many state Departments of Transport...

  8. Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia

    2012-12-01

    We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Morphological feature extraction for the classification of digital images of cancerous tissues.

    PubMed

    Thiran, J P; Macq, B

    1996-10-01

    This paper presents a new method for automatic recognition of cancerous tissues from an image of a microscopic section. Based on the shape and the size analysis of the observed cells, this method provides the physician with nonsubjective numerical values for four criteria of malignancy. This automatic approach is based on mathematical morphology, and more specifically on the use of Geodesy. This technique is used first to remove the background noise from the image and then to operate a segmentation of the nuclei of the cells and an analysis of their shape, their size, and their texture. From the values of the extracted criteria, an automatic classification of the image (cancerous or not) is finally operated.

  10. Automatic analysis and classification of surface electromyography.

    PubMed

    Abou-Chadi, F E; Nashar, A; Saad, M

    2001-01-01

    In this paper, parametric modeling of surface electromyography (EMG) algorithms that facilitates automatic SEMG feature extraction and artificial neural networks (ANN) are combined for providing an integrated system for the automatic analysis and diagnosis of myopathic disorders. Three paradigms of ANN were investigated: the multilayer backpropagation algorithm, the self-organizing feature map algorithm and a probabilistic neural network model. The performance of the three classifiers was compared with that of the old Fisher linear discriminant (FLD) classifiers. The results have shown that the three ANN models give higher performance. The percentage of correct classification reaches 90%. Poorer diagnostic performance was obtained from the FLD classifier. The system presented here indicates that surface EMG, when properly processed, can be used to provide the physician with a diagnostic assist device.

  11. Automatic Classification of Sub-Techniques in Classical Cross-Country Skiing Using a Machine Learning Algorithm on Micro-Sensor Data

    PubMed Central

    Seeberg, Trine M.; Tjønnås, Johannes; Haugnes, Pål; Sandbakk, Øyvind

    2017-01-01

    The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier’s arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier’s arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we achieved a classification accuracy of 93.9% on the test-data. Furthermore, we illustrate how an accurate classification of sub-techniques can be combined with data from standard sports equipment including position, altitude, speed and heart rate measuring systems. Combining this information has the potential to provide novel insight into physiological and biomechanical aspects valuable to coaches, athletes and researchers. PMID:29283421

  12. The Crescent Project : an evaluation of an element of the HELP Program : executive summary

    DOT National Transportation Integrated Search

    1994-02-01

    The HELP/Crescent Project on the West Coast evaluated the applicability of four technologies for screening transponder-equipped vehicles. The technologies included automatic vehicle identification, weigh-in-motion, automatic vehicle classification, a...

  13. Assessing the use of multiple sources in student essays.

    PubMed

    Hastings, Peter; Hughes, Simon; Magliano, Joseph P; Goldman, Susan R; Lawless, Kimberly

    2012-09-01

    The present study explored different approaches for automatically scoring student essays that were written on the basis of multiple texts. Specifically, these approaches were developed to classify whether or not important elements of the texts were present in the essays. The first was a simple pattern-matching approach called "multi-word" that allowed for flexible matching of words and phrases in the sentences. The second technique was latent semantic analysis (LSA), which was used to compare student sentences to original source sentences using its high-dimensional vector-based representation. Finally, the third was a machine-learning technique, support vector machines, which learned a classification scheme from the corpus. The results of the study suggested that the LSA-based system was superior for detecting the presence of explicit content from the texts, but the multi-word pattern-matching approach was better for detecting inferences outside or across texts. These results suggest that the best approach for analyzing essays of this nature should draw upon multiple natural language processing approaches.

  14. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  15. [Severity classification of chronic obstructive pulmonary disease based on deep learning].

    PubMed

    Ying, Jun; Yang, Ceyuan; Li, Quanzheng; Xue, Wanguo; Li, Tanshi; Cao, Wenzhe

    2017-12-01

    In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.

  16. An automatic graph-based approach for artery/vein classification in retinal images.

    PubMed

    Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio

    2014-03-01

    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.

  17. Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification

    NASA Astrophysics Data System (ADS)

    Gao, Hui

    2018-04-01

    The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  18. Assessing the Effectiveness of Statistical Classification Techniques in Predicting Future Employment of Participants in the Temporary Assistance for Needy Families Program

    ERIC Educational Resources Information Center

    Montoya, Isaac D.

    2008-01-01

    Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…

  19. Adaptive sleep-wake discrimination for wearable devices.

    PubMed

    Karlen, Walter; Floreano, Dario

    2011-04-01

    Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.

  20. a Two-Step Classification Approach to Distinguishing Similar Objects in Mobile LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    He, H.; Khoshelham, K.; Fraser, C.

    2017-09-01

    Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.

  1. 76 FR 68767 - Draft Guidance for Industry and Food and Drug Administration Staff; De Novo Classification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... and Radiological Health (CDRH) guidance documents is available at http://www.fda.gov/MedicalDevices... ``De Novo Classification Process (Evaluation of Automatic Class III Designation)'' from CDRH you may...

  2. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  3. Accelerometry-based classification of human activities using Markov modeling.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2011-01-01

    Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

  4. Automated measurement of retinal vascular tortuosity.

    PubMed Central

    Hart, W. E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M. R.

    1997-01-01

    Automatic measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. We describe a suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images. The tortuosity measures were evaluated in two classification tasks: (1) classifying the tortuosity of blood vessel segments and (2) classifying the tortuosity of blood vessel networks. These tortuosity measures were able to achieve a classification rate of 91% for the first problem and 95% on the second problem, which confirms that they capture much of the ophthalmologists' notion of tortuosity. Images Figure 1 PMID:9357668

  5. An efficient scheme for automatic web pages categorization using the support vector machine

    NASA Astrophysics Data System (ADS)

    Bhalla, Vinod Kumar; Kumar, Neeraj

    2016-07-01

    In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.

  6. A study of the effectiveness of machine learning methods for classification of clinical interview fragments into a large number of categories.

    PubMed

    Hasan, Mehedi; Kotov, Alexander; Carcone, April; Dong, Ming; Naar, Sylvie; Hartlieb, Kathryn Brogan

    2016-08-01

    This study examines the effectiveness of state-of-the-art supervised machine learning methods in conjunction with different feature types for the task of automatic annotation of fragments of clinical text based on codebooks with a large number of categories. We used a collection of motivational interview transcripts consisting of 11,353 utterances, which were manually annotated by two human coders as the gold standard, and experimented with state-of-art classifiers, including Naïve Bayes, J48 Decision Tree, Support Vector Machine (SVM), Random Forest (RF), AdaBoost, DiscLDA, Conditional Random Fields (CRF) and Convolutional Neural Network (CNN) in conjunction with lexical, contextual (label of the previous utterance) and semantic (distribution of words in the utterance across the Linguistic Inquiry and Word Count dictionaries) features. We found out that, when the number of classes is large, the performance of CNN and CRF is inferior to SVM. When only lexical features were used, interview transcripts were automatically annotated by SVM with the highest classification accuracy among all classifiers of 70.8%, 61% and 53.7% based on the codebooks consisting of 17, 20 and 41 codes, respectively. Using contextual and semantic features, as well as their combination, in addition to lexical ones, improved the accuracy of SVM for annotation of utterances in motivational interview transcripts with a codebook consisting of 17 classes to 71.5%, 74.2%, and 75.1%, respectively. Our results demonstrate the potential of using machine learning methods in conjunction with lexical, semantic and contextual features for automatic annotation of clinical interview transcripts with near-human accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Text mining electronic hospital records to automatically classify admissions against disease: Measuring the impact of linking data sources.

    PubMed

    Kocbek, Simon; Cavedon, Lawrence; Martinez, David; Bain, Christopher; Manus, Chris Mac; Haffari, Gholamreza; Zukerman, Ingrid; Verspoor, Karin

    2016-12-01

    Text and data mining play an important role in obtaining insights from Health and Hospital Information Systems. This paper presents a text mining system for detecting admissions marked as positive for several diseases: Lung Cancer, Breast Cancer, Colon Cancer, Secondary Malignant Neoplasm of Respiratory and Digestive Organs, Multiple Myeloma and Malignant Plasma Cell Neoplasms, Pneumonia, and Pulmonary Embolism. We specifically examine the effect of linking multiple data sources on text classification performance. Support Vector Machine classifiers are built for eight data source combinations, and evaluated using the metrics of Precision, Recall and F-Score. Sub-sampling techniques are used to address unbalanced datasets of medical records. We use radiology reports as an initial data source and add other sources, such as pathology reports and patient and hospital admission data, in order to assess the research question regarding the impact of the value of multiple data sources. Statistical significance is measured using the Wilcoxon signed-rank test. A second set of experiments explores aspects of the system in greater depth, focusing on Lung Cancer. We explore the impact of feature selection; analyse the learning curve; examine the effect of restricting admissions to only those containing reports from all data sources; and examine the impact of reducing the sub-sampling. These experiments provide better understanding of how to best apply text classification in the context of imbalanced data of variable completeness. Radiology questions plus patient and hospital admission data contribute valuable information for detecting most of the diseases, significantly improving performance when added to radiology reports alone or to the combination of radiology and pathology reports. Overall, linking data sources significantly improved classification performance for all the diseases examined. However, there is no single approach that suits all scenarios; the choice of the most effective combination of data sources depends on the specific disease to be classified. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  9. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation

    PubMed Central

    Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua

    2013-01-01

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts. PMID:24236224

  10. Automatic Classification of Aerial Imagery for Urban Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Paul, A.; Yang, C.; Breitkopf, U.; Liu, Y.; Wang, Z.; Rottensteiner, F.; Wallner, M.; Verworn, A.; Heipke, C.

    2018-04-01

    In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85 % for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4 % for the CRF-based classification, and 3.8 % for the RF-based classification.

  11. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua

    2012-03-01

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.

  12. Exploiting the systematic review protocol for classification of medical abstracts.

    PubMed

    Frunza, Oana; Inkpen, Diana; Matwin, Stan; Klement, William; O'Blenis, Peter

    2011-01-01

    To determine whether the automatic classification of documents can be useful in systematic reviews on medical topics, and specifically if the performance of the automatic classification can be enhanced by using the particular protocol of questions employed by the human reviewers to create multiple classifiers. The test collection is the data used in large-scale systematic review on the topic of the dissemination strategy of health care services for elderly people. From a group of 47,274 abstracts marked by human reviewers to be included in or excluded from further screening, we randomly selected 20,000 as a training set, with the remaining 27,274 becoming a separate test set. As a machine learning algorithm we used complement naïve Bayes. We tested both a global classification method, where a single classifier is trained on instances of abstracts and their classification (i.e., included or excluded), and a novel per-question classification method that trains multiple classifiers for each abstract, exploiting the specific protocol (questions) of the systematic review. For the per-question method we tested four ways of combining the results of the classifiers trained for the individual questions. As evaluation measures, we calculated precision and recall for several settings of the two methods. It is most important not to exclude any relevant documents (i.e., to attain high recall for the class of interest) but also desirable to exclude most of the non-relevant documents (i.e., to attain high precision on the class of interest) in order to reduce human workload. For the global method, the highest recall was 67.8% and the highest precision was 37.9%. For the per-question method, the highest recall was 99.2%, and the highest precision was 63%. The human-machine workflow proposed in this paper achieved a recall value of 99.6%, and a precision value of 17.8%. The per-question method that combines classifiers following the specific protocol of the review leads to better results than the global method in terms of recall. Because neither method is efficient enough to classify abstracts reliably by itself, the technology should be applied in a semi-automatic way, with a human expert still involved. When the workflow includes one human expert and the trained automatic classifier, recall improves to an acceptable level, showing that automatic classification techniques can reduce the human workload in the process of building a systematic review. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. New York State Thruway Authority automatic vehicle classification (AVC) : research report.

    DOT National Transportation Integrated Search

    2008-03-31

    In December 2007, the N.Y.S. Thruway Authority (Thruway) concluded a Federal : funded research effort to study technology and develop a design for retrofitting : devices required in implementing a fully automated vehicle classification system i...

  14. Accuracy of automatic syndromic classification of coded emergency department diagnoses in identifying mental health-related presentations for public health surveillance.

    PubMed

    Liljeqvist, Henning T G; Muscatello, David; Sara, Grant; Dinh, Michael; Lawrence, Glenda L

    2014-09-23

    Syndromic surveillance in emergency departments (EDs) may be used to deliver early warnings of increases in disease activity, to provide situational awareness during events of public health significance, to supplement other information on trends in acute disease and injury, and to support the development and monitoring of prevention or response strategies. Changes in mental health related ED presentations may be relevant to these goals, provided they can be identified accurately and efficiently. This study aimed to measure the accuracy of using diagnostic codes in electronic ED presentation records to identify mental health-related visits. We selected a random sample of 500 records from a total of 1,815,588 ED electronic presentation records from 59 NSW public hospitals during 2010. ED diagnoses were recorded using any of ICD-9, ICD-10 or SNOMED CT classifications. Three clinicians, blinded to the automatically generated syndromic grouping and each other's classification, reviewed the triage notes and classified each of the 500 visits as mental health-related or not. A "mental health problem presentation" for the purposes of this study was defined as any ED presentation where either a mental disorder or a mental health problem was the reason for the ED visit. The combined clinicians' assessment of the records was used as reference standard to measure the sensitivity, specificity, and positive and negative predictive values of the automatic classification of coded emergency department diagnoses. Agreement between the reference standard and the automated coded classification was estimated using the Kappa statistic. Agreement between clinician's classification and automated coded classification was substantial (Kappa = 0.73. 95% CI: 0.58 - 0.87). The automatic syndromic grouping of coded ED diagnoses for mental health-related visits was found to be moderately sensitive (68% 95% CI: 46%-84%) and highly specific at 99% (95% CI: 98%-99.7%) when compared with the reference standard in identifying mental health related ED visits. Positive predictive value was 81% (95% CI: 0.57 - 0.94) and negative predictive value was 98% (95% CI: 0.97-0.99). Mental health presentations identified using diagnoses coded with various classifications in electronic ED presentation records offers sufficient accuracy for application in near real-time syndromic surveillance.

  15. Automatic recognition of lactating sow behaviors through depth image processing

    USDA-ARS?s Scientific Manuscript database

    Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shiftin...

  16. A semi-automatic traffic sign detection, classification, and positioning system

    NASA Astrophysics Data System (ADS)

    Creusen, I. M.; Hazelhoff, L.; de With, P. H. N.

    2012-01-01

    The availability of large-scale databases containing street-level panoramic images offers the possibility to perform semi-automatic surveying of real-world objects such as traffic signs. These inventories can be performed significantly more efficiently than using conventional methods. Governmental agencies are interested in these inventories for maintenance and safety reasons. This paper introduces a complete semi-automatic traffic sign inventory system. The system consists of several components. First, a detection algorithm locates the 2D position of the traffic signs in the panoramic images. Second, a classification algorithm is used to identify the traffic sign. Third, the 3D position of the traffic sign is calculated using the GPS position of the photographs. Finally, the results are listed in a table for quick inspection and are also visualized in a web browser.

  17. Neural Network Classification of Receiver Functions as a Step Towards Automatic Crustal Parameter Determination

    NASA Astrophysics Data System (ADS)

    Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.

    2006-12-01

    Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.

  18. A Corpus-Based Approach for Automatic Thai Unknown Word Recognition Using Boosting Techniques

    NASA Astrophysics Data System (ADS)

    Techo, Jakkrit; Nattee, Cholwich; Theeramunkong, Thanaruk

    While classification techniques can be applied for automatic unknown word recognition in a language without word boundary, it faces with the problem of unbalanced datasets where the number of positive unknown word candidates is dominantly smaller than that of negative candidates. To solve this problem, this paper presents a corpus-based approach that introduces a so-called group-based ranking evaluation technique into ensemble learning in order to generate a sequence of classification models that later collaborate to select the most probable unknown word from multiple candidates. Given a classification model, the group-based ranking evaluation (GRE) is applied to construct a training dataset for learning the succeeding model, by weighing each of its candidates according to their ranks and correctness when the candidates of an unknown word are considered as one group. A number of experiments have been conducted on a large Thai medical text to evaluate performance of the proposed group-based ranking evaluation approach, namely V-GRE, compared to the conventional naïve Bayes classifier and our vanilla version without ensemble learning. As the result, the proposed method achieves an accuracy of 90.93±0.50% when the first rank is selected while it gains 97.26±0.26% when the top-ten candidates are considered, that is 8.45% and 6.79% improvement over the conventional record-based naïve Bayes classifier and the vanilla version. Another result on applying only best features show 93.93±0.22% and up to 98.85±0.15% accuracy for top-1 and top-10, respectively. They are 3.97% and 9.78% improvement over naive Bayes and the vanilla version. Finally, an error analysis is given.

  19. Identifying key hospital service quality factors in online health communities.

    PubMed

    Jung, Yuchul; Hur, Cinyoung; Jung, Dain; Kim, Minki

    2015-04-07

    The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. We defined social media-based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea's two biggest online portals were used to test the effectiveness of detection of social media-based key quality factors for hospitals. To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is 78% on average. Extraction and classification performance still has room for improvement, but the extraction results are applicable to more detailed analysis. Further analysis of the extracted information reveals that there are differences in the details of social media-based key quality factors for hospitals according to the regions in Korea, and the patterns of change seem to accurately reflect social events (eg, influenza epidemics). These findings could be used to provide timely information to caregivers, hospital officials, and medical officials for health care policies.

  20. Improving Student Question Classification

    ERIC Educational Resources Information Center

    Heiner, Cecily; Zachary, Joseph L.

    2009-01-01

    Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…

  1. Sources of error in estimating truck traffic from automatic vehicle classification data

    DOT National Transportation Integrated Search

    1998-10-01

    Truck annual average daily traffic estimation errors resulting from sample classification counts are computed in this paper under two scenarios. One scenario investigates an improper factoring procedure that may be used by highway agencies. The study...

  2. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  3. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  4. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  5. 6 CFR 7.28 - Automatic declassification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... years after the date of its original classification with the exception of specific information exempt... information whenever the information exempted does not identify a confidential human source or human... Classification Appeals Panel (ISCAP) for approval. (d) Declassification guides that narrowly and precisely define...

  6. Multi-class biological tissue classification based on a multi-classifier: Preliminary study of an automatic output power control for ultrasonic surgical units.

    PubMed

    Youn, Su Hyun; Sim, Taeyong; Choi, Ahnryul; Song, Jinsung; Shin, Ki Young; Lee, Il Kwon; Heo, Hyun Mu; Lee, Daeweon; Mun, Joung Hwan

    2015-06-01

    Ultrasonic surgical units (USUs) have the advantage of minimizing tissue damage during surgeries that require tissue dissection by reducing problems such as coagulation and unwanted carbonization, but the disadvantage of requiring manual adjustment of power output according to the target tissue. In order to overcome this limitation, it is necessary to determine the properties of in vivo tissues automatically. We propose a multi-classifier that can accurately classify tissues based on the unique impedance of each tissue. For this purpose, a multi-classifier was built based on single classifiers with high classification rates, and the classification accuracy of the proposed model was compared with that of single classifiers for various electrode types (Type-I: 6 mm invasive; Type-II: 3 mm invasive; Type-III: surface). The sensitivity and positive predictive value (PPV) of the multi-classifier by cross checks were determined. According to the 10-fold cross validation results, the classification accuracy of the proposed model was significantly higher (p<0.05 or <0.01) than that of existing single classifiers for all electrode types. In particular, the classification accuracy of the proposed model was highest when the 3mm invasive electrode (Type-II) was used (sensitivity=97.33-100.00%; PPV=96.71-100.00%). The results of this study are an important contribution to achieving automatic optimal output power adjustment of USUs according to the properties of individual tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Quality Evaluation of Land-Cover Classification Using Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Dang, Y.; Zhang, J.; Zhao, Y.; Luo, F.; Ma, W.; Yu, F.

    2018-04-01

    Land-cover classification is one of the most important products of earth observation, which focuses mainly on profiling the physical characters of the land surface with temporal and distribution attributes and contains the information of both natural and man-made coverage elements, such as vegetation, soil, glaciers, rivers, lakes, marsh wetlands and various man-made structures. In recent years, the amount of high-resolution remote sensing data has increased sharply. Accordingly, the volume of land-cover classification products increases, as well as the need to evaluate such frequently updated products that is a big challenge. Conventionally, the automatic quality evaluation of land-cover classification is made through pixel-based classifying algorithms, which lead to a much trickier task and consequently hard to keep peace with the required updating frequency. In this paper, we propose a novel quality evaluation approach for evaluating the land-cover classification by a scene classification method Convolutional Neural Network (CNN) model. By learning from remote sensing data, those randomly generated kernels that serve as filter matrixes evolved to some operators that has similar functions to man-crafted operators, like Sobel operator or Canny operator, and there are other kernels learned by the CNN model that are much more complex and can't be understood as existing filters. The method using CNN approach as the core algorithm serves quality-evaluation tasks well since it calculates a bunch of outputs which directly represent the image's membership grade to certain classes. An automatic quality evaluation approach for the land-cover DLG-DOM coupling data (DLG for Digital Line Graphic, DOM for Digital Orthophoto Map) will be introduced in this paper. The CNN model as an robustness method for image evaluation, then brought out the idea of an automatic quality evaluation approach for land-cover classification. Based on this experiment, new ideas of quality evaluation of DLG-DOM coupling land-cover classification or other kinds of labelled remote sensing data can be further studied.

  8. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    NASA Astrophysics Data System (ADS)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  9. Analysis of steranes and triterpanes in geolipid extracts by automatic classification of mass spectra

    NASA Technical Reports Server (NTRS)

    Wardroper, A. M. K.; Brooks, P. W.; Humberston, M. J.; Maxwell, J. R.

    1977-01-01

    A computer method is described for the automatic classification of triterpanes and steranes into gross structural type from their mass spectral characteristics. The method has been applied to the spectra obtained by gas-chromatographic/mass-spectroscopic analysis of two mixtures of standards and of hydrocarbon fractions isolated from Green River and Messel oil shales. Almost all of the steranes and triterpanes identified previously in both shales were classified, in addition to a number of new components. The results indicate that classification of such alkanes is possible with a laboratory computer system. The method has application to diagenesis and maturation studies as well as to oil/oil and oil/source rock correlations in which rapid screening of large numbers of samples is required.

  10. Automatic classification of hyperactive children: comparing multiple artificial intelligence approaches.

    PubMed

    Delavarian, Mona; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Dibajnia, Parvin

    2011-07-12

    Automatic classification of different behavioral disorders with many similarities (e.g. in symptoms) by using an automated approach will help psychiatrists to concentrate on correct disorder and its treatment as soon as possible, to avoid wasting time on diagnosis, and to increase the accuracy of diagnosis. In this study, we tried to differentiate and classify (diagnose) 306 children with many similar symptoms and different behavioral disorders such as ADHD, depression, anxiety, comorbid depression and anxiety and conduct disorder with high accuracy. Classification was based on the symptoms and their severity. With examining 16 different available classifiers, by using "Prtools", we have proposed nearest mean classifier as the most accurate classifier with 96.92% accuracy in this research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Automatic classification of seismic events within a regional seismograph network

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Kortström, Jari; Uski, Marja

    2015-04-01

    A fully automatic method for seismic event classification within a sparse regional seismograph network is presented. The tool is based on a supervised pattern recognition technique, Support Vector Machine (SVM), trained here to distinguish weak local earthquakes from a bulk of human-made or spurious seismic events. The classification rules rely on differences in signal energy distribution between natural and artificial seismic sources. Seismic records are divided into four windows, P, P coda, S, and S coda. For each signal window STA is computed in 20 narrow frequency bands between 1 and 41 Hz. The 80 discrimination parameters are used as a training data for the SVM. The SVM models are calculated for 19 on-line seismic stations in Finland. The event data are compiled mainly from fully automatic event solutions that are manually classified after automatic location process. The station-specific SVM training events include 11-302 positive (earthquake) and 227-1048 negative (non-earthquake) examples. The best voting rules for combining results from different stations are determined during an independent testing period. Finally, the network processing rules are applied to an independent evaluation period comprising 4681 fully automatic event determinations, of which 98 % have been manually identified as explosions or noise and 2 % as earthquakes. The SVM method correctly identifies 94 % of the non-earthquakes and all the earthquakes. The results imply that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of confidence. The tool helps to reduce work-load in manual seismic analysis by leaving only ~5 % of the automatic event determinations, i.e. the probable earthquakes for more detailed seismological analysis. The approach presented is easy to adjust to requirements of a denser or wider high-frequency network, once enough training examples for building a station-specific data set are available.

  12. Automatic Classification of High Resolution Satellite Imagery - a Case Study for Urban Areas in the Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.

    2017-05-01

    Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results.

  13. Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse.

    PubMed

    Garrard, Peter; Rentoumi, Vassiliki; Gesierich, Benno; Miller, Bruce; Gorno-Tempini, Maria Luisa

    2014-06-01

    Advances in automatic text classification have been necessitated by the rapid increase in the availability of digital documents. Machine learning (ML) algorithms can 'learn' from data: for instance a ML system can be trained on a set of features derived from written texts belonging to known categories, and learn to distinguish between them. Such a trained system can then be used to classify unseen texts. In this paper, we explore the potential of the technique to classify transcribed speech samples along clinical dimensions, using vocabulary data alone. We report the accuracy with which two related ML algorithms [naive Bayes Gaussian (NBG) and naive Bayes multinomial (NBM)] categorized picture descriptions produced by: 32 semantic dementia (SD) patients versus 10 healthy, age-matched controls; and SD patients with left- (n = 21) versus right-predominant (n = 11) patterns of temporal lobe atrophy. We used information gain (IG) to identify the vocabulary features that were most informative to each of these two distinctions. In the SD versus control classification task, both algorithms achieved accuracies of greater than 90%. In the right- versus left-temporal lobe predominant classification, NBM achieved a high level of accuracy (88%), but this was achieved by both NBM and NBG when the features used in the training set were restricted to those with high values of IG. The most informative features for the patient versus control task were low frequency content words, generic terms and components of metanarrative statements. For the right versus left task the number of informative lexical features was too small to support any specific inferences. An enriched feature set, including values derived from Quantitative Production Analysis (QPA) may shed further light on this little understood distinction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Automatic Picking of Foraminifera: Design of the Foraminifera Image Recognition and Sorting Tool (FIRST) Prototype and Results of the Image Classification Scheme

    NASA Astrophysics Data System (ADS)

    de Garidel-Thoron, T.; Marchant, R.; Soto, E.; Gally, Y.; Beaufort, L.; Bolton, C. T.; Bouslama, M.; Licari, L.; Mazur, J. C.; Brutti, J. M.; Norsa, F.

    2017-12-01

    Foraminifera tests are the main proxy carriers for paleoceanographic reconstructions. Both geochemical and taxonomical studies require large numbers of tests to achieve statistical relevance. To date, the extraction of foraminifera from the sediment coarse fraction is still done by hand and thus time-consuming. Moreover, the recognition of morphotypes, ecologically relevant, requires some taxonomical skills not easily taught. The automatic recognition and extraction of foraminifera would largely help paleoceanographers to overcome these issues. Recent advances in automatic image classification using machine learning opens the way to automatic extraction of foraminifera. Here we detail progress on the design of an automatic picking machine as part of the FIRST project. The machine handles 30 pre-sieved samples (100-1000µm), separating them into individual particles (including foraminifera) and imaging each in pseudo-3D. The particles are classified and specimens of interest are sorted either for Individual Foraminifera Analyses (44 per slide) and/or for classical multiple analyses (8 morphological classes per slide, up to 1000 individuals per hole). The classification is based on machine learning using Convolutional Neural Networks (CNNs), similar to the approach used in the coccolithophorid imaging system SYRACO. To prove its feasibility, we built two training image datasets of modern planktonic foraminifera containing approximately 2000 and 5000 images each, corresponding to 15 & 25 morphological classes. Using a CNN with a residual topology (ResNet) we achieve over 95% correct classification for each dataset. We tested the network on 160,000 images from 45 depths of a sediment core from the Pacific ocean, for which we have human counts. The current algorithm is able to reproduce the downcore variability in both Globigerinoides ruber and the fragmentation index (r2 = 0.58 and 0.88 respectively). The FIRST prototype yields some promising results for high-resolution paleoceanographic studies and evolutionary studies.

  15. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  16. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  17. Optimizing Input/Output Using Adaptive File System Policies

    NASA Technical Reports Server (NTRS)

    Madhyastha, Tara M.; Elford, Christopher L.; Reed, Daniel A.

    1996-01-01

    Parallel input/output characterization studies and experiments with flexible resource management algorithms indicate that adaptivity is crucial to file system performance. In this paper we propose an automatic technique for selecting and refining file system policies based on application access patterns and execution environment. An automatic classification framework allows the file system to select appropriate caching and pre-fetching policies, while performance sensors provide feedback used to tune policy parameters for specific system environments. To illustrate the potential performance improvements possible using adaptive file system policies, we present results from experiments involving classification-based and performance-based steering.

  18. Using machine learning techniques to automate sky survey catalog generation

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.

    1993-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.

  19. Effectiveness of Global Features for Automatic Medical Image Classification and Retrieval – the experiences of OHSU at ImageCLEFmed

    PubMed Central

    Kalpathy-Cramer, Jayashree; Hersh, William

    2008-01-01

    In 2006 and 2007, Oregon Health & Science University (OHSU) participated in the automatic image annotation task for medical images at ImageCLEF, an annual international benchmarking event that is part of the Cross Language Evaluation Forum (CLEF). The goal of the automatic annotation task was to classify 1000 test images based on the Image Retrieval in Medical Applications (IRMA) code, given a set of 10,000 training images. There were 116 distinct classes in 2006 and 2007. We evaluated the efficacy of a variety of primarily global features for this classification task. These included features based on histograms, gray level correlation matrices and the gist technique. A multitude of classifiers including k-nearest neighbors, two-level neural networks, support vector machines, and maximum likelihood classifiers were evaluated. Our official error rates for the 1000 test images were 26% in 2006 using the flat classification structure. The error count in 2007 was 67.8 using the hierarchical classification error computation based on the IRMA code in 2007. Confusion matrices as well as clustering experiments were used to identify visually similar classes. The use of the IRMA code did not help us in the classification task as the semantic hierarchy of the IRMA classes did not correspond well with the hierarchy based on clustering of image features that we used. Our most frequent misclassification errors were along the view axis. Subsequent experiments based on a two-stage classification system decreased our error rate to 19.8% for the 2006 dataset and our error count to 55.4 for the 2007 data. PMID:19884953

  20. Automatic Identification of Messages Related to Adverse Drug Reactions from Online User Reviews using Feature-based Classification.

    PubMed

    Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie

    2014-11-01

    User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.

  1. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    NASA Astrophysics Data System (ADS)

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, AdaBoost, and Decision Tree) and is a good technique for automatic classification of exoplanet-transit-like signal.

  2. Unsupervised Extraction of Diagnosis Codes from EMRs Using Knowledge-Based and Extractive Text Summarization Techniques

    PubMed Central

    Kavuluru, Ramakanth; Han, Sifei; Harris, Daniel

    2017-01-01

    Diagnosis codes are extracted from medical records for billing and reimbursement and for secondary uses such as quality control and cohort identification. In the US, these codes come from the standard terminology ICD-9-CM derived from the international classification of diseases (ICD). ICD-9 codes are generally extracted by trained human coders by reading all artifacts available in a patient’s medical record following specific coding guidelines. To assist coders in this manual process, this paper proposes an unsupervised ensemble approach to automatically extract ICD-9 diagnosis codes from textual narratives included in electronic medical records (EMRs). Earlier attempts on automatic extraction focused on individual documents such as radiology reports and discharge summaries. Here we use a more realistic dataset and extract ICD-9 codes from EMRs of 1000 inpatient visits at the University of Kentucky Medical Center. Using named entity recognition (NER), graph-based concept-mapping of medical concepts, and extractive text summarization techniques, we achieve an example based average recall of 0.42 with average precision 0.47; compared with a baseline of using only NER, we notice a 12% improvement in recall with the graph-based approach and a 7% improvement in precision using the extractive text summarization approach. Although diagnosis codes are complex concepts often expressed in text with significant long range non-local dependencies, our present work shows the potential of unsupervised methods in extracting a portion of codes. As such, our findings are especially relevant for code extraction tasks where obtaining large amounts of training data is difficult. PMID:28748227

  3. Comparison of SAM and OBIA as Tools for Lava Morphology Classification - A Case Study in Krafla, NE Iceland

    NASA Astrophysics Data System (ADS)

    Aufaristama, Muhammad; Hölbling, Daniel; Höskuldsson, Ármann; Jónsdóttir, Ingibjörg

    2017-04-01

    The Krafla volcanic system is part of the Icelandic North Volcanic Zone (NVZ). During Holocene, two eruptive events occurred in Krafla, 1724-1729 and 1975-1984. The last eruptive episode (1975-1984), known as the "Krafla Fires", resulted in nine volcanic eruption episodes. The total area covered by the lavas from this eruptive episode is 36 km2 and the volume is about 0.25-0.3 km3. Lava morphology is related to the characteristics of the surface morphology of a lava flow after solidification. The typical morphology of lava can be used as primary basis for the classification of lava flows when rheological properties cannot be directly observed during emplacement, and also for better understanding the behavior of lava flow models. Although mapping of lava flows in the field is relatively accurate such traditional methods are time consuming, especially when the lava covers large areas such as it is the case in Krafla. Semi-automatic mapping methods that make use of satellite remote sensing data allow for an efficient and fast mapping of lava morphology. In this study, two semi-automatic methods for lava morphology classification are presented and compared using Landsat 8 (30 m spatial resolution) and SPOT-5 (10 m spatial resolution) satellite images. For assessing the classification accuracy, the results from semi-automatic mapping were compared to the respective results from visual interpretation. On the one hand, the Spectral Angle Mapper (SAM) classification method was used. With this method an image is classified according to the spectral similarity between the image reflectance spectrums and the reference reflectance spectra. SAM successfully produced detailed lava surface morphology maps. However, the pixel-based approach partly leads to a salt-and-pepper effect. On the other hand, we applied the Random Forest (RF) classification method within an object-based image analysis (OBIA) framework. This statistical classifier uses a randomly selected subset of training samples to produce multiple decision trees. For final classification of pixels or - in the present case - image objects, the average of the class assignments probability predicted by the different decision trees is used. While the resulting OBIA classification of lava morphology types shows a high coincidence with the reference data, the approach is sensitive to the segmentation-derived image objects that constitute the base units for classification. Both semi-automatic methods produce reasonable results in the Krafla lava field, even if the identification of different pahoehoe and aa types of lava appeared to be difficult. The use of satellite remote sensing data shows a high potential for fast and efficient classification of lava morphology, particularly over large and inaccessible areas.

  4. Automatic Term Class Construction Using Relevance--A Summary of Work in Automatic Pseudoclassification.

    ERIC Educational Resources Information Center

    Salton, G.

    1980-01-01

    Summarizes studies of pseudoclassification, a process of utilizing user relevance assessments of certain documents with respect to certain queries to build term classes designed to retrieve relevant documents. Conclusions are reached concerning the effectiveness and feasibility of constructing term classifications based on human relevance…

  5. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  6. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  7. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  8. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  9. 28 CFR 17.28 - Automatic declassification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... declassified not later than 25 years after the date of its original classification with the exception of... information exempted does not identify a confidential human source or human intelligence source. (c) Proposed... submit it to the Executive Secretary of the Interagency Security Classification Appeals Panel. (d...

  10. Sorting Olive Batches for the Milling Process Using Image Processing

    PubMed Central

    Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan

    2015-01-01

    The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729

  11. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  12. Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications.

    PubMed

    VanDam, Mark; Silbert, Noah H

    2016-01-01

    Automatic speech processing (ASP) has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA) system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output.

  13. Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications

    PubMed Central

    2016-01-01

    Automatic speech processing (ASP) has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA) system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output. PMID:27529813

  14. Automatic classification of killer whale vocalizations using dynamic time warping.

    PubMed

    Brown, Judith C; Miller, Patrick J O

    2007-08-01

    A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.

  15. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.

    PubMed

    Li, Pengfei; Wang, Yu; Tian, Yu; Zhou, Tian-Shu; Li, Jing-Song

    2017-03-01

    In recent years, an increasing number of people have become concerned about their health. Most chronic diseases are related to lifestyle, and daily activity records can be used as an important indicator of health. Specifically, using advanced technology to automatically monitor actual activities can effectively prevent and manage chronic diseases. The data used in this paper were obtained from acceleration sensors and gyroscopes integrated in smartphones. We designed an efficient Adaboost-Stump running on a smartphone to classify five common activities: cycling, running, sitting, standing, and walking and achieved a satisfactory classification accuracy of 98%. We designed an online learning method, and the classification model requires continuous training with actual data. The parameters in the model then become increasingly fitted to the specific user, which allows the classification accuracy to reach 95% under different use environments. In addition, this paper also utilized the OpenCL framework to design the program in parallel. This process can enhance the computing efficiency approximately ninefold.

  16. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE PAGES

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...

    2015-10-09

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  17. Investigating the Potential of Deep Neural Networks for Large-Scale Classification of Very High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Postadjian, T.; Le Bris, A.; Sahbi, H.; Mallet, C.

    2017-05-01

    Semantic classification is a core remote sensing task as it provides the fundamental input for land-cover map generation. The very recent literature has shown the superior performance of deep convolutional neural networks (DCNN) for many classification tasks including the automatic analysis of Very High Spatial Resolution (VHR) geospatial images. Most of the recent initiatives have focused on very high discrimination capacity combined with accurate object boundary retrieval. Therefore, current architectures are perfectly tailored for urban areas over restricted areas but not designed for large-scale purposes. This paper presents an end-to-end automatic processing chain, based on DCNNs, that aims at performing large-scale classification of VHR satellite images (here SPOT 6/7). Since this work assesses, through various experiments, the potential of DCNNs for country-scale VHR land-cover map generation, a simple yet effective architecture is proposed, efficiently discriminating the main classes of interest (namely buildings, roads, water, crops, vegetated areas) by exploiting existing VHR land-cover maps for training.

  18. Performance analysis of distributed applications using automatic classification of communication inefficiencies

    DOEpatents

    Vetter, Jeffrey S.

    2005-02-01

    The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.

  19. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  20. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.

    PubMed

    Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi

    2016-05-01

    Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual segmentation approach.

  1. Automatic classification of the sub-techniques (gears) used in cross-country ski skating employing a mobile phone.

    PubMed

    Stöggl, Thomas; Holst, Anders; Jonasson, Arndt; Andersson, Erik; Wunsch, Tobias; Norström, Christer; Holmberg, Hans-Christer

    2014-10-31

    The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear.

  2. Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error.

    PubMed

    Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi

    2016-12-01

    This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Knowledge discovery with classification rules in a cardiovascular dataset.

    PubMed

    Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan

    2005-12-01

    In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.

  4. Distinguish self- and hetero-perceived stress through behavioral imaging and physiological features.

    PubMed

    Spodenkiewicz, Michel; Aigrain, Jonathan; Bourvis, Nadège; Dubuisson, Séverine; Chetouani, Mohamed; Cohen, David

    2018-03-02

    Stress reactivity is a complex phenomenon associated to multiple and multimodal expressions. Response to stressors has an obvious survival function and may be seen as an internal regulation to adapt to threat or danger. The intensity of this internal response can be assessed as the self-perception of the stress response. In species with social organization, this response also serves a communicative function, so-called hetero-perception. Our study presents multimodal stress detection assessment - a new methodology combining behavioral imaging and physiological monitoring for analyzing stress from these two perspectives. The system is based on automatic extraction of 39 behavioral (2D+3D video recording) and 62 physiological (Nexus-10 recording) features during a socially evaluated mental arithmetic test. The analysis with machine learning techniques for automatic classification using Support Vector Machine (SVM) show that self-perception and hetero-perception of social stress are both close but different phenomena: self-perception was significantly correlated with hetero-perception but significantly differed from it. Also, assessing stress with SVM through multimodality gave excellent classification results (F1 score values: 0.9±0.012 for hetero-perception and 0.87±0.021 for self-perception). In the best selected feature subsets, we found some common behavioral and physiological features that allow classification of both self- and hetero-perceived stress. However, we also found the contributing features for automatic classifications had opposite distributions: self-perception classification was mainly based on physiological features and hetero-perception was mainly based on behavioral features. Copyright © 2017. Published by Elsevier Inc.

  5. GMM-based speaker age and gender classification in Czech and Slovak

    NASA Astrophysics Data System (ADS)

    Přibil, Jiří; Přibilová, Anna; Matoušek, Jindřich

    2017-01-01

    The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.

  6. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  7. Self-similarity Clustering Event Detection Based on Triggers Guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Li, Bicheng; Tian, Yuxuan

    Traditional method of Event Detection and Characterization (EDC) regards event detection task as classification problem. It makes words as samples to train classifier, which can lead to positive and negative samples of classifier imbalance. Meanwhile, there is data sparseness problem of this method when the corpus is small. This paper doesn't classify event using word as samples, but cluster event in judging event types. It adopts self-similarity to convergence the value of K in K-means algorithm by the guidance of event triggers, and optimizes clustering algorithm. Then, combining with named entity and its comparative position information, the new method further make sure the pinpoint type of event. The new method avoids depending on template of event in tradition methods, and its result of event detection can well be used in automatic text summarization, text retrieval, and topic detection and tracking.

  8. Automated aural classification used for inter-species discrimination of cetaceans.

    PubMed

    Binder, Carolyn M; Hines, Paul C

    2014-04-01

    Passive acoustic methods are in widespread use to detect and classify cetacean species; however, passive acoustic systems often suffer from large false detection rates resulting from numerous transient sources. To reduce the acoustic analyst workload, automatic recognition methods may be implemented in a two-stage process. First, a general automatic detector is implemented that produces many detections to ensure cetacean presence is noted. Then an automatic classifier is used to significantly reduce the number of false detections and classify the cetacean species. This process requires development of a robust classifier capable of performing inter-species classification. Because human analysts can aurally discriminate species, an automated aural classifier that uses perceptual signal features was tested on a cetacean data set. The classifier successfully discriminated between four species of cetaceans-bowhead, humpback, North Atlantic right, and sperm whales-with 85% accuracy. It also performed well (100% accuracy) for discriminating sperm whale clicks from right whale gunshots. An accuracy of 92% and area under the receiver operating characteristic curve of 0.97 were obtained for the relatively challenging bowhead and humpback recognition case. These results demonstrated that the perceptual features employed by the aural classifier provided powerful discrimination cues for inter-species classification of cetaceans.

  9. Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zhang, Kai; Liu, Xiyang; Long, Erping; Jiang, Jiewei; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Li, Wangting; Lin, Haotian

    2017-01-01

    There are many image classification methods, but it remains unclear which methods are most helpful for analyzing and intelligently identifying ophthalmic images. We select representative slit-lamp images which show the complexity of ocular images as research material to compare image classification algorithms for diagnosing ophthalmic diseases. To facilitate this study, some feature extraction algorithms and classifiers are combined to automatic diagnose pediatric cataract with same dataset and then their performance are compared using multiple criteria. This comparative study reveals the general characteristics of the existing methods for automatic identification of ophthalmic images and provides new insights into the strengths and shortcomings of these methods. The relevant methods (local binary pattern +SVMs, wavelet transformation +SVMs) which achieve an average accuracy of 87% and can be adopted in specific situations to aid doctors in preliminarily disease screening. Furthermore, some methods requiring fewer computational resources and less time could be applied in remote places or mobile devices to assist individuals in understanding the condition of their body. In addition, it would be helpful to accelerate the development of innovative approaches and to apply these methods to assist doctors in diagnosing ophthalmic disease.

  10. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    PubMed

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  11. Diagnostic support for glaucoma using retinal images: a hybrid image analysis and data mining approach.

    PubMed

    Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm

    2005-01-01

    The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.

  12. Sleep violence--forensic science implications: polygraphic and video documentation.

    PubMed

    Mahowald, M W; Bundlie, S R; Hurwitz, T D; Schenck, C H

    1990-03-01

    During the past century, infrequent, anecdotal reports of sleep-related violence with forensic science implications have appeared. Recent rapid developments in the field of sleep-disorders medicine have resulted in greater understanding of a variety of sleep-related behaviors, and formal sleep-behavior monitoring techniques have permitted their documentation and classification. Sleep-related violence can be associated with a number of diagnosable and treatable sleep disorders, including (1) night terrors/sleepwalking, (2) nocturnal seizures, (3) rapid eye movement (REM) sleep-behavior disorder, (4) sleep drunkenness, and (5) psychogenic dissociative states occurring during the sleep period. Potentially violent automatized behavior, without consciousness, can and does occur during sleep. The violence resulting from these disorders may be misinterpreted as purposeful suicide, assault, or even homicide. Sleep-related violence must be added to the list of automatisms. A classification system of both waking and sleep-related automatic behavior is proposed, with recommendations for assessment of such behavior.

  13. Automatic Coding of Short Text Responses via Clustering in Educational Assessment

    ERIC Educational Resources Information Center

    Zehner, Fabian; Sälzer, Christine; Goldhammer, Frank

    2016-01-01

    Automatic coding of short text responses opens new doors in assessment. We implemented and integrated baseline methods of natural language processing and statistical modelling by means of software components that are available under open licenses. The accuracy of automatic text coding is demonstrated by using data collected in the "Programme…

  14. Categorizing biomedicine images using novel image features and sparse coding representation

    PubMed Central

    2013-01-01

    Background Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process. Method We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features. Results we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance. Conclusions Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study. PMID:24565470

  15. Automatic counting and classification of bacterial colonies using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictu...

  16. Automatic Classification of Question & Answer Discourse Segments from Teacher's Speech in Classrooms

    ERIC Educational Resources Information Center

    Blanchard, Nathaniel; D'Mello, Sidney; Olney, Andrew M.; Nystrand, Martin

    2015-01-01

    Question-answer (Q&A) is fundamental for dialogic instruction, an important pedagogical technique based on the free exchange of ideas and open-ended discussion. Automatically detecting Q&A is key to providing teachers with feedback on appropriate use of dialogic instructional strategies. In line with this, this paper studies the…

  17. Hybrid Automatic Building Interpretation System

    NASA Astrophysics Data System (ADS)

    Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.

    2011-09-01

    HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.

  18. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  19. Report on Information Retrieval and Library Automation Studies.

    ERIC Educational Resources Information Center

    Alberta Univ., Edmonton. Dept. of Computing Science.

    Short abstracts of works in progress or completed in the Department of Computing Science at the University of Alberta are presented under five major headings. The five categories are: Storage and search techniques for document data bases, Automatic classification, Study of indexing and classification languages through computer manipulation of data…

  20. Automatic Web-based Calibration of Network-Capable Shipboard Sensors

    DTIC Science & Technology

    2007-09-01

    Server, Java , Applet, and Servlet . 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE...49 b. Sensor Applet...........................................................................49 3. Java Servlet ...Table 1. Required System Environment Variables for Java Servlet Development. ......25 Table 2. Payload Data Format of the POST Requests from

  1. A Framework for Automated Marmoset Vocalization Detection And Classification

    DTIC Science & Technology

    2016-09-08

    recent push to automate vocalization monitoring in a range of mammals. Such efforts have been used to classify bird songs [11], African elephants [12... Elephant ( Loxodonta africana ) Vocalizations,” vol. 117, no. 2, pp. 956–963, 2005. [13] J. C. Brown, “Automatic classification of killer whale

  2. AstroCV: Astronomy computer vision library

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.

    2018-04-01

    AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

  3. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    NASA Astrophysics Data System (ADS)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  4. Lidar-based individual tree species classification using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  5. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images.

    PubMed

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-10-01

    To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.

  6. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images

    PubMed Central

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-01-01

    Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675

  7. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability.

    PubMed

    Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R

    2015-05-01

    The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.

  8. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  9. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  10. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance

    PubMed Central

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486

  11. Automatic detection and classification of obstacles with applications in autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.

    2016-04-01

    Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.

  12. High-throughput automatic defect review for 300mm blank wafers with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2015-03-01

    While feature size in lithography process continuously becomes smaller, defect sizes on blank wafers become more comparable to device sizes. Defects with nm-scale characteristic size could be misclassified by automated optical inspection (AOI) and require post-processing for proper classification. Atomic force microscope (AFM) is known to provide high lateral and the highest vertical resolution by mechanical probing among all techniques. However, its low throughput and tip life in addition to the laborious efforts for finding the defects have been the major limitations of this technique. In this paper we introduce automatic defect review (ADR) AFM as a post-inspection metrology tool for defect study and classification for 300 mm blank wafers and to overcome the limitations stated above. The ADR AFM provides high throughput, high resolution, and non-destructive means for obtaining 3D information for nm-scale defect review and classification.

  13. A new blood vessel extraction technique using edge enhancement and object classification.

    PubMed

    Badsha, Shahriar; Reza, Ahmed Wasif; Tan, Kim Geok; Dimyati, Kaharudin

    2013-12-01

    Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.

  14. Convolutional neural networks with balanced batches for facial expressions recognition

    NASA Astrophysics Data System (ADS)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  15. Semantic representation of reported measurements in radiology.

    PubMed

    Oberkampf, Heiner; Zillner, Sonja; Overton, James A; Bauer, Bernhard; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias

    2016-01-22

    In radiology, a vast amount of diverse data is generated, and unstructured reporting is standard. Hence, much useful information is trapped in free-text form, and often lost in translation and transmission. One relevant source of free-text data consists of reports covering the assessment of changes in tumor burden, which are needed for the evaluation of cancer treatment success. Any change of lesion size is a critical factor in follow-up examinations. It is difficult to retrieve specific information from unstructured reports and to compare them over time. Therefore, a prototype was implemented that demonstrates the structured representation of findings, allowing selective review in consecutive examinations and thus more efficient comparison over time. We developed a semantic Model for Clinical Information (MCI) based on existing ontologies from the Open Biological and Biomedical Ontologies (OBO) library. MCI is used for the integrated representation of measured image findings and medical knowledge about the normal size of anatomical entities. An integrated view of the radiology findings is realized by a prototype implementation of a ReportViewer. Further, RECIST (Response Evaluation Criteria In Solid Tumors) guidelines are implemented by SPARQL queries on MCI. The evaluation is based on two data sets of German radiology reports: An oncologic data set consisting of 2584 reports on 377 lymphoma patients and a mixed data set consisting of 6007 reports on diverse medical and surgical patients. All measurement findings were automatically classified as abnormal/normal using formalized medical background knowledge, i.e., knowledge that has been encoded into an ontology. A radiologist evaluated 813 classifications as correct or incorrect. All unclassified findings were evaluated as incorrect. The proposed approach allows the automatic classification of findings with an accuracy of 96.4 % for oncologic reports and 92.9 % for mixed reports. The ReportViewer permits efficient comparison of measured findings from consecutive examinations. The implementation of RECIST guidelines with SPARQL enhances the quality of the selection and comparison of target lesions as well as the corresponding treatment response evaluation. The developed MCI enables an accurate integrated representation of reported measurements and medical knowledge. Thus, measurements can be automatically classified and integrated in different decision processes. The structured representation is suitable for improved integration of clinical findings during decision-making. The proposed ReportViewer provides a longitudinal overview of the measurements.

  16. Comparison of Document Index Graph Using TextRank and HITS Weighting Method in Automatic Text Summarization

    NASA Astrophysics Data System (ADS)

    Hadyan, Fadhlil; Shaufiah; Arif Bijaksana, Moch.

    2017-01-01

    Automatic summarization is a system that can help someone to take the core information of a long text instantly. The system can help by summarizing text automatically. there’s Already many summarization systems that have been developed at this time but there are still many problems in those system. In this final task proposed summarization method using document index graph. This method utilizes the PageRank and HITS formula used to assess the web page, adapted to make an assessment of words in the sentences in a text document. The expected outcome of this final task is a system that can do summarization of a single document, by utilizing document index graph with TextRank and HITS to improve the quality of the summary results automatically.

  17. Automatic identification of artifacts in electrodermal activity data.

    PubMed

    Taylor, Sara; Jaques, Natasha; Chen, Weixuan; Fedor, Szymon; Sano, Akane; Picard, Rosalind

    2015-01-01

    Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.

  18. Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets

    ERIC Educational Resources Information Center

    Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.

    2012-01-01

    This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…

  19. Land use surveys by means of automatic interpretation of LANDSAT system data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

    1981-01-01

    Analyses for seven land-use classes are presented. The classes are: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation, and natural vegetation. The automatic classification of LANDSAT MSS data using a maximum likelihood algorithm shows a 39% average error of emission and a 3.45 error of commission for the seven classes.

  20. Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches

    PubMed Central

    Hauschild, Anne-Christin; Kopczynski, Dominik; D’Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-01-01

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME). We manually generated a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors’ results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications. PMID:24957992

  1. Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches.

    PubMed

    Hauschild, Anne-Christin; Kopczynski, Dominik; D'Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-04-16

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME).We manually generated Metabolites 2013, 3 278 a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors' results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications.

  2. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    PubMed

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring

    PubMed Central

    Bello, Juan Pablo; Farnsworth, Andrew; Robbins, Matt; Keen, Sara; Klinck, Holger; Kelling, Steve

    2016-01-01

    Automatic classification of animal vocalizations has great potential to enhance the monitoring of species movements and behaviors. This is particularly true for monitoring nocturnal bird migration, where automated classification of migrants’ flight calls could yield new biological insights and conservation applications for birds that vocalize during migration. In this paper we investigate the automatic classification of bird species from flight calls, and in particular the relationship between two different problem formulations commonly found in the literature: classifying a short clip containing one of a fixed set of known species (N-class problem) and the continuous monitoring problem, the latter of which is relevant to migration monitoring. We implemented a state-of-the-art audio classification model based on unsupervised feature learning and evaluated it on three novel datasets, one for studying the N-class problem including over 5000 flight calls from 43 different species, and two realistic datasets for studying the monitoring scenario comprising hundreds of thousands of audio clips that were compiled by means of remote acoustic sensors deployed in the field during two migration seasons. We show that the model achieves high accuracy when classifying a clip to one of N known species, even for a large number of species. In contrast, the model does not perform as well in the continuous monitoring case. Through a detailed error analysis (that included full expert review of false positives and negatives) we show the model is confounded by varying background noise conditions and previously unseen vocalizations. We also show that the model needs to be parameterized and benchmarked differently for the continuous monitoring scenario. Finally, we show that despite the reduced performance, given the right conditions the model can still characterize the migration pattern of a specific species. The paper concludes with directions for future research. PMID:27880836

  4. Automatic adventitious respiratory sound analysis: A systematic review.

    PubMed

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases.

  5. Automatic adventitious respiratory sound analysis: A systematic review

    PubMed Central

    Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Limitations Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. Conclusion A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases. PMID:28552969

  6. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site : final report.

    DOT National Transportation Integrated Search

    1991-07-01

    Oregon has twelve pavement test sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot proj...

  7. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site.

    DOT National Transportation Integrated Search

    1990-05-01

    Oregon has twelve sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot project was to hel...

  8. An Ontology to Support the Classification of Learning Material in an Organizational Learning Environment: An Evaluation

    ERIC Educational Resources Information Center

    Valaski, Joselaine; Reinehr, Sheila; Malucelli, Andreia

    2017-01-01

    Purpose: The purpose of this research was to evaluate whether ontology integrated in an organizational learning environment may support the automatic learning material classification in a specific knowledge area. Design/methodology/approach: An ontology for recommending learning material was integrated in the organizational learning environment…

  9. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  10. Unsupervised classification of earth resources data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Jayroe, R. R., Jr.; Cummings, R. E.

    1972-01-01

    A new clustering technique is presented. It consists of two parts: (a) a sequential statistical clustering which is essentially a sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by existing supervised maximum liklihood classification technique.

  11. Automatic classification of spectra from the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John; Self, Matthew; Taylor, William; Goebel, John; Volk, Kevin; Walker, Helen

    1989-01-01

    A new classification of Infrared spectra collected by the Infrared Astronomical Satellite (IRAS) is presented. The spectral classes were discovered automatically by a program called Auto Class 2. This program is a method for discovering (inducing) classes from a data base, utilizing a Bayesian probability approach. These classes can be used to give insight into the patterns that occur in the particular domain, in this case, infrared astronomical spectroscopy. The classified spectra are the entire Low Resolution Spectra (LRS) Atlas of 5,425 sources. There are seventy-seven classes in this classification and these in turn were meta-classified to produce nine meta-classes. The classification is presented as spectral plots, IRAS color-color plots, galactic distribution plots and class commentaries. Cross-reference tables, listing the sources by IRAS name and by Auto Class class, are also given. These classes show some of the well known classes, such as the black-body class, and silicate emission classes, but many other classes were unsuspected, while others show important subtle differences within the well known classes.

  12. Automatic detection and classification of artifacts in single-channel EEG.

    PubMed

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W; Sorensen, Helge B D

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.

  13. Gender classification from face images by using local binary pattern and gray-level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Uzbaş, Betül; Arslan, Ahmet

    2018-04-01

    Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.

  14. An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.

    PubMed

    Ibrahim, Ali K; Chérubin, Laurent M; Zhuang, Hanqi; Schärer Umpierre, Michelle T; Dalgleish, Fraser; Erdol, Nurgun; Ouyang, B; Dalgleish, A

    2018-02-01

    Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive behavior during spawning aggregation. These low frequencies sounds (50-350 Hz) consist of a series of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classification of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on weighted features and sparse classifier. Group sounds were labeled initially by humans for training and testing various feature extraction and classification methods. In the feature extraction phase, four types of features were used to extract features of sounds produced by groupers. Once the sound features were extracted, three types of representative classifiers were applied to categorize the species that produced these sounds. Experimental results showed that the overall percentage of identification using the best combination of the selected feature extractor weighted mel frequency cepstral coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been implemented in an autonomous platform (wave glider) for real-time detection and classification of group vocalizations.

  15. EEG Responses to Auditory Stimuli for Automatic Affect Recognition

    PubMed Central

    Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin

    2016-01-01

    Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410

  16. Automatic extraction of relations between medical concepts in clinical texts

    PubMed Central

    Harabagiu, Sanda; Roberts, Kirk

    2011-01-01

    Objective A supervised machine learning approach to discover relations between medical problems, treatments, and tests mentioned in electronic medical records. Materials and methods A single support vector machine classifier was used to identify relations between concepts and to assign their semantic type. Several resources such as Wikipedia, WordNet, General Inquirer, and a relation similarity metric inform the classifier. Results The techniques reported in this paper were evaluated in the 2010 i2b2 Challenge and obtained the highest F1 score for the relation extraction task. When gold standard data for concepts and assertions were available, F1 was 73.7, precision was 72.0, and recall was 75.3. F1 is defined as 2*Precision*Recall/(Precision+Recall). Alternatively, when concepts and assertions were discovered automatically, F1 was 48.4, precision was 57.6, and recall was 41.7. Discussion Although a rich set of features was developed for the classifiers presented in this paper, little knowledge mining was performed from medical ontologies such as those found in UMLS. Future studies should incorporate features extracted from such knowledge sources, which we expect to further improve the results. Moreover, each relation discovery was treated independently. Joint classification of relations may further improve the quality of results. Also, joint learning of the discovery of concepts, assertions, and relations may also improve the results of automatic relation extraction. Conclusion Lexical and contextual features proved to be very important in relation extraction from medical texts. When they are not available to the classifier, the F1 score decreases by 3.7%. In addition, features based on similarity contribute to a decrease of 1.1% when they are not available. PMID:21846787

  17. Semi-automatic knee cartilage segmentation

    NASA Astrophysics Data System (ADS)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  18. Automatic classification of bottles in crates

    NASA Astrophysics Data System (ADS)

    Aas, Kjersti; Eikvil, Line; Bremnes, Dag; Norbryhn, Andreas

    1995-03-01

    This paper presents a statistical method for classification of bottles in crates for use in automatic return bottle machines. For the automatons to reimburse the correct deposit, a reliable recognition is important. The images are acquired by a laser range scanner coregistering the distance to the object and the strength of the reflected signal. The objective is to identify the crate and the bottles from a library with a number of legal types. The bottles with significantly different size are separated using quite simple methods, while a more sophisticated recognizer is required to distinguish the more similar bottle types. Good results have been obtained when testing the method developed on bottle types which are difficult to distinguish using simple methods.

  19. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.

    PubMed

    Pascual-García, Alberto; Abia, David; Ortiz, Angel R; Bastolla, Ugo

    2009-03-01

    Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively, average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.cbm.uam.es/research/ProtNet.php.

  20. Automatic 3D Extraction of Buildings, Vegetation and Roads from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Bellakaout, A.; Cherkaoui, M.; Ettarid, M.; Touzani, A.

    2016-06-01

    Aerial topographic surveys using Light Detection and Ranging (LiDAR) technology collect dense and accurate information from the surface or terrain; it is becoming one of the important tools in the geosciences for studying objects and earth surface. Classification of Lidar data for extracting ground, vegetation, and buildings is a very important step needed in numerous applications such as 3D city modelling, extraction of different derived data for geographical information systems (GIS), mapping, navigation, etc... Regardless of what the scan data will be used for, an automatic process is greatly required to handle the large amount of data collected because the manual process is time consuming and very expensive. This paper is presenting an approach for automatic classification of aerial Lidar data into five groups of items: buildings, trees, roads, linear object and soil using single return Lidar and processing the point cloud without generating DEM. Topological relationship and height variation analysis is adopted to segment, preliminary, the entire point cloud preliminarily into upper and lower contours, uniform and non-uniform surface, non-uniform surfaces, linear objects, and others. This primary classification is used on the one hand to know the upper and lower part of each building in an urban scene, needed to model buildings façades; and on the other hand to extract point cloud of uniform surfaces which contain roofs, roads and ground used in the second phase of classification. A second algorithm is developed to segment the uniform surface into buildings roofs, roads and ground, the second phase of classification based on the topological relationship and height variation analysis, The proposed approach has been tested using two areas : the first is a housing complex and the second is a primary school. The proposed approach led to successful classification results of buildings, vegetation and road classes.

  1. Identifying Key Hospital Service Quality Factors in Online Health Communities

    PubMed Central

    Jung, Yuchul; Hur, Cinyoung; Jung, Dain

    2015-01-01

    Background The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. Objective As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. Methods We defined social media–based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea’s two biggest online portals were used to test the effectiveness of detection of social media–based key quality factors for hospitals. Results To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is 78% on average. Extraction and classification performance still has room for improvement, but the extraction results are applicable to more detailed analysis. Further analysis of the extracted information reveals that there are differences in the details of social media–based key quality factors for hospitals according to the regions in Korea, and the patterns of change seem to accurately reflect social events (eg, influenza epidemics). Conclusions These findings could be used to provide timely information to caregivers, hospital officials, and medical officials for health care policies. PMID:25855612

  2. Automatic sleep stage classification using two-channel electro-oculography.

    PubMed

    Virkkala, Jussi; Hasan, Joel; Värri, Alpo; Himanen, Sari-Leena; Müller, Kiti

    2007-10-15

    An automatic method for the classification of wakefulness and sleep stages SREM, S1, S2 and SWS was developed based on our two previous studies. The method is based on a two-channel electro-oculography (EOG) referenced to the left mastoid (M1). Synchronous electroencephalographic (EEG) activity in S2 and SWS was detected by calculating cross-correlation and peak-to-peak amplitude difference in the 0.5-6 Hz band between the two EOG channels. An automatic slow eye-movement (SEM) estimation was used to indicate wakefulness, SREM and S1. Beta power 18-30 Hz and alpha power 8-12 Hz was also used for wakefulness detection. Synchronous 1.5-6 Hz EEG activity and absence of large eye movements was used for S1 separation from SREM. Simple smoothing rules were also applied. Sleep EEG, EOG and EMG were recorded from 265 subjects. The system was tuned using data from 132 training subjects and then applied to data from 131 validation subjects that were different to the training subjects. Cohen's Kappa between the visual and the developed new automatic scoring in separating 30s wakefulness, SREM, S1, S2 and SWS epochs was substantial 0.62 with epoch by epoch agreement of 72%. With automatic subject specific alpha thresholds for offline applications results improved to 0.63 and 73%. The automatic method can be further developed and applied for ambulatory sleep recordings by using only four disposable, self-adhesive and self-applicable electrodes.

  3. Sentiment classification technology based on Markov logic networks

    NASA Astrophysics Data System (ADS)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  4. Classifying free-text triage chief complaints into syndromic categories with natural language processing.

    PubMed

    Chapman, Wendy W; Christensen, Lee M; Wagner, Michael M; Haug, Peter J; Ivanov, Oleg; Dowling, John N; Olszewski, Robert T

    2005-01-01

    Develop and evaluate a natural language processing application for classifying chief complaints into syndromic categories for syndromic surveillance. Much of the input data for artificial intelligence applications in the medical field are free-text patient medical records, including dictated medical reports and triage chief complaints. To be useful for automated systems, the free-text must be translated into encoded form. We implemented a biosurveillance detection system from Pennsylvania to monitor the 2002 Winter Olympic Games. Because input data was in free-text format, we used a natural language processing text classifier to automatically classify free-text triage chief complaints into syndromic categories used by the biosurveillance system. The classifier was trained on 4700 chief complaints from Pennsylvania. We evaluated the ability of the classifier to classify free-text chief complaints into syndromic categories with a test set of 800 chief complaints from Utah. The classifier produced the following areas under the ROC curve: Constitutional = 0.95; Gastrointestinal = 0.97; Hemorrhagic = 0.99; Neurological = 0.96; Rash = 1.0; Respiratory = 0.99; Other = 0.96. Using information stored in the system's semantic model, we extracted from the Respiratory classifications lower respiratory complaints and lower respiratory complaints with fever with a precision of 0.97 and 0.96, respectively. Results suggest that a trainable natural language processing text classifier can accurately extract data from free-text chief complaints for biosurveillance.

  5. Automatic classification of acetowhite temporal patterns to identify precursor lesions of cervical cancer

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Fragoso, K.; Acosta-Mesa, H. G.; Cruz-Ramírez, N.; Hernández-Jiménez, R.

    2013-12-01

    Cervical cancer has remained, until now, as a serious public health problem in developing countries. The most common method of screening is the Pap test or cytology. When abnormalities are reported in the result, the patient is referred to a dysplasia clinic for colposcopy. During this test, a solution of acetic acid is applied, which produces a color change in the tissue and is known as acetowhitening phenomenon. This reaction aims to obtaining a sample of tissue and its histological analysis let to establish a final diagnosis. During the colposcopy test, digital images can be acquired to analyze the behavior of the acetowhitening reaction from a temporal approach. In this way, we try to identify precursor lesions of cervical cancer through a process of automatic classification of acetowhite temporal patterns. In this paper, we present the performance analysis of three classification methods: kNN, Naïve Bayes and C4.5. The results showed that there is similarity between some acetowhite temporal patterns of normal and abnormal tissues. Therefore we conclude that it is not sufficient to only consider the temporal dynamic of the acetowhitening reaction to establish a diagnosis by an automatic method. Information from cytologic, colposcopic and histopathologic disciplines should be integrated as well.

  6. Computer-aided diagnosis system: a Bayesian hybrid classification method.

    PubMed

    Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J

    2013-10-01

    A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  8. Speech Processing and Recognition (SPaRe)

    DTIC Science & Technology

    2011-01-01

    results in the areas of automatic speech recognition (ASR), speech processing, machine translation (MT), natural language processing ( NLP ), and...Processing ( NLP ), Information Retrieval (IR) 16. SECURITY CLASSIFICATION OF: UNCLASSIFED 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...Figure 9, the IOC was only expected to provide document submission and search; automatic speech recognition (ASR) for English, Spanish, Arabic , and

  9. The Influence of Intention on Masked Priming: A Study with Semantic Classification of Words

    ERIC Educational Resources Information Center

    Eckstein, Doris; Perrig, Walter J.

    2007-01-01

    Unconscious perception is commonly described as a phenomenon that is not under intentional control and relies on automatic processes. We challenge this view by arguing that some automatic processes may indeed be under intentional control, which is implemented in task-sets that define how the task is to be performed. In consequence, those prime…

  10. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  11. Automatic photointerpretation for land use management in Minnesota

    NASA Technical Reports Server (NTRS)

    Swanlund, G. D. (Principal Investigator); Kirvida, L.; Cheung, M.; Pile, D.; Zirkle, R.

    1974-01-01

    The author has identified the following significant results. Automatic photointerpretation techniques were utilized to evaluate the feasibility of data for land use management. It was shown that ERTS-1 MSS data can produce thematic maps of adequate resolution and accuracy to update land use maps. In particular, five typical land use areas were mapped with classification accuracies ranging from 77% to over 90%.

  12. Automatic segmentation and classification of gestational sac based on mean sac diameter using medical ultrasound image

    NASA Astrophysics Data System (ADS)

    Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.

    2014-05-01

    Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.

  13. Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone

    PubMed Central

    Stöggl, Thomas; Holst, Anders; Jonasson, Arndt; Andersson, Erik; Wunsch, Tobias; Norström, Christer; Holmberg, Hans-Christer

    2014-01-01

    The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear. PMID:25365459

  14. Automatic discrimination between safe and unsafe swallowing using a reputation-based classifier

    PubMed Central

    2011-01-01

    Background Swallowing accelerometry has been suggested as a potential non-invasive tool for bedside dysphagia screening. Various vibratory signal features and complementary measurement modalities have been put forth in the literature for the potential discrimination between safe and unsafe swallowing. To date, automatic classification of swallowing accelerometry has exclusively involved a single-axis of vibration although a second axis is known to contain additional information about the nature of the swallow. Furthermore, the only published attempt at automatic classification in adult patients has been based on a small sample of swallowing vibrations. Methods In this paper, a large corpus of dual-axis accelerometric signals were collected from 30 older adults (aged 65.47 ± 13.4 years, 15 male) referred to videofluoroscopic examination on the suspicion of dysphagia. We invoked a reputation-based classifier combination to automatically categorize the dual-axis accelerometric signals into safe and unsafe swallows, as labeled via videofluoroscopic review. From these participants, a total of 224 swallowing samples were obtained, 164 of which were labeled as unsafe swallows (swallows where the bolus entered the airway) and 60 as safe swallows. Three separate support vector machine (SVM) classifiers and eight different features were selected for classification. Results With selected time, frequency and information theoretic features, the reputation-based algorithm distinguished between safe and unsafe swallowing with promising accuracy (80.48 ± 5.0%), high sensitivity (97.1 ± 2%) and modest specificity (64 ± 8.8%). Interpretation of the most discriminatory features revealed that in general, unsafe swallows had lower mean vibration amplitude and faster autocorrelation decay, suggestive of decreased hyoid excursion and compromised coordination, respectively. Further, owing to its performance-based weighting of component classifiers, the static reputation-based algorithm outperformed the democratic majority voting algorithm on this clinical data set. Conclusion Given its computational efficiency and high sensitivity, reputation-based classification of dual-axis accelerometry ought to be considered in future developments of a point-of-care swallow assessment where clinical informatics are desired. PMID:22085802

  15. A new machine classification method applied to human peripheral blood leukocytes

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.; Fitzpatrick, Steven J.; Vitthal, Sanjay; Ladoulis, Charles T.

    1994-01-01

    Human beings judge images by complex mental processes, whereas computing machines extract features. By reducing scaled human judgments and machine extracted features to a common metric space and fitting them by regression, the judgments of human experts rendered on a sample of images may be imposed on an image population to provide automatic classification.

  16. Multi-class SVM model for fMRI-based classification and grading of liver fibrosis

    NASA Astrophysics Data System (ADS)

    Freiman, M.; Sela, Y.; Edrei, Y.; Pappo, O.; Joskowicz, L.; Abramovitch, R.

    2010-03-01

    We present a novel non-invasive automatic method for the classification and grading of liver fibrosis from fMRI maps based on hepatic hemodynamic changes. This method automatically creates a model for liver fibrosis grading based on training datasets. Our supervised learning method evaluates hepatic hemodynamics from an anatomical MRI image and three T2*-W fMRI signal intensity time-course scans acquired during the breathing of air, air-carbon dioxide, and carbogen. It constructs a statistical model of liver fibrosis from these fMRI scans using a binary-based one-against-all multi class Support Vector Machine (SVM) classifier. We evaluated the resulting classification model with the leave-one out technique and compared it to both full multi-class SVM and K-Nearest Neighbor (KNN) classifications. Our experimental study analyzed 57 slice sets from 13 mice, and yielded a 98.2% separation accuracy between healthy and low grade fibrotic subjects, and an overall accuracy of 84.2% for fibrosis grading. These results are better than the existing image-based methods which can only discriminate between healthy and high grade fibrosis subjects. With appropriate extensions, our method may be used for non-invasive classification and progression monitoring of liver fibrosis in human patients instead of more invasive approaches, such as biopsy or contrast-enhanced imaging.

  17. Text Structuration Leading to an Automatic Summary System: RAFI.

    ERIC Educational Resources Information Center

    Lehman, Abderrafih

    1999-01-01

    Describes the design and construction of Resume Automatique a Fragments Indicateurs (RAFI), a system of automatic text summary which sums up scientific and technical texts. The RAFI system transforms a long source text into several versions of more condensed texts, using discourse analysis, to make searching easier; it could be adapted to the…

  18. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  19. A model for simulating the grinding and classification cyclic system of waste PCBs recycling production line.

    PubMed

    Yang, Deming; Xu, Zhenming

    2011-09-15

    Crushing and separating technology is widely used in waste printed circuit boards (PCBs) recycling process. A set of automatic line without negative impact to environment for recycling waste PCBs was applied in industry scale. Crushed waste PCBs particles grinding and classification cyclic system is the most important part of the automatic production line, and it decides the efficiency of the whole production line. In this paper, a model for computing the process of the system was established, and matrix analysis method was adopted. The result showed that good agreement can be achieved between the simulation model and the actual production line, and the system is anti-jamming. This model possibly provides a basis for the automatic process control of waste PCBs production line. With this model, many engineering problems can be reduced, such as metals and nonmetals insufficient dissociation, particles over-pulverizing, incomplete comminuting, material plugging and equipment fever. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Automated annotation of functional imaging experiments via multi-label classification

    PubMed Central

    Turner, Matthew D.; Chakrabarti, Chayan; Jones, Thomas B.; Xu, Jiawei F.; Fox, Peter T.; Luger, George F.; Laird, Angela R.; Turner, Jessica A.

    2013-01-01

    Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text. PMID:24409112

  1. Using machine learning to disentangle homonyms in large text corpora.

    PubMed

    Roll, Uri; Correia, Ricardo A; Berger-Tal, Oded

    2018-06-01

    Systematic reviews are an increasingly popular decision-making tool that provides an unbiased summary of evidence to support conservation action. These reviews bridge the gap between researchers and managers by presenting a comprehensive overview of all studies relating to a particular topic and identify specifically where and under which conditions an effect is present. However, several technical challenges can severely hinder the feasibility and applicability of systematic reviews, for example, homonyms (terms that share spelling but differ in meaning). Homonyms add noise to search results and cannot be easily identified or removed. We developed a semiautomated approach that can aid in the classification of homonyms among narratives. We used a combination of automated content analysis and artificial neural networks to quickly and accurately sift through large corpora of academic texts and classify them to distinct topics. As an example, we explored the use of the word reintroduction in academic texts. Reintroduction is used within the conservation context to indicate the release of organisms to their former native habitat; however, a Web of Science search for this word returned thousands of publications in which the term has other meanings and contexts. Using our method, we automatically classified a sample of 3000 of these publications with over 99% accuracy, relative to a manual classification. Our approach can be used easily with other homonyms and can greatly facilitate systematic reviews or similar work in which homonyms hinder the harnessing of large text corpora. Beyond homonyms we see great promise in combining automated content analysis and machine-learning methods to handle and screen big data for relevant information in conservation science. © 2017 Society for Conservation Biology.

  2. MeSH indexing based on automatically generated summaries.

    PubMed

    Jimeno-Yepes, Antonio J; Plaza, Laura; Mork, James G; Aronson, Alan R; Díaz, Alberto

    2013-06-26

    MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.

  3. Ontology driven modeling for the knowledge of genetic susceptibility to disease.

    PubMed

    Lin, Yu; Sakamoto, Norihiro

    2009-05-12

    For the machine helped exploring the relationships between genetic factors and complex diseases, a well-structured conceptual framework of the background knowledge is needed. However, because of the complexity of determining a genetic susceptibility factor, there is no formalization for the knowledge of genetic susceptibility to disease, which makes the interoperability between systems impossible. Thus, the ontology modeling language OWL was used for formalization in this paper. After introducing the Semantic Web and OWL language propagated by W3C, we applied text mining technology combined with competency questions to specify the classes of the ontology. Then, an N-ary pattern was adopted to describe the relationships among these defined classes. Based on the former work of OGSF-DM (Ontology of Genetic Susceptibility Factors to Diabetes Mellitus), we formalized the definition of "Genetic Susceptibility", "Genetic Susceptibility Factor" and other classes by using OWL-DL modeling language; and a reasoner automatically performed the classification of the class "Genetic Susceptibility Factor". The ontology driven modeling is used for formalization the knowledge of genetic susceptibility to complex diseases. More importantly, when a class has been completely formalized in an ontology, the OWL reasoning can automatically compute the classification of the class, in our case, the class of "Genetic Susceptibility Factors". With more types of genetic susceptibility factors obtained from the laboratory research, our ontologies always needs to be refined, and many new classes must be taken into account to harmonize with the ontologies. Using the ontologies to develop the semantic web needs to be applied in the future.

  4. Web information retrieval for health professionals.

    PubMed

    Ting, S L; See-To, Eric W K; Tse, Y K

    2013-06-01

    This paper presents a Web Information Retrieval System (WebIRS), which is designed to assist the healthcare professionals to obtain up-to-date medical knowledge and information via the World Wide Web (WWW). The system leverages the document classification and text summarization techniques to deliver the highly correlated medical information to the physicians. The system architecture of the proposed WebIRS is first discussed, and then a case study on an application of the proposed system in a Hong Kong medical organization is presented to illustrate the adoption process and a questionnaire is administrated to collect feedback on the operation and performance of WebIRS in comparison with conventional information retrieval in the WWW. A prototype system has been constructed and implemented on a trial basis in a medical organization. It has proven to be of benefit to healthcare professionals through its automatic functions in classification and summarizing the medical information that the physicians needed and interested. The results of the case study show that with the use of the proposed WebIRS, significant reduction of searching time and effort, with retrieval of highly relevant materials can be attained.

  5. An attention-based effective neural model for drug-drug interactions extraction.

    PubMed

    Zheng, Wei; Lin, Hongfei; Luo, Ling; Zhao, Zhehuan; Li, Zhengguang; Zhang, Yijia; Yang, Zhihao; Wang, Jian

    2017-10-10

    Drug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex sentences is still unsatisfactory. In this study, we propose an effective model that classifies DDIs from the literature by combining an attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach, first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level semantic information of the whole sentence. Finally, a softmax layer performs DDI classification. Experimental results from the DDIExtraction 2013 corpus show that our system performs the best with respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds those of top-ranking systems by 12.6%. Our approach effectively improves the performance of DDI classification tasks. Experimental analysis demonstrates that our model performs better with respect to recognizing not only close-range but also long-range patterns among words, especially for long, complex and compound sentences.

  6. Automatic photointerpretation for land use management in Minnesota

    NASA Technical Reports Server (NTRS)

    Swanlund, G. D. (Principal Investigator); Pile, D. R.

    1973-01-01

    The author has identified the following significant results. The Minnesota Iron Range area was selected as one of the land use areas to be evaluated. Six classes were selected: (1) hardwood; (2) conifer; (3) water (including in mines); (4) mines, tailings and wet areas; (5) open area; and (6) urban. Initial classification results show a correct classification of 70.1 to 95.4% for the six classes. This is extremely good. It can be further improved since there were some incorrect classifications in the ground truth.

  7. Contour classification in thermographic images for detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Okuniewski, Rafał; Nowak, Robert M.; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Oleszkiewicz, Witold

    2016-09-01

    Thermographic images of breast taken by the Braster device are uploaded into web application which uses different classification algorithms to automatically decide whether a patient should be more thoroughly examined. This article presents the approach to the task of classifying contours visible on thermographic images of breast taken by the Braster device in order to make the decision about the existence of cancerous tumors in breast. It presents the results of the researches conducted on the different classification algorithms.

  8. StandFood: Standardization of Foods Using a Semi-Automatic System for Classifying and Describing Foods According to FoodEx2

    PubMed Central

    Eftimov, Tome; Korošec, Peter; Koroušić Seljak, Barbara

    2017-01-01

    The European Food Safety Authority has developed a standardized food classification and description system called FoodEx2. It uses facets to describe food properties and aspects from various perspectives, making it easier to compare food consumption data from different sources and perform more detailed data analyses. However, both food composition data and food consumption data, which need to be linked, are lacking in FoodEx2 because the process of classification and description has to be manually performed—a process that is laborious and requires good knowledge of the system and also good knowledge of food (composition, processing, marketing, etc.). In this paper, we introduce a semi-automatic system for classifying and describing foods according to FoodEx2, which consists of three parts. The first involves a machine learning approach and classifies foods into four FoodEx2 categories, with two for single foods: raw (r) and derivatives (d), and two for composite foods: simple (s) and aggregated (c). The second uses a natural language processing approach and probability theory to describe foods. The third combines the result from the first and the second part by defining post-processing rules in order to improve the result for the classification part. We tested the system using a set of food items (from Slovenia) manually-coded according to FoodEx2. The new semi-automatic system obtained an accuracy of 89% for the classification part and 79% for the description part, or an overall result of 79% for the whole system. PMID:28587103

  9. StandFood: Standardization of Foods Using a Semi-Automatic System for Classifying and Describing Foods According to FoodEx2.

    PubMed

    Eftimov, Tome; Korošec, Peter; Koroušić Seljak, Barbara

    2017-05-26

    The European Food Safety Authority has developed a standardized food classification and description system called FoodEx2. It uses facets to describe food properties and aspects from various perspectives, making it easier to compare food consumption data from different sources and perform more detailed data analyses. However, both food composition data and food consumption data, which need to be linked, are lacking in FoodEx2 because the process of classification and description has to be manually performed-a process that is laborious and requires good knowledge of the system and also good knowledge of food (composition, processing, marketing, etc.). In this paper, we introduce a semi-automatic system for classifying and describing foods according to FoodEx2, which consists of three parts. The first involves a machine learning approach and classifies foods into four FoodEx2 categories, with two for single foods: raw (r) and derivatives (d), and two for composite foods: simple (s) and aggregated (c). The second uses a natural language processing approach and probability theory to describe foods. The third combines the result from the first and the second part by defining post-processing rules in order to improve the result for the classification part. We tested the system using a set of food items (from Slovenia) manually-coded according to FoodEx2. The new semi-automatic system obtained an accuracy of 89% for the classification part and 79% for the description part, or an overall result of 79% for the whole system.

  10. A two-step automatic sleep stage classification method with dubious range detection.

    PubMed

    Sousa, Teresa; Cruz, Aniana; Khalighi, Sirvan; Pires, Gabriel; Nunes, Urbano

    2015-04-01

    The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An AdaBoost Based Approach to Automatic Classification and Detection of Buildings Footprints, Vegetation Areas and Roads from Satellite Images

    NASA Astrophysics Data System (ADS)

    Gonulalan, Cansu

    In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.

  12. A classification of user-generated content into consumer decision journey stages.

    PubMed

    Vázquez, Silvia; Muñoz-García, Óscar; Campanella, Inés; Poch, Marc; Fisas, Beatriz; Bel, Nuria; Andreu, Gloria

    2014-10-01

    In the last decades, the availability of digital user-generated documents from social media has dramatically increased. This massive growth of user-generated content has also affected traditional shopping behaviour. Customers have embraced new communication channels such as microblogs and social networks that enable them not only just to talk with friends and acquaintances about their shopping experience, but also to search for opinions expressed by complete strangers as part of their decision making processes. Uncovering how customers feel about specific products or brands and detecting purchase habits and preferences has traditionally been a costly and highly time-consuming task which involved the use of methods such as focus groups and surveys. However, the new scenario calls for a deep assessment of current market research techniques in order to better interpret and profit from this ever-growing stream of attitudinal data. With this purpose, we present a novel analysis and classification of user-generated content in terms of it belonging to one of the four stages of the Consumer Decision Journey Court et al. (2009) (i.e. the purchase process from the moment when a customer is aware of the existence of the product to the moment when he or she buys, experiences and talks about it). Using a corpus of short texts written in English and Spanish and extracted from different social media, we identify a set of linguistic patterns for each purchase stage that will be then used in a rule-based classifier. Additionally, we use machine learning algorithms to automatically identify business indicators such as the Marketing Mix elements McCarthy and Brogowicz (1981). The classification of the purchase stages achieves an average precision of 74%. The proposed classification of texts depending on the Marketing Mix elements expressed achieved an average precision of 75% for all the elements analysed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Automatic Detection of Welding Defects using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Hou, Wenhui; Wei, Ye; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2018-01-01

    In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.

  14. Land use in the Paraiba Valley through remotely sensed data. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

    1980-01-01

    A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.

  15. Automatic EEG artifact removal: a weighted support vector machine approach with error correction.

    PubMed

    Shao, Shi-Yun; Shen, Kai-Quan; Ong, Chong Jin; Wilder-Smith, Einar P V; Li, Xiao-Ping

    2009-02-01

    An automatic electroencephalogram (EEG) artifact removal method is presented in this paper. Compared to past methods, it has two unique features: 1) a weighted version of support vector machine formulation that handles the inherent unbalanced nature of component classification and 2) the ability to accommodate structural information typically found in component classification. The advantages of the proposed method are demonstrated on real-life EEG recordings with comparisons made to several benchmark methods. Results show that the proposed method is preferable to the other methods in the context of artifact removal by achieving a better tradeoff between removing artifacts and preserving inherent brain activities. Qualitative evaluation of the reconstructed EEG epochs also demonstrates that after artifact removal inherent brain activities are largely preserved.

  16. Food Safety by Using Machine Learning for Automatic Classification of Seeds of the South-American Incanut Plant

    NASA Astrophysics Data System (ADS)

    Lemanzyk, Thomas; Anding, Katharina; Linss, Gerhard; Rodriguez Hernández, Jorge; Theska, René

    2015-02-01

    The following paper deals with the classification of seeds and seed components of the South-American Incanut plant and the modification of a machine to handle this task. Initially the state of the art is being illustrated. The research was executed in Germany and with a relevant part in Peru and Ecuador. Theoretical considerations for the solution of an automatically analysis of the Incanut seeds were specified. The optimization of the analyzing software and the separation unit of the mechanical hardware are carried out with recognition results. In a final step the practical application of the analysis of the Incanut seeds is held on a trial basis and rated on the bases of statistic values.

  17. Autoclass: An automatic classification system

    NASA Technical Reports Server (NTRS)

    Stutz, John; Cheeseman, Peter; Hanson, Robin

    1991-01-01

    The task of inferring a set of classes and class descriptions most likely to explain a given data set can be placed on a firm theoretical foundation using Bayesian statistics. Within this framework, and using various mathematical and algorithmic approximations, the AutoClass System searches for the most probable classifications, automatically choosing the number of classes and complexity of class descriptions. A simpler version of AutoClass has been applied to many large real data sets, has discovered new independently-verified phenomena, and has been released as a robust software package. Recent extensions allow attributes to be selectively correlated within particular classes, and allow classes to inherit, or share, model parameters through a class hierarchy. The mathematical foundations of AutoClass are summarized.

  18. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  19. Scanning electron microscope automatic defect classification of process induced defects

    NASA Astrophysics Data System (ADS)

    Wolfe, Scott; McGarvey, Steve

    2017-03-01

    With the integration of high speed Scanning Electron Microscope (SEM) based Automated Defect Redetection (ADR) in both high volume semiconductor manufacturing and Research and Development (R and D), the need for reliable SEM Automated Defect Classification (ADC) has grown tremendously in the past few years. In many high volume manufacturing facilities and R and D operations, defect inspection is performed on EBeam (EB), Bright Field (BF) or Dark Field (DF) defect inspection equipment. A comma separated value (CSV) file is created by both the patterned and non-patterned defect inspection tools. The defect inspection result file contains a list of the inspection anomalies detected during the inspection tools' examination of each structure, or the examination of an entire wafers surface for non-patterned applications. This file is imported into the Defect Review Scanning Electron Microscope (DRSEM). Following the defect inspection result file import, the DRSEM automatically moves the wafer to each defect coordinate and performs ADR. During ADR the DRSEM operates in a reference mode, capturing a SEM image at the exact position of the anomalies coordinates and capturing a SEM image of a reference location in the center of the wafer. A Defect reference image is created based on the Reference image minus the Defect image. The exact coordinates of the defect is calculated based on the calculated defect position and the anomalies stage coordinate calculated when the high magnification SEM defect image is captured. The captured SEM image is processed through either DRSEM ADC binning, exporting to a Yield Analysis System (YAS), or a combination of both. Process Engineers, Yield Analysis Engineers or Failure Analysis Engineers will manually review the captured images to insure that either the YAS defect binning is accurately classifying the defects or that the DRSEM defect binning is accurately classifying the defects. This paper is an exploration of the feasibility of the utilization of a Hitachi RS4000 Defect Review SEM to perform Automatic Defect Classification with the objective of the total automated classification accuracy being greater than human based defect classification binning when the defects do not require multiple process step knowledge for accurate classification. The implementation of DRSEM ADC has the potential to improve the response time between defect detection and defect classification. Faster defect classification will allow for rapid response to yield anomalies that will ultimately reduce the wafer and/or the die yield.

  20. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  1. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Steven

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less

  2. Classification of time-series images using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hatami, Nima; Gavet, Yann; Debayle, Johan

    2018-04-01

    Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.

  3. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    PubMed

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Computational Modeling of Emotions and Affect in Social-Cultural Interaction

    DTIC Science & Technology

    2013-10-02

    acoustic and textual information sources. Second, a cross-lingual study was performed that shed light on how human perception and automatic recognition...speech is produced, a speaker’s pitch and intonational pattern, and word usage. Better feature representation and advanced approaches were used to...recognition performance, and improved our understanding of language/cultural impact on human perception of emotion and automatic classification. • Units

  6. Computerized Interpretation of Dynamic Breast MRI

    DTIC Science & Technology

    2006-05-01

    correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The

  7. Wheat cultivation: Identifying and estimating area by means of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.; Cottrell, D. A.; Tardin, A. T.; Lee, D. C. L.; Shimabukuro, Y. E.; Moreira, M. A.; Delima, A. M.; Maia, F. C. S.

    1981-01-01

    Automatic classification of LANDSAT data supported by aerial photography for identification and estimation of wheat growing areas was evaluated. Data covering three regions in the State of Rio Grande do Sul, Brazil were analyzed. The average correct classification of IMAGE-100 data was 51.02% and 63.30%, respectively, for the periods of July and of September/October, 1979.

  8. Localized contourlet features in vehicle make and model recognition

    NASA Astrophysics Data System (ADS)

    Zafar, I.; Edirisinghe, E. A.; Acar, B. S.

    2009-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.

  9. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  10. Classification of video sequences into chosen generalized use classes of target size and lighting level.

    PubMed

    Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin

    The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.

  11. An Evaluation of Feature Learning Methods for High Resolution Image Classification

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Montoya, J.; Schindler, K.

    2012-07-01

    Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.

  12. Confidence level estimation in multi-target classification problems

    NASA Astrophysics Data System (ADS)

    Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia

    2018-04-01

    This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.

  13. Context-based automated defect classification system using multiple morphological masks

    DOEpatents

    Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed

    2002-01-01

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.

  14. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information.

    PubMed

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Yan, Bin; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition.

  15. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information

    PubMed Central

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition. PMID:26380294

  16. Methods for automatically analyzing humpback song units.

    PubMed

    Rickwood, Peter; Taylor, Andrew

    2008-03-01

    This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.

  17. Patterns of Hierarchical Structure in the Medical Lexicon

    PubMed Central

    Michael, Patricia A.; Cole, William G.; Stewart, James; Blois, Marsden S.

    1987-01-01

    Concepts in basic and clinical medical science cover a wide range of levels of description, from the subatomic level to the level of the patient as a whole. Medical language may have usage regularities consistent with this hierarchical nature of medical knowledge. Preliminary studies of word occurrence in abstracts drawn from three medical journals representing three broadly defined levels of description (chemical system, physiologic system, and patient as a whole) demonstrated a nonuniform word usage, with many words unique to one or another journal. In this present study, word occurrence was examined in an expanded pool of medical text consisting of sixteen textbooks representing ten different levels of description: atom/ion, micromolecule, macromolecule, organelle, cell, tissue, organ, physiologic system, major body part (or multiple physiologic systems) and patient as a whole. Word usage was found to be nonuniform, with many words unique to specific levels. The presence of such usage regularities may provide a basis for facilitating the automatic classification and retrieval of medical text.

  18. Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study

    PubMed Central

    Guerra, Luis; McGarry, Laura M; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2011-01-01

    In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical GABAergic interneurons, the problem to discern among different cell types is particularly difficult and better methods are needed to perform objective classifications. Here we explore the use of supervised classification algorithms to classify neurons based on their morphological features, using a database of 128 pyramidal cells and 199 interneurons from mouse neocortex. To evaluate the performance of different algorithms we used, as a “benchmark,” the test to automatically distinguish between pyramidal cells and interneurons, defining “ground truth” by the presence or absence of an apical dendrite. We compared hierarchical clustering with a battery of different supervised classification algorithms, finding that supervised classifications outperformed hierarchical clustering. In addition, the selection of subsets of distinguishing features enhanced the classification accuracy for both sets of algorithms. The analysis of selected variables indicates that dendritic features were most useful to distinguish pyramidal cells from interneurons when compared with somatic and axonal morphological variables. We conclude that supervised classification algorithms are better matched to the general problem of distinguishing neuronal cell types when some information on these cell groups, in our case being pyramidal or interneuron, is known a priori. As a spin-off of this methodological study, we provide several methods to automatically distinguish neocortical pyramidal cells from interneurons, based on their morphologies. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 71–82, 2011 PMID:21154911

  19. Structural Validation of Nursing Terminologies

    PubMed Central

    Hardiker, Nicholas R.; Rector, Alan L.

    2001-01-01

    Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications. Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology. Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification. Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy. Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications. PMID:11320066

  20. Universally Designed Text on the Web: Towards Readability Criteria Based on Anti-Patterns.

    PubMed

    Eika, Evelyn

    2016-01-01

    The readability of web texts affects accessibility. The Web Content Accessibility guidelines (WCAG) state that the recommended reading level should match that of someone who has completed basic schooling. However, WCAG does not give advice on what constitutes an appropriate reading level. Web authors need tools to help composing WCAG compliant texts, and specific criteria are needed. Classic readability metrics are generally based on lengths of words and sentences and have been criticized for being over-simplistic. Automatic measures and classifications of texts' reading levels employing more advanced constructs remain an unresolved problem. If such measures were feasible, what should these be? This work examines three language constructs not captured by current readability indices but believed to significantly affect actual readability, namely, relative clauses, garden path sentences, and left-branching structures. The goal is to see whether quantifications of these stylistic features reflect readability and how they correspond to common readability measures. Manual assessments of a set of authentic web texts for such uses were conducted. The results reveal that texts related to narratives such as children's stories, which are given the highest readability value, do not contain these constructs. The structures in question occur more frequently in expository texts that aim at educating or disseminating information such as strategy and journal articles. The results suggest that language anti-patterns hold potential for establishing a set of deeper readability criteria.

  1. Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?

    PubMed

    Rossini, Paolo M; Buscema, Massimo; Capriotti, Massimiliano; Grossi, Enzo; Rodriguez, Guido; Del Percio, Claudio; Babiloni, Claudio

    2008-07-01

    It has been shown that a new procedure (implicit function as squashing time, IFAST) based on artificial neural networks (ANNs) is able to compress eyes-closed resting electroencephalographic (EEG) data into spatial invariants of the instant voltage distributions for an automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects with classification accuracy of individual subjects higher than 92%. Here we tested the hypothesis that this is the case also for the classification of individual normal elderly (Nold) vs. MCI subjects, an important issue for the screening of large populations at high risk of AD. Eyes-closed resting EEG data (10-20 electrode montage) were recorded in 171 Nold and in 115 amnesic MCI subjects. The data inputs for the classification by IFAST were the weights of the connections within a nonlinear auto-associative ANN trained to generate the instant voltage distributions of 60-s artifact-free EEG data. The most relevant features were selected and coincidently the dataset was split into two halves for the final binary classification (training and testing) performed by a supervised ANN. The classification of the individual Nold and MCI subjects reached 95.87% of sensitivity and 91.06% of specificity (93.46% of accuracy). These results indicate that IFAST can reliably distinguish eyes-closed resting EEG in individual Nold and MCI subjects. IFAST may be used for large-scale periodic screening of large populations at risk of AD and personalized care.

  2. Automatic intelligibility classification of sentence-level pathological speech

    PubMed Central

    Kim, Jangwon; Kumar, Naveen; Tsiartas, Andreas; Li, Ming; Narayanan, Shrikanth S.

    2014-01-01

    Pathological speech usually refers to the condition of speech distortion resulting from atypicalities in voice and/or in the articulatory mechanisms owing to disease, illness or other physical or biological insult to the production system. Although automatic evaluation of speech intelligibility and quality could come in handy in these scenarios to assist experts in diagnosis and treatment design, the many sources and types of variability often make it a very challenging computational processing problem. In this work we propose novel sentence-level features to capture abnormal variation in the prosodic, voice quality and pronunciation aspects in pathological speech. In addition, we propose a post-classification posterior smoothing scheme which refines the posterior of a test sample based on the posteriors of other test samples. Finally, we perform feature-level fusions and subsystem decision fusion for arriving at a final intelligibility decision. The performances are tested on two pathological speech datasets, the NKI CCRT Speech Corpus (advanced head and neck cancer) and the TORGO database (cerebral palsy or amyotrophic lateral sclerosis), by evaluating classification accuracy without overlapping subjects’ data among training and test partitions. Results show that the feature sets of each of the voice quality subsystem, prosodic subsystem, and pronunciation subsystem, offer significant discriminating power for binary intelligibility classification. We observe that the proposed posterior smoothing in the acoustic space can further reduce classification errors. The smoothed posterior score fusion of subsystems shows the best classification performance (73.5% for unweighted, and 72.8% for weighted, average recalls of the binary classes). PMID:25414544

  3. Advances of FishNet towards a fully automatic monitoring system for fish migration

    NASA Astrophysics Data System (ADS)

    Kratzert, Frederik; Mader, Helmut

    2017-04-01

    Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/

  4. An Investigation of Automatic Change Detection for Topographic Map Updating

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Smit, J.

    2012-08-01

    Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  5. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.

    PubMed

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2018-04-30

    Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Landslide susceptibility mapping using decision-tree based CHi-squared automatic interaction detection (CHAID) and Logistic regression (LR) integration

    NASA Astrophysics Data System (ADS)

    Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin

    2014-06-01

    This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.

  7. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  8. WOLF; automatic typing program

    USGS Publications Warehouse

    Evenden, G.I.

    1982-01-01

    A FORTRAN IV program for the Hewlett-Packard 1000 series computer provides for automatic typing operations and can, when employed with manufacturer's text editor, provide a system to greatly facilitate preparation of reports, letters and other text. The input text and imbedded control data can perform nearly all of the functions of a typist. A few of the features available are centering, titles, footnotes, indentation, page numbering (including Roman numerals), automatic paragraphing, and two forms of tab operations. This documentation contains both user and technical description of the program.

  9. MeSH indexing based on automatically generated summaries

    PubMed Central

    2013-01-01

    Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading. PMID:23802936

  10. Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach

    NASA Astrophysics Data System (ADS)

    Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele

    2012-09-01

    The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.

  11. Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    PubMed Central

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Hajnal, Joseph V.; Duncan, John S.; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander

    2012-01-01

    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study. PMID:22523539

  12. Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    PubMed Central

    Hou, Le; Samaras, Dimitris; Kurc, Tahsin M.; Gao, Yi; Davis, James E.; Saltz, Joel H.

    2016-01-01

    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN. PMID:27795661

  13. Non-heuristic automatic techniques for overcoming low signal-to-noise-ratio bias of localization microscopy and multiple signal classification algorithm.

    PubMed

    Agarwal, Krishna; Macháň, Radek; Prasad, Dilip K

    2018-03-21

    Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples.

  14. Towards automated sleep classification in infants using symbolic and subsymbolic approaches.

    PubMed

    Kubat, M; Flotzinger, D; Pfurtscheller, G

    1993-04-01

    The paper addresses the problem of automatic sleep classification. A special effort is made to find a method of extracting reasonable descriptions of the individual sleep stages from sample measurements of EGG, EMG, EOG, etc., and from a classification of these measurements provided by an expert. The method should satisfy three requirements: classification accuracy, interpretability of the results, and the ability to select the relevant and discard the irrelevant variables. The solution suggested in this paper consists of a combination of the subsymbolic algorithm LVQ with the symbolic decision tree generator ID3. Results demonstrating the feasibility and utility of our approach are also presented.

  15. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning.

    PubMed

    Olesen, Alexander Neergaard; Christensen, Julie A E; Sorensen, Helge B D; Jennum, Poul J

    2016-08-01

    Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen's kappa of 0.74 indicating substantial agreement between automatic and manual scoring.

  16. Semantic Advertising for Web 3.0

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Pan, Jeff Z.; Taylor, Stuart; Ren, Yuan; Jekjantuk, Nophadol; Zhao, Yuting

    Advertising on the World Wide Web is based around automatically matching web pages with appropriate advertisements, in the form of banner ads, interactive adverts, or text links. Traditionally this has been done by manual classification of pages, or more recently using information retrieval techniques to find the most important keywords from the page, and match these to keywords being used by adverts. In this paper, we propose a new model for online advertising, based around lightweight embedded semantics. This will improve the relevancy of adverts on the World Wide Web and help to kick-start the use of RDFa as a mechanism for adding lightweight semantic attributes to the Web. Furthermore, we propose a system architecture for the proposed new model, based on our scalable ontology reasoning infrastructure TrOWL.

  17. Computer Recognition of Facial Profiles

    DTIC Science & Technology

    1974-08-01

    facial recognition 20. ABSTRACT (Continue on reverse side It necessary and Identify by block number) A system for the recognition of human faces from...21 2.6 Classification Algorithms ........... ... 32 III FACIAL RECOGNITION AND AUTOMATIC TRAINING . . . 37 3.1 Facial Profile Recognition...provide a fair test of the classification system. The work of Goldstein, Harmon, and Lesk [81 indicates, however, that for facial recognition , a ten class

  18. Automatic Author Profiling of Online Chat Logs

    DTIC Science & Technology

    2007-03-01

    CLASSIFICATION WITH PRIOR ..........91 1. All Test Data ................................91 2. Extracted Test Data: Teens and 20s ...........92 3...Extracted Test Data: Teens and 30s ...........92 4. Extracted Test Data: Teens and 40s ...........93 5. Extracted Test Data: Teens and 50s ...........93 6...Data ................................97 C. AGE: BINARY CLASSIFICATION WITH PRIOR .............98 1. Extracted Test Data: Teens and 20s ...........98 2

  19. Development of an automated ultrasonic testing system

    NASA Astrophysics Data System (ADS)

    Shuxiang, Jiao; Wong, Brian Stephen

    2005-04-01

    Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.

  20. A Computerized English-Spanish Correlation Index to Five Biomedical Library Classification Schemes Based on MeSH*

    PubMed Central

    Muench, Eugene V.

    1971-01-01

    A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471

  1. Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images

    NASA Astrophysics Data System (ADS)

    Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.

    2018-02-01

    Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.

  2. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects.

    PubMed

    Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak

    2014-01-01

    Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.

  3. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  4. EMG finger movement classification based on ANFIS

    NASA Astrophysics Data System (ADS)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  5. Combining MEDLINE and publisher data to create parallel corpora for the automatic translation of biomedical text

    PubMed Central

    2013-01-01

    Background Most of the institutional and research information in the biomedical domain is available in the form of English text. Even in countries where English is an official language, such as the United States, language can be a barrier for accessing biomedical information for non-native speakers. Recent progress in machine translation suggests that this technique could help make English texts accessible to speakers of other languages. However, the lack of adequate specialized corpora needed to train statistical models currently limits the quality of automatic translations in the biomedical domain. Results We show how a large-sized parallel corpus can automatically be obtained for the biomedical domain, using the MEDLINE database. The corpus generated in this work comprises article titles obtained from MEDLINE and abstract text automatically retrieved from journal websites, which substantially extends the corpora used in previous work. After assessing the quality of the corpus for two language pairs (English/French and English/Spanish) we use the Moses package to train a statistical machine translation model that outperforms previous models for automatic translation of biomedical text. Conclusions We have built translation data sets in the biomedical domain that can easily be extended to other languages available in MEDLINE. These sets can successfully be applied to train statistical machine translation models. While further progress should be made by incorporating out-of-domain corpora and domain-specific lexicons, we believe that this work improves the automatic translation of biomedical texts. PMID:23631733

  6. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    NASA Astrophysics Data System (ADS)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  7. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  8. Processing of Crawled Urban Imagery for Building Use Classification

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Haala, N.

    2017-05-01

    Recent years have shown a shift from pure geometric 3D city models to data with semantics. This is induced by new applications (e.g. Virtual/Augmented Reality) and also a requirement for concepts like Smart Cities. However, essential urban semantic data like building use categories is often not available. We present a first step in bridging this gap by proposing a pipeline to use crawled urban imagery and link it with ground truth cadastral data as an input for automatic building use classification. We aim to extract this city-relevant semantic information automatically from Street View (SV) imagery. Convolutional Neural Networks (CNNs) proved to be extremely successful for image interpretation, however, require a huge amount of training data. Main contribution of the paper is the automatic provision of such training datasets by linking semantic information as already available from databases provided from national mapping agencies or city administrations to the corresponding façade images extracted from SV. Finally, we present first investigations with a CNN and an alternative classifier as a proof of concept.

  9. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  10. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods

    PubMed Central

    Burlina, Philippe; Billings, Seth; Joshi, Neil

    2017-01-01

    Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220

  11. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.

    PubMed

    Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima

    2017-01-01

    To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.

  12. Objective automated quantification of fluorescence signal in histological sections of rat lens.

    PubMed

    Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina

    2017-08-01

    Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  13. The "Smart Dining Table": Automatic Behavioral Tracking of a Meal with a Multi-Touch-Computer.

    PubMed

    Manton, Sean; Magerowski, Greta; Patriarca, Laura; Alonso-Alonso, Miguel

    2016-01-01

    Studying how humans eat in the context of a meal is important to understanding basic mechanisms of food intake regulation and can help develop new interventions for the promotion of healthy eating and prevention of obesity and eating disorders. While there are a number of methodologies available for behavioral evaluation of a meal, there is a need for new tools that can simplify data collection through automatic and online analysis. Also, there are currently no methods that leverage technology to add a dimension of interactivity to the meal table. In this study, we examined the feasibility of a new technology for automatic detection and classification of bites during a laboratory meal. We used a SUR40 multi-touch tabletop computer, powered by an infrared camera behind the screen. Tags were attached to three plates, allowing their positions to be tracked, and the saturation (a measure of the infrared intensity) in the surrounding region was measured. A Kinect camera was used to record the meals for manual verification and provide gesture detection for when the bites were taken. Bite detections triggered classification of the source plate by the SUR40 based on saturation flux in the preceding time window. Five healthy subjects (aged 20-40 years, one female) were tested, providing a total sample of 320 bites. Sensitivity, defined as the number of correctly detected bites out of the number of actual bites, was 67.5%. Classification accuracy, defined as the number of correctly classified bites out of those detected, was 82.4%. Due to the poor sensitivity, a second experiment was designed using a single plate and a Myo armband containing a nine-axis accelerometer as an alternative method for bite detection. The same subjects were tested (sample: 195 bites). Using a simple threshold on the pitch reading of the magnetometer, the Myo data achieved 86.1% sensitivity vs. 60.5% with the Kinect. Further, the precision of positive predictive value was 72.1% for the Myo vs. 42.8% for the Kinect. We conclude that the SUR40 + Myo combination is feasible for automatic detection and classification of bites with adequate accuracy for a range of applications.

  14. SAR-based change detection using hypothesis testing and Markov random field modelling

    NASA Astrophysics Data System (ADS)

    Cao, W.; Martinis, S.

    2015-04-01

    The objective of this study is to automatically detect changed areas caused by natural disasters from bi-temporal co-registered and calibrated TerraSAR-X data. The technique in this paper consists of two steps: Firstly, an automatic coarse detection step is applied based on a statistical hypothesis test for initializing the classification. The original analytical formula as proposed in the constant false alarm rate (CFAR) edge detector is reviewed and rewritten in a compact form of the incomplete beta function, which is a builtin routine in commercial scientific software such as MATLAB and IDL. Secondly, a post-classification step is introduced to optimize the noisy classification result in the previous step. Generally, an optimization problem can be formulated as a Markov random field (MRF) on which the quality of a classification is measured by an energy function. The optimal classification based on the MRF is related to the lowest energy value. Previous studies provide methods for the optimization problem using MRFs, such as the iterated conditional modes (ICM) algorithm. Recently, a novel algorithm was presented based on graph-cut theory. This method transforms a MRF to an equivalent graph and solves the optimization problem by a max-flow/min-cut algorithm on the graph. In this study this graph-cut algorithm is applied iteratively to improve the coarse classification. At each iteration the parameters of the energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). Experiments are performed using two flood events in Germany and Australia in 2011 and a forest fire on La Palma in 2009 using pre- and post-event TerraSAR-X data. The results show convincing coarse classifications and considerable improvement by the graph-cut post-classification step.

  15. Classification Accuracy Increase Using Multisensor Data Fusion

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Palubinskas, G.; Reinartz, P.

    2011-09-01

    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.

  16. Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed.

    PubMed

    Eisinger, Daniel; Tsatsaronis, George; Bundschus, Markus; Wieneke, Ulrich; Schroeder, Michael

    2013-04-15

    Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Patent documents are another important information source, though they are considerably less accessible. One option to expand patent search beyond pure keywords is the inclusion of classification information: Since every patent is assigned at least one class code, it should be possible for these assignments to be automatically used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. This report describes our comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms.Our analysis shows a strong structural similarity of the hierarchies, but significant differences of terms and annotations. The low number of IPC class assignments and the lack of occurrences of class labels in patent texts imply that current patent search is severely limited. To overcome these limits, we evaluate a method for the automated assignment of additional classes to patent documents, and we propose a system for guided patent search based on the use of class co-occurrence information and external resources.

  17. Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed

    PubMed Central

    2013-01-01

    Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Patent documents are another important information source, though they are considerably less accessible. One option to expand patent search beyond pure keywords is the inclusion of classification information: Since every patent is assigned at least one class code, it should be possible for these assignments to be automatically used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. This report describes our comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms. Our analysis shows a strong structural similarity of the hierarchies, but significant differences of terms and annotations. The low number of IPC class assignments and the lack of occurrences of class labels in patent texts imply that current patent search is severely limited. To overcome these limits, we evaluate a method for the automated assignment of additional classes to patent documents, and we propose a system for guided patent search based on the use of class co-occurrence information and external resources. PMID:23734562

  18. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    PubMed

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  19. Cross-ontological analytics for alignment of different classification schemes

    DOEpatents

    Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L

    2010-09-28

    Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.

  20. Drug related webpages classification using images and text information based on multi-kernel learning

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan

    2015-12-01

    In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.

  1. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.

    PubMed

    Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki

    2013-11-01

    The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.

  2. An Automatic Vehicle Classification System.

    DTIC Science & Technology

    1981-07-01

    addi- tion, various portions of the system design can be used by other vehicle study projects, e.g. for projects concerned with vehicle speed or for...traffic study projects that require an axle counter or vehicle height indicator. A *4 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(W1en Data Enrerod...optoelectronic components as the basis for detection. Factors of vehicle length, height, and number of axles are used as identification characteristics. In

  3. Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks

    NASA Technical Reports Server (NTRS)

    Smith, Aaron; Evans, Michael; Downey, Joseph

    2017-01-01

    National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.

  4. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura

    2018-01-01

    Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.

  5. Genetic algorithm for the optimization of features and neural networks in ECG signals classification

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu

    2017-01-01

    Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.

  6. Stock Market Index Data and indicators for Day Trading as a Binary Classification problem.

    PubMed

    Bruni, Renato

    2017-02-01

    Classification is the attribution of labels to records according to a criterion automatically learned from a training set of labeled records. This task is needed in a huge number of practical applications, and consequently it has been studied intensively and several classification algorithms are available today. In finance, a stock market index is a measurement of value of a section of the stock market. It is often used to describe the aggregate trend of a market. One basic financial issue would be forecasting this trend. Clearly, such a stochastic value is very difficult to predict. However, technical analysis is a security analysis methodology developed to forecast the direction of prices through the study of past market data. Day trading consists in buying and selling financial instruments within the same trading day. In this case, one interesting problem is the automatic individuation of favorable days for trading. We model this problem as a binary classification problem, and we provide datasets containing daily index values, the corresponding values of a selection of technical indicators, and the class label, which is 1 if the subsequent time period is favorable for day trading and 0 otherwise. These datasets can be used to test the behavior of different approaches in solving the day trading problem.

  7. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  8. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images.

    PubMed

    Díaz, Gloria; González, Fabio A; Romero, Eduardo

    2009-04-01

    Visual quantification of parasitemia in thin blood films is a very tedious, subjective and time-consuming task. This study presents an original method for quantification and classification of erythrocytes in stained thin blood films infected with Plasmodium falciparum. The proposed approach is composed of three main phases: a preprocessing step, which corrects luminance differences. A segmentation step that uses the normalized RGB color space for classifying pixels either as erythrocyte or background followed by an Inclusion-Tree representation that structures the pixel information into objects, from which erythrocytes are found. Finally, a two step classification process identifies infected erythrocytes and differentiates the infection stage, using a trained bank of classifiers. Additionally, user intervention is allowed when the approach cannot make a proper decision. Four hundred fifty malaria images were used for training and evaluating the method. Automatic identification of infected erythrocytes showed a specificity of 99.7% and a sensitivity of 94%. The infection stage was determined with an average sensitivity of 78.8% and average specificity of 91.2%.

  9. Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks.

    PubMed

    Wu, Miao; Yan, Chuanbo; Liu, Huiqiang; Liu, Qian

    2018-06-29

    Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images. © 2018 The Author(s).

  10. Delineation and geometric modeling of road networks

    NASA Astrophysics Data System (ADS)

    Poullis, Charalambos; You, Suya

    In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.

  11. A Joint Time-Frequency and Matrix Decomposition Feature Extraction Methodology for Pathological Voice Classification

    NASA Astrophysics Data System (ADS)

    Ghoraani, Behnaz; Krishnan, Sridhar

    2009-12-01

    The number of people affected by speech problems is increasing as the modern world places increasing demands on the human voice via mobile telephones, voice recognition software, and interpersonal verbal communications. In this paper, we propose a novel methodology for automatic pattern classification of pathological voices. The main contribution of this paper is extraction of meaningful and unique features using Adaptive time-frequency distribution (TFD) and nonnegative matrix factorization (NMF). We construct Adaptive TFD as an effective signal analysis domain to dynamically track the nonstationarity in the speech and utilize NMF as a matrix decomposition (MD) technique to quantify the constructed TFD. The proposed method extracts meaningful and unique features from the joint TFD of the speech, and automatically identifies and measures the abnormality of the signal. Depending on the abnormality measure of each signal, we classify the signal into normal or pathological. The proposed method is applied on the Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database which consists of 161 pathological and 51 normal speakers, and an overall classification accuracy of 98.6% was achieved.

  12. A compressed sensing method with analytical results for lidar feature classification

    NASA Astrophysics Data System (ADS)

    Allen, Josef D.; Yuan, Jiangbo; Liu, Xiuwen; Rahmes, Mark

    2011-04-01

    We present an innovative way to autonomously classify LiDAR points into bare earth, building, vegetation, and other categories. One desirable product of LiDAR data is the automatic classification of the points in the scene. Our algorithm automatically classifies scene points using Compressed Sensing Methods via Orthogonal Matching Pursuit algorithms utilizing a generalized K-Means clustering algorithm to extract buildings and foliage from a Digital Surface Models (DSM). This technology reduces manual editing while being cost effective for large scale automated global scene modeling. Quantitative analyses are provided using Receiver Operating Characteristics (ROC) curves to show Probability of Detection and False Alarm of buildings vs. vegetation classification. Histograms are shown with sample size metrics. Our inpainting algorithms then fill the voids where buildings and vegetation were removed, utilizing Computational Fluid Dynamics (CFD) techniques and Partial Differential Equations (PDE) to create an accurate Digital Terrain Model (DTM) [6]. Inpainting preserves building height contour consistency and edge sharpness of identified inpainted regions. Qualitative results illustrate other benefits such as Terrain Inpainting's unique ability to minimize or eliminate undesirable terrain data artifacts.

  13. An automatic device for detection and classification of malaria parasite species in thick blood film.

    PubMed

    Kaewkamnerd, Saowaluck; Uthaipibull, Chairat; Intarapanich, Apichart; Pannarut, Montri; Chaotheing, Sastra; Tongsima, Sissades

    2012-01-01

    Current malaria diagnosis relies primarily on microscopic examination of Giemsa-stained thick and thin blood films. This method requires vigorously trained technicians to efficiently detect and classify the malaria parasite species such as Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) for an appropriate drug administration. However, accurate classification of parasite species is difficult to achieve because of inherent technical limitations and human inconsistency. To improve performance of malaria parasite classification, many researchers have proposed automated malaria detection devices using digital image analysis. These image processing tools, however, focus on detection of parasites on thin blood films, which may not detect the existence of parasites due to the parasite scarcity on the thin blood film. The problem is aggravated with low parasitemia condition. Automated detection and classification of parasites on thick blood films, which contain more numbers of parasite per detection area, would address the previous limitation. The prototype of an automatic malaria parasite identification system is equipped with mountable motorized units for controlling the movements of objective lens and microscope stage. This unit was tested for its precision to move objective lens (vertical movement, z-axis) and microscope stage (in x- and y-horizontal movements). The average precision of x-, y- and z-axes movements were 71.481 ± 7.266 μm, 40.009 ± 0.000 μm, and 7.540 ± 0.889 nm, respectively. Classification of parasites on 60 Giemsa-stained thick blood films (40 blood films containing infected red blood cells and 20 control blood films of normal red blood cells) was tested using the image analysis module. By comparing our results with the ones verified by trained malaria microscopists, the prototype detected parasite-positive and parasite-negative blood films at the rate of 95% and 68.5% accuracy, respectively. For classification performance, the thick blood films with Pv parasite was correctly classified with the success rate of 75% while the accuracy of Pf classification was 90%. This work presents an automatic device for both detection and classification of malaria parasite species on thick blood film. The system is based on digital image analysis and featured with motorized stage units, designed to easily be mounted on most conventional light microscopes used in the endemic areas. The constructed motorized module could control the movements of objective lens and microscope stage at high precision for effective acquisition of quality images for analysis. The analysis program could accurately classify parasite species, into Pf or Pv, based on distribution of chromatin size.

  14. Managing the data deluge: data-driven GO category assignment improves while complexity of functional annotation increases.

    PubMed

    Gobeill, Julien; Pasche, Emilie; Vishnyakova, Dina; Ruch, Patrick

    2013-01-01

    The available curated data lag behind current biological knowledge contained in the literature. Text mining can assist biologists and curators to locate and access this knowledge, for instance by characterizing the functional profile of publications. Gene Ontology (GO) category assignment in free text already supports various applications, such as powering ontology-based search engines, finding curation-relevant articles (triage) or helping the curator to identify and encode functions. Popular text mining tools for GO classification are based on so called thesaurus-based--or dictionary-based--approaches, which exploit similarities between the input text and GO terms themselves. But their effectiveness remains limited owing to the complex nature of GO terms, which rarely occur in text. In contrast, machine learning approaches exploit similarities between the input text and already curated instances contained in a knowledge base to infer a functional profile. GO Annotations (GOA) and MEDLINE make possible to exploit a growing amount of curated abstracts (97 000 in November 2012) for populating this knowledge base. Our study compares a state-of-the-art thesaurus-based system with a machine learning system (based on a k-Nearest Neighbours algorithm) for the task of proposing a functional profile for unseen MEDLINE abstracts, and shows how resources and performances have evolved. Systems are evaluated on their ability to propose for a given abstract the GO terms (2.8 on average) used for curation in GOA. We show that since 2006, although a massive effort was put into adding synonyms in GO (+300%), our thesaurus-based system effectiveness is rather constant, reaching from 0.28 to 0.31 for Recall at 20 (R20). In contrast, thanks to its knowledge base growth, our machine learning system has steadily improved, reaching from 0.38 in 2006 to 0.56 for R20 in 2012. Integrated in semi-automatic workflows or in fully automatic pipelines, such systems are more and more efficient to provide assistance to biologists. DATABASE URL: http://eagl.unige.ch/GOCat/

  15. 77 FR 60475 - Draft of SWGDOC Standard Classification of Typewritten Text

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1607] Draft of SWGDOC Standard Classification of Typewritten Text AGENCY: National Institute of Justice, DOJ. ACTION: Notice and..., ``SWGDOC Standard Classification of Typewritten Text''. The opportunity to provide comments on this...

  16. A system for classifying disease comorbidity status from medical discharge summaries using automated hotspot and negated concept detection.

    PubMed

    Ambert, Kyle H; Cohen, Aaron M

    2009-01-01

    OBJECTIVE Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatically extracting information from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2) 2008 Natural Language Processing Obesity Challenge Task. DESIGN A text mining system for classifying patient comorbidity status, based on the information contained in clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-correcting of output codes with linear support vector machines. MEASUREMENTS Performance was evaluated in terms of the macroaveraged F1 measure. RESULTS The automated system performed well against manual expert rule-based systems, finishing fifth in the Challenge's intuitive task, and 13(th) in the textual task. CONCLUSIONS The system demonstrates that effective comorbidity status classification by an automated system is possible.

  17. Closing the loop: from paper to protein annotation using supervised Gene Ontology classification.

    PubMed

    Gobeill, Julien; Pasche, Emilie; Vishnyakova, Dina; Ruch, Patrick

    2014-01-01

    Gene function curation of the literature with Gene Ontology (GO) concepts is one particularly time-consuming task in genomics, and the help from bioinformatics is highly requested to keep up with the flow of publications. In 2004, the first BioCreative challenge already designed a task of automatic GO concepts assignment from a full text. At this time, results were judged far from reaching the performances required by real curation workflows. In particular, supervised approaches produced the most disappointing results because of lack of training data. Ten years later, the available curation data have massively grown. In 2013, the BioCreative IV GO task revisited the automatic GO assignment task. For this issue, we investigated the power of our supervised classifier, GOCat. GOCat computes similarities between an input text and already curated instances contained in a knowledge base to infer GO concepts. The subtask A consisted in selecting GO evidence sentences for a relevant gene in a full text. For this, we designed a state-of-the-art supervised statistical approach, using a naïve Bayes classifier and the official training set, and obtained fair results. The subtask B consisted in predicting GO concepts from the previous output. For this, we applied GOCat and reached leading results, up to 65% for hierarchical recall in the top 20 outputted concepts. Contrary to previous competitions, machine learning has this time outperformed standard dictionary-based approaches. Thanks to BioCreative IV, we were able to design a complete workflow for curation: given a gene name and a full text, this system is able to select evidence sentences for curation and to deliver highly relevant GO concepts. Contrary to previous competitions, machine learning this time outperformed dictionary-based systems. Observed performances are sufficient for being used in a real semiautomatic curation workflow. GOCat is available at http://eagl.unige.ch/GOCat/. http://eagl.unige.ch/GOCat4FT/. © The Author(s) 2014. Published by Oxford University Press.

  18. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  19. New insights into the classification and nomenclature of cortical GABAergic interneurons.

    PubMed

    DeFelipe, Javier; López-Cruz, Pedro L; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R; Huang, Josh; Jones, Edward G; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A; Marín, Oscar; Markram, Henry; McBain, Chris J; Meyer, Hanno S; Monyer, Hannah; Nelson, Sacha B; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L R; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M; Sherwood, Chet C; Staiger, Jochen F; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A

    2013-03-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

  20. New insights into the classification and nomenclature of cortical GABAergic interneurons

    PubMed Central

    DeFelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L. R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A.

    2013-01-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus. PMID:23385869

  1. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    NASA Astrophysics Data System (ADS)

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  2. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    PubMed

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  3. Automatic Galaxy Classification via Machine Learning Techniques: Parallelized Rotation/Flipping INvariant Kohonen Maps (PINK)

    NASA Astrophysics Data System (ADS)

    Polsterer, K. L.; Gieseke, F.; Igel, C.

    2015-09-01

    In the last decades more and more all-sky surveys created an enormous amount of data which is publicly available on the Internet. Crowd-sourcing projects such as Galaxy-Zoo and Radio-Galaxy-Zoo used encouraged users from all over the world to manually conduct various classification tasks. The combination of the pattern-recognition capabilities of thousands of volunteers enabled scientists to finish the data analysis within acceptable time. For up-coming surveys with billions of sources, however, this approach is not feasible anymore. In this work, we present an unsupervised method that can automatically process large amounts of galaxy data and which generates a set of prototypes. This resulting model can be used to both visualize the given galaxy data as well as to classify so far unseen images.

  4. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    PubMed

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  5. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  6. A clinically viable capsule endoscopy video analysis platform for automatic bleeding detection

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Jiao, Heng; Xie, Jean; Mui, Peter; Leighton, Jonathan A.; Pasha, Shabana; Rentz, Lauri; Abedi, Mahmood

    2013-02-01

    In this paper, we present a novel and clinically valuable software platform for automatic bleeding detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos for GI tract run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. As a result, the process is time consuming and is prone to disease miss-finding. While researchers have made efforts to automate this process, however, no clinically acceptable software is available on the marketplace today. Working with our collaborators, we have developed a clinically viable software platform called GISentinel for fully automated GI tract bleeding detection and classification. Major functional modules of the SW include: the innovative graph based NCut segmentation algorithm, the unique feature selection and validation method (e.g. illumination invariant features, color independent features, and symmetrical texture features), and the cascade SVM classification for handling various GI tract scenes (e.g. normal tissue, food particles, bubbles, fluid, and specular reflection). Initial evaluation results on the SW have shown zero bleeding instance miss-finding rate and 4.03% false alarm rate. This work is part of our innovative 2D/3D based GI tract disease detection software platform. While the overall SW framework is designed for intelligent finding and classification of major GI tract diseases such as bleeding, ulcer, and polyp from the CE videos, this paper will focus on the automatic bleeding detection functional module.

  7. GISentinel: a software platform for automatic ulcer detection on capsule endoscopy videos

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Jiao, Heng; Meng, Fan; Leighton, Jonathon A.; Shabana, Pasha; Rentz, Lauri

    2014-03-01

    In this paper, we present a novel and clinically valuable software platform for automatic ulcer detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos take about 8 hours. They have to be reviewed manually by physicians to detect and locate diseases such as ulcers and bleedings. The process is time consuming. Moreover, because of the long-time manual review, it is easy to lead to miss-finding. Working with our collaborators, we were focusing on developing a software platform called GISentinel, which can fully automated GI tract ulcer detection and classification. This software includes 3 parts: the frequency based Log-Gabor filter regions of interest (ROI) extraction, the unique feature selection and validation method (e.g. illumination invariant feature, color independent features, and symmetrical texture features), and the cascade SVM classification for handling "ulcer vs. non-ulcer" cases. After the experiments, this SW gave descent results. In frame-wise, the ulcer detection rate is 69.65% (319/458). In instance-wise, the ulcer detection rate is 82.35%(28/34).The false alarm rate is 16.43% (34/207). This work is a part of our innovative 2D/3D based GI tract disease detection software platform. The final goal of this SW is to find and classification of major GI tract diseases intelligently, such as bleeding, ulcer, and polyp from the CE videos. This paper will mainly describe the automatic ulcer detection functional module.

  8. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  10. Automatic emotional expression analysis from eye area

    NASA Astrophysics Data System (ADS)

    Akkoç, Betül; Arslan, Ahmet

    2015-02-01

    Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.

  11. Automatic analysis of medical dialogue in the home hemodialysis domain: structure induction and summarization.

    PubMed

    Lacson, Ronilda C; Barzilay, Regina; Long, William J

    2006-10-01

    Spoken medical dialogue is a valuable source of information for patients and caregivers. This work presents a first step towards automatic analysis and summarization of spoken medical dialogue. We first abstract a dialogue into a sequence of semantic categories using linguistic and contextual features integrated in a supervised machine-learning framework. Our model has a classification accuracy of 73%, compared to 33% achieved by a majority baseline (p<0.01). We then describe and implement a summarizer that utilizes this automatically induced structure. Our evaluation results indicate that automatically generated summaries exhibit high resemblance to summaries written by humans. In addition, task-based evaluation shows that physicians can reasonably answer questions related to patient care by looking at the automatically generated summaries alone, in contrast to the physicians' performance when they were given summaries from a naïve summarizer (p<0.05). This work demonstrates the feasibility of automatically structuring and summarizing spoken medical dialogue.

  12. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    NASA Astrophysics Data System (ADS)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  13. Automatic classification of endoscopic images for premalignant conditions of the esophagus

    NASA Astrophysics Data System (ADS)

    Boschetto, Davide; Gambaretto, Gloria; Grisan, Enrico

    2016-03-01

    Barrett's esophagus (BE) is a precancerous complication of gastroesophageal reflux disease in which normal stratified squamous epithelium lining the esophagus is replaced by intestinal metaplastic columnar epithelium. Repeated endoscopies and multiple biopsies are often necessary to establish the presence of intestinal metaplasia. Narrow Band Imaging (NBI) is an imaging technique commonly used with endoscopies that enhances the contrast of vascular pattern on the mucosa. We present a computer-based method for the automatic normal/metaplastic classification of endoscopic NBI images. Superpixel segmentation is used to identify and cluster pixels belonging to uniform regions. From each uniform clustered region of pixels, eight features maximizing differences among normal and metaplastic epithelium are extracted for the classification step. For each superpixel, the three mean intensities of each color channel are firstly selected as features. Three added features are the mean intensities for each superpixel after separately applying to the red-channel image three different morphological filters (top-hat filtering, entropy filtering and range filtering). The last two features require the computation of the Grey-Level Co-Occurrence Matrix (GLCM), and are reflective of the contrast and the homogeneity of each superpixel. The classification step is performed using an ensemble of 50 classification trees, with a 10-fold cross-validation scheme by training the classifier at each step on a random 70% of the images and testing on the remaining 30% of the dataset. Sensitivity and Specificity are respectively of 79.2% and 87.3%, with an overall accuracy of 83.9%.

  14. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, Teimuraz; Malyuto, Valeri

    2015-08-01

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for several hundred stars. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre, the main meridional section of the Galaxy and etc. Very rich collection of photographic objective spectral plates (30,000 were accumulated during last 60 years) is available at Abastumani Observatory-wavelength range 3900-4900 A, about 2A resolution. Availability of new devices for automatic registration of spectra from photographic plates as well as some recently developed classification techniques may allow now to create a modern system of automatic spectral classification and with expension of classification techniques to additional types (B-A, M spectral classes). The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  15. Alzheimer's disease detection via automatic 3D caudate nucleus segmentation using coupled dictionary learning with level set formulation.

    PubMed

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2016-12-01

    This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation. The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary. The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy. In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Different approaches for identifying important concepts in probabilistic biomedical text summarization.

    PubMed

    Moradi, Milad; Ghadiri, Nasser

    2018-01-01

    Automatic text summarization tools help users in the biomedical domain to acquire their intended information from various textual resources more efficiently. Some of biomedical text summarization systems put the basis of their sentence selection approach on the frequency of concepts extracted from the input text. However, it seems that exploring other measures rather than the raw frequency for identifying valuable contents within an input document, or considering correlations existing between concepts, may be more useful for this type of summarization. In this paper, we describe a Bayesian summarization method for biomedical text documents. The Bayesian summarizer initially maps the input text to the Unified Medical Language System (UMLS) concepts; then it selects the important ones to be used as classification features. We introduce six different feature selection approaches to identify the most important concepts of the text and select the most informative contents according to the distribution of these concepts. We show that with the use of an appropriate feature selection approach, the Bayesian summarizer can improve the performance of biomedical summarization. Using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) toolkit, we perform extensive evaluations on a corpus of scientific papers in the biomedical domain. The results show that when the Bayesian summarizer utilizes the feature selection methods that do not use the raw frequency, it can outperform the biomedical summarizers that rely on the frequency of concepts, domain-independent and baseline methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  18. Automatic Fibrosis Quantification By Using a k-NN Classificator

    DTIC Science & Technology

    2001-10-25

    Fluthrope, “Stages in fiber breakdown in duchenne muscular dystrophy ,” J. Neurol. Sci., vol. 24, pp. 179– 186, 1975. [6] F. Cornelio and I. Dones, “ Muscle ...an automatic algorithm to measure fibrosis in muscle sections of mdx mice, a mutant species used as a model of the Duchenne dystrophy . The al- gorithm...fiber degeneration and necro- sis in muscular dystrophy and other muscle diseases: cytochem- ical and immunocytochemical data,” Ann. Neurol., vol. 16

  19. Automatic recognition and analysis of synapses. [in brain tissue

    NASA Technical Reports Server (NTRS)

    Ungerleider, J. A.; Ledley, R. S.; Bloom, F. E.

    1976-01-01

    An automatic system for recognizing synaptic junctions would allow analysis of large samples of tissue for the possible classification of specific well-defined sets of synapses based upon structural morphometric indices. In this paper the three steps of our system are described: (1) cytochemical tissue preparation to allow easy recognition of the synaptic junctions; (2) transmitting the tissue information to a computer; and (3) analyzing each field to recognize the synapses and make measurements on them.

  20. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning.

    PubMed

    Tuyisenge, Viateur; Trebaul, Lena; Bhattacharjee, Manik; Chanteloup-Forêt, Blandine; Saubat-Guigui, Carole; Mîndruţă, Ioana; Rheims, Sylvain; Maillard, Louis; Kahane, Philippe; Taussig, Delphine; David, Olivier

    2018-03-01

    Intracranial electroencephalographic (iEEG) recordings contain "bad channels", which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features. The features quantified signals' variance, spatial-temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers. We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data. The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data. This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. Automatic evaluation of the Valsalva sinuses from cine-MRI

    NASA Astrophysics Data System (ADS)

    Blanchard, Cédric; Sliwa, Tadeusz; Lalande, Alain; Mohan, Pauliah; Bouchot, Olivier; Voisin, Yvon

    2011-03-01

    MRI appears to be particularly attractive for the study of the Sinuses of Valsalva (SV), however there is no global consensus on their suitable measurements. In this paper, we propose a new method, based on the mathematical morphology and combining a numerical geodesic reconstruction with an area estimation, to automatically evaluate the SV from a cine-MRI in a cross-sectional orientation. It consists in the extraction of the shape of the SV, the detection of relevant points (commissures, cusps and the centre of the SV), the measurement of relevant distances and in a classification of the valve as bicuspid or tricuspid by a metric evaluation of the SV. Our method was tested on 23 patient examinations and radii calculations were compared with a manual measurement. The classification of the valve as tricuspid or bicuspid was correct for all the cases. Moreover, there are an excellent correlation and an excellent concordance between manual and automatic measurements for images at diastolic phase (r= 0.97; y = x - 0.02; p=NS; mean of differences = -0.1 mm; standard deviation of differences = 2.3 mm) and at systolic phase (r= 0.96; y = 0.97 x + 0.80; p=NS ; mean of differences = -0.1 mm; standard deviation of differences = 2.4 mm). The cross-sectional orientation of the image acquisition plane conjugated with our automatic method provides a reliable morphometric evaluation of the SV, based on the automatic location of the centre of the SV, the commissure and the cusp positions. Measurements of distances between relevant points allow a precise evaluation of the SV.

  2. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    NASA Astrophysics Data System (ADS)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  3. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated good repeatability, with all standard deviations under 0.33. The algorithm is independent of the background and requires 10 cows for training with approximately 30 movies of 4 s each. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Mercury and Silver in Clinic Wastewater Goodfellow AFB, Texas

    DTIC Science & Technology

    1989-07-01

    SE(JrTY CLASSIFICATION 1b RESTRICTIVE MARINGSuncfassi I ed N/A 2a SCRITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAiLABILIT OF REPORT N/A Approved...Material suctioned from teeth restoration are collected in a central separator/collection tank. The tank is automatically cleaned by rinsing it with water ...insoluble or sparingly soluble in water . In neutral or alkaline solutions, mercury is oxidized directly to the mercuric state with the formatin of

  5. General method of pattern classification using the two-domain theory

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E. (Inventor)

    1993-01-01

    Human beings judge patterns (such as images) by complex mental processes, some of which may not be known, while computing machines extract features. By representing the human judgements with simple measurements and reducing them and the machine extracted features to a common metric space and fitting them by regression, the judgements of human experts rendered on a sample of patterns may be imposed on a pattern population to provide automatic classification.

  6. Nineteen hundred seventy three significant accomplishments. [Landsat satellite data applications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Data collected by the Skylab remote sensing satellites was used to develop applications techniques and to combine automatic data classification with statistical clustering methods. Continuing research was concentrated in the correlation and registration of data products and in the definition of the atmospheric effects on remote sensing. The causes of errors encountered in the automated classification of agricultural data are identified. Other applications in forestry, geography, environmental geology, and land use are discussed.

  7. Management Overview of System Technical Support Plan for the FIREFINDER System Support Center.

    DTIC Science & Technology

    1980-08-06

    34.. /b , UNCLASSIFIED SECU ITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT...Evaluation Agency USASA U.S. Army Security Agency UTM Universal Transverse Mercator V Volts V&V Verification and Validation VCSA Vice-Chief of Staff, Army VDD... classification , configuration audits, and so forth. INSTR 5010.27 Management of Automatic Data System 9 November 1971 Development Establishes uniform

  8. General method of pattern classification using the two-domain theory

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E. (Inventor)

    1990-01-01

    Human beings judge patterns (such as images) by complex mental processes, some of which may not be known, while computing machines extract features. By representing the human judgements with simple measurements and reducing them and the machine extracted features to a common metric space and fitting them by regression, the judgements of human experts rendered on a sample of patterns may be imposed on a pattern population to provide automatic classification.

  9. Filtering big data from social media--Building an early warning system for adverse drug reactions.

    PubMed

    Yang, Ming; Kiang, Melody; Shang, Wei

    2015-04-01

    Adverse drug reactions (ADRs) are believed to be a leading cause of death in the world. Pharmacovigilance systems are aimed at early detection of ADRs. With the popularity of social media, Web forums and discussion boards become important sources of data for consumers to share their drug use experience, as a result may provide useful information on drugs and their adverse reactions. In this study, we propose an automated ADR related posts filtering mechanism using text classification methods. In real-life settings, ADR related messages are highly distributed in social media, while non-ADR related messages are unspecific and topically diverse. It is expensive to manually label a large amount of ADR related messages (positive examples) and non-ADR related messages (negative examples) to train classification systems. To mitigate this challenge, we examine the use of a partially supervised learning classification method to automate the process. We propose a novel pharmacovigilance system leveraging a Latent Dirichlet Allocation modeling module and a partially supervised classification approach. We select drugs with more than 500 threads of discussion, and collect all the original posts and comments of these drugs using an automatic Web spidering program as the text corpus. Various classifiers were trained by varying the number of positive examples and the number of topics. The trained classifiers were applied to 3000 posts published over 60 days. Top-ranked posts from each classifier were pooled and the resulting set of 300 posts was reviewed by a domain expert to evaluate the classifiers. Compare to the alternative approaches using supervised learning methods and three general purpose partially supervised learning methods, our approach performs significantly better in terms of precision, recall, and the F measure (the harmonic mean of precision and recall), based on a computational experiment using online discussion threads from Medhelp. Our design provides satisfactory performance in identifying ADR related posts for post-marketing drug surveillance. The overall design of our system also points out a potentially fruitful direction for building other early warning systems that need to filter big data from social media networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Classification of Nortes in the Gulf of Mexico derived from wave energy maps

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Hernández-Lasheras, J.

    2016-02-01

    Extreme wave climate in the Gulf of Mexico is determined by tropical cyclones and winds from the Central American Cold Surges, locally referred to as Nortes. While hurricanes can have catastrophic effects, extreme waves and storm surge from Nortes occur several times a year, and thus have greater impacts on human activities along the Mexican coast of the Gulf of Mexico. Despite the constant impacts from Nortes, there is no available classification that relates their characteristics (e.g. pressure gradients, wind speed), to the associated coastal impacts. This work presents a first approximation to characterize and classify Nortes, which is based on the assumption that the derived wave energy synthetizes information (i.e. wind intensity, direction and duration) of individual Norte events as they pass through the Gulf of Mexico. First, we developed an index to identify Nortes based on surface pressure differences of two locations. To validate the methodology we compared the events identified with other studies and available Nortes logs. Afterwards, we detected Nortes from the 1986/1987, 2008/2009 and 2009/2010 seasons and used their corresponding wind fields to derive the wave energy maps using a numerical wave model. We used the energy maps to classify the events into groups using manual (visual) and automatic classifications (principal component analysis and k-means). The manual classification identified 3 types of Nortes and the automatic classification identified 5, although 3 of them had a high degree of similarity. The principal component analysis indicated that all events have similar characteristics, as few components are necessary to explain almost all of the variance. The classification from the k-means indicated that 81% of analyzed Nortes affect the southeastern Gulf of Mexico, while a smaller percentage affects the northern Gulf of Mexico and even less affect the western Caribbean.

  11. Pattern recognition applied to seismic signals of Llaima volcano (Chile): An evaluation of station-dependent classifiers

    NASA Astrophysics Data System (ADS)

    Curilem, Millaray; Huenupan, Fernando; Beltrán, Daniel; San Martin, Cesar; Fuentealba, Gustavo; Franco, Luis; Cardona, Carlos; Acuña, Gonzalo; Chacón, Max; Khan, M. Salman; Becerra Yoma, Nestor

    2016-04-01

    Automatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing reports, implementing models, and understanding volcanic behaviour. In a previous work, we proposed a structure for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern Andes, located in the Araucanía Region of Chile. A database of events taken from three monitoring stations on the volcano was used to create a classification structure, independent of which station provided the signal. The database included three types of volcanic events: tremor, long period, and volcano-tectonic and a contrast group which contains other types of seismic signals. In the present work, we maintain the same classification scheme, but we consider separately the stations information in order to assess whether the complementary information provided by different stations improves the performance of the classifier in recognising seismic patterns. This paper proposes two strategies for combining the information from the stations: i) combining the features extracted from the signals from each station and ii) combining the classifiers of each station. In the first case, the features extracted from the signals from each station are combined forming the input for a single classification structure. In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The results confirm that the station-dependent strategies that combine the features and the classifiers from several stations improves the classification performance, and that the combination of the features provides the best performance. The results show an average improvement of 9% in the classification accuracy when compared with the station-independent method.

  12. The Optimization of Trained and Untrained Image Classification Algorithms for Use on Large Spatial Datasets

    NASA Technical Reports Server (NTRS)

    Kocurek, Michael J.

    2005-01-01

    The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.

  13. A multi-label learning based kernel automatic recommendation method for support vector machine.

    PubMed

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  14. A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine

    PubMed Central

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896

  15. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  16. PANDORA: keyword-based analysis of protein sets by integration of annotation sources.

    PubMed

    Kaplan, Noam; Vaaknin, Avishay; Linial, Michal

    2003-10-01

    Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.

  17. An artificial intelligence approach to classify and analyse EEG traces.

    PubMed

    Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello

    2002-06-01

    We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.

  18. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Advanced Aviation Forward Area Refueling System

    DTIC Science & Technology

    2014-01-24

    8, Automatic Particle Counter, cleanliness, free water, Diesel 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF...aircraft, or up to 10 mg/L for product used as a diesel product for ground use (1). Free water contamination (droplets) may appear as fine droplets or...published several methods and test procedures for the calibration and use of automatic particle counters. The transition of this technology to the fuel

  19. Command, Control, Communications, Computers and Intelligence Electronic Warfare (C4IEW) Project Book, Fiscal Year 1994. (Non-FOUO Version)

    DTIC Science & Technology

    1994-04-01

    TSW-7A, AIR TRAFFIC CONTROL CENTRAL (ATCC) 32- 8 AN/TTC-41(V), CENTRAL OFFICE, TELEPHONE, AUTOMATIC 32- 9 MISSILE COUNTERMEASURE DEVICE (MCD) .- 0 MK...a Handheld Terminal Unit (HTU), Portable Computer Unit (PCU), Transportable Computer Unit (TCU), and compatible NOI peripheral devices . All but the...CLASSIFICATION: ASARC-III, Jun 80, Standard. I I I AN/TIC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL

  20. Automated spectral classification and the GAIA project

    NASA Technical Reports Server (NTRS)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  1. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    PubMed

    Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.

  2. Detecting asphalt pavement raveling using emerging 3D laser technology and macrotexture analysis.

    DOT National Transportation Integrated Search

    2015-08-01

    This research project comprehensively tested and validated the automatic raveling detection, classification, : and measurement algorithms using 3D laser technology that were developed through a project sponsored by : the National Cooperative Highway ...

  3. Crackscope : automatic pavement cracking inspection system.

    DOT National Transportation Integrated Search

    2008-08-01

    The CrackScope system is an automated pavement crack rating system consisting of a : digital line scan camera, laser-line illuminator, and proprietary crack detection and classification : software. CrackScope is able to perform real-time pavement ins...

  4. DecoFungi: a web application for automatic characterisation of dye decolorisation in fungal strains.

    PubMed

    Domínguez, César; Heras, Jónathan; Mata, Eloy; Pascual, Vico

    2018-02-27

    Fungi have diverse biotechnological applications in, among others, agriculture, bioenergy generation, or remediation of polluted soil and water. In this context, culture media based on color change in response to degradation of dyes are particularly relevant; but measuring dye decolorisation of fungal strains mainly relies on a visual and semiquantitative classification of color intensity changes. Such a classification is a subjective, time-consuming and difficult to reproduce process. DecoFungi is the first, at least up to the best of our knowledge, application to automatically characterise dye decolorisation level of fungal strains from images of inoculated plates. In order to deal with this task, DecoFungi employs a deep-learning model, accessible through a user-friendly web interface, with an accuracy of 96.5%. DecoFungi is an easy to use system for characterising dye decolorisation level of fungal strains from images of inoculated plates.

  5. Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques

    NASA Technical Reports Server (NTRS)

    Messmore, J.; Copeland, G. E.; Levy, G. F.

    1975-01-01

    This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95%), and progress is being made towards identifying the mapped spectral classes.

  6. Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques

    NASA Technical Reports Server (NTRS)

    Messmore, J.; Copeland, G. E.; Levy, G. F.

    1975-01-01

    This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95 percent), and progress is being made towards identifying the mapped spectral classes.

  7. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  8. Automatic sleep stage classification using two facial electrodes.

    PubMed

    Virkkala, Jussi; Velin, Riitta; Himanen, Sari-Leena; Värri, Alpo; Müller, Kiti; Hasan, Joel

    2008-01-01

    Standard sleep stage classification is based on visual analysis of central EEG, EOG and EMG signals. Automatic analysis with a reduced number of sensors has been studied as an easy alternative to the standard. In this study, a single-channel electro-oculography (EOG) algorithm was developed for separation of wakefulness, SREM, light sleep (S1, S2) and slow wave sleep (S3, S4). The algorithm was developed and tested with 296 subjects. Additional validation was performed on 16 subjects using a low weight single-channel Alive Monitor. In the validation study, subjects attached the disposable EOG electrodes themselves at home. In separating the four stages total agreement (and Cohen's Kappa) in the training data set was 74% (0.59), in the testing data set 73% (0.59) and in the validation data set 74% (0.59). Self-applicable electro-oculography with only two facial electrodes was found to provide reasonable sleep stage information.

  9. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. From ClinicalTrials.gov trial registry to an analysis-ready database of clinical trial results.

    PubMed

    Cepeda, M Soledad; Lobanov, Victor; Berlin, Jesse A

    2013-04-01

    The ClinicalTrials.gov web site provides a convenient interface to look up study results, but it does not allow downloading data in a format that can be readily used for quantitative analyses. To develop a system that automatically downloads study results from ClinicalTrials.gov and provides an interface to retrieve study results in a spreadsheet format ready for analysis. Sherlock(®) identifies studies by intervention, population, or outcome of interest and in seconds creates an analytic database of study results ready for analyses. The outcome classification algorithms used in Sherlock were validated against a classification by an expert. Having a database ready for analysis that can be updated automatically, dramatically extends the utility of the ClinicalTrials.gov trial registry. It increases the speed of comparative research, reduces the need for manual extraction of data, and permits answering a vast array of questions.

  11. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  12. Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.

    PubMed

    Gaber, Tarek; Ismail, Gehad; Anter, Ahmed; Soliman, Mona; Ali, Mona; Semary, Noura; Hassanien, Aboul Ella; Snasel, Vaclav

    2015-08-01

    The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.

  13. Automatic segmentation and classification of mycobacterium tuberculosis with conventional light microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui

    2015-12-01

    This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.

  14. Automatic classification of visual evoked potentials based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  15. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  16. Towards the use of similarity distances to music genre classification: A comparative study.

    PubMed

    Goienetxea, Izaro; Martínez-Otzeta, José María; Sierra, Basilio; Mendialdua, Iñigo

    2018-01-01

    Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.

  17. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  18. Towards the use of similarity distances to music genre classification: A comparative study

    PubMed Central

    Martínez-Otzeta, José María; Sierra, Basilio; Mendialdua, Iñigo

    2018-01-01

    Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets –or clusters– and then generating in an automatic way a new song which is somehow “inspired” in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is. PMID:29444160

  19. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2018-01-01

    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.

  20. Learning the Structure of Biomedical Relationships from Unstructured Text

    PubMed Central

    Percha, Bethany; Altman, Russ B.

    2015-01-01

    The published biomedical research literature encompasses most of our understanding of how drugs interact with gene products to produce physiological responses (phenotypes). Unfortunately, this information is distributed throughout the unstructured text of over 23 million articles. The creation of structured resources that catalog the relationships between drugs and genes would accelerate the translation of basic molecular knowledge into discoveries of genomic biomarkers for drug response and prediction of unexpected drug-drug interactions. Extracting these relationships from natural language sentences on such a large scale, however, requires text mining algorithms that can recognize when different-looking statements are expressing similar ideas. Here we describe a novel algorithm, Ensemble Biclustering for Classification (EBC), that learns the structure of biomedical relationships automatically from text, overcoming differences in word choice and sentence structure. We validate EBC's performance against manually-curated sets of (1) pharmacogenomic relationships from PharmGKB and (2) drug-target relationships from DrugBank, and use it to discover new drug-gene relationships for both knowledge bases. We then apply EBC to map the complete universe of drug-gene relationships based on their descriptions in Medline, revealing unexpected structure that challenges current notions about how these relationships are expressed in text. For instance, we learn that newer experimental findings are described in consistently different ways than established knowledge, and that seemingly pure classes of relationships can exhibit interesting chimeric structure. The EBC algorithm is flexible and adaptable to a wide range of problems in biomedical text mining. PMID:26219079

  1. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  2. A Study of Mesoscale Probability Forecasting Performance Based on an Advanced Image Display System.

    DTIC Science & Technology

    1984-04-30

    CLASSIFICATION lb. RESTRICTIVE MARKINGS Uncl assified 2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT 2b. DE CLASSI FICAT... sensors in the surface network, an air-to-ground lightning detection system, and NWS 6Brown, R. C., 1983: Anatomy of a nesoscale instrumentation system...W. B. Sweezy, R. G. Strauch, E. R. Westwater, and C. G. Little, 1983: An automatic Profiler of the temperatura , wind, and humidity in the troposphere

  3. Towards the Optimal Pixel Size of dem for Automatic Mapping of Landslide Areas

    NASA Astrophysics Data System (ADS)

    Pawłuszek, K.; Borkowski, A.; Tarolli, P.

    2017-05-01

    Determining appropriate spatial resolution of digital elevation model (DEM) is a key step for effective landslide analysis based on remote sensing data. Several studies demonstrated that choosing the finest DEM resolution is not always the best solution. Various DEM resolutions can be applicable for diverse landslide applications. Thus, this study aims to assess the influence of special resolution on automatic landslide mapping. Pixel-based approach using parametric and non-parametric classification methods, namely feed forward neural network (FFNN) and maximum likelihood classification (ML), were applied in this study. Additionally, this allowed to determine the impact of used classification method for selection of DEM resolution. Landslide affected areas were mapped based on four DEMs generated at 1 m, 2 m, 5 m and 10 m spatial resolution from airborne laser scanning (ALS) data. The performance of the landslide mapping was then evaluated by applying landslide inventory map and computation of confusion matrix. The results of this study suggests that the finest scale of DEM is not always the best fit, however working at 1 m DEM resolution on micro-topography scale, can show different results. The best performance was found at 5 m DEM-resolution for FFNN and 1 m DEM resolution for results. The best performance was found to be using 5 m DEM-resolution for FFNN and 1 m DEM resolution for ML classification.

  4. Automatic classification of background EEG activity in healthy and sick neonates

    NASA Astrophysics Data System (ADS)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  5. Extracting biomedical events from pairs of text entities

    PubMed Central

    2015-01-01

    Background Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. Results We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. PMID:26201478

  6. Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise

    NASA Astrophysics Data System (ADS)

    Castro, Nicolás; Protopapas, Pavlos; Pichara, Karim

    2018-01-01

    Automatic classification methods applied to sky surveys have revolutionized the astronomical target selection process. Most surveys generate a vast amount of time series, or “lightcurves,” that represent the brightness variability of stellar objects in time. Unfortunately, lightcurves’ observations take several years to be completed, producing truncated time series that generally remain without the application of automatic classifiers until they are finished. This happens because state-of-the-art methods rely on a variety of statistical descriptors or features that present an increasing degree of dispersion when the number of observations decreases, which reduces their precision. In this paper, we propose a novel method that increases the performance of automatic classifiers of variable stars by incorporating the deviations that scarcity of observations produces. Our method uses Gaussian process regression to form a probabilistic model of each lightcurve’s observations. Then, based on this model, bootstrapped samples of the time series features are generated. Finally, a bagging approach is used to improve the overall performance of the classification. We perform tests on the MAssive Compact Halo Object (MACHO) and Optical Gravitational Lensing Experiment (OGLE) catalogs, results show that our method effectively classifies some variability classes using a small fraction of the original observations. For example, we found that RR Lyrae stars can be classified with ~80% accuracy just by observing the first 5% of the whole lightcurves’ observations in the MACHO and OGLE catalogs. We believe these results prove that, when studying lightcurves, it is important to consider the features’ error and how the measurement process impacts it.

  7. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.

    PubMed

    Diaz-Varela, R A; Zarco-Tejada, P J; Angileri, V; Loudjani, P

    2014-02-15

    Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Data fusion and classification using a hybrid intrinsic cellular inference network

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Walenz, Brett; Seiffertt, John; Robinette, Paul; Wunsch, Donald

    2010-04-01

    Hybrid Intrinsic Cellular Inference Network (HICIN) is designed for battlespace decision support applications. We developed an automatic method of generating hypotheses for an entity-attribute classifier. The capability and effectiveness of a domain specific ontology was used to generate automatic categories for data classification. Heterogeneous data is clustered using an Adaptive Resonance Theory (ART) inference engine on a sample (unclassified) data set. The data set is the Lahman baseball database. The actual data is immaterial to the architecture, however, parallels in the data can be easily drawn (i.e., "Team" maps to organization, "Runs scored/allowed" to Measure of organization performance (positive/negative), "Payroll" to organization resources, etc.). Results show that HICIN classifiers create known inferences from the heterogonous data. These inferences are not explicitly stated in the ontological description of the domain and are strictly data driven. HICIN uses data uncertainty handling to reduce errors in the classification. The uncertainty handling is based on subjective logic. The belief mass allows evidence from multiple sources to be mathematically combined to increase or discount an assertion. In military operations the ability to reduce uncertainty will be vital in the data fusion operation.

  9. Automated 3D Phenotype Analysis Using Data Mining

    PubMed Central

    Plyusnin, Ilya; Evans, Alistair R.; Karme, Aleksis; Gionis, Aristides; Jernvall, Jukka

    2008-01-01

    The ability to analyze and classify three-dimensional (3D) biological morphology has lagged behind the analysis of other biological data types such as gene sequences. Here, we introduce the techniques of data mining to the study of 3D biological shapes to bring the analyses of phenomes closer to the efficiency of studying genomes. We compiled five training sets of highly variable morphologies of mammalian teeth from the MorphoBrowser database. Samples were labeled either by dietary class or by conventional dental types (e.g. carnassial, selenodont). We automatically extracted a multitude of topological attributes using Geographic Information Systems (GIS)-like procedures that were then used in several combinations of feature selection schemes and probabilistic classification models to build and optimize classifiers for predicting the labels of the training sets. In terms of classification accuracy, computational time and size of the feature sets used, non-repeated best-first search combined with 1-nearest neighbor classifier was the best approach. However, several other classification models combined with the same searching scheme proved practical. The current study represents a first step in the automatic analysis of 3D phenotypes, which will be increasingly valuable with the future increase in 3D morphology and phenomics databases. PMID:18320060

  10. Application of Mls Data to the Assessment of Safety-Related Features in the Surrounding Area of Automatically Detected Pedestrian Crossings

    NASA Astrophysics Data System (ADS)

    Soilán, M.; Riveiro, B.; Sánchez-Rodríguez, A.; González-deSantos, L. M.

    2018-05-01

    During the last few years, there has been a huge methodological development regarding the automatic processing of 3D point cloud data acquired by both terrestrial and aerial mobile mapping systems, motivated by the improvement of surveying technologies and hardware performance. This paper presents a methodology that, in a first place, extracts geometric and semantic information regarding the road markings within the surveyed area from Mobile Laser Scanning (MLS) data, and then employs it to isolate street areas where pedestrian crossings are found and, therefore, pedestrians are more likely to cross the road. Then, different safety-related features can be extracted in order to offer information about the adequacy of the pedestrian crossing regarding its safety, which can be displayed in a Geographical Information System (GIS) layer. These features are defined in four different processing modules: Accessibility analysis, traffic lights classification, traffic signs classification, and visibility analysis. The validation of the proposed methodology has been carried out in two different cities in the northwest of Spain, obtaining both quantitative and qualitative results for pedestrian crossing classification and for each processing module of the safety assessment on pedestrian crossing environments.

  11. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  12. Patient-Specific Deep Architectural Model for ECG Classification

    PubMed Central

    Luo, Kan; Cuschieri, Alfred

    2017-01-01

    Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597

  13. Automatic classification of apnea/hypopnea events through sleep/wake states and severity of SDB from a pulse oximeter.

    PubMed

    Park, Jong-Uk; Lee, Hyo-Ki; Lee, Junghun; Urtnasan, Erdenebayar; Kim, Hojoong; Lee, Kyoung-Joung

    2015-09-01

    This study proposes a method of automatically classifying sleep apnea/hypopnea events based on sleep states and the severity of sleep-disordered breathing (SDB) using photoplethysmogram (PPG) and oxygen saturation (SpO2) signals acquired from a pulse oximeter. The PPG was used to classify sleep state, while the severity of SDB was estimated by detecting events of SpO2 oxygen desaturation. Furthermore, we classified sleep apnea/hypopnea events by applying different categorisations according to the severity of SDB based on a support vector machine. The classification results showed sensitivity performances and positivity predictive values of 74.2% and 87.5% for apnea, 87.5% and 63.4% for hypopnea, and 92.4% and 92.8% for apnea + hypopnea, respectively. These results represent better or comparable outcomes compared to those of previous studies. In addition, our classification method reliably detected sleep apnea/hypopnea events in all patient groups without bias in particular patient groups when our algorithm was applied to a variety of patient groups. Therefore, this method has the potential to diagnose SDB more reliably and conveniently using a pulse oximeter.

  14. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.

    PubMed

    Sandino, Juan; Wooler, Adam; Gonzalez, Felipe

    2017-09-24

    The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

  15. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence

    PubMed Central

    Jaworek-Korjakowska, Joanna; Kłeczek, Paweł

    2016-01-01

    Background. Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. Method. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. Results. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. Conclusions. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision. PMID:26885520

  16. Classification of Chemical Compounds to Support Complex Queries in a Pathway Database

    PubMed Central

    Weidemann, Andreas; Kania, Renate; Peiss, Christian; Rojas, Isabel

    2004-01-01

    Data quality in biological databases has become a topic of great discussion. To provide high quality data and to deal with the vast amount of biochemical data, annotators and curators need to be supported by software that carries out part of their work in an (semi-) automatic manner. The detection of errors and inconsistencies is a part that requires the knowledge of domain experts, thus in most cases it is done manually, making it very expensive and time-consuming. This paper presents two tools to partially support the curation of data on biochemical pathways. The tool enables the automatic classification of chemical compounds based on their respective SMILES strings. Such classification allows the querying and visualization of biochemical reactions at different levels of abstraction, according to the level of detail at which the reaction participants are described. Chemical compounds can be classified in a flexible manner based on different criteria. The support of the process of data curation is provided by facilitating the detection of compounds that are identified as different but that are actually the same. This is also used to identify similar reactions and, in turn, pathways. PMID:18629066

  17. LMD Based Features for the Automatic Seizure Detection of EEG Signals Using SVM.

    PubMed

    Zhang, Tao; Chen, Wanzhong

    2017-08-01

    Achieving the goal of detecting seizure activity automatically using electroencephalogram (EEG) signals is of great importance and significance for the treatment of epileptic seizures. To realize this aim, a newly-developed time-frequency analytical algorithm, namely local mean decomposition (LMD), is employed in the presented study. LMD is able to decompose an arbitrary signal into a series of product functions (PFs). Primarily, the raw EEG signal is decomposed into several PFs, and then the temporal statistical and non-linear features of the first five PFs are calculated. The features of each PF are fed into five classifiers, including back propagation neural network (BPNN), K-nearest neighbor (KNN), linear discriminant analysis (LDA), un-optimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM), for five classification cases, respectively. Confluent features of all PFs and raw EEG are further passed into the high-performance GA-SVM for the same classification tasks. Experimental results on the international public Bonn epilepsy EEG dataset show that the average classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases, and this indicates the effectiveness of the proposed approach for automated seizure detection.

  18. A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3

    PubMed Central

    Dietmann, Sabine; Park, Jong; Notredame, Cedric; Heger, Andreas; Lappe, Michael; Holm, Liisa

    2001-01-01

    The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families. PMID:11125048

  19. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.

    PubMed

    Jaworek-Korjakowska, Joanna; Kłeczek, Paweł

    2016-01-01

    Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.

  20. Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Bassier, M.; Vergauwen, M.; Van Genechten, B.

    2017-08-01

    Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.

Top