Sample records for automatic wedge filter

  1. [Spectral Study on the Effects of Angle-Tuned Filter Wedge Angle Parameter to Reflecting Characteristics].

    PubMed

    Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi

    2015-08-01

    Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.

  2. Rotating wedge filter photometer for high altitude sounding rocket application.

    PubMed

    Holm, C; Maehlum, B N; Narheim, B T

    1972-02-01

    A scanning photometer is described, utilizing a rotating wedge interference filter as the wavelength scanning element around 6300 A. A detailed description of the filter production is given, emphasizing the procedure for in situ wavelength control during fabrication. Subsequently, the complete photometer is briefly described, and some results from its applications on an auroral sounding rocket flight are presented.

  3. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  4. Dosimetric Characteristics of Wedged Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, N.P.S.; Breitman, Karen

    2015-01-15

    The beam characteristics of the wedged fields in the nonwedged planes (planes normal to the wedged planes) were studied for 6 MV and 15 MV x-ray beams. A method was proposed for determining the maximum field length of a wedged field that can be used in the nonwedged plane without introducing undesirable alterations in the dose distributions of these fields. The method requires very few measurements. The relative wedge factors of 6 MV and 15 MV X-rays were determined for wedge filters of nominal wedge angles of 15°, 30°, 45°, and 60° as a function of depth and field size.more » For a 6 MV beam the relative wedge factors determined for a field size of 10 × 10 cm{sup 2} for 30°, 45°, and 60° wedge filters can be used for various field sizes ranging from 4 cm{sup 2} to 20 cm{sup 2} (except for the 60° wedge for which the maximum field size that can be used is 15 × 20 cm{sup 2}) without introducing errors in the dosimetric calculations of more than 0.5% for depths up to 20 cm and 1% for depths up to 30 cm. For the 15° wedge filter the relative wedge factor for a field size of 10 × 10 cm{sup 2} can be used over the same range of field sizes by introducing slightly higher error, 0.5% for depths up to 10 cm and 1% for depths up to 30 cm. For a 15 MV beam the maximum magnitude of the relative wedge factors for 45° and 60° lead wedges is of the order of 1%, and it is not important clinically to apply a correction of that magnitude. For a 15 MV beam the relative wedge factors determined for a field size of 6 × 6 cm{sup 2} for the 15° and 30° steel wedges can be used over a range of field sizes from 4 cm{sup 2} to 20 cm{sup 2} without causing dosimetric errors greater than 0.5% for depths up to 10 cm.« less

  5. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  6. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  7. Proposal 11913-IR Filter Wedge Check

    NASA Astrophysics Data System (ADS)

    Sabbi, E.; MacKenty, J.; Borders, T.

    2010-08-01

    Variations in the thickness of a filter alter the path of the incoming light beam, causing an apparent displacement of the observed sources. Proposal 11913 was designed to verify the coplanarity of the WFC3/ IR filters, i.e. whether any of them was wedged, and if so, to evaluate the impact on the astrometry. We found that, with the exception of the F098M and F126N filters, the positions of stars observed through different filters, without moving the telescope, differ on average by less then 0.14 ±0.06 pixels and match the CEI specifications. In addition we found that the positional shifts increase along the X-axis and decrease along the Y-axis as a function of wavelength. The observed shifts are consistent with the fact that the refractive corrector plate (RCP) is tilted ~8.6 degree to the center of the field center chief ray.

  8. Fourier plane filters

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Aldrich, R. E.; Krol, F. T.

    1972-01-01

    An electrically addressed liquid crystal Fourier plane filter capable of real time optical image processing is described. The filter consists of two parts: a wedge filter having forty 9 deg segments and a ring filter having twenty concentric rings in a one inch diameter active area. Transmission of the filter in the off (transparent) state exceeds fifty percent. By using polarizing optics, contrast as high as 10,000:1 can be achieved at voltages compatible with FET switching technology. A phenomenological model for the dynamic scattering is presented for this special case. The filter is designed to be operated from a computer and is addressed by a seven bit binary word which includes an on or off command and selects any one of the twenty rings or twenty wedge pairs. The overall system uses addressable latches so that once an element is in a specified state, it will remain there until a change of state command is received. The drive for the liquid crystal filter is ? 30 V peak at 30 Hz to 70 Hz. These parameters give a rise time for the scattering of 20 msec and a decay time of 80 to 100 msec.

  9. Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array

    NASA Astrophysics Data System (ADS)

    Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.

    1995-06-01

    The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.

  10. Wedge filter imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Sémery, Alain; Réess, Jean-Michel; Lemarquis, Frédéric; Drossart, Pierre; Laubier, David; Bernardi, Pernelle

    2017-11-01

    The development of the planetary exploration for landers makes it more and more necessary to have at our disposal small and light instruments. This is why we are developing in our laboratory a light imaging spectrometer with a wedge filter making the spectral splitting. This design already developed in other laboratories has the great advantage to need a limited number of optical components. However its drawback is that at a given instant the different spectral pixels don't see the same spot in the field. We propose a new design to remedy this drawback by the adjunction of a dispersive system in the fore-optics.

  11. Radiance calibration of the High Altitude Observatory white-light coronagraph on Skylab

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Macqueen, R. M.; Munro, R. H.; Gosling, J. T.

    1977-01-01

    The processing of over 35,000 photographs of the solar corona obtained by the white-light coronograph on Skylab is described. Calibration of the vast amount of data was complicated by temporal effects of radiation fog and latent image loss. These effects were compensated by imaging a calibration step wedge on each data frame. Absolute calibration of the wedge was accomplished through comparison with a set of previously calibrated glass opal filters. Analysis employed average characteristic curves derived from measurements of step wedges from many frames within a given camera half-load. The net absolute accuracy of a given radiance measurement is estimated to be 20%.

  12. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  13. In vivo skin dose measurement in breast conformal radiotherapy.

    PubMed

    Soleymanifard, Shokouhozaman; Aledavood, Seyed Amir; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David

    2016-01-01

    Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution.

  14. Wedge filter imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Bernardi, Pernelle; Bonafous, M.; Motisi, M.; Reess, J.-M.; Tanrin, J.; Laubier, D.

    2017-11-01

    LESIA (Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Meudon) has an extensive experience in visible and infrared imaging spectrometry with several instruments onboard planetary space missions (MarsExpress/OMEGA, VenusExpress/VIRTIS, Rosetta/VIRTIS).

  15. Evaluation of contralateral breast skin doses by thermoluminescent dosimeters of patients receiving adjuvant radiotherapy for breast cancer.

    PubMed

    Gorken, I B; Kentli, S; Alanyali, H; Karagüler, Z; Kinay, M

    2002-01-01

    It is reported that low dose radiation received by the contralateral breast (CLB) during adjuvant radiotherapy (RT) is carcinogenic. This trial was planned to evaluate the CLB skin doses received during adjuvant RT of breast carcinoma. Twenty-four breast carcinoma patients treated locally or locoregionally with adjuvant RT were included. RT was performed with only tangential fields (TA) in 6 patients whereas 9 patients had an extra internal mammary (IM) field (TAIM). The remaining 9 patients received 5-field locoregional RT (5FLR). All patients were treated with wedge filters except for 3 TA patients. Of 9 5FLR patients IM fields were treated with Co60 in 5 and with electrons in the remaining 4 patients. LiF(2)-based Ribbon type thermoluminescent dosimeters (TLD) were used for dose evaluation. An average of 10 TLD's, placed with 1 cm gaps beginning from the medial border of the treatment field along the central axis were used to obtain dose measurements. Median measure of TLD's between 2-8 cm and maximum dose point (MDP) values in the same range were used to evaluate the CLB dose. In TA patients the CLB skin received 6.3% of the total dose in patients treated with wedge filters and 7.13% with half-beam blocks. For 6 TAIM patients with IM fields treated with Co60, the CLB dose was 7.24%. In 5 of 9 5FLR patients, whose IM fields were treated with Co60 the CLB skin received 8.8% of the total dose, while for electron beam therapy the CLB dose was 5.44%. CLB median MDP values were as follows: 12.76% in TA patients treated with wedge filters and 11.45% with half-beam blocking; 11.89% in TAIM patients with IM fields treated with Co60 and 7.83% with electron beams; 12.29% in 5FLR patients of whose IM fields were treated with Co60 and 8.94% with electron beams. When compared to wedge filters, halfbeam blocks caused 13% increase in CLB doses. If IM fields were added, 27.5% and 62% increases at CLB doses were established with Co60 when compared to electron beam RT in 3-field and 5-field treatments, respectively. CLB doses increased by 15-40% with the increased number of treatment fields. MDP values were also found to be higher with IM fields treated with Co60, but the number of treatment fields and accessories used seemed to have no effect on MDP doses. We conclude that by using wedge filters instead of half-beam blocks and by increasing the number of fractions treated with electron energies for IM fields, apparent decreases in CLB doses can be obtained. Large number of cases is needed to statistically establish the significant differences between subgroups.

  16. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE PAGES

    Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...

    2016-11-30

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  17. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Rasool, Haider I.; Linck, Martin

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  18. Analysis of coal seam thickness and seismic wave amplitude: A wedge model

    NASA Astrophysics Data System (ADS)

    Zou, Guangui; Xu, Zhiliang; Peng, Suping; Fan, Feng

    2018-01-01

    Coal seam thickness is of great significance in mining coal resources. The focus of this study is to determine the relationship between coal seam thickness and seismic wave amplitude, and the factors influencing this relationship. We used a wedge model to analyze this relationship and its influencing factors. The results show that wave interference from the top and bottom interfaces is the primary reason for the linear relationship between seismic wave amplitude and wedge thickness, when the thickness of the wedge is less than one quarter of the wavelength. This relationship is influenced by the dominant frequency, reflection coefficients from the top and bottom boundaries, depth, thickness, and angle of the wedge. However, when the lateral shift between the reflected waves is smaller than the radius of the first Fresnel zone, the wedge angle and change in lithology at the top and bottom layers are considered to have little effect on the amplitude of the interference wave. The difference in the dominant frequency of seismic waves can be reduced by filtering, and the linear relationship between amplitude and coal thickness can be improved. Field data from Sihe coal mine was analyzed, and the error was found to be within 4% of the predicted seismic wave amplitude. The above conclusions could help predict the thickness of coal seam by seismic amplitude.

  19. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  20. Modeling of a multileaf collimator

    NASA Astrophysics Data System (ADS)

    Kim, Siyong

    A comprehensive physics model of a multileaf collimator (MLC) field for treatment planning was developed. Specifically, an MLC user interface module that includes a geometric optimization tool and a general method of in- air output factor calculation were developed. An automatic tool for optimization of MLC conformation is needed to realize the potential benefits of MLC. It is also necessary that a radiation therapy treatment planning (RTTP) system is capable of modeling MLC completely. An MLC geometric optimization and user interface module was developed. The planning time has been reduced significantly by incorporating the MLC module into the main RTTP system, Radiation Oncology Computer System (ROCS). The dosimetric parameter that has the most profound effect on the accuracy of the dose delivered with an MLC is the change in the in-air output factor that occurs with field shaping. It has been reported that the conventional method of calculating an in-air output factor cannot be used for MLC shaped fields accurately. Therefore, it is necessary to develop algorithms that allow accurate calculation of the in-air output factor. A generalized solution for an in-air output factor calculation was developed. Three major contributors of scatter to the in-air output-flattening filter, wedge, and tertiary collimator-were considered separately. By virtue of a field mapping method, in which a source plane field determined by detector's eye view is mapped into a detector plane field, no additional dosimetric data acquisition other than the standard data set for a range of square fields is required for the calculation of head scatter. Comparisons of in-air output factors between calculated and measured values show a good agreement for both open and wedge fields. For rectangular fields, a simple equivalent square formula was derived based on the configuration of a linear accelerator treatment head. This method predicts in-air output to within 1% accuracy. A two-effective-source algorithm was developed to account for the effect of source to detector distance on in-air output for wedge fields. Two effective sources, one for head scatter and the other for wedge scatter, were dealt with independently. Calculations provided less than 1% difference of in-air output factors from measurements. This approach offers the best comprehensive accuracy in radiation delivery with field shapes defined using MLC. This generalized model works equally well with fields shaped by any type of tertiary collimator and have the necessary framework to extend its application to intensity modulated radiation therapy.

  1. Experimental and Numerical Investigation of Air Radiation in Superorbital Expanding Flow

    NASA Technical Reports Server (NTRS)

    Wei, Han; Morgan, Richard G.; McIntyre, Timothy J.; Brandis, Aaron M.; Johnston, Christopher O.

    2017-01-01

    To investigate air radiation in expanding flows and provide experimental data for validating associated computational models, experiments were conducted in the X2 expansion tunnel facility at the Centre for Hypersonics of the University of Queensland. A 54 turning angle wedge model was employed to generate steady expanding flows with in flow total enthalpies of 50.7, 63.4 and 75.4 MJkg. VUV spectra from 118 to 180 nm were acquired across the wedge at three equispaced distances away from the top of the model, as well as through its top surface. High speed filtered images were also obtained by coupling a Shimadzu 1 MHz high speed camera to a bandpass filter to obtain calibrated images of the 777 nm oxygen triplet. Both the across-wedge VUV spectra and filtered images of the 777 nm atomic oxygen were compared with NEQAIR simulations, which were performed using flow field data from two-dimensional CFD simulations with two-temperature 11-species air chemistry utilizing the in-house Navier-Stokes flow solver Eilmer3. Data extracted from consecutive frames of the filtered high speed images confirmed up to 8 s of available test time for the flow conditions tested. For the strongly radiating 149 and 174 nm atomic nitrogen lines, large disagreement between experimental data and NEQAIR predictions can be observed from the start of the expansion fan where the electron-ion recombination process commences. The spatial extent, or spans of the radiance profiles of the 149 and 174 nm N lines are significantly under predicted by NEQAIR, and are very close to those of N, N+ and electron number density profiles, which follow that of flow density. The electron-ion recombination process is proposed as the main reason for these discrepancies. The comparisons between NEQAIR simulations and filtered images of the 777 nm oxygen triplet show good agreement in the post-shock compression region and the start of the expansion fan for the 63.4 MJkg condition, but with up to a factor of three over prediction by NEQAIR further downstream, which is attributed to electron-impact excitation. Similar trends are found with the 75.4 MJkg condition, with reduced level of agreement in the compression region, which can be due to uncertainties in inflow condition.

  2. Experimental and Numerical Investigation of Air Radiation in Superorbital Expanding Flow

    NASA Technical Reports Server (NTRS)

    Wei, Han; Morgan, Richard G.; Mcintyre, Timothy J.; Brandis, Aaron M.; Johnston, Christopher O.

    2017-01-01

    To investigate air radiation in expanding flows and provide experimental data for validating associated computational models, experiments were conducted in the X2 expansion tunnel facility at the Centre for Hypersonics of the University of Queensland. A 54deg turning angle wedge model was employed to generate steady expanding flows with in flow total enthalpies of 50.7, 63.4 and 75.4 MJ/kg. VUV spectra from 118 to 180 nm were acquired across the wedge at three equispaced distances away from the top of the model, as well as through its top surface. High speed filtered images were also obtained by coupling a Shimadzu 1 MHz high speed camera to a bandpass filter to obtain calibrated images of the 777 nm oxygen triplet. Both the across-wedge VUV spectra and filtered images of the 777 nm atomic oxygen were compared with NEQAIR simulations, which were performed using flow field data from two-dimensional CFD simulations with two-temperature 11-species air chemistry utilising the in-house Navier-Stokes flow solver Eilmer3. Data extracted from consecutive frames of the filtered high speed images confirmed up to 8 s of available test time for the flow conditions tested. For the strongly radiating 149 and 174 nm atomic nitrogen lines, large disagreement between experimental data and NEQAIR predictions can be observed from the start of the expansion fan where the electron-ion recombination process commences. The spatial extent, or spans of the radiance profiles of the 149 and 174 nm N lines are significantly underpredicted by NEQAIR, and are very close to those of N, N+ and electron number density profiles, which follow that of flow density. The electron-ion recombination process is proposed as the main reason for these discrepancies. The comparisons between NEQAIR simulations and filtered images of the 777 nm oxygen triplet show good agreement in the post-shock compression region and the start of the expansion fan for the 63.4 MJ/kg condition, but with up to a factor of three overprediction by NEQAIR further downstream, which is attributed to electron-impact excitation. Similar trends are found with the 75.4 MJ/kg condition, with reduced level of agreement in the compression region, which can be due to uncertainties in inflow condition.

  3. Automatic vibration mode selection and excitation; combining modal filtering with autoresonance

    NASA Astrophysics Data System (ADS)

    Davis, Solomon; Bucher, Izhak

    2018-02-01

    Autoresonance is a well-known nonlinear feedback method used for automatically exciting a system at its natural frequency. Though highly effective in exciting single degree of freedom systems, in its simplest form it lacks a mechanism for choosing the mode of excitation when more than one is present. In this case a single mode will be automatically excited, but this mode cannot be chosen or changed. In this paper a new method for automatically exciting a general second-order system at any desired natural frequency using Autoresonance is proposed. The article begins by deriving a concise expression for the frequency of the limit cycle induced by an Autoresonance feedback loop enclosed on the system. The expression is based on modal decomposition, and provides valuable insight into the behavior of a system controlled in this way. With this expression, a method for selecting and exciting a desired mode naturally follows by combining Autoresonance with Modal Filtering. By taking various linear combinations of the sensor signals, by orthogonality one can "filter out" all the unwanted modes effectively. The desired mode's natural frequency is then automatically reflected in the limit cycle. In experiment the technique has proven extremely robust, even if the amplitude of the desired mode is significantly smaller than the others and the modal filters are greatly inaccurate.

  4. The research of full automatic oil filtering control technology of high voltage insulating oil

    NASA Astrophysics Data System (ADS)

    Gong, Gangjun; Zhang, Tong; Yan, Guozeng; Zhang, Han; Chen, Zhimin; Su, Chang

    2017-09-01

    In this paper, the design scheme of automatic oil filter control system for transformer oil in UHV substation is summarized. The scheme specifically includes the typical double tank filter connection control method of the transformer oil of the UHV substation, which distinguishes the single port and the double port connection structure of the oil tank. Finally, the design scheme of the temperature sensor and respirator is given in detail, and the detailed evaluation and application scenarios are given for reference.

  5. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    PubMed

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  6. Automatic Certification of Kalman Filters for Reliable Code Generation

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd; Schumann, Johann; Richardson, Julian

    2005-01-01

    AUTOFILTER is a tool for automatically deriving Kalman filter code from high-level declarative specifications of state estimation problems. It can generate code with a range of algorithmic characteristics and for several target platforms. The tool has been designed with reliability of the generated code in mind and is able to automatically certify that the code it generates is free from various error classes. Since documentation is an important part of software assurance, AUTOFILTER can also automatically generate various human-readable documents, containing both design and safety related information. We discuss how these features address software assurance standards such as DO-178B.

  7. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, M; Salinas Aranda, F; 21st Century Oncology, Ft. Myers, FL

    2014-06-01

    Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanningmore » system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.« less

  8. Design of Complex BPF with Automatic Digital Tuning Circuit for Low-IF Receivers

    NASA Astrophysics Data System (ADS)

    Kondo, Hideaki; Sawada, Masaru; Murakami, Norio; Masui, Shoichi

    This paper describes the architecture and implementations of an automatic digital tuning circuit for a complex bandpass filter (BPF) in a low-power and low-cost transceiver for applications such as personal authentication and wireless sensor network systems. The architectural design analysis demonstrates that an active RC filter in a low-IF architecture can be at least 47.7% smaller in area than a conventional gm-C filter; in addition, it features a simple implementation of an associated tuning circuit. The principle of simultaneous tuning of both the center frequency and bandwidth through calibration of a capacitor array is illustrated as based on an analysis of filter characteristics, and a scalable automatic digital tuning circuit with simple analog blocks and control logic having only 835 gates is introduced. The developed capacitor tuning technique can achieve a tuning error of less than ±3.5% and lower a peaking in the passband filter characteristics. An experimental complex BPF using 0.18µm CMOS technology can successfully reduce the tuning error from an initial value of -20% to less than ±2.5% after tuning. The filter block dimensions are 1.22mm × 1.01mm; and in measurement results of the developed complex BPF with the automatic digital tuning circuit, current consumption is 705µA and the image rejection ratio is 40.3dB. Complete evaluation of the BPF indicates that this technique can be applied to low-power, low-cost transceivers.

  9. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  10. Global HRSC Image Mosaics of Mars: Dodging for High-Pass Filtering, Combined with Low-Pass-Filtered OMEGA Mosaics

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Walter, S. H. G.; van Gasselt, S.; Dumke, A.; Dunker, T.; Gross, C.; Michael, G.; Wendt, L.; Audouard, J.; Ody, A.; Poulet, F.

    2014-07-01

    We discuss our approach towards automatically mosaicking hundreds of the HRSC panchromatic or RGB images together. Our best results consist of adding a high-pass-filtered HRSC mosaic to a low-pass-filtered OMEGA global mosaic.

  11. Filter type gas sampler with filter consolidation

    DOEpatents

    Miley, Harry S.; Thompson, Robert C.; Hubbard, Charles W.; Perkins, Richard W.

    1997-01-01

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, whereafter the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant.

  12. Filter type gas sampler with filter consolidation

    DOEpatents

    Miley, H.S.; Thompson, R.C.; Hubbard, C.W.; Perkins, R.W.

    1997-03-25

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, where after the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant. 5 figs.

  13. Device to color modulate a stationary light beam gives high intensity

    NASA Technical Reports Server (NTRS)

    Gantz, W. A.

    1966-01-01

    Signal controlled system color modulates a beam of light while also providing high intensity and a stationary beam, either collimated or focused. The color modulation acquired by the presented system can be compatible with any color film by employing color filters formed to provide a color wedge having a color distribution compatible with the films color sensitivity.

  14. Automatic x-ray image contrast enhancement based on parameter auto-optimization.

    PubMed

    Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan

    2017-11-01

    Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more accurate treatment setup and facilitating the subsequent offline review and verification. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Automatic selection of optimal Savitzky-Golay filter parameters for Coronary Wave Intensity Analysis.

    PubMed

    Rivolo, Simone; Nagel, Eike; Smith, Nicolas P; Lee, Jack

    2014-01-01

    Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. The cWIA ability to establish a mechanistic link between coronary haemodynamics measurements and the underlying pathophysiology has been widely demonstrated. Moreover, the prognostic value of a cWIA-derived metric has been recently proved. However, the clinical application of cWIA has been hindered due to the strong dependence on the practitioners, mainly ascribable to the cWIA-derived indices sensitivity to the pre-processing parameters. Specifically, as recently demonstrated, the cWIA-derived metrics are strongly sensitive to the Savitzky-Golay (S-G) filter, typically used to smooth the acquired traces. This is mainly due to the inability of the S-G filter to deal with the different timescale features present in the measured waveforms. Therefore, we propose to apply an adaptive S-G algorithm that automatically selects pointwise the optimal filter parameters. The newly proposed algorithm accuracy is assessed against a cWIA gold standard, provided by a newly developed in-silico cWIA modelling framework, when physiological noise is added to the simulated traces. The adaptive S-G algorithm, when used to automatically select the polynomial degree of the S-G filter, provides satisfactory results with ≤ 10% error for all the metrics through all the levels of noise tested. Therefore, the newly proposed method makes cWIA fully automatic and independent from the practitioners, opening the possibility to multi-centre trials.

  16. Elimination of gases and contamination from water

    NASA Technical Reports Server (NTRS)

    Buck, A. P.

    1970-01-01

    Filtration system with membrane type hydrophilic and hydrophobic filters gives absolute filtration with automatic venting of freed gases, and prevents backward transmission of contamination with no bacterial growth through the filters. Filter aids in degassing industrial solutions and in removing oxygen from sea water.

  17. Pattern recognition invariant under changes of scale and orientation

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1997-08-01

    We have used a modified method proposed by neiberg and Casasent to successfully classify five kinds of military vehicles. The method uses a wedge filter to achieve scale invariance, and lines in a multi-dimensional feature space correspond to each target with out-of-plane orientations over 360 degrees around a vertical axis. The images were not binarized, but were filtered in a preprocessing step to reduce aliasing. The feature vectors were normalized and orthogonalized by means of a neural network. Out-of-plane rotations of 360 degrees and scale changes of a factor of four were considered. Error-free classification was achieved.

  18. Seeing the unseen: Complete volcano deformation fields by recursive filtering of satellite radar interferograms

    NASA Astrophysics Data System (ADS)

    Gonzalez, Pablo J.

    2017-04-01

    Automatic interferometric processing of satellite radar data has emerged as a solution to the increasing amount of acquired SAR data. Automatic SAR and InSAR processing ranges from focusing raw echoes to the computation of displacement time series using large stacks of co-registered radar images. However, this type of interferometric processing approach demands the pre-described or adaptive selection of multiple processing parameters. One of the interferometric processing steps that much strongly influences the final results (displacement maps) is the interferometric phase filtering. There are a large number of phase filtering methods, however the "so-called" Goldstein filtering method is the most popular [Goldstein and Werner, 1998; Baran et al., 2003]. The Goldstein filter needs basically two parameters, the size of the window filter and a parameter to indicate the filter smoothing intensity. The modified Goldstein method removes the need to select the smoothing parameter based on the local interferometric coherence level, but still requires to specify the dimension of the filtering window. An optimal filtered phase quality usually requires careful selection of those parameters. Therefore, there is an strong need to develop automatic filtering methods to adapt for automatic processing, while maximizing filtered phase quality. Here, in this paper, I present a recursive adaptive phase filtering algorithm for accurate estimation of differential interferometric ground deformation and local coherence measurements. The proposed filter is based upon the modified Goldstein filter [Baran et al., 2003]. This filtering method improves the quality of the interferograms by performing a recursive iteration using variable (cascade) kernel sizes, and improving the coherence estimation by locally defringing the interferometric phase. The method has been tested using simulations and real cases relevant to the characteristics of the Sentinel-1 mission. Here, I present real examples from C-band interferograms showing strong and weak deformation gradients, with moderate baselines ( 100-200 m) and variable temporal baselines of 70 and 190 days over variable vegetated volcanoes (Mt. Etna, Hawaii and Nyragongo-Nyamulagira). The differential phase of those examples show intense localized volcano deformation and also vast areas of small differential phase variation. The proposed method outperforms the classical Goldstein and modified Goldstein filters by preserving subtle phase variations where the deformation fringe rate is high, and effectively suppressing phase noise in smoothly phase variation regions. Finally, this method also has the additional advantage of not requiring input parameters, except for the maximum filtering kernel size. References: Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., Lilly, P., (2003) A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing, vol. 41, No. 9., doi:10.1109/TGRS.2003.817212 Goldstein, R.M., Werner, C.L. (1998) Radar interferogram filtering for geophysical applications, Geophysical Research Letters, vol. 25, No. 21, 4035-4038, doi:10.1029/1998GL900033

  19. Development of an optimal automatic control law and filter algorithm for steep glideslope capture and glideslope tracking

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1976-01-01

    A digital automatic control law to capture a steep glideslope and track the glideslope to a specified altitude is developed for the longitudinal/vertical dynamics of a CTOL aircraft using modern estimation and control techniques. The control law uses a constant gain Kalman filter to process guidance information from the microwave landing system, and acceleration from body mounted accelerometer data. The filter outputs navigation data and wind velocity estimates which are used in controlling the aircraft. Results from a digital simulation of the aircraft dynamics and the control law are presented for various wind conditions.

  20. Automatic assembly of micro-optical components

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.

    1996-12-01

    Automatic assembly becomes an important issue as hybrid micro systems enter industrial fabrication. Moving from a laboratory scale production with manual assembly and bonding processes to automatic assembly requires a thorough re- evaluation of the design, the characteristics of the individual components and of the processes involved. Parts supply for automatic operation, sensitive and intelligent grippers adapted to size, surface and material properties of the microcomponents gain importance when the superior sensory and handling skills of a human are to be replaced by a machine. This holds in particular for the automatic assembly of micro-optical components. The paper outlines these issues exemplified at the automatic assembly of a micro-optical duplexer consisting of a micro-optical bench fabricated by the LIGA technique, two spherical lenses, a wavelength filter and an optical fiber. Spherical lenses, wavelength filter and optical fiber are supplied by third party vendors, which raises the question of parts supply for automatic assembly. The bonding processes for these components include press fit and adhesive bonding. The prototype assembly system with all relevant components e.g. handling system, parts supply, grippers and control is described. Results of first automatic assembly tests are presented.

  1. SU-E-T-484: In Vivo Dosimetry Tolerances in External Beam Fast Neutron Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Gopan, O

    Purpose: Optical stimulated luminescence (OSL) dosimetry with Landauer Al2O3:C nanodots was developed at our institution as a passive in vivo dosimetry (IVD) system for patients treated with fast neutron therapy. The purpose of this study was to establish clinically relevant tolerance limits for detecting treatment errors requiring further investigation. Methods: Tolerance levels were estimated by conducting a series of IVD expected dose calculations for square field sizes ranging between 2.8 and 28.8 cm. For each field size evaluated, doses were calculated for open and internal wedged fields with angles of 30°, 45°, or 60°. Theoretical errors were computed for variationsmore » of incorrect beam configurations. Dose errors, defined as the percent difference from the expected dose calculation, were measured with groups of three nanodots placed in a 30 x 30 cm solid water phantom, at beam isocenter (150 cm SAD, 1.7 cm Dmax). The tolerances were applied to IVD patient measurements. Results: The overall accuracy of the nanodot measurements is 2–3% for open fields. Measurement errors agreed with calculated errors to within 3%. Theoretical estimates of dosimetric errors showed that IVD measurements with OSL nanodots will detect the absence of an internal wedge or a wrong wedge angle. Incorrect nanodot placement on a wedged field is more likely to be caught if the offset is in the direction of the “toe” of the wedge where the dose difference in percentage is about 12%. Errors caused by an incorrect flattening filter size produced a 2% measurement error that is not detectable by IVD measurement alone. Conclusion: IVD with nanodots will detect treatment errors associated with the incorrect implementation of the internal wedge. The results of this study will streamline the physicists’ investigations in determining the root cause of an IVD reading that is out of normally accepted tolerances.« less

  2. Automatic Thesaurus Generation for an Electronic Community System.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; And Others

    1995-01-01

    This research reports an algorithmic approach to the automatic generation of thesauri for electronic community systems. The techniques used include term filtering, automatic indexing, and cluster analysis. The Worm Community System, used by molecular biologists studying the nematode worm C. elegans, was used as the testbed for this research.…

  3. An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data.

    PubMed

    Pollnow, S; Pilia, N; Schwaderlapp, G; Loewe, A; Dössel, O; Lenis, G

    2018-06-04

    Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    PubMed

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining.

    PubMed

    Hettne, Kristina M; Williams, Antony J; van Mulligen, Erik M; Kleinjans, Jos; Tkachenko, Valery; Kors, Jan A

    2010-03-23

    Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist.

  6. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining

    PubMed Central

    2010-01-01

    Background Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. Results We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. Conclusions We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist. PMID:20331846

  7. Development of a digital guidance and control law for steep approach automatic landings using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1979-01-01

    The development of a digital automatic control law for a small jet transport to perform a steep final approach in automatic landings is reported along with the development of a steady-state Kalman filter used to provide smooth estimates to the control law. The control law performs the functions of localizer and glides capture, localizer and glideslope track, decrab, and place. The control law uses the microwave landing system position data, and aircraft body-mounted accelerators, attitude and attitude rate information. The results obtained from a digital simulation of the aircraft dynamics, wind conditions, and sensor noises using the control law and filter developed are described.

  8. Preliminary Engineering Design Package for the Basin A Neck Groundwater Intercept and Treatment System Interim Response Action

    DTIC Science & Technology

    1989-02-01

    INDICATOR pPOST-FILTERED VITER RPUESIC POST-FILTRATION POLYMER SOLUTION MCUUM BREAKER FILTRATION POLYMER D*+RENTALkL PRESSURE SWITCH FEED PUMPS POLYMER...differential pressure switch signals the need for backwash of the operating filter. At this time, flow is S automatically switched to the standby filter...filter is undergoing backwash or on standby. High differential pressure across the filter bed, as sensed by a differential pressure switch , signals

  9. Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges.

    PubMed

    Jeong, Mi-Yun; Mang, Jin Yeob

    2018-03-10

    Spatially continuous tunable optical notch and band-pass filter systems that cover the visible (VIS) and near-infrared (NIR) spectral ranges from ∼460  nm to ∼1,000  nm are realized by combining left- and right-handed circular cholesteric liquid crystal (CLC) wedge cells with continuous pitch gradient. The notch filter system is polarization independent in all of the spectral ranges. The band-pass filter system, when the left- and right-handed CLCs are arranged in a row, is polarization independent, while when they are arranged at right angles, they are polarization dependent; furthermore, the full-width at half-maximum of the band-pass filter can be changed reversibly from the original bandwidth of 36 nm to 16 nm. Depending on the CLC materials, this strategy could be applied to the UV, VIS, and IR spectral ranges. Due to the high performance in the broad spectral range, cost-effective facile fabrication process, simple mechanical control, and small size, it is expected that our optical tunable filter strategies could become one of the key parts of laser-based Raman spectroscopy, fluorescence, life science devices, optical communication systems, astronomical telescopes, and so forth.

  10. Images and Spectral Performance of WFC3 Interference Filters

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Boucarut, R.; Telfer, R.; Baggett, S.; Quijano, J. Kim; Allen, George; Arsenovic, Peter

    2006-01-01

    The Wide Field Camera 3 (WFC3) is a panchromatic imager that will be deployed in the Hubble Space Telescope (HST). The mission of the WFC3 is to enhance HST1s imaging capability in the ultraviolet, visible and near-infrared spectral regions. Together with a wavelength coverage spanning 2000A to 1.7 micron, the WFC3 high sensitivity, high spatial resolution, and large field-of-view provide the astronomer with an unprecedented set of tools for exploring all types of exciting astrophysical terrain and for addressing many key questions in astronomy today. The filter compliment, which includes broad, medium, and narrow band filters, naturally reflects the diversity of astronomical programs to be targeted with WFC3. The WFC3 holds 61 UVIS filters elements, 14 IR filters, and 3 dispersive elements. During ground testing, the majority of the UVIS filters were found to exhibit excellent performance consistent with or exceeding expectations; however, a subset of filters showed considerable ghost images; some with relative intensity as high as 10-15%. Replacement filters with band-defining coatings that substantially reduce these ghost images were designed and procured. A state-of-the-art characterization setup was developed to measured the intensity of ghost images, focal shift, wedge direction , transmitted uniformity and surface feature of filters that could effect uniform flat field images. We will report on this new filter characterization methods, as well as the spectral performance measurements of the in-band transmittance and blocking.

  11. Improved understanding of the loss-of-symmetry phenomenon in the conventional Kalman filter

    NASA Technical Reports Server (NTRS)

    Verhaegen, M. H.

    1987-01-01

    This paper corrects an unclear treatment of the conventional Kalman filter implementation as presented by M. H. Verhaegen and P. van Dooren in Numerical aspects of different Kalman filter implementations, IEEE Trans. Automat. Contr., v. AC-31, no. 10, pp. 907-917, 1986. It is shown that habitual, incorrect implementation of the Kalman filter has been the major cause of its sensitivity to the so-called loss-of-symmetry phenomenon.

  12. Wedge imaging spectrometer: application to drug and pollution law enforcement

    NASA Astrophysics Data System (ADS)

    Elerding, George T.; Thunen, John G.; Woody, Loren M.

    1991-08-01

    The Wedge Imaging Spectrometer (WIS) represents a novel implementation of an imaging spectrometer sensor that is compact and rugged and, therefore, suitable for use in drug interdiction and pollution monitoring activities. With performance characteristics equal to comparable conventional imaging spectrometers, it would be capable of detecting and identifying primary and secondary indicators of drug activities and pollution events. In the design, a linear wedge filter is mated to an area array of detectors to achieve two-dimensional sampling of the combined spatial/spectral information passed by the filter. As a result, the need for complex and delicate fore optics is avoided, and the size and weight of the instrument are approximately 50% that of comparable sensors. Spectral bandwidths can be controlled to provide relatively narrow individual bandwidths over a broad spectrum, including all visible and infrared wavelengths. This sensor concept has been under development at the Hughes Aircraft Co. Santa Barbara Research Center (SBRC), and hardware exists in the form of a brassboard prototype. This prototype provides 64 spectral bands over the visible and near infrared region (0.4 to 1.0 micrometers ). Implementation issues have been examined, and plans have been formulated for packaging the sensor into a test-bed aircraft for demonstration of capabilities. Two specific areas of utility to the drug interdiction problem are isolated: (1) detection and classification of narcotic crop growth areas and (2) identification of coca processing sites, cued by the results of broad-area survey and collateral information. Vegetation stress and change-detection processing may also be useful in detecting active from dormant airfields. For pollution monitoring, a WIS sensor could provide data with fine spectral and spatial resolution over suspect areas. On-board or ground processing of the data would isolate the presence of polluting effluents, effects on vegetation caused by airborne or other pollutants, or anomalous ground conditions indicative of buried or dumped toxic materials.

  13. A simple method for electron energy constancy measurement

    PubMed Central

    King, R. Paul; Anderson, R. Scott

    2001-01-01

    A device is described for use in confirming the energy constancy of clinical electron beams. A wedge shaped absorber is placed over an ionization chamber leading to an energy dependent response. A measurement under the energy filter is divided by a measurement in air to correct for the inherent energy dependence of the chamber. A nearly linear response is demonstrated. PACS number(s): 87.52.–g, 87.53.–j, 87.66.–a PMID:11674838

  14. Automatic rule generation for high-level vision

    NASA Technical Reports Server (NTRS)

    Rhee, Frank Chung-Hoon; Krishnapuram, Raghu

    1992-01-01

    A new fuzzy set based technique that was developed for decision making is discussed. It is a method to generate fuzzy decision rules automatically for image analysis. This paper proposes a method to generate rule-based approaches to solve problems such as autonomous navigation and image understanding automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.

  15. Development and testing of a portable wind sensitive directional air sampler

    NASA Technical Reports Server (NTRS)

    Deyo, J.; Toma, J.; King, R. B.

    1975-01-01

    A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.

  16. Automating Traceability for Generated Software Artifacts

    NASA Technical Reports Server (NTRS)

    Richardson, Julian; Green, Jeffrey

    2004-01-01

    Program synthesis automatically derives programs from specifications of their behavior. One advantage of program synthesis, as opposed to manual coding, is that there is a direct link between the specification and the derived program. This link is, however, not very fine-grained: it can be best characterized as Program is-derived- from Specification. When the generated program needs to be understood or modified, more $ne-grained linking is useful. In this paper, we present a novel technique for automatically deriving traceability relations between parts of a specification and parts of the synthesized program. The technique is very lightweight and works -- with varying degrees of success - for any process in which one artifact is automatically derived from another. We illustrate the generality of the technique by applying it to two kinds of automatic generation: synthesis of Kalman Filter programs from speci3cations using the Aut- oFilter program synthesis system, and generation of assembly language programs from C source code using the GCC C compilel: We evaluate the effectiveness of the technique in the latter application.

  17. GOLD's coating and testing facilities for ISSIS-WSO

    NASA Astrophysics Data System (ADS)

    Larruquert, Juan I.; Méndez, José Antonio; Aznárez, José Antonio; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica

    2011-09-01

    ISSIS imager has been thought as an open purpose instrument within the World Space Observatory (WSO) international space mission. The highest priorities of ISSIS, an instrument to be developed by Spain, are to guarantee high spatial resolution and high sensitivity down to the far ultraviolet (FUV). The paper displays the capacities of GOLD for multilayer deposition and FUV reflectometry, among other metrologies, for ISSIS optical elements. Deposition of coatings for ISSIS-WSO will be carried out in a new UHV system with a 75-cm diameter deposition chamber. The purpose of the new laboratory is the deposition of coatings satisfying the constraints for FUV space optics. The first target coating to be developed in this new laboratory is Al protected with MgF2, with optimum reflectance down to ˜120 nm. GOLD's existing reflectometer is able to characterize flat pieces both by transmittance and reflectance, and the latter from near-normal to grazing incidence, in the range from 12 to 200 nm. Other metrologies that will be available at GOLD for ISSIS's coatings and filters include optical thickness of filters to assure parfocality, filter wedge, and coating and filter scattering.

  18. Self-aligned spatial filtering using laser optical tweezers.

    PubMed

    Birkbeck, Aaron L; Zlatanovic, Sanja; Esener, Sadik C

    2006-09-01

    We present an optical spatial filtering device that has been integrated into a microfluidic system and whose motion and alignment is controlled using a laser optical tweezer. The lithographically patterned micro-optical spatial filter device filters out higher frequency additive noise components by automatically aligning itself in three dimensions to the focus of the laser beam. This self-alignment capability is achieved through the attachment of a refractive optical element directly over the circular aperture or pinhole of the spatial filter. A discussion of two different spatial filter designs is presented along with experimental results that demonstrate the effectiveness of the self-aligned micro-optic spatial filter.

  19. Continuous air monitor filter changeout apparatus

    DOEpatents

    Rodgers, John C [Santa Fe, NM

    2008-07-15

    An apparatus and corresponding method for automatically changing out a filter cartridge in a continuous air monitor. The apparatus includes: a first container sized to hold filter cartridge replacements; a second container sized to hold used filter cartridges; a transport insert connectively attached to the first and second containers; a shuttle block, sized to hold the filter cartridges that is located within the transport insert; a transport driver mechanism means used to supply a motive force to move the shuttle block within the transport insert; and, a control means for operating the transport driver mechanism.

  20. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  1. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    NASA Astrophysics Data System (ADS)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  2. Real-Time flare detection using guided filter

    NASA Astrophysics Data System (ADS)

    Lin, Jiaben; Deng, Yuanyong; Yuan, Fei; Guo, Juan

    2017-04-01

    A procedure is introduced for the automatic detection of solar flare using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. And then we adopt guided filter, which is first introduced into the astronomical image detection, to enhance the edges of flares and restrain the solar limb darkening. Flares are then detected by modified Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedure, the new procedure has some advantages such as real time and reliability as well as no need of image division and local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result of flares detection shows that the number of flares detected by our procedure is well consistent with the manual one.

  3. Clustering Similarity Digest Bloom Filters in Self-Organizing Maps

    DTIC Science & Technology

    2012-12-01

    www.sciencedirect.com/science/article/ pii/S1742287610000368 [4] M. Rogers, J . Goldman, R. Mislan, T. Wedge, and S. Debrota, “Computer forensics field triage...1990. [9] T. Kohonen, S. Kaski, K. Lagus, J . Salojarvi, J . Honkela, V. Paatero, and A. Saarela, “Self organization of a massive document collection...the IEEE-INNS-ENNS Interna- tional Joint Conference on, vol. 6, 2000, pp. 15 –19 vol.6. [12] G. Salton , A. Wong, and C. Yang, “A vector space model for

  4. Hazard detection and avoidance sensor for NASA's planetary landers

    NASA Technical Reports Server (NTRS)

    Lau, Brian; Chao, Tien-Hsin

    1992-01-01

    An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.

  5. Multispectral scanner flight model (F-1) radiometric calibration and alignment handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This handbook on the calibration of the MSS-D flight model (F-1) provides both the relevant data and a summary description of how the data were obtained for the system radiometric calibration, system relative spectral response, and the filter response characteristics for all 24 channels of the four band MSS-D F-1 scanner. The calibration test procedure and resulting test data required to establish the reference light levels of the MSS-D internal calibration system are discussed. The final set of data ("nominal" calibration wedges for all 24 channels) for the internal calibration system is given. The system relative spectral response measurements for all 24 channels of MSS-D F-1 are included. These data are the spectral response of the complete scanner, which are the composite of the spectral responses of the scan mirror primary and secondary telescope mirrors, fiber optics, optical filters, and detectors. Unit level test data on the measurements of the individual channel optical transmission filters are provided. Measured performance is compared to specification values.

  6. Entrance dose measurements for in‐vivo diode dosimetry: Comparison of correction factors for two types of commercial silicon diode detectors

    PubMed Central

    Zhu, X. R.

    2000-01-01

    Silicon diode dosimeters have been used routinely for in‐vivo dosimetry. Despite their popularity, an appropriate implementation of an in‐vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as dmax for the 10×10 cm2 field. Various correction factors are needed in order to properly infer the entrance dose from the diode readout, depending on field sizes, target‐to‐surface distances (TSD), and accessories (such as wedges and compensate filters). In some clinical practices, however, no correction factor is used. In this case, a diode‐dosimeter‐based in‐vivo dosimetry program may not serve the purpose effectively; that is, to provide an overall check of the dosimetry procedure. In this paper, we provide a formula to relate the diode readout to the entrance dose. Correction factors for TSD, field size, and wedges used in this formula are also clearly defined. Two types of commercial diode detectors, ISORAD (n‐type) and the newly available QED (p‐type) (Sun Nuclear Corporation), are studied. We compared correction factors for TSDs, field sizes, and wedges. Our results are consistent with the theory of radiation damage of silicon diodes. Radiation damage has been shown to be more serious for n‐type than for p‐type detectors. In general, both types of diode dosimeters require correction factors depending on beam energy, TSD, field size, and wedge. The magnitudes of corrections for QED (p‐type) diodes are smaller than ISORAD detectors. PACS number(s): 87.66.–a, 87.52.–g PMID:11674824

  7. Dual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study

    PubMed Central

    Peyrodie, Laurent; Szurhaj, William; Bolo, Nicolas; Pinti, Antonio; Gallois, Philippe

    2014-01-01

    Muscle artifacts constitute one of the major problems in electroencephalogram (EEG) examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP) to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP) method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA) method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings. PMID:25298967

  8. Relative efficacy for radiation reducing methods in scoliotic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikenhead, J.; Triano, J.; Baker, J.

    Radiation dosages to sensitive organs in full spine radiography have in recent years been a concern of physicians as well as the general public. The spine is the prime target for exposure in scoliosis radiography, though the exposure usually necessitates irradiation of several radio-sensitive organs. In recent studies, various protection techniques have been used including various lead and aluminum filtration systems, altered patient positioning and varied tube-film distances. The purpose of this study was to evaluate the efficiency for radiation dosage reduction of three filtration systems used frequently in the chiropractic profession. The systems tested were the Nolan Multiple X-raymore » Filters, the Clear-Pb system and the Sportelli Wedge system. These systems were tested in seven configurations varying breast shielding, distance and patient positioning. All systems tested demonstrated significant radiation reductions to organs, especially breast tissue. The Clear-Pb system appeared to be the most effective for all organs except the breast, and the Sportelli Wedge system demonstrated the greatest reduction to breast tissue.« less

  9. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    ERIC Educational Resources Information Center

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  10. Morphological self-organizing feature map neural network with applications to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  11. Technique for finding and identifying filters that cut off OTDR lights in front of ONU from a central office

    NASA Astrophysics Data System (ADS)

    Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji

    2006-04-01

    We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.

  12. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia

    2017-03-14

    Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.

  13. Diffraction phase microscopy realized with an automatic digital pinhole

    NASA Astrophysics Data System (ADS)

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu

    2017-12-01

    We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.

  14. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    USGS Publications Warehouse

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  15. Alleviating Search Uncertainty through Concept Associations: Automatic Indexing, Co-Occurrence Analysis, and Parallel Computing.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Martinez, Joanne; Kirchhoff, Amy; Ng, Tobun D.; Schatz, Bruce R.

    1998-01-01

    Grounded on object filtering, automatic indexing, and co-occurrence analysis, an experiment was performed using a parallel supercomputer to analyze over 400,000 abstracts in an INSPEC computer engineering collection. A user evaluation revealed that system-generated thesauri were better than the human-generated INSPEC subject thesaurus in concept…

  16. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  17. Errors in radiation oncology: A study in pathways and dosimetric impact

    PubMed Central

    Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff

    2005-01-01

    As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or wedge orientation. For parallel‐opposed 60° wedge fields, this error could be as high as 80% to a point off‐axis. Other examples of dosimetric impact included the following: SSD, ~2%/cm for photons or electrons; photon energy (6 MV vs. 18 MV), on average 16% depending on depth, electron energy, ~0.5cm of depth coverage per MeV (mega‐electron volt). Of these examples, incorrect distances were most likely but rapidly detected by in vivo dosimetry. Errors were categorized by occurrence rate, methods and timing of detection, longevity, and dosimetric impact. Solutions were devised according to these criteria. To date, no one has studied the dosimetric impact of global errors in radiation oncology. Although there is heightened awareness that with increased use of ancillary devices and automation, there must be a parallel increase in quality check systems and processes, errors do and will continue to occur. This study has helped us identify and prioritize potential errors in our clinic according to frequency and dosimetric impact. For example, to reduce the use of an incorrect wedge direction, our clinic employs off‐axis in vivo dosimetry. To avoid a treatment distance setup error, we use both vertical table settings and optical distance indicator (ODI) values to properly set up fields. As R&V systems become more automated, more accurate and efficient data transfer will occur. This will require further analysis. Finally, we have begun examining potential intensity‐modulated radiation therapy (IMRT) errors according to the same criteria. PACS numbers: 87.53.Xd, 87.53.St PMID:16143793

  18. The unbalanced signal measuring of automotive brake drum

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng

    2005-04-01

    For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.

  19. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    PubMed

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  20. Evaluation of an image-based tracking workflow with Kalman filtering for automatic image plane alignment in interventional MRI.

    PubMed

    Neumann, M; Cuvillon, L; Breton, E; de Matheli, M

    2013-01-01

    Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.

  1. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  2. Utilization of volume correlation filters for underwater mine identification in LIDAR imagery

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2008-04-01

    Underwater mine identification persists as a critical technology pursued aggressively by the Navy for fleet protection. As such, new and improved techniques must continue to be developed in order to provide measurable increases in mine identification performance and noticeable reductions in false alarm rates. In this paper we show how recent advances in the Volume Correlation Filter (VCF) developed for ground based LIDAR systems can be adapted to identify targets in underwater LIDAR imagery. Current automated target recognition (ATR) algorithms for underwater mine identification employ spatial based three-dimensional (3D) shape fitting of models to LIDAR data to identify common mine shapes consisting of the box, cylinder, hemisphere, truncated cone, wedge, and annulus. VCFs provide a promising alternative to these spatial techniques by correlating 3D models against the 3D rendered LIDAR data.

  3. Large eddy simulation of cavitating flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, Aswin; Mahesh, Krishnan

    2014-11-01

    Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.

  4. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  5. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  6. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.

  7. A closed-loop automatic control system for high-intensity acoustic test systems.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.

  8. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peakmore » tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. Conclusions: Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.« less

  9. A Revised Earthquake Catalogue for South Iceland

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Zechar, J. Douglas; Vogfjörd, Kristín S.; Eberhard, David A. J.

    2016-01-01

    In 1991, a new seismic monitoring network named SIL was started in Iceland with a digital seismic system and automatic operation. The system is equipped with software that reports the automatic location and magnitude of earthquakes, usually within 1-2 min of their occurrence. Normally, automatic locations are manually checked and re-estimated with corrected phase picks, but locations are subject to random errors and systematic biases. In this article, we consider the quality of the catalogue and produce a revised catalogue for South Iceland, the area with the highest seismic risk in Iceland. We explore the effects of filtering events using some common recommendations based on network geometry and station spacing and, as an alternative, filtering based on a multivariate analysis that identifies outliers in the hypocentre error distribution. We identify and remove quarry blasts, and we re-estimate the magnitude of many events. This revised catalogue which we consider to be filtered, cleaned, and corrected should be valuable for building future seismicity models and for assessing seismic hazard and risk. We present a comparative seismicity analysis using the original and revised catalogues: we report characteristics of South Iceland seismicity in terms of b value and magnitude of completeness. Our work demonstrates the importance of carefully checking an earthquake catalogue before proceeding with seismicity analysis.

  10. Automatic estimation of retinal nerve fiber bundle orientation in SD-OCT images using a structure-oriented smoothing filter

    NASA Astrophysics Data System (ADS)

    Ghafaryasl, Babak; Baart, Robert; de Boer, Johannes F.; Vermeer, Koenraad A.; van Vliet, Lucas J.

    2017-02-01

    Optical coherence tomography (OCT) yields high-resolution, three-dimensional images of the retina. A better understanding of retinal nerve fiber bundle (RNFB) trajectories in combination with visual field data may be used for future diagnosis and monitoring of glaucoma. However, manual tracing of these bundles is a tedious task. In this work, we present an automatic technique to estimate the orientation of RNFBs from volumetric OCT scans. Our method consists of several steps, starting from automatic segmentation of the RNFL. Then, a stack of en face images around the posterior nerve fiber layer interface was extracted. The image showing the best visibility of RNFB trajectories was selected for further processing. After denoising the selected en face image, a semblance structure-oriented filter was applied to probe the strength of local linear structure in a discrete set of orientations creating an orientation space. Gaussian filtering along the orientation axis in this space is used to find the dominant orientation. Next, a confidence map was created to supplement the estimated orientation. This confidence map was used as pixel weight in normalized convolution to regularize the semblance filter response after which a new orientation estimate can be obtained. Finally, after several iterations an orientation field corresponding to the strongest local orientation was obtained. The RNFB orientations of six macular scans from three subjects were estimated. For all scans, visual inspection shows a good agreement between the estimated orientation fields and the RNFB trajectories in the en face images. Additionally, a good correlation between the orientation fields of two scans of the same subject was observed. Our method was also applied to a larger field of view around the macula. Manual tracing of the RNFB trajectories shows a good agreement with the automatically obtained streamlines obtained by fiber tracking.

  11. Image quality enhancement for skin cancer optical diagnostics

    NASA Astrophysics Data System (ADS)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  12. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    PubMed

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  13. Automatic rule generation for high-level vision

    NASA Technical Reports Server (NTRS)

    Rhee, Frank Chung-Hoon; Krishnapuram, Raghu

    1992-01-01

    Many high-level vision systems use rule-based approaches to solving problems such as autonomous navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.

  14. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.

    PubMed

    Booker, John R; Favetto, Alicia; Pomposiello, M Cristina

    2004-05-27

    Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.

  15. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  16. An automatic and efficient pipeline for disease gene identification through utilizing family-based sequencing data.

    PubMed

    Song, Dandan; Li, Ning; Liao, Lejian

    2015-01-01

    Due to the generation of enormous amounts of data at both lower costs as well as in shorter times, whole-exome sequencing technologies provide dramatic opportunities for identifying disease genes implicated in Mendelian disorders. Since upwards of thousands genomic variants can be sequenced in each exome, it is challenging to filter pathogenic variants in protein coding regions and reduce the number of missing true variants. Therefore, an automatic and efficient pipeline for finding disease variants in Mendelian disorders is designed by exploiting a combination of variants filtering steps to analyze the family-based exome sequencing approach. Recent studies on the Freeman-Sheldon disease are revisited and show that the proposed method outperforms other existing candidate gene identification methods.

  17. Automatic detection, tracking and sensor integration

    NASA Astrophysics Data System (ADS)

    Trunk, G. V.

    1988-06-01

    This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.

  18. Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography.

    PubMed

    Paavolainen, Lassi; Acar, Erman; Tuna, Uygar; Peltonen, Sari; Moriya, Toshio; Soonsawad, Pan; Marjomäki, Varpu; Cheng, R Holland; Ruotsalainen, Ulla

    2014-01-01

    Electron tomography (ET) of biological samples is used to study the organization and the structure of the whole cell and subcellular complexes in great detail. However, projections cannot be acquired over full tilt angle range with biological samples in electron microscopy. ET image reconstruction can be considered an ill-posed problem because of this missing information. This results in artifacts, seen as the loss of three-dimensional (3D) resolution in the reconstructed images. The goal of this study was to achieve isotropic resolution with a statistical reconstruction method, sequential maximum a posteriori expectation maximization (sMAP-EM), using no prior morphological knowledge about the specimen. The missing wedge effects on sMAP-EM were examined with a synthetic cell phantom to assess the effects of noise. An experimental dataset of a multivesicular body was evaluated with a number of gold particles. An ellipsoid fitting based method was developed to realize the quantitative measures elongation and contrast in an automated, objective, and reliable way. The method statistically evaluates the sub-volumes containing gold particles randomly located in various parts of the whole volume, thus giving information about the robustness of the volume reconstruction. The quantitative results were also compared with reconstructions made with widely-used weighted backprojection and simultaneous iterative reconstruction technique methods. The results showed that the proposed sMAP-EM method significantly suppresses the effects of the missing information producing isotropic resolution. Furthermore, this method improves the contrast ratio, enhancing the applicability of further automatic and semi-automatic analysis. These improvements in ET reconstruction by sMAP-EM enable analysis of subcellular structures with higher three-dimensional resolution and contrast than conventional methods.

  19. Automatic Keyword Identification by Artificial Neural Networks Compared to Manual Identification by Users of Filtering Systems.

    ERIC Educational Resources Information Center

    Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha

    2001-01-01

    Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)

  20. Nonelectronic Parts Reliability Data 1991

    DTIC Science & Technology

    1991-05-01

    E6) Page Electrical Filter, Micrwave ,Band Pass Com GB 13567-021 < 0.0377 0 26.5512 3-180 Electrical Filter,Micridave, High Pass Ccm GB 13567-021...device and equipment manufacturers , government laboratories and equipment users (government and industry). Automatic distribution lists, voluntary...information and data contained herein have been compiled from government and nongovernment technical reports and from material supplied by various manufacturers

  1. Design of Provider-Provisioned Website Protection Scheme against Malware Distribution

    NASA Astrophysics Data System (ADS)

    Yagi, Takeshi; Tanimoto, Naoto; Hariu, Takeo; Itoh, Mitsutaka

    Vulnerabilities in web applications expose computer networks to security threats, and many websites are used by attackers as hopping sites to attack other websites and user terminals. These incidents prevent service providers from constructing secure networking environments. To protect websites from attacks exploiting vulnerabilities in web applications, service providers use web application firewalls (WAFs). WAFs filter accesses from attackers by using signatures, which are generated based on the exploit codes of previous attacks. However, WAFs cannot filter unknown attacks because the signatures cannot reflect new types of attacks. In service provider environments, the number of exploit codes has recently increased rapidly because of the spread of vulnerable web applications that have been developed through cloud computing. Thus, generating signatures for all exploit codes is difficult. To solve these problems, our proposed scheme detects and filters malware downloads that are sent from websites which have already received exploit codes. In addition, to collect information for detecting malware downloads, web honeypots, which automatically extract the communication records of exploit codes, are used. According to the results of experiments using a prototype, our scheme can filter attacks automatically so that service providers can provide secure and cost-effective network environments.

  2. Reflection type skin friction meter

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R. (Inventor); Weinstein, Leonard M. (Inventor)

    1993-01-01

    A housing block is provided having an upper surface conforming to the test surface of a model or aircraft. An oil film is supplied upstream of a transparent wedge window located in this upper surface by an oil pump system located external to the housing block. A light source located within the housing block supplies a light beam which passes through this transparent window and is reflected back through the transparent window by the upper surface of the oil film to a photo-sensitive position sensor located within the housing. This position sensor allows the slope history of the oil film caused by and aerodynamic flow to be determined. The skin friction is determined from this slope history. Internally located mirrors augment and sensitize the reflected beam as necessary before reaching the position sensor. In addition, a filter may be provided before this sensor to filter the beam.

  3. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.

    PubMed

    Schädler, Marc René; Kollmeier, Birger

    2015-04-01

    To test if simultaneous spectral and temporal processing is required to extract robust features for automatic speech recognition (ASR), the robust spectro-temporal two-dimensional-Gabor filter bank (GBFB) front-end from Schädler, Meyer, and Kollmeier [J. Acoust. Soc. Am. 131, 4134-4151 (2012)] was de-composed into a spectral one-dimensional-Gabor filter bank and a temporal one-dimensional-Gabor filter bank. A feature set that is extracted with these separate spectral and temporal modulation filter banks was introduced, the separate Gabor filter bank (SGBFB) features, and evaluated on the CHiME (Computational Hearing in Multisource Environments) keywords-in-noise recognition task. From the perspective of robust ASR, the results showed that spectral and temporal processing can be performed independently and are not required to interact with each other. Using SGBFB features permitted the signal-to-noise ratio (SNR) to be lowered by 1.2 dB while still performing as well as the GBFB-based reference system, which corresponds to a relative improvement of the word error rate by 12.8%. Additionally, the real time factor of the spectro-temporal processing could be reduced by more than an order of magnitude. Compared to human listeners, the SNR needed to be 13 dB higher when using Mel-frequency cepstral coefficient features, 11 dB higher when using GBFB features, and 9 dB higher when using SGBFB features to achieve the same recognition performance.

  4. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  5. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.

    PubMed

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-04-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.

    PubMed

    Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S

    2008-01-01

    To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.

  7. Instrumentation development for the EUVE. [Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Finley, D.

    1980-01-01

    The prototype mirror was successfully replated with a thick layer of nickel and diamond turned again. Optimization of the sensitivity of the instruments was studied with emphasis on the filter material, and on the available telemetry. The JHU Preliminary Project Definition Document was critically analyzed. Further studies of the electron cloud distribution produced by a channel plate were performed, and a wedge and strip anode with 17 quartets per inch was shown to image with better than 0.5% linearity. Half the microchannel plates being used in the lifetest completed initial processing and are in the lifetest vacuum chamber.

  8. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, Jr., G. Harold

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  9. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, G.H. Jr.

    1993-01-12

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  10. Automatic film processors' quality control test in Greek military hospitals.

    PubMed

    Lymberis, C; Efstathopoulos, E P; Manetou, A; Poudridis, G

    1993-04-01

    The two major military radiology installations (Athens, Greece) using a total of 15 automatic film processors were assessed using the 21-step-wedge method. The results of quality control in all these processors are presented. The parameters measured under actual working conditions were base and fog, contrast and speed. Base and fog as well as speed displayed large variations with average values generally higher than acceptable, whilst contrast displayed greater stability. Developer temperature was measured daily during the test and was found to be outside the film manufacturers' recommended limits in nine of the 15 processors. In only one processor did film passing time vary on an every day basis and this was due to maloperation. Developer pH test was not part of the daily monitoring service being performed every 5 days for each film processor and found to be in the range 9-12; 10 of the 15 processors presented pH values outside the limits specified by the film manufacturers.

  11. Evaluation of Plastic Media Blasting Equipment

    DTIC Science & Technology

    1987-04-01

    the differential pressure across the filter element or by a timer with a differential pressure switch override. The timer and the differential pressure ...automatic. The mechanism should be activated by the differential pressure across the filter element or by a timer with a differential pressure switch override...The timer and the differential pressure switch settings should be adjustable. The dust then falls to the bottom of the baghouse for

  12. An automated method of tuning an attitude estimator

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Mook, D. Joseph

    1995-01-01

    Attitude determination is a major element of the operation and maintenance of a spacecraft. There are several existing methods of determining the attitude of a spacecraft. One of the most commonly used methods utilizes the Kalman filter to estimate the attitude of the spacecraft. Given an accurate model of a system and adequate observations, a Kalman filter can produce accurate estimates of the attitude. If the system model, filter parameters, or observations are inaccurate, the attitude estimates may be degraded. Therefore, it is advantageous to develop a method of automatically tuning the Kalman filter to produce the accurate estimates. In this paper, a three-axis attitude determination Kalman filter, which uses only magnetometer measurements, is developed and tested using real data. The appropriate filter parameters are found via the Process Noise Covariance Estimator (PNCE). The PNCE provides an optimal criterion for determining the best filter parameters.

  13. [Medical image segmentation based on the minimum variation snake model].

    PubMed

    Zhou, Changxiong; Yu, Shenglin

    2007-02-01

    It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.

  14. An automatic optimum kernel-size selection technique for edge enhancement

    USGS Publications Warehouse

    Chavez, Pat S.; Bauer, Brian P.

    1982-01-01

    Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image. 

  15. The algorithm for automatic detection of the calibration object

    NASA Astrophysics Data System (ADS)

    Artem, Kruglov; Irina, Ugfeld

    2017-06-01

    The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.

  16. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  17. Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.

  18. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  19. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  20. Diatomite filters--methods of automation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, G.F.

    1966-01-01

    Following an introduction of subject material, diatomite filters are discussed in the following categories: a filter system, the manual station, the decision to automate, equipment, the automated filter, and the fail-safe methods. Diagrams and pictures of the equipment and its operation are included. Many aspects of the uses of both the automatic and manually operated diatomite filtering systems are reviewed. The fully automated station may be ideally suited to the remotely located waterflood since it requires virtually no attention or perhaps only periodic inspection. On the other hand, floods large enough to employ full-time personnel, who can maintain a constantmore » vigil and peiodically scrutinize the filtering operation, probably require nothing more than a semiautomatic operation. The reduction of human error can save money, and the introduction of consistency into any unit operation is certain to be beneficial.« less

  1. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system.

    PubMed

    Ryu, Hee Wook; Cho, Kyung-Suk; Lee, Tae-Ho

    2011-04-01

    The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H(2)O m(-1)), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m(-3). Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU(-1) and below 50 mm H(2)O m(-1), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis

    NASA Astrophysics Data System (ADS)

    Patanè, Domenico; Ferrari, Ferruccio

    1997-11-01

    A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).

  3. Multitarget mixture reduction algorithm with incorporated target existence recursions

    NASA Astrophysics Data System (ADS)

    Ristic, Branko; Arulampalam, Sanjeev

    2000-07-01

    The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.

  4. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Abstract. Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124

  5. Bacteria-free water for automatic washer-disinfectors: an impossible dream?

    PubMed

    Cooke, R P; Whymant-Morris, A; Umasankar, R S; Goddard, S V

    1998-05-01

    The ability of a new automatic washer-disinfector system (AWDS), fitted with a water filtration system to provide bacteria-free water and so avoid the risk of mycobacterial contamination of fibreoptic bronchoscopes, was examined. Four new Astec 'MP' Safescope washer-disinfectors, with coarse and fine (0.2 micron) filters attached close to the outlet taps, were supplied with non-softened mains water. Water samples from the tank supply and outlet taps were regularly assessed for bacterial quality over a six-month period. Outlet samples were also analysed after fine filter change and purgation with peracetic acid. All bronchoalveolar lavage specimens (BALS) were stained and cultured for mycobacteria. Only 13 out of 53 outlet samples (24%) were culture-negative. There was no improvement after filter change. Residual anti-bacterial effect of peracetic acid lasted up to 48 h following AWDS purgation. No tank samples were bacteria-free. Sixty BALS were processed, two samples were culture-positive and grew M. tuberculosis and one was also smear-positive. Though mycobacterial contamination of bronchoscopes was not evident, the water filtration system was unable to reliably provide sterile rinse water.

  6. A novel method for segmentation of Infrared Scanning Laser Ophthalmoscope (IR-SLO) images of retina.

    PubMed

    Ajaz, Aqsa; Aliahmad, Behzad; Kumar, Dinesh K

    2017-07-01

    Retinal vessel segmentation forms an essential element of automatic retinal disease screening systems. The development of multimodal imaging system with IR-SLO and OCT could help in studying the early stages of retinal disease. The advantages of IR-SLO to examine the alterations in the structure of retina and direct correlation with OCT can be useful for assessment of various diseases. This paper presents an automatic method for segmentation of IR-SLO fundus images based on the combination of morphological filters and image enhancement techniques. As a first step, the retinal vessels are contrasted using morphological filters followed by background exclusion using Contrast Limited Adaptive Histogram Equalization (CLAHE) and Bilateral filtering. The final segmentation is obtained by using Isodata technique. Our approach was tested on a set of 26 IR-SLO images and results were compared to two set of gold standard images. The performance of the proposed method was evaluated in terms of sensitivity, specificity and accuracy. The system has an average accuracy of 0.90 for both the sets.

  7. Delineation and geometric modeling of road networks

    NASA Astrophysics Data System (ADS)

    Poullis, Charalambos; You, Suya

    In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.

  8. Fetal head detection and measurement in ultrasound images by a direct inverse randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2005-04-01

    Object detection in ultrasound fetal images is a challenging task for the relatively low resolution and low signal-to-noise ratio. A direct inverse randomized Hough transform (DIRHT) is developed for filtering and detecting incomplete curves in images with strong noise. The DIRHT combines the advantages of both the inverse and the randomized Hough transforms. In the reverse image, curves are highlighted while a large number of unrelated pixels are removed, demonstrating a "curve-pass filtering" effect. Curves are detected by iteratively applying the DIRHT to the filtered image. The DIRHT was applied to head detection and measurement of the biparietal diameter (BPD) and head circumference (HC). No user input or geometric properties of the head were required for the detection. The detection and measurement took 2 seconds for each image on a PC. The inter-run variations and the differences between the automatic measurements and sonographers" manual measurements were small compared with published inter-observer variations. The results demonstrated that the automatic measurements were consistent and accurate. This method provides a valuable tool for fetal examinations.

  9. Double-Sided Wedge Model For Retreating Subduction Zones: Applications to the Apenninic and Hellenic Subduction Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Willett, S.; Rahl, J. M.; Cowan, D. S.

    2009-12-01

    We propose a new model for the evolution of accreting wedges at retreating subduction zones. Advance and retreat refer to the polarity of the velocity of the overriding plate with respect to subduction zone. Advance indicates a velocity toward the subduction zone (e.g., Andes) and retreat, away from the subduction zone (e.g. Apennines, Crete). The tectonic mode of a subduction zone, whether advancing or retreating, is a result of both the rollback of the subducting plate and the absolute motion of the overriding plate. The Hellenic and Apenninic wedges are both associated with retreating subduction zones. The Hellenic wedge has been active for about 100 Ma, whereas the Apenninic wedge has been active for about 30 Ma. Comparison of maximum metamorphic pressures for exhumed rocks in these wedges (25 and 30 km, respectively) with the maximum thickness of the wedges at present (30 and 35 km, respectively) indicates that each wedge has maintained a relatively steady size during its evolution. This conclusion is based on the constraint that both frictional and viscous wedges are subject to the constraint of a steady wedge taper, so that thickness and width are strongly correlated. Both wedges show clear evidence of steady accretion during their full evolution, with accretionary fluxes of about 60 and 200 km2 Ma-1. These wedges also both show steady drift of material from the front to the rear of the wedge, with horizontal shortening dominating in the front of the wedge, and horizontal extension within the back of the wedge. We propose that these wedges represent two back-to-back wedges, with a convergent wedge on the leading side (proside), and a divergent wedge on the trailing side (retroside). In this sense, the wedges are bound by two plates. The subducting plate is familiar. It creates a thrust-sense traction beneath the proside of the wedge. The second plate is an “educting” plate, which is creates a normal-sense traction beneath the retroside of the wedge. The educting plate underlies the Tyrrenhian Sea west of the Apennines and the Cretean Sea north of Crete. The stretched crust that overlies this plate represents highly thinned wedge material that has been removed or decreted from the wedge. This decretion process accounts for the mean motion within the wedge, from pro to retro side, and the pervasive thinning within the retroside. It also explains how these wedges are able to maintain a steady wedge size with time. An important prediction of this model is that different deformational styles, involving thickening and thinning, can occur within the same tectonics setting. This is in contrast the widely cited idea that tectonic thinning is a late- or post-orogenic process.

  10. SaRAD: a Simple and Robust Abbreviation Dictionary.

    PubMed

    Adar, Eytan

    2004-03-01

    Due to recent interest in the use of textual material to augment traditional experiments it has become necessary to automatically cluster, classify and filter natural language information. The Simple and Robust Abbreviation Dictionary (SaRAD) provides an easy to implement, high performance tool for the construction of a biomedical symbol dictionary. The algorithms, applied to the MEDLINE document set, result in a high quality dictionary and toolset to disambiguate abbreviation symbols automatically.

  11. Grayscale Optical Correlator Workbench

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin

    2006-01-01

    Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.

  12. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  13. UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.

    PubMed

    Demner-Fushman, Dina; Mork, James G; Shooshan, Sonya E; Aronson, Alan R

    2010-08-01

    Identification of medical terms in free text is a first step in such Natural Language Processing (NLP) tasks as automatic indexing of biomedical literature and extraction of patients' problem lists from the text of clinical notes. Many tools developed to perform these tasks use biomedical knowledge encoded in the Unified Medical Language System (UMLS) Metathesaurus. We continue our exploration of automatic approaches to creation of subsets (UMLS content views) which can support NLP processing of either the biomedical literature or clinical text. We found that suppression of highly ambiguous terms in the conservative AutoFilter content view can partially replace manual filtering for literature applications, and suppression of two character mappings in the same content view achieves 89.5% precision at 78.6% recall for clinical applications. Published by Elsevier Inc.

  14. New algorithm for detecting smaller retinal blood vessels in fundus images

    NASA Astrophysics Data System (ADS)

    LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

    2010-03-01

    About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

  15. Comparison of filters for concentrating microbial indicators and pathogens in lake-water samples

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.; Brady, Amie M.G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vincent; Lindquist, H.D. Alan

    2013-01-01

    Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.

  16. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  17. Comparison of Filters for Concentrating Microbial Indicators and Pathogens in Lake Water Samples

    PubMed Central

    Stelzer, Erin A.; Brady, Amie M. G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vicente; Lindquist, H. D. Alan

    2013-01-01

    Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples. PMID:23263948

  18. A motion-constraint logic for moving-base simulators based on variable filter parameters

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.

    1974-01-01

    A motion-constraint logic for moving-base simulators has been developed that is a modification to the linear second-order filters generally employed in conventional constraints. In the modified constraint logic, the filter parameters are not constant but vary with the instantaneous motion-base position to increase the constraint as the system approaches the positional limits. With the modified constraint logic, accelerations larger than originally expected are limited while conventional linear filters would result in automatic shutdown of the motion base. In addition, the modified washout logic has frequency-response characteristics that are an improvement over conventional linear filters with braking for low-frequency pilot inputs. During simulated landing approaches of an externally blown flap short take-off and landing (STOL) transport using decoupled longitudinal controls, the pilots were unable to detect much difference between the modified constraint logic and the logic based on linear filters with braking.

  19. A median-Gaussian filtering framework for Moiré pattern noise removal from X-ray microscopy image.

    PubMed

    Wei, Zhouping; Wang, Jian; Nichol, Helen; Wiebe, Sheldon; Chapman, Dean

    2012-02-01

    Moiré pattern noise in Scanning Transmission X-ray Microscopy (STXM) imaging introduces significant errors in qualitative and quantitative image analysis. Due to the complex origin of the noise, it is difficult to avoid Moiré pattern noise during the image data acquisition stage. In this paper, we introduce a post-processing method for filtering Moiré pattern noise from STXM images. This method includes a semi-automatic detection of the spectral peaks in the Fourier amplitude spectrum by using a local median filter, and elimination of the spectral noise peaks using a Gaussian notch filter. The proposed median-Gaussian filtering framework shows good results for STXM images with the size of power of two, if such parameters as threshold, sizes of the median and Gaussian filters, and size of the low frequency window, have been properly selected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Polarization Perception Device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsell L. (Inventor)

    1997-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

  1. Polarization perception device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsel L. (Inventor)

    1992-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

  2. Evaluation of the peripheral dose to uterus in breast carcinoma radiotherapy.

    PubMed

    Martín Rincón, C; Jerez Sainz, I; Modolell Farré, I; España López, M L; López Franco, P; Muñiz, J L; Romero, A M; Rodríguez, R

    2002-01-01

    The absorbed dose outside of the direct fields of radiotherapy treatment (or peripheral dose, PD) is responsible for radiation exposure of the fetus in pregnant women. Because the radiological protection of the unborn child is of particular concern in the early period of the pregnancy, the aim of this study is to estimate the PD in order to assess the absorbed dose in the uterus in a pregnant patient irradiated for breast carcinoma therapy. The treatment was simulated on an Alderson-Rando anthropomorphic phantom, and the radiation dose to the fetus was measured using an ionisation chamber and thermoluminescence dosemeters. Two similar treatments plans with and without wedges were delivered, using a 6 MV photon beam with two isocentric opposite tangential fields with a total dose of 50 Gy, in accordance with common established procedures. Average field parameters for more than 300 patients were studied. Measurements showed the fetal dose to be slightly lower than 50 mGy, a level at which the risk to the fetus is uncertain, although several authors consider this value as the dose threshold for deterministic effects. The planning system (PS) underestimated PD values and no significant influence was found with the use of wedge filters.

  3. [Experience in the use of equipment for ECG system analysis in municipal polyclinics].

    PubMed

    Bondarenko, A A

    2006-01-01

    Two electrocardiographs, an analog-digital electrocardiograph with preliminary analog filtering of signal and a smart cardiograph implemented as a PC-compatible device without preliminary analog filtering, are considered. Advantages and disadvantages of ECG systems based on artificial intelligence are discussed. ECG interpretation modes provided by the two electrocardiographs are considered. The reliability of automatic ECG interpretation is assessed. Problems of rational use of automated ECG processing systems are discussed.

  4. Salt-water encroachment in southern Nassau and southeastern Queens Counties, Long Island, New York

    USGS Publications Warehouse

    Lusczynski, N.J.; Swarzenski, Wolfgang V.

    1966-01-01

    Test drilling, extraction of water from cores, electric logging, water sampling, and water-level measurements from 1958 to 1961 provided a suitable basis for a substantial refinement in the definition of the positions, chloride concentrations, and rates of movement of salty water in the intermediate and deep deposits of southern Nassau County and southeastern Queens County. Filter-press, centrifugal, and dilution methods were used to extract water from cores for chloride analysis at the test-drilling sites. Chloride analysis of water extracted by these methods, chloride analyses of water from wells, and the interpretation of electric logs helped to define the chloride content of the salty water. New concepts of environmental-water head and zerovels, developed during the investigation, proved useful for defining hydraulic gradients and ratee of flow in ground water of variable density in a vertical direction and in horizontal and inclined planes, respectively. Hydraulic gradients in and between fresh and salty water were determined from water levels from data at individual and multiple-observation wells. Salty ground water occurs in southern Nassau and southeastern Queens Counties as three wedgelike extensions that project landward in unconsolidated deposits from a main body of salty water that lies seaward of the barrier beaches in Nassau County and of Jamaica Bay in Queens County. Salty water occurs not only in permeable deposits but also in the shallow and deep clay deposits. The highest chloride content of the salty ground water in the main body and the wedges is about 16,000 ppm, which is about 1,000 to 2,000 ppm less than the chloride content of ocean water. The shallow salty water in the Pleistocene and Recent deposits is connected freely with the bays, tidal estuaries, and ocean. The intermediate wedge is found only in the southwestern part of Nassau County in the upper part of the Magothy (?) Formation, in the Jamneco Gravel, and in the overlying clay deposits. It extends from the seaward areas inland about 2 miles into Island Park. The deep wedge extends into southeastern Queens County and southern Nassau County principally in the deeper parts of the Magothy (?) Formation and in the underlying clay member of the Raritan Formation. The leading edge of the deep wedge is at the base of the Magothy (?) Formation. This edge is apparently at the shoreline east of Lido Beach and extends inland about 4 miles to Woodmere and about 7 miles to South Ozone Park. Zones of diffusion as much as 6 miles wide and about 500 feet thick were delineated in the frontal part of the salty-water wedges. These thick and broad zones of diffusion were probably formed during the past 1,000 or more years in heterogeneous unconsolidated deposits by long- and short-term changes in sea level and in fresh-water outflow to the sea and by dispersion caused by the movements of the water and its salt mass. Changes in sea level and fresh-water outflow together produced appreciable advances and recessions of the salt-water front. The chemical compositions of the diffused water in all wedges are modified to some extent by base exchange and other physical and chemical processes and also by diffusion. The intermediate wedge of salty water is moving landward at a rate of less than 20 feet a year in the vicinity of Island Park and, thus, has moved less than 1,000 feet since 1900. The leading edge of the deep wedge has advanced landward at about 300 feet a :ear in Woodmere in southwestern Nassau County and about 160 feet a year at South Ozone Park in southeastern Queens County, principally under the influence of local withdrawals near the toe of the wedge. Between Hewlett and Lido Beach, the deep wedge is moving inland at the rate of about 10 feet a year under the influence of regional withdrawals in inland areas. Regional encroachment of the deep wedge is apparently retarded appreciably by cyclic flow, that is, by the return seaward in the upper

  5. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-07

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts.

  6. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    PubMed

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  7. Automatically Inspecting Thin Ceramics For Pinholes

    NASA Technical Reports Server (NTRS)

    Honaker, James R.

    1988-01-01

    Proposed apparatus for inspecting prefired ceramic materials detects minute flaws that might escape ordinary visual inspections. Method detects flaws and marks locations. Intended for such thin ceramic parts as insulation in capacitors and some radio-frequency filters.

  8. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.

    PubMed

    Wang, Xiaodan; Yamaguchi, Nobuyasu; Someya, Takashi; Nasu, Masao

    2007-10-01

    The micro-colony method was used to enumerate viable bacteria in composts. Cells were vacuum-filtered onto polycarbonate filters and incubated for 18 h on LB medium at 37 degrees C. Bacteria on the filters were stained with SYBR Green II, and enumerated using a newly developed micro-colony auto counting system which can automatically count micro-colonies on half the area of the filter within 90 s. A large number of bacteria in samples retained physiological activity and formed micro-colonies within 18 h, whereas most could not form large colonies on conventional media within 1 week. The results showed that this convenient technique can enumerate viable bacteria in compost rapidly for its efficient quality control.

  9. Optimization of OT-MACH Filter Generation for Target Recognition

    NASA Technical Reports Server (NTRS)

    Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.

  10. Software Would Largely Automate Design of Kalman Filter

    NASA Technical Reports Server (NTRS)

    Chuang, Jason C. H.; Negast, William J.

    2005-01-01

    Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.

  11. Objective assessment of the aesthetic outcomes of breast cancer treatment: toward automatic localization of fiducial points on digital photographs

    NASA Astrophysics Data System (ADS)

    Udpa, Nitin; Sampat, Mehul P.; Kim, Min Soon; Reece, Gregory P.; Markey, Mia K.

    2007-03-01

    The contemporary goals of breast cancer treatment are not limited to cure but include maximizing quality of life. All breast cancer treatment can adversely affect breast appearance. Developing objective, quantifiable methods to assess breast appearance is important to understand the impact of deformity on patient quality of life, guide selection of current treatments, and make rational treatment advances. A few measures of aesthetic properties such as symmetry have been developed. They are computed from the distances between manually identified fiducial points on digital photographs. However, this is time-consuming and subject to intra- and inter-observer variability. The purpose of this study is to investigate methods for automatic localization of fiducial points on anterior-posterior digital photographs taken to document the outcomes of breast reconstruction. Particular emphasis is placed on automatic localization of the nipple complex since the most widely used aesthetic measure, the Breast Retraction Assessment, quantifies the symmetry of nipple locations. The nipple complexes are automatically localized using normalized cross-correlation with a template bank of variants of Gaussian and Laplacian of Gaussian filters. A probability map of likely nipple locations determined from the image database is used to reduce the number of false positive detections from the matched filter operation. The accuracy of the nipple detection was evaluated relative to markings made by three human observers. The impact of using the fiducial point locations as identified by the automatic method, as opposed to the manual method, on the calculation of the Breast Retraction Assessment was also evaluated.

  12. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  13. High Performance Seed Based Optical Computing.

    DTIC Science & Technology

    1998-05-01

    distances of the lenses must be large to allow space for elements needed for align- ment, such as an afocal pair, a pair of wedges , and a pellicle...minute wedges . Each of the wedges can be rotated independently to bring the spots onto the proper win- 78 dows. Because the wedges have such a small... wedge angle, a large rotation of the wedges causes only a small movement of the spots; a 180 degree rotation of one wedge moves the spots by 74 U\\m

  14. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.

  15. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.

  16. Inclined indentation of smooth wedge in rock mass

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  17. Episodic growth of fold-thrust belts: Insights from Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Peel, Frank J.; Sanderson, David J.; McNeill, Lisa C.

    2017-09-01

    The sequential development of a fold-thrust belt was investigated using 2D Finite Element Modelling (FEM). The new model results show that a thrust system is typically composed of three distinct regions: the thrust wedge, pre-wedge, and undeformed region. The thrust wedge involves growth that repeats episodically and cyclically. A cycle of wedge building starts as frontal accretion occurs, which is accompanied by a rapid increase in wedge width reducing the taper angle below critical. In response to this, the wedge interior (tracked here by the 50 m displacement position) rapidly propagates forwards into a region of incipient folding. The taper angle progressively increases until it obtains a constant apparent critical value (∼10°). During this period, the wedge experiences significant shortening after a new thrust initiates at the failure front, leading to a decrease in wedge width. Successive widening of the wedge and subsequent shortening and thrusting maintain a reasonably constant taper angle. The fold-thrust belt evolves cyclically, through a combination of rapid advancement of the wedge and subsequent gradual, slow wedge growth. The new model results also highlights that there is clear, although minor, deformation (0-10 m horizontal displacement) in front of the thrust wedge.

  18. Observation of the dispersion of wedge waves propagating along cylinder wedge with different truncations by laser ultrasound technique

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Zhang, Yu; Han, Qingbang; Jing, Xueping

    2017-10-01

    The research focuses on study the influence of truncations on the dispersion of wedge waves propagating along cylinder wedge with different truncations by using the laser ultrasound technique. The wedge waveguide models with different truncations were built by using finite element method (FEM). The dispersion curves were obtained by using 2D Fourier transformation method. Multiple mode wedge waves were observed, which was well agreed with the results estimated from Lagasse's empirical formula. We established cylinder wedge with radius of 3mm, 20° and 60°angle, with 0μm, 5μm, 10μm, 20μm, 30μm, 40μm, and 50μm truncations, respectively. It was found that non-ideal wedge tip caused abnormal dispersion of the mode of cylinder wedge, the modes of 20° cylinder wedge presents the characteristics of guide waves which propagating along hollow cylinder as the truncation increasing. Meanwhile, the modes of 60° cylinder wedge with truncations appears the characteristics of guide waves propagating along hollow cylinder, and its mode are observed clearly. The study can be used to evaluate and detect wedge structure.

  19. Two-Dimensional Stochastic Projections for Tight Integration of Optical and Inertial Sensors for Navigation

    DTIC Science & Technology

    2007-01-01

    Intelligent Robots and Systems, vol- ume 1, pp. 123–128, September 2002. [2] R. G. Brown and P. Y. Hwang . Introduction to Ran- dom Signals and Applied... Kalman Filter-based) method for calculat- ing a trajectory by tracking features at an unknown location on the Earth’s surface, provided the topography...Extended Kalman Filter (EKF) and an automatic target tracking algorithm. In the following section, the integration architecture is presented, which in

  20. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.

    PubMed

    Hesar, Hamed Danandeh; Mohebbi, Maryam

    2017-05-01

    In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed algorithm had the lowest MSEPWRD for all noise types at low input SNRs. Therefore, the morphology and diagnostic information of ECG signals were much better conserved compared with EKF/EKS frameworks, especially in non-Gaussian nonstationary situations.

  1. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample

    NASA Astrophysics Data System (ADS)

    Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Scoccimarro, Román; Crocce, Martín; Dalla Vecchia, Claudio; Montesano, Francesco; Gil-Marín, Héctor; Ross, Ashley J.; Beutler, Florian; Rodríguez-Torres, Sergio; Chuang, Chia-Hsun; Prada, Francisco; Kitaura, Francisco-Shu; Cuesta, Antonio J.; Eisenstein, Daniel J.; Percival, Will J.; Vargas-Magaña, Mariana; Tinker, Jeremy L.; Tojeiro, Rita; Brownstein, Joel R.; Maraston, Claudia; Nichol, Robert C.; Olmstead, Matthew D.; Samushia, Lado; Seo, Hee-Jong; Streblyanska, Alina; Zhao, Gong-bo

    2017-05-01

    We extract cosmological information from the anisotropic power-spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Λ cold dark matter (ΛCDM) cosmology, we constrain the matter density to Ω M= 0.311_{-0.010}^{+0.009} and the Hubble parameter to H_0 = 67.6_{-0.6}^{+0.7} km s^{-1 Mpc^{-1}}, at a confidence level of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019_{-0.039}^{+0.048}. This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  2. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  3. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  4. Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG.

    PubMed

    Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Cheong Took, Clive

    2017-12-01

    Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.

  5. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  6. Geometrical pose and structural estimation from a single image for automatic inspection of filter components

    NASA Astrophysics Data System (ADS)

    Liu, Yonghuai; Rodrigues, Marcos A.

    2000-03-01

    This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.

  7. Truncated feature representation for automatic target detection using transformed data-based decomposition

    NASA Astrophysics Data System (ADS)

    Riasati, Vahid R.

    2016-05-01

    In this work, the data covariance matrix is diagonalized to provide an orthogonal bases set using the eigen vectors of the data. The eigen-vector decomposition of the data is transformed and filtered in the transform domain to truncate the data for robust features related to a specified set of targets. These truncated eigen features are then combined and reconstructed to utilize in a composite filter and consequently utilized for the automatic target detection of the same class of targets. The results associated with the testing of the current technique are evaluated using the peak-correlation and peak-correlation energy metrics and are presented in this work. The inverse transformed eigen-bases of the current technique may be thought of as an injected sparsity to minimize data in representing the skeletal data structure information associated with the set of targets under consideration.

  8. Automatic segmentation and classification of mycobacterium tuberculosis with conventional light microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui

    2015-12-01

    This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.

  9. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges after their partial degradation makes them better protected than before degradation because the intermediate layer is usually 2 to 3 times thicker on top of stabilized ice wedges than on top of initial ice wedges in undisturbed conditions. As a result, the likelihood of formation of large thaw lakes in the continuous permafrost zone triggered by ice-wedge degradation alone is very low.

  10. A lysimeter-based approach to quantify the impact of climate change on soil hydrological processes

    NASA Astrophysics Data System (ADS)

    Slawitsch, Veronika; Steffen, Birk; Herndl, Markus

    2016-04-01

    The predicted climate change involving increasing CO2 concentrations and increasing temperatures will have effects on both vegetation and soil properties and thus on the soil water balance. The aim of this work is to quantify the effects of changes in these climatic factors on soil hydrological processes and parameters. For this purpose data of six high precision weighable lysimeters will be used. The lysimeters are part of a Lysi-T-FACE concept, where free-air will be enriched with CO2 (FACE-Technique) and infrared heaters heat the plots for investigation on effects of increasing temperatures (T-FACE-Technique). The Lysi-T-FACE concept was developed on the „Clim Grass Site" at the HBLFA Raumberg-Gumpenstein (Styria, Austria) in 2011 and 2012 with a total of 54 experimental plots. These include six plots with lysimeters where the two climatic factors are varied in different combinations. On the basis of these grass land lysimeters the soil hydraulic parameters under different experimental conditions will be investigated. The lysimeters are equipped with TDR-Trime sensors and temperature sensors combined with tensiometers in different depths. In addition, a mechanical separation snow cover system is implemented to obtain a correct water balance in winter. To be able to infer differences between the lysimeters reliably a verification of functionalities and a plausibility check of the data from the lysimeters as well as adequate data corrections are needed. Both an automatic and a user-defined control including the recently developed filter method AWAT (Adaptive Window and Adaptive Threshold Filter) are combined with a visualisation tool using the software NI DIAdem. For each lysimeter the raw data is classified in groups of matric potentials, soil water contents and lysimeter weights. Values exceeding technical thresholds are eliminated and marked automatically. The manual data control is employed every day to obtain high precision seepage water weights. The subsequent application of the AWAT Filter reduces up to 80% of the oscillations in the calculated precipitation and evapotranspiration. The filtered data of the reference plot in June 2014 yields a precipitation of about 100 mm, whereas the non-filtered raw data result in approximately 170 mm and thus an obvious overestimation of precipitation. The resulting evapotranspiration amounts to slightly more than 100 mm with filter and 200 mm without filter in the same time period. The total water balance (precipitation minus evapotranspiration) of the year 2014 obtained with the automatic and manual data filter is 470 mm on the reference plot but only 358 mm on a plot where CO2 is enriched and temperature increased. In summary, these first results demonstrate that an adequate data correction is the precondition to identify changes of soil hydrological processes and properties.

  11. Matched spectral filter based on reflection holograms for analyte identification.

    PubMed

    Cao, Liangcai; Gu, Claire

    2009-12-20

    A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO(3) crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025 degrees . Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter's reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.

  12. Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric

    2010-06-01

    We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.

  13. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X; Li, S; Zheng, D

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheetmore » every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm{sup 2}. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.« less

  14. Anisotropic tubular filtering for automatic detection of acid-fast bacilli in Ziehl-Neelsen stained sputum smear samples

    NASA Astrophysics Data System (ADS)

    Raza, Shan-e.-Ahmed; Marjan, M. Q.; Arif, Muhammad; Butt, Farhana; Sultan, Faisal; Rajpoot, Nasir M.

    2015-03-01

    One of the main factors for high workload in pulmonary pathology in developing countries is the relatively large proportion of tuberculosis (TB) cases which can be detected with high throughput using automated approaches. TB is caused by Mycobacterium tuberculosis, which appears as thin, rod-shaped acid-fast bacillus (AFB) in Ziehl-Neelsen (ZN) stained sputum smear samples. In this paper, we present an algorithm for automatic detection of AFB in digitized images of ZN stained sputum smear samples under a light microscope. A key component of the proposed algorithm is the enhancement of raw input image using a novel anisotropic tubular filter (ATF) which suppresses the background noise while simultaneously enhancing strong anisotropic features of AFBs present in the image. The resulting image is then segmented using color features and candidate AFBs are identified. Finally, a support vector machine classifier using morphological features from candidate AFBs decides whether a given image is AFB positive or not. We demonstrate the effectiveness of the proposed ATF method with two different feature sets by showing that the proposed image analysis pipeline results in higher accuracy and F1-score than the same pipeline with standard median filtering for image enhancement.

  15. Automatic computational labeling of glomerular textural boundaries

    NASA Astrophysics Data System (ADS)

    Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki

    2017-03-01

    The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.

  16. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rocket Spectroheliograph for the Mg II Line at 2802.7 A.

    PubMed

    Fredga, K

    1969-02-01

    A rocket-borne spectroheliograph designed to take monochromatic pictures of the sun in the Mg II line at 2802.7 A is described in detail. The photographic system consists of a Questar telescope, a Solc type birefringent filter, and an automatic Robot camera. The double Solc filter has a spectral bandwidth of 3.5 A. The two units in the double filter have been thoroughly tested and are compared with theoretically calculated transmission curves. Two new types of linear film polarizers for the uv region have been tested and used in the filter. A temperature control unit was developed which stabilized the filter temperature in flight to within +/-0.2 degrees C. The instrument has been tested in vacuum and to the Aerobee 150 vibration specifications. It has been flown and successfully recovered three times and performed excellently during each fight.

  18. Automatic patient dose registry and clinical audit on line for mammography.

    PubMed

    Ten, J I; Vano, E; Sánchez, R; Fernandez-Soto, J M

    2015-07-01

    The use of automatic registry systems for patient dose in digital mammography allows clinical audit and patient dose analysis of the whole sample of individual mammography exposures while fulfilling the requirements of the European Directives and other international recommendations. Further parameters associated with radiation exposure (tube voltage, X-ray tube output and HVL values for different kVp and target/filter combinations, breast compression, etc.) should be periodically verified and used to evaluate patient doses. This study presents an experience in routine clinical practice for mammography using automatic systems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. ILS Glide Slope Standards. Part 2. Validation of Proposed Flight Inspection Filter Systems, and Responses of Simulated Aircraft on Coupled Approaches

    DTIC Science & Technology

    1975-10-01

    If A-5 (ItA) gym IpA) Em (jpA) I point 8 POWntC TIME (me) Threshold - Figure A-1, Reapauise of Filter Sytm No. 2 to Prototype (aIide Slope Fat No. 1...II A-51 (ft (,sA) (pA) (pA) * ICt . IMDAt TO Cot A DH TIME~)FFareJ Figura A-21. Responses of the CV-880 Aircraft wil~h LSI Automatic Landing System and

  20. Evaluation of spatial filtering on the accuracy of wheat area estimate

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.

    1982-01-01

    A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.

  1. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  2. Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events.

    PubMed

    Plug, L J; Werner, B T

    2002-06-27

    Patterns of subsurface wedges of ice that form along cooling-induced tension fractures, expressed at the ground surface by ridges or troughs spaced 10 30 m apart, are ubiquitous in polar lowlands. Fossilized ice wedges, which are widespread at lower latitudes, have been used to infer the duration and mean temperature of cold periods within Proterozoic and Quaternary climates, and recent climate trends have been inferred from fracture frequency in active ice wedges. Here we present simulations from a numerical model for the evolution of ice-wedge networks over a range of climate scenarios, based on the interactions between thermal tensile stress, fracture and ice wedges. We find that short-lived periods of severe cooling permanently alter the spacing between ice wedges as well as their fracture frequency. This affects the rate at which the widths of ice wedges increase as well as the network's response to subsequent climate change. We conclude that wedge spacing and width in ice-wedge networks mainly reflect infrequent episodes of rapidly falling ground temperatures rather than mean conditions.

  3. Surgical quality of wedge resection affects overall survival in patients with early stage non-small cell lung cancer.

    PubMed

    Ajmani, Gaurav S; Wang, Chi-Hsiung; Kim, Ki Wan; Howington, John A; Krantz, Seth B

    2018-07-01

    Very few studies have examined the quality of wedge resection in patients with non-small cell lung cancer. Using the National Cancer Database, we evaluated whether the quality of wedge resection affects overall survival in patients with early disease and how these outcomes compare with those of patients who receive stereotactic radiation. We identified 14,328 patients with cT1 to T2, N0, M0 disease treated with wedge resection (n = 10,032) or stereotactic radiation (n = 4296) from 2005 to 2013 and developed a subsample of propensity-matched wedge and radiation patients. Wedge quality was grouped as high (negative margins, >5 nodes), average (negative margins, ≤5 nodes), and poor (positive margins). Overall survival was compared between patients who received wedge resection of different quality and those who received radiation, adjusting for demographic and clinical variables. Among patients who underwent wedge resection, 94.6% had negative margins, 44.3% had 0 nodes examined, 17.1% had >5 examined, and 3.0% were nodally upstaged; 16.7% received a high-quality wedge, which was associated with a lower risk of death compared with average-quality resection (adjusted hazard ratio [aHR], 0.74; 95% confidence interval [CI], 0.67-0.82). Compared with stereotactic radiation, wedge patients with negative margins had significantly reduced hazard of death (>5 nodes: aHR, 0.50; 95% CI, 0.43-0.58; ≤5 nodes: aHR, 0.65; 95% CI, 0.60-0.70). There was no significant survival difference between margin-positive wedge and radiation. Lymph nodes examined and margins obtained are important quality metrics in wedge resection. A high-quality wedge appears to confer a significant survival advantage over lower-quality wedge and stereotactic radiation. A margin-positive wedge appears to offer no benefit compared with radiation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?: A retrospective study.

    PubMed

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-09-01

    Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis.From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study.With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0.01). Additionally, correlation analysis revealed a significant correlation between the apical vertebral wedging angle and GK (R = 0.850, P = 0.001).Various disc and vertebral wedging exist in thoracolumbar kyphosis secondary to AS. The discs wedging contributes more to the thoracolumbar kyphosis in patients with GK < 70° than vertebral wedging, whereas vertebral wedging is more conducive to the thoracolumbar kyphosis in patients with GK ≥ 70°, indicating different biomechanical pathogenesis in varied severity of thoracolumbar kyphosis secondary to AS.

  5. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    PubMed Central

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0.01). Additionally, correlation analysis revealed a significant correlation between the apical vertebral wedging angle and GK (R = 0.850, P = 0.001). Various disc and vertebral wedging exist in thoracolumbar kyphosis secondary to AS. The discs wedging contributes more to the thoracolumbar kyphosis in patients with GK < 70° than vertebral wedging, whereas vertebral wedging is more conducive to the thoracolumbar kyphosis in patients with GK ≥ 70°, indicating different biomechanical pathogenesis in varied severity of thoracolumbar kyphosis secondary to AS. PMID:27661026

  6. Automatic quadrature control and measuring system

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F.

    1973-01-01

    Quadrature is separated from amplified signal by use of phase detector, with phase shifter providing appropriate reference. Output of phase detector is further amplified and filtered by dc amplifier. Output of dc amplifier provides signal to neutralize quadrature component of transducer signal.

  7. Finding Malicious Cyber Discussions in Social Media

    DTIC Science & Technology

    2015-12-11

    automatically filter cyber discussions from Stack Exchange, Reddit, and Twitter posts written in English. Criminal hackers often use social media...monitoring hackers on Facebook and in private chat rooms. As a result, system administrators were prepared to counter distributed denial-of-service

  8. Episodic Growth of Fold-Thrust Belts: Insights from Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Yang, X.; Peel, F.; Sanderson, D. J.; McNeill, L. C.

    2016-12-01

    The sequential development of an imbricate thrust system was investigated using a set of 2D FEM models. This study provides new insights on how the style and location of thrust activity changes through cycles of thrust accretion by making refined measurements of the thrust system parameters through time and tracking these parameters through each cycle. In addition to conventional wedge parameters (i.e. surface slope, wedge width and height), the overall taper angle is used to determine how the critical taper angle is reached; a particular focus is on the region of outboard minor horizontal displacement provides insights into the forward propagation of material within, and in front of, the thrust wedge; tracking the position of the failure front (where the frontal thrust roots into the basal detachment) reveals the sequence and advancement of the imbricate thrusts. The model results show that a thrust system is generally composed of three deformation components: thrust wedge, pre-wedge and wedge front. A thrust belt involves growth that repeats episodically and cyclically. When a wedge reaches critical taper ( 10°), thrust movement within the wedge slows while the taper angle and wedge width gradually increase. In contrast, the displacement front (tracked here by the location of 0 m displacement) rapidly propagates forward along whilst the wedge height is fast growing. During this period, the wedge experiences a significant shortening after a new thrust initiates at the failure front, leading to an obvious decrease in wedge width. As soon as the critical taper is achieved, wedge interior (tracked here by the location of 50 m displacement) accelerates forward reducing the taper angle below critical. This is accompanied by a sudden increase in wedge width, slow advancement of displacement front, and slow uplift of the fold-thrust belt. The rapid movements within and in front of the wedge occur alternately. The model results also show that there is clear, although minor, activity (5-10 m displacement) in front of the thrust wedge, which distinguishes the failure front from the displacement front throughout the fold-thrust belt development. This spatial and temporal relationship may not have been previously recognized in natural systems.

  9. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  10. A dense cell retention culture system using stirred ceramic membrane reactor.

    PubMed

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  11. The influence of wedge diffuser blade number and divergence angle on the performance of a high pressure ratio centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Han, Ge; Lu, Xingen; Zhu, Junqiang

    2018-02-01

    Wedge diffuser is widely used in centrifugal compressors due to its high performance and compact size. This paper is aimed to research the influence of wedge diffuser blade number and divergence angle on centrifugal compressor performance. The impact of wedge diffuser blade number on compressor stage performance is investigated, and then the wedge diffusers with different divergence angle are studied by varying diffuser wedge angle and blade number simultaneously. It is found that wedge diffuser with 27 blades could have about 0.8% higher adiabatic efficiency and 0.14 higher total pressure ratio than the wedge diffuser with 19 blades and the best compressor performance is achieved when diffuser divergence angle is 8.3°.These results could give some advices on centrifugal compressor design.

  12. Multi-species beam hardening calibration device for x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Evershed, Anthony N. Z.; Mills, David; Davis, Graham

    2012-10-01

    Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.

  13. Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features

    PubMed Central

    Song, Le; Epps, Julien

    2007-01-01

    Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986

  14. A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Akita, T.; Takaki, R.; Shima, E.

    2012-04-01

    An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.

  15. Automatic classification of endoscopic images for premalignant conditions of the esophagus

    NASA Astrophysics Data System (ADS)

    Boschetto, Davide; Gambaretto, Gloria; Grisan, Enrico

    2016-03-01

    Barrett's esophagus (BE) is a precancerous complication of gastroesophageal reflux disease in which normal stratified squamous epithelium lining the esophagus is replaced by intestinal metaplastic columnar epithelium. Repeated endoscopies and multiple biopsies are often necessary to establish the presence of intestinal metaplasia. Narrow Band Imaging (NBI) is an imaging technique commonly used with endoscopies that enhances the contrast of vascular pattern on the mucosa. We present a computer-based method for the automatic normal/metaplastic classification of endoscopic NBI images. Superpixel segmentation is used to identify and cluster pixels belonging to uniform regions. From each uniform clustered region of pixels, eight features maximizing differences among normal and metaplastic epithelium are extracted for the classification step. For each superpixel, the three mean intensities of each color channel are firstly selected as features. Three added features are the mean intensities for each superpixel after separately applying to the red-channel image three different morphological filters (top-hat filtering, entropy filtering and range filtering). The last two features require the computation of the Grey-Level Co-Occurrence Matrix (GLCM), and are reflective of the contrast and the homogeneity of each superpixel. The classification step is performed using an ensemble of 50 classification trees, with a 10-fold cross-validation scheme by training the classifier at each step on a random 70% of the images and testing on the remaining 30% of the dataset. Sensitivity and Specificity are respectively of 79.2% and 87.3%, with an overall accuracy of 83.9%.

  16. Total knee arthroplasty after failed high tibial osteotomy: a systematic review of open versus closed wedge osteotomy.

    PubMed

    Han, Jae Hwi; Yang, Jae-Hyuk; Bhandare, Nikhl N; Suh, Dong Won; Lee, Jong Seong; Chang, Yong Suk; Yeom, Ji Woong; Nha, Kyung Wook

    2016-08-01

    Medial opening wedge high tibial osteotomy (HTO) has become increasingly popular as an alternative to lateral closing wedge osteotomy for the treatment of medial compartment knee osteoarthritis with varus deformity. The present systematic review was conducted to provide an objective analysis of total knee arthroplasty (TKA) outcomes following previous knee osteotomy (medial opening wedge vs. lateral closing wedge). A literature search of online databases (MEDLINE, EMBASE, Cochrane Library database) was made, in addition to manual search of major orthopaedic journals. The methodological quality of each of the studies was assessed on the Newcastle-Ottawa Scale and Effective Practice and Organization of Care. A total of ten studies were included in the review. There were eight studies with Level IV and two studies with Level III evidence. Eight studies reported clinical and radiologic scores. Comparative studies between TKA following medial opening and lateral closing wedge HTO did not demonstrate statistically significant clinical and radiologic differences. The revision rates were similar. However, more technical issues during TKA surgery after lateral closing wedge HTO were mentioned than the medial open wedge group. The quadriceps snip, tibial tubercle osteotomy, and lateral soft tissue release were more frequently needed in the lateral closing wedge HTO group. In addition, because of loss of proximal tibia bone geometry in the lateral closing wedge HTO group, concerns such as tibia stem impingement in the lateral tibial cortex was noted. The present systematic review suggests that TKA after medial opening and lateral closing wedge HTO showed similar performance. Clinical and radiologic outcome including revision rates did not statistically differ from included studies. However, there are more surgical technical concerns in TKA conversion from lateral closing wedge HTO than from the medial opening wedge HTO group. IV.

  17. Study on the shock interference in a wedged convergent-divergent channel

    NASA Astrophysics Data System (ADS)

    Yu, F. M.; Wang, C. Z.

    The investigation of shock reflection-to-diffraction phenomena upon a wedged convergent-divergent channel produced by a planar incident shock wave have been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng-Kung University. The experiment proceeds upon seven wedged convergent-divergent channels with the forward and rear wedge angles arrangement of them are (50°, 50°), (35°, 35°), (50°, 35°), (35°, 50°), (50°, 0°), (35°, 0°), and (90°, 0°), respectively. They were tested at Mach numbers of 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6, respectively. On the first wedged channel, following the regular reflection on a 50°- wedged surface by the incident shock wave, shock diffraction with Mach stem has been observed as it moves to the downstream wedge surface. On the apex of the wedge, the secondary reflected shock behaviors as a sector of the blast shock moving toward the centerline of the channel. From the color schlieren pictures it has been observed that there exists a pattern of blast-wave-type high gas density gradient region near the wedge apex. Following the Mach reflection from the 35° -wedged surface on which only the Mach stem diffracted across the apex and following with a small region of disturbed acoustic wave front. The shock interference, which proceeds by the Mach reflection-to-diffraction generates a very complicate vortical flow structure. The measurement of the peak pressure along centerline of the channel downstream of the wedge apex indicates that it is larger near the apex and it decreases downstream. It is larger for larger convergent wedge angle and It is smaller for larger divergent wedge angle.

  18. Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining

    PubMed Central

    Sadesh, S.; Suganthe, R. C.

    2015-01-01

    Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626

  19. Optical Fourier filtering for whole lens assessment of progressive power lenses.

    PubMed

    Spiers, T; Hull, C C

    2000-07-01

    Four binary filter designs for use in an optical Fourier filtering set-up were evaluated when taking quantitative measurements and when qualitatively mapping the power variation of progressive power lenses (PPLs). The binary filters tested were concentric ring, linear grating, grid and "chevron" designs. The chevron filter was considered best for quantitative measurements since it permitted a vernier acuity task to be used for measuring the fringe spacing, significantly reducing errors, and it also gave information on the polarity of the lens power. The linear grating filter was considered best for qualitatively evaluating the power variation. Optical Fourier filtering and a Nidek automatic focimeter were then used to measure the powers in the distance and near portions of five PPLs of differing design. Mean measurement error was 0.04 D with a maximum value of 0.13 D. Good qualitative agreement was found between the iso-cylinder plots provided by the manufacturer and the Fourier filter fringe patterns for the PPLs indicating that optical Fourier filtering provides the ability to map the power distribution across the entire lens aperture without the need for multiple point measurements. Arguments are presented that demonstrate that it should be possible to derive both iso-sphere and iso-cylinder plots from the binary filter patterns.

  20. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  1. A regional-scale estimation of ice wedge ice volumes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.

    2016-12-01

    Ice wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of ice wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of ice wedge ice for large areas in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected ice wedge polygons from satellite imagery using ArcGIS. The average width and depth of these ice wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of ice wedge volume have been tested, including trough width being representative of ice wedge width, and ice wedge ice content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that ice wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of ice wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of ice wedges across arctic terrain highlights the importance and the need to improve our understanding of ice wedge dynamics, as subsidence from ice wedge melt-out could lead to large scale landscape change.

  2. A Multi-Agent System for Intelligent Online Education.

    ERIC Educational Resources Information Center

    O'Riordan, Colm; Griffith, Josephine

    1999-01-01

    Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…

  3. Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction. PMID:27006906

  4. Optimized digital filtering techniques for radiation detection with HPGe detectors

    NASA Astrophysics Data System (ADS)

    Salathe, Marco; Kihm, Thomas

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of 1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  5. Automatic cytometric device using multiple wavelength excitations

    NASA Astrophysics Data System (ADS)

    Rongeat, Nelly; Ledroit, Sylvain; Chauvet, Laurence; Cremien, Didier; Urankar, Alexandra; Couderc, Vincent; Nérin, Philippe

    2011-05-01

    Precise identification of eosinophils, basophils, and specific subpopulations of blood cells (B lymphocytes) in an unconventional automatic hematology analyzer is demonstrated. Our specific apparatus mixes two excitation radiations by means of an acousto-optics tunable filter to properly control fluorescence emission of phycoerythrin cyanin 5 (PC5) conjugated to antibodies (anti-CD20 or anti-CRTH2) and Thiazole Orange. This way our analyzer combining techniques of hematology analysis and flow cytometry based on multiple fluorescence detection, drastically improves the signal to noise ratio and decreases the spectral overlaps impact coming from multiple fluorescence emissions.

  6. A Personalized Health Information Retrieval System

    PubMed Central

    Wang, Yunli; Liu, Zhenkai

    2005-01-01

    Consumers face barriers when seeking health information on the Internet. A Personalized Health Information Retrieval System (PHIRS) is proposed to recommend health information for consumers. The system consists of four modules: (1) User modeling module captures user’s preference and health interests; (2) Automatic quality filtering module identifies high quality health information; (3) Automatic text difficulty rating module classifies health information into professional or patient educational materials; and (4) User profile matching module tailors health information for individuals. The initial results show that PHIRS could assist consumers with simple search strategies. PMID:16779435

  7. Estimation of internal friction angle of subduction zone in northeast of Japan by using seismic focal mechanisms

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Sato, K.; Otsubo, M.

    2017-12-01

    Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal friction angle leads to lower frictional strength of plate boundary fault ( 0.35) according to the Coulomb wedge model. These constrained physical parameters can contribute to understanding the interplate earthquake at each subduction zones.

  8. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  9. Lymph node detection in IASLC-defined zones on PET/CT images

    NASA Astrophysics Data System (ADS)

    Song, Yihua; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape. In this paper, we propose several novel ideas which are combined into a system to operate on positron emission tomography/ computed tomography (PET/CT) images to detect abnormal thoracic nodes. First, our previous Automatic Anatomy Recognition (AAR) approach is modified where lymph node zones predominantly following International Association for the Study of Lung Cancer (IASLC) specifications are modeled as objects arranged in a hierarchy along with key anatomic anchor objects. This fuzzy anatomy model built from diagnostic CT images is then deployed on PET/CT images for automatically recognizing the zones. A novel globular filter (g-filter) to detect blob-like objects over a specified range of sizes is designed to detect the most likely locations and sizes of diseased nodes. Abnormal nodes within each automatically localized zone are subsequently detected via combined use of different items of information at various scales: lymph node zone model poses found at recognition indicating the geographic layout at the global level of node clusters, g-filter response which hones in on and carefully selects node-like globular objects at the node level, and CT and PET gray value but within only the most plausible nodal regions for node presence at the voxel level. The models are built from 25 diagnostic CT scans and refined for an object hierarchy based on a separate set of 20 diagnostic CT scans. Node detection is tested on an additional set of 20 PET/CT scans. Our preliminary results indicate node detection sensitivity and specificity at around 90% and 85%, respectively.

  10. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  11. Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge.

    PubMed

    Weides, C D; Mok, E C; Chang, W C; Findley, D O; Shostak, C A

    1995-01-01

    The incidence of secondary cancers in the contralateral breast after primary breast irradiation is several times higher than the incidence of first time breast cancer. Studies have shown that the scatter radiation to the contralateral breast may play a large part in the induction of secondary breast cancers. Factors that may contribute to the contralateral breast dose may include the use of blocks, the orientation of the field, and wedges. Reports have shown that the use of regular wedges, particularly for the medial tangential field, gives a significantly higher dose to the contralateral breast compared to an open field. This paper compares the peripheral dose outside the field using a regular wedge, a dynamic wedge, and an open field technique. The data collected consisted of measurements taken with patients, solid water and a Rando phantom using a Varian 2300CD linear accelerator. Ion chambers, thermoluminescent dosimeters (TLD), diodes, and films were the primary means for collecting the data. The measurements show that the peripheral dose outside the field using a dynamic wedge is close to that of open fields, and significantly lower than that of regular wedges. This information indicates that when using a medial wedge, a dynamic wedge should be used.

  12. Development of a hybrid image processing algorithm for automatic evaluation of intramuscular fat content in beef M. longissimus dorsi.

    PubMed

    Du, Cheng-Jin; Sun, Da-Wen; Jackman, Patrick; Allen, Paul

    2008-12-01

    An automatic method for estimating the content of intramuscular fat (IMF) in beef M. longissimus dorsi (LD) was developed using a sequence of image processing algorithm. To extract IMF particles within the LD muscle from structural features of intermuscular fat surrounding the muscle, three steps of image processing algorithm were developed, i.e. bilateral filter for noise removal, kernel fuzzy c-means clustering (KFCM) for segmentation, and vector confidence connected and flood fill for IMF extraction. The technique of bilateral filtering was firstly applied to reduce the noise and enhance the contrast of the beef image. KFCM was then used to segment the filtered beef image into lean, fat, and background. The IMF was finally extracted from the original beef image by using the techniques of vector confidence connected and flood filling. The performance of the algorithm developed was verified by correlation analysis between the IMF characteristics and the percentage of chemically extractable IMF content (P<0.05). Five IMF features are very significantly correlated with the fat content (P<0.001), including count densities of middle (CDMiddle) and large (CDLarge) fat particles, area densities of middle and large fat particles, and total fat area per unit LD area. The highest coefficient is 0.852 for CDLarge.

  13. Applying n-bit floating point numbers and integers, and the n-bit filter of HDF5 to reduce file sizes of remote sensing products in memory-sensitive environments

    NASA Astrophysics Data System (ADS)

    Zinke, Stephan

    2017-02-01

    Memory sensitive applications for remote sensing data require memory-optimized data types in remote sensing products. Hierarchical Data Format version 5 (HDF5) offers user defined floating point numbers and integers and the n-bit filter to create data types optimized for memory consumption. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) applies a compaction scheme to the disseminated products of the Day and Night Band (DNB) data of Suomi National Polar-orbiting Partnership (S-NPP) satellite's instrument Visible Infrared Imager Radiometer Suite (VIIRS) through the EUMETSAT Advanced Retransmission Service, converting the original 32 bits floating point numbers to user defined floating point numbers in combination with the n-bit filter for the radiance dataset of the product. The radiance dataset requires a floating point representation due to the high dynamic range of the DNB. A compression factor of 1.96 is reached by using an automatically determined exponent size and an 8 bits trailing significand and thus reducing the bandwidth requirements for dissemination. It is shown how the parameters needed for user defined floating point numbers are derived or determined automatically based on the data present in a product.

  14. Evaluating Computer-Generated Domain-Oriented Vocabularies.

    ERIC Educational Resources Information Center

    Damerau, Fred J.

    1990-01-01

    Discusses methods for automatically compiling domain-oriented vocabularies in natural language systems and describes techniques for evaluating the quality of the resulting word lists. A study is described that used subject headings from Grolier's Encyclopedia and the United Press International newswire, and filters for removing high frequency…

  15. CUDA-based acceleration and BPN-assisted automation of bilateral filtering for brain MR image restoration.

    PubMed

    Chang, Herng-Hua; Chang, Yu-Ning

    2017-04-01

    Bilateral filters have been substantially exploited in numerous magnetic resonance (MR) image restoration applications for decades. Due to the deficiency of theoretical basis on the filter parameter setting, empirical manipulation with fixed values and noise variance-related adjustments has generally been employed. The outcome of these strategies is usually sensitive to the variation of the brain structures and not all the three parameter values are optimal. This article is in an attempt to investigate the optimal setting of the bilateral filter, from which an accelerated and automated restoration framework is developed. To reduce the computational burden of the bilateral filter, parallel computing with the graphics processing unit (GPU) architecture is first introduced. The NVIDIA Tesla K40c GPU with the compute unified device architecture (CUDA) functionality is specifically utilized to emphasize thread usages and memory resources. To correlate the filter parameters with image characteristics for automation, optimal image texture features are subsequently acquired based on the sequential forward floating selection (SFFS) scheme. Subsequently, the selected features are introduced into the back propagation network (BPN) model for filter parameter estimation. Finally, the k-fold cross validation method is adopted to evaluate the accuracy of the proposed filter parameter prediction framework. A wide variety of T1-weighted brain MR images with various scenarios of noise levels and anatomic structures were utilized to train and validate this new parameter decision system with CUDA-based bilateral filtering. For a common brain MR image volume of 256 × 256 × 256 pixels, the speed-up gain reached 284. Six optimal texture features were acquired and associated with the BPN to establish a "high accuracy" parameter prediction system, which achieved a mean absolute percentage error (MAPE) of 5.6%. Automatic restoration results on 2460 brain MR images received an average relative error in terms of peak signal-to-noise ratio (PSNR) less than 0.1%. In comparison with many state-of-the-art filters, the proposed automation framework with CUDA-based bilateral filtering provided more favorable results both quantitatively and qualitatively. Possessing unique characteristics and demonstrating exceptional performances, the proposed CUDA-based bilateral filter adequately removed random noise in multifarious brain MR images for further study in neurosciences and radiological sciences. It requires no prior knowledge of the noise variance and automatically restores MR images while preserving fine details. The strategy of exploiting the CUDA to accelerate the computation and incorporating texture features into the BPN to completely automate the bilateral filtering process is achievable and validated, from which the best performance is reached. © 2017 American Association of Physicists in Medicine.

  16. Automatic localization of the nipple in mammograms using Gabor filters and the Radon transform

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayasree; Mukhopadhyay, Sudipta; Rangayyan, Rangaraj M.; Sadhu, Anup; Azevedo-Marques, P. M.

    2013-02-01

    The nipple is an important landmark in mammograms. Detection of the nipple is useful for alignment and registration of mammograms in computer-aided diagnosis of breast cancer. In this paper, a novel approach is proposed for automatic detection of the nipple based on the oriented patterns of the breast tissues present in mammograms. The Radon transform is applied to the oriented patterns obtained by a bank of Gabor filters to detect the linear structures related to the tissue patterns. The detected linear structures are then used to locate the nipple position using the characteristics of convergence of the tissue patterns towards the nipple. The performance of the method was evaluated with 200 scanned-film images from the mini-MIAS database and 150 digital radiography (DR) images from a local database. Average errors of 5:84 mm and 6:36 mm were obtained with respect to the reference nipple location marked by a radiologist for the mini-MIAS and the DR images, respectively.

  17. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  18. Automatic detection of echolocation clicks based on a Gabor model of their waveform.

    PubMed

    Madhusudhana, Shyam; Gavrilov, Alexander; Erbe, Christine

    2015-06-01

    Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of a variety of such signals. By means of mathematical formulation, it is shown that the output of the Teager-Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian and a rectangular filter, is shown to be an effective detection parameter. Detector performance is assessed using synthetic and real (taken from MobySound database) recordings. The detection method is shown to work readily with a variety of echolocation clicks and in various recording scenarios. The system exhibits low computational complexity and operates several times faster than real-time. Performance comparisons are made to other publicly available detectors including pamguard.

  19. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  20. Minutes. Accredited Standards Committee on Acoustics, S1. U.S. Tag for ISO/TC43 Acoustics and IEC/TC29 Electroacoustics, Held in Denver, Colorado on 7 October 1993

    DTIC Science & Technology

    1993-10-07

    Oroanizational matters and reports on working grouos . including regorts on letter ballots and international matters (continued) e) S1/WG5 - Band Filter Sets...Band Analog and Digital Filters "* ANSI S1.20-1988 Procedures for Calibration of Underwater Electroacoustics Transducers "* ANSI S;1.42-1986 Design ...New International Standards Available a IEC 118-2 - Amendment 1 - 1993 Hearing aids. Part 2: Hearina aids with automatic gain control circuits 9

  1. Application of the Karhunen-Loeve transform temporal image filter to reduce noise in real-time cardiac cine MRI

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Chung, Yiu-Cho; Raman, Subha V.; Simonetti, Orlando P.

    2009-06-01

    Real-time dynamic magnetic resonance imaging (MRI) typically sacrifices the signal-to-noise ratio (SNR) to achieve higher spatial and temporal resolution. Spatial and/or temporal filtering (e.g., low-pass filtering or averaging) of dynamic images improves the SNR at the expense of edge sharpness. We describe the application of a temporal filter for dynamic MR image series based on the Karhunen-Loeve transform (KLT) to remove random noise without blurring stationary or moving edges and requiring no training data. In this paper, we present several properties of this filter and their effects on filter performance, and propose an automatic way to find the filter cutoff based on the autocorrelation of the eigenimages. Numerical simulation and in vivo real-time cardiac cine MR image series spanning multiple cardiac cycles acquired using multi-channel sensitivity-encoded MRI, i.e., parallel imaging, are used to validate and demonstrate these properties. We found that in this application, the noise standard deviation was reduced to 42% of the original with no apparent image blurring by using the proposed filter cutoff. Greater noise reduction can be achieved by increasing the length of the image series. This advantage of KLT filtering provides flexibility in the form of another scan parameter to trade for SNR.

  2. Modification of the fault logic circuit of a high-energy linear accelerator to accommodate selectively coded, large-field wedges.

    PubMed

    Miller, R W; van de Geijn, J

    1987-01-01

    A modification to the fault logic circuit that controls the collimator (COLL) fault is described. This modification permits the use of large-field wedges by adding an additional input into the reference voltage that determines the fault condition. The resistor controlling the amount of additional voltage is carried on board each wedge, within the wedge plug. This allows each wedge to determine its own, individual field size limit. Additionally, if no coding resistor is provided, the factory-supplied reference voltage is used, which sets the maximum allowable field size to 15 cm. This permits the use of factory-supplied wedges in conjunction with selected, large-field wedges, allowing proper sensing of the field size maximum in all conditions.

  3. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.

    PubMed

    Ikeda, Andrea J; Fergason, John R; Wilken, Jason M

    2018-06-01

    The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.

  4. Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2015-01-01

    Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.

  5. Microtopographic control on the ground thermal regime in ice wedge polygons

    NASA Astrophysics Data System (ADS)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  6. UltiMatch-NL: A Web Service Matchmaker Based on Multiple Semantic Filters

    PubMed Central

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters. PMID:25157872

  7. UltiMatch-NL: a Web service matchmaker based on multiple semantic filters.

    PubMed

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.

  8. Gabor filter based fingerprint image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Xiang

    2013-03-01

    Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.

  9. Multiple point least squares equalization in a room

    NASA Technical Reports Server (NTRS)

    Elliott, S. J.; Nelson, P. A.

    1988-01-01

    Equalization filters designed to minimize the mean square error between a delayed version of the original electrical signal and the equalized response at a point in a room have previously been investigated. In general, such a strategy degrades the response at positions in a room away from the equalization point. A method is presented for designing an equalization filter by adjusting the filter coefficients to minimize the sum of the squares of the errors between the equalized responses at multiple points in the room and delayed versions of the original, electrical signal. Such an equalization filter can give a more uniform frequency response over a greater volume of the enclosure than can the single point equalizer above. Computer simulation results are presented of equalizing the frequency responses from a loudspeaker to various typical ear positions, in a room with dimensions and acoustic damping typical of a car interior, using the two approaches outlined above. Adaptive filter algorithms, which can automatically adjust the coefficients of a digital equalization filter to achieve this minimization, will also be discussed.

  10. Optimal design of a bank of spatio-temporal filters for EEG signal classification.

    PubMed

    Higashi, Hiroshi; Tanaka, Toshihisa

    2011-01-01

    The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.

  11. Automatic grade classification of Barretts Esophagus through feature enhancement

    NASA Astrophysics Data System (ADS)

    Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid

    2017-03-01

    Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.

  12. A floating-point digital receiver for MRI.

    PubMed

    Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki

    2002-07-01

    A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.

  13. Dose to the contralateral breast: a comparison of two techniques using the enhanced dynamic wedge versus a standard wedge.

    PubMed

    Warlick, W B; O'Rear, J H; Earley, L; Moeller, J H; Gaffney, D K; Leavitt, D D

    1997-01-01

    The dose to the contralateral breast has been associated with an increased risk of developing a second breast malignancy. Varying techniques have been devised and described in the literature to minimize this dose. Metal beam modifiers such as standard wedges are used to improve the dose distribution in the treated breast, but unfortunately introduce an increased scatter dose outside the treatment field, in particular to the contralateral breast. The enhanced dynamic wedge is a means of remote wedging created by independently moving one collimator jaw through the treatment field during dose delivery. This study is an analysis of differing doses to the contralateral breast using two common clinical set-up techniques with the enhanced dynamic wedge versus the standard metal wedge. A tissue equivalent block (solid water), modeled to represent a typical breast outline, was designed as an insert in a Rando phantom to simulate a standard patient being treated for breast conservation. Tissue equivalent material was then used to complete the natural contour of the breast and to reproduce appropriate build-up and internal scatter. Thermoluminescent dosimeter (TLD) rods were placed at predetermined distances from the geometric beam's edge to measure the dose to the contralateral breast. A total of 35 locations were used with five TLDs in each location to verify the accuracy of the measured dose. The radiation techniques used were an isocentric set-up with co-planar, non divergent posterior borders and an isocentric set-up with a half beam block technique utilizing the asymmetric collimator jaw. Each technique used compensating wedges to optimize the dose distribution. A comparison of the dose to the contralateral breast was then made with the enhanced dynamic wedge vs. the standard metal wedge. The measurements revealed a significant reduction in the contralateral breast dose with the enhanced dynamic wedge compared to the standard metal wedge in both set-up techniques. The dose was measured at varying distances from the geometric field edge, ranging from 2 to 8 cm. The average dose with the enhanced dynamic wedge was 2.7-2.8%. The average dose with the standard wedge was 4.0-4.7%. Thermoluminescent dosimeter measurements suggest an increase in both scattered electrons and photons with metal wedges. The enhanced dynamic wedge is a practical clinical advance which improves the dose distribution in patients undergoing breast conservation while at the same time minimizing dose to the contralateral breast, thereby reducing the potential carcinogenic effects.

  14. Ultrasonic fluid densitometer for process control

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  15. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  16. The use of sternal wedge osteotomy in pectus surgery: when is it necessary?

    PubMed

    Kara, Murat; Gundogdu, Ahmet Gokhan; Kadioglu, Salih Zeki; Cayirci, Ertug Can; Taskin, Necati

    2016-09-01

    The Ravitch procedure is a well-established surgical procedure for correction of chest wall deformities. Sternal wedge osteotomy is an important part of this procedure. We studied the incidence of wedge osteotomy with respect to the type of chest wall deformity in patients undergoing surgical correction with the use of a recently developed chest wall stabilization system. A total of 47 patients, 39 (83%) male and 8 (17%) female with a mean age of 14.9 ± 2.1 years, underwent the Ravitch procedure. Twenty-four (51.1%) had pectus carinatum, 19 (40.4%) had pectus excavatum, and 4 (8.5%) had pectus arcuatum. A conventional or oblique sternal wedge osteotomy was performed as indicated, followed by chest wall stabilization using the MedXpert system. Of the 47 patients, 27 (57.4%) had a sternal wedge osteotomy. All cases of pectus arcuatum and redo cases underwent sternal wedge osteotomy. Pectus excavatum cases tended to have a greater incidence of wedge osteotomy compared to pectus carinatum cases (68.4% vs. 41.7%, p = 0.052). Patients with more resected ribs had a greater rate of wedge osteotomy (63.4%) compared to those with fewer resected ribs (16.7%, p = 0.043). A sternal wedge osteotomy is more commonly performed in patients with pectus excavatum compared to those with pectus carinatum. All redo and pectus arcuatum cases need a wedge osteotomy for proper correction. Wedge osteotomy is very likely in more aggressive corrections with more rib resections. © The Author(s) 2016.

  17. Growth of Acousto-Optic Crystals for Applications in Infrared Region of Spectrum

    DTIC Science & Technology

    2005-04-30

    Acousto - optic (AO) modulators, deflectors, filters offer convenience, reliability, compact size and fast speed in regulation of optical beams. So far...extremely low acousto - optic figure of merit, which automatically results in high requirements on driving electric power and poor diffraction efficiency. It

  18. Automatic Flushing Unit With Cleanliness Monitor

    NASA Technical Reports Server (NTRS)

    Hildebrandt, N. E.

    1982-01-01

    Liquid-level probe kept clean, therefore at peak accuracy, by unit that flushes probe with solvent, monitors effluent for contamination, and determines probe is particle-free. Approach may be adaptable to industrial cleaning such as flushing filters and pipes, and ensuring that manufactured parts have been adequately cleaned.

  19. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    NASA Astrophysics Data System (ADS)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.A.; Atkinson, P.F.; Hammond, E.C.,JR.

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important rolemore » in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.« less

  1. The supercontinuum laser as a flexible source for quasi-steady state and time resolved fluorescence studies

    NASA Astrophysics Data System (ADS)

    Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond

    2010-02-01

    Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.

  2. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  3. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  4. Classification of calcium in intravascular OCT images for the purpose of intervention planning

    NASA Astrophysics Data System (ADS)

    Shalev, Ronny; Bezerra, Hiram G.; Ray, Soumya; Prabhu, David; Wilson, David L.

    2016-03-01

    The presence of extensive calcification is a primary concern when planning and implementing a vascular percutaneous intervention such as stenting. If the balloon does not expand, the interventionalist must blindly apply high balloon pressure, use an atherectomy device, or abort the procedure. As part of a project to determine the ability of Intravascular Optical Coherence Tomography (IVOCT) to aid intervention planning, we developed a method for automatic classification of calcium in coronary IVOCT images. We developed an approach where plaque texture is modeled by the joint probability distribution of a bank of filter responses where the filter bank was chosen to reflect the qualitative characteristics of the calcium. This distribution is represented by the frequency histogram of filter response cluster centers. The trained algorithm was evaluated on independent ex-vivo image data accurately labeled using registered 3D microscopic cryo-image data which was used as ground truth. In this study, regions for extraction of sub-images (SI's) were selected by experts to include calcium, fibrous, or lipid tissues. We manually optimized algorithm parameters such as choice of filter bank, size of the dictionary, etc. Splitting samples into training and testing data, we achieved 5-fold cross validation calcium classification with F1 score of 93.7+/-2.7% with recall of >=89% and a precision of >=97% in this scenario with admittedly selective data. The automated algorithm performed in close-to-real-time (2.6 seconds per frame) suggesting possible on-line use. This promising preliminary study indicates that computational IVOCT might automatically identify calcium in IVOCT coronary artery images.

  5. The design of an fast Fourier filter for enhancing diagnostically relevant structures - endodontic files.

    PubMed

    Bruellmann, Dan; Sander, Steven; Schmidtmann, Irene

    2016-05-01

    The endodontic working length is commonly determined by electronic apex locators and intraoral periapical radiographs. No algorithms for the automatic detection of endodontic files in dental radiographs have been described in the recent literature. Teeth from the mandibles of pig cadavers were accessed, and digital radiographs of these specimens were obtained using an optical bench. The specimens were then recorded in identical positions and settings after the insertion of endodontic files of known sizes (ISO sizes 10-15). The frequency bands generated by the endodontic files were determined using fast Fourier transforms (FFTs) to convert the resulting images into frequency spectra. The detected frequencies were used to design a pre-segmentation filter, which was programmed using Delphi XE RAD Studio software (Embarcadero Technologies, San Francisco, USA) and tested on 20 radiographs. For performance evaluation purposes, the gauged lengths (measured with a caliper) of visible endodontic files were measured in the native and filtered images. The software was able to segment the endodontic files in both the samples and similar dental radiographs. We observed median length differences of 0.52 mm (SD: 2.76 mm) and 0.46 mm (SD: 2.33 mm) in the native and post-segmentation images, respectively. Pearson's correlation test revealed a significant correlation of 0.915 between the true length and the measured length in the native images; the corresponding correlation for the filtered images was 0.97 (p=0.0001). The algorithm can be used to automatically detect and measure the lengths of endodontic files in digital dental radiographs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Double wedge prism based beam deflector for precise laser beam steering

    NASA Astrophysics Data System (ADS)

    Tyszka, Krzysztof; Dobosz, Marek; Bilaszewski, Tomasz

    2018-02-01

    Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam. Moreover, the ratio of the output beam deflection angle and the wedge tilt angle is less than 0.1; therefore, the noise influence is significantly reduced in comparison to standard mirror-based deflectors. The theoretical analyses support the designing process and can serve as a guide to wedge-prism selection. The experimental results are in agreement with theory and confirm the advantages of the presented double wedge system.

  8. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    PubMed

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  9. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  10. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  11. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  12. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    NASA Astrophysics Data System (ADS)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  13. Personalized professional content recommendation

    DOEpatents

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  14. Effects of Lateral and Medial Wedged Insoles on Knee and Ankle Internal Joint Moments During Walking in Healthy Men.

    PubMed

    Fukuchi, Claudiane A; Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2016-11-01

    Wedged insoles have been used to treat knee pathologies and to prevent injuries. Although they have received much attention for the study of knee injury, the effects of wedges on ankle joint biomechanics are not well understood. This study sought to evaluate the immediate effects of lateral and medial wedges on knee and ankle internal joint loading and center of pressure (CoP) in men during walking. Twenty-one healthy men walked at 1.4 m/sec in five footwear conditions: neutral, 6° (LW6) and 9° (LW9) lateral wedges, and 6° (MW6) and 9° (MW9) medial wedges. Peak internal knee abduction moments and angular impulses, internal ankle inversion moments and angular impulses, and mediolateral CoP were analyzed. Analysis of variance with post hoc analysis and Pearson correlations were performed to detect differences between conditions. No differences in internal knee joint loading were found between neutral and any of the wedge conditions. However, as the wedge angle increased from medial to lateral, the internal ankle inversion moment (LW6: P = .020; LW9: P < .001; MW6: P = .046; MW9: P < .001) and angular impulse (LW9: P = .012) increased, and the CoP shifted laterally (LW9: P < .001) and medially (MW9: P < .001) compared with the neutral condition. Neither lateral nor medial wedges were effective in altering internal knee joint loading during walking. However, the greater internal ankle inversion moment and angular impulse observed with lateral wedges could lead to a higher risk of ankle injury. Thus, caution should be taken when lateral wedges need to be prescribed.

  15. The influence of physical wedges on penumbra and in-field dose uniformity in ocular proton beams.

    PubMed

    Baker, Colin; Kacperek, Andrzej

    2016-04-01

    A physical wedge may be partially introduced into a proton beam when treating ocular tumours in order to improve dose conformity to the distal border of the tumour and spare the optic nerve. Two unwanted effects of this are observed: a predictable broadening of the beam penumbra on the wedged side of the field and, less predictably, an increase in dose within the field along a relatively narrow volume beneath the edge (toe) of the wedge, as a result of small-angle proton scatter. Monte Carlo simulations using MCNPX and direct measurements with radiochromic (GAFCHROMIC(®) EBT2) film were performed to quantify these effects for aluminium wedges in a 60 MeV proton beam as a function of wedge angle and position of the wedge relative to the patient. For extreme wedge angles (60° in eye tissue) and large wedge-to-patient distances (70 mm in this context), the 90-10% beam penumbra increased from 1.9 mm to 9.1 mm. In-field dose increases from small-angle proton scatter were found to contribute up to 21% additional dose, persisting along almost the full depth of the spread-out-Bragg peak. Profile broadening and in-field dose enhancement are both minimised by placing the wedge as close as possible to the patient. Use of lower atomic number wedge materials such as PMMA reduce the magnitude of both effects as a result of a reduced mean scattering angle per unit energy loss; however, their larger physical size and greater variation in density are undesirable. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Local transmural action potential gradients are absent in the isolated, intact dog heart but present in the corresponding coronary-perfused wedge.

    PubMed

    Boukens, Bastiaan J; Meijborg, Veronique M F; Belterman, Charly N; Opthof, Tobias; Janse, Michiel J; Schuessler, Richard B; Coronel, Ruben; Efimov, Igor R

    2017-05-01

    The left ventricular (LV) coronary-perfused canine wedge preparation is a model commonly used for studying cardiac repolarization. In wedge studies, transmembrane potentials typically are recorded; whereas, extracellular electrical recordings are commonly used in intact hearts. We compared electrically measured activation recovery interval (ARI) patterns in the intact heart with those recorded at the same location in the LV wedge preparation. We also compared electrically recorded and optically obtained ARIs in the LV wedge preparation. Five Langendorff-perfused canine hearts were paced from the right atrium. Local activation and repolarization times were measured with eight transmural needle electrodes. Subsequently, left ventricular coronary-perfused wedge preparations were prepared from these hearts while the electrodes remained in place. Three electrodes remained at identical positions as in the intact heart. Both electrograms and optical action potentials were recorded (pacing cycle length 400-4000 msec) and activation and repolarization patterns were analyzed. ARIs found in the subepicardium were shorter than in the subendocardium in the LV wedge preparation but not in the intact heart. The transmural ARI gradient recorded at the cut surface of the wedge was not different from that recorded internally. ARIs recorded internally and at the cut surface in the LV wedge preparation, both correlated with optically recorded action potentials. ARI and RT gradients in the LV wedge preparation differed from those in the intact canine heart, implying that those observations in human LV wedge preparations also should be extrapolated to the intact human heart with caution. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Modeling the Evolution of Localized Strain in Orogenic Wedges: From Short-term Deformation to Long-term Tectonic States

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Ito, G.; Brooks, B. A.; Olive, J. A. L.; Foster, J. H.; Howell, S. M.

    2015-12-01

    Some of the most destructive earthquakes on Earth are associated with active orogenic wedges. Despite a sound understanding of the basic mechanics that govern whole wedge structure over geologic time scales and a growing body of studies that have characterized the deformation associated with historic to recent earthquakes, first order questions remain about the linkage of the two sets of processes at the intermediate seismotectonic timescales. Numerical models have the power to test the effects of specific mechanical conditions on the evolution of observables at active orogenic wedges. Here we use a two-dimensional, continuum mechanics-based, finite difference method with a visco-elasto-plastic rheology coupled with surface processes to investigate the spatiotemporal distribution of deformation during wedge growth. The model simulates the contraction of a crustal layer overlying a weak base (décollement) against a rigid backstop and the spontaneous nucleation and evolution of fault zones due to cohesive, Mohr-Coulomb failure with strain weakening. Consistent with critical wedge theory, the average slope across the wedge is controlled by the relative frictional strengths of the wedge and décollement. Initial calculations predict changes in wedge deformation on short geologic timescales (103-105yrs) that involve episodes of widening as new, foreland-verging thrusts nucleate near the surface beyond the wedge toe and propagate down-dip to intersect the décollement. All the while, the wedge thickens via slip on older, internal fault zones. The aim of this study is to identify the parameters controlling the timescales of 1) episodic widening versus thickening and 2) nucleation and life-span of individual fault zones. These are initial steps needed to link earthquake observations to the long-term tectonic states inferred at various orogenic belts around the world.

  18. Analysis and Defense of Vulnerabilities in Binary Code

    DTIC Science & Technology

    2008-09-29

    language . We demonstrate our techniques by automatically generating input filters from vulnerable binary programs. vi Acknowledgments I thank my wife, family...21 2.2 The Vine Intermediate Language . . . . . . . . . . . . . . . . . . . . . . 21 ix 2.2.1 Normalized Memory...The Traditional Weakest Precondition Semantics . . . . . . . . . . . . . 44 3.2.1 The Guarded Command Language . . . . . . . . . . . . . . . . . 44

  19. 47 CFR 95.637 - Modulation standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz..., must automatically prevent a greater than normal audio level from causing overmodulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable...

  20. 47 CFR 95.637 - Modulation standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz..., must automatically prevent a greater than normal audio level from causing overmodulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable...

  1. 47 CFR 95.637 - Modulation standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz..., must automatically prevent a greater than normal audio level from causing overmodulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable...

  2. 47 CFR 95.637 - Modulation standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz..., must automatically prevent a greater than normal audio level from causing overmodulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable...

  3. IMPROVED BIOSAND FILTERS BY ENHANCED MONITORING AND DATA COLLECTION METHODS

    EPA Science Inventory

    The result of this project will be the development of a sensor that will automatically and accurately record BSF use, flow rate, and volume of water poured in. The quantitative volume and flow rate data output will be used to compare actual BSF frequency and usage patterns ...

  4. Electronic Current Awareness in the Corporate Environment.

    ERIC Educational Resources Information Center

    Sale, Elizabeth

    Technological developments such as groupware and World Wide Web technology have opened up new opportunities for the delivery of information directly to the end-user's desktop. These advances have meant that suppliers are now producing a new breed of current awareness services (CAS), termed alerting services, which automatically filter newswires…

  5. Morphological operators for enhanced polarimetric image target detection

    NASA Astrophysics Data System (ADS)

    Romano, João. M.; Rosario, Dalton S.

    2015-09-01

    We introduce an algorithm based on morphological filters with the Stokes parameters that augments the daytime and nighttime detection of weak-signal manmade objects immersed in a predominant natural background scene. The approach features a tailored sequence of signal-enhancing filters, consisting of core morphological operators (dilation, erosion) and higher level morphological operations (e.g., spatial gradient, opening, closing) to achieve a desired overarching goal. Using representative data from the SPICE database, the results show that the approach was able to automatically and persistently detect with a high confidence level the presence of three mobile military howitzer surrogates (targets) in natural clutter.

  6. B-Spline Filtering for Automatic Detection of Calcification Lesions in Mammograms

    NASA Astrophysics Data System (ADS)

    Bueno, G.; Sánchez, S.; Ruiz, M.

    2006-10-01

    Breast cancer continues to be an important health problem between women population. Early detection is the only way to improve breast cancer prognosis and significantly reduce women mortality. It is by using CAD systems that radiologist can improve their ability to detect, and classify lesions in mammograms. In this study the usefulness of using B-spline based on a gradient scheme and compared to wavelet and adaptative filtering has been investigated for calcification lesion detection and as part of CAD systems. The technique has been applied to different density tissues. A qualitative validation shows the success of the method.

  7. IADE: a system for intelligent automatic design of bioisosteric analogs

    NASA Astrophysics Data System (ADS)

    Ertl, Peter; Lewis, Richard

    2012-11-01

    IADE, a software system supporting molecular modellers through the automatic design of non-classical bioisosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminformatics functionalities for constructing novel analogs and filtering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabilities: the best candidates are selected according to their similarity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every generation until structures with optimal properties are identified. The program frees molecular modellers from routine, repetitive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhancing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisosteric analog of a farnesyltransferase inhibitor—an analog that has won a recent "Design a Molecule" competition.

  8. Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images

    NASA Astrophysics Data System (ADS)

    Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias

    2012-02-01

    Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.

  9. IADE: a system for intelligent automatic design of bioisosteric analogs.

    PubMed

    Ertl, Peter; Lewis, Richard

    2012-11-01

    IADE, a software system supporting molecular modellers through the automatic design of non-classical bioisosteric analogs, scaffold hopping and fragment growing, is presented. The program combines sophisticated cheminformatics functionalities for constructing novel analogs and filtering them based on their drug-likeness and synthetic accessibility using automatic structure-based design capabilities: the best candidates are selected according to their similarity to the template ligand and to their interactions with the protein binding site. IADE works in an iterative manner, improving the fitness of designed molecules in every generation until structures with optimal properties are identified. The program frees molecular modellers from routine, repetitive tasks, allowing them to focus on analysis and evaluation of the automatically designed analogs, considerably enhancing their work efficiency as well as the area of chemical space that can be covered. The performance of IADE is illustrated through a case study of the design of a nonclassical bioisosteric analog of a farnesyltransferase inhibitor--an analog that has won a recent "Design a Molecule" competition.

  10. Approximation, abstraction and decomposition in search and optimization

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1992-01-01

    In this paper, I discuss four different areas of my research. One portion of my research has focused on automatic synthesis of search control heuristics for constraint satisfaction problems (CSPs). I have developed techniques for automatically synthesizing two types of heuristics for CSPs: Filtering functions are used to remove portions of a search space from consideration. Another portion of my research is focused on automatic synthesis of hierarchic algorithms for solving constraint satisfaction problems (CSPs). I have developed a technique for constructing hierarchic problem solvers based on numeric interval algebra. Another portion of my research is focused on automatic decomposition of design optimization problems. We are using the design of racing yacht hulls as a testbed domain for this research. Decomposition is especially important in the design of complex physical shapes such as yacht hulls. Another portion of my research is focused on intelligent model selection in design optimization. The model selection problem results from the difficulty of using exact models to analyze the performance of candidate designs.

  11. Late Holocene ice wedges near Fairbanks, Alaska, USA: Environmental setting and history of growth

    USGS Publications Warehouse

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The wedges occur in peat that has accumulated since about 3500 yr BP and have grown episodically as the permafrost table fluctuated in response to fires, other local site conditions and perhaps regional climatic changes. Radiocarbon dates suggest one or two episodes of ice-wedge growth between about 3500 and 2000 yr BP as woody peat accumulated at the site. Subsequent wedge truncation evidently followed a fire that charred the peat. Younger peat exhibits facies changes between sedge-rich components that filled troughs over the ice wedges and woody bryophytic deposits that formed beyond the troughs. A final episode of wedge development took place within the past few hundred years. Pollen data from the site indicate that boreal forest was present throughout the past 6000 yr, but that it underwent a gradual transition from a predominantly deciduous to a spruce-dominated assemblage. This change may reflect either local site conditions or a more general climatic shift to cooler, moister summers in late Holocene time. The history of ice-wedge growth shows that wedges can form and grow to more than 1 m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5°C) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8°C in the zone of continuous permafrost is invalid.

  12. Context-Based Tourism Information Filtering with a Semantic Rule Engine

    PubMed Central

    Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio

    2012-01-01

    This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction. PMID:22778584

  13. Context-based tourism information filtering with a semantic rule engine.

    PubMed

    Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio

    2012-01-01

    This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction.

  14. Biofiltration: an effective and simple method to reduce dialysis time.

    PubMed

    Mingardi, G; Massazza, M; Viganò, G; Mecca, G

    1986-12-01

    Biofiltration: an effective and simple method to reduce dialysis time. Six stable anuric patients, on maintenance hemodialysis, were treated for 10 weeks with a parallel flow 1 m2 cuprophan filter, for 20 weeks with a parallel flow 1.2 m2 polyacrylonitrile filter using the biofiltration (BF) technique and again 10 weeks with the cuprophan filter. Usual monitors were used, without automatic control of ultrafiltration. Biochemical and hematological profile, urea kinetic parameters, incidence of hypotensive episodes, body weight and blood pressure did not change throughout the study. We conclude that three hours of BF, at least for 20 weeks, are as effective and well tolerated as four hours standard hemodialysis and could be of value in reducing dialysis time, to permit better utilization of dialysis beds.

  15. Numerical study on dusty shock reflection over a double wedge

    NASA Astrophysics Data System (ADS)

    Yin, Jingyue; Ding, Juchun; Luo, Xisheng

    2018-01-01

    The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.

  16. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  17. Acoustic field of a wedge-shaped section of a spherical cap transducer.

    PubMed

    Ketterling, Jeffrey A

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10% +/- 5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  18. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  19. Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules.

    PubMed

    Cohen, Julien G; Kim, Hyungjin; Park, Su Bin; van Ginneken, Bram; Ferretti, Gilbert R; Lee, Chang Hyun; Goo, Jin Mo; Park, Chang Min

    2017-08-01

    To evaluate the differences between filtered back projection (FBP) and model-based iterative reconstruction (MBIR) algorithms on semi-automatic measurements in subsolid nodules (SSNs). Unenhanced CT scans of 73 SSNs obtained using the same protocol and reconstructed with both FBP and MBIR algorithms were evaluated by two radiologists. Diameter, mean attenuation, mass and volume of whole nodules and their solid components were measured. Intra- and interobserver variability and differences between FBP and MBIR were then evaluated using Bland-Altman method and Wilcoxon tests. Longest diameter, volume and mass of nodules and those of their solid components were significantly higher using MBIR (p < 0.05) with mean differences of 1.1% (limits of agreement, -6.4 to 8.5%), 3.2% (-20.9 to 27.3%) and 2.9% (-16.9 to 22.7%) and 3.2% (-20.5 to 27%), 6.3% (-51.9 to 64.6%), 6.6% (-50.1 to 63.3%), respectively. The limits of agreement between FBP and MBIR were within the range of intra- and interobserver variability for both algorithms with respect to the diameter, volume and mass of nodules and their solid components. There were no significant differences in intra- or interobserver variability between FBP and MBIR (p > 0.05). Semi-automatic measurements of SSNs significantly differed between FBP and MBIR; however, the differences were within the range of measurement variability. • Intra- and interobserver reproducibility of measurements did not differ between FBP and MBIR. • Differences in SSNs' semi-automatic measurement induced by reconstruction algorithms were not clinically significant. • Semi-automatic measurement may be conducted regardless of reconstruction algorithm. • SSNs' semi-automated classification agreement (pure vs. part-solid) did not significantly differ between algorithms.

  20. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  1. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  2. Minimum work analysis on the critical taper accretionary wedges- insights from analogue modeling

    NASA Astrophysics Data System (ADS)

    Santimano, Tasca; Rosenau, Matthias; Oncken, Onno

    2014-05-01

    The Critical taper theory (CTT) is a fundamental concept for the understanding of mountain building processes. Based on force balance it predicts the preferred steady state geometry of an accretionary wedge system and its tectonic regime (extensive, compressive, stable). However, it does not specify which structures are formed and reactivated to reach the preferred state. The latter can be predicted by the minimum work concept. Here we test both concepts and their interplay by analysing two simple sand wedge models which differ only in the thickness of the basal detachment (a layer of glass beads). While the steady state critical taper is controlled by internal and basal friction coefficients and therefore the same in all experiments, different processes can minimise work by 1. reducing gravitational work e.g. by lowering the amount of uplift or volume uplifted, or 2. reducing frictional work e.g. by lowering the load or due to low friction coefficient along thrusts. Since a thick detachment allows entrainment of low friction material and therefore lowering of the friction along active thrusts, we speculate that the style of wedge growth will differ between the two models. We observe that the wedge with a thin basal detachment localizes strain at the toe of the wedge periodically and reactivate older faults to reach the critical topography. On the contrary, in the wedge with the thicker detachment layer, friction along thrusts is lowered due to the entrainment of low friction material from the detachment zone, subsequently increasing the lifetime of a thrust. Long thrust episodes are always followed by a fault of shorter lifetime, with the aim of reaching the critical taper. From the two experiments, we analyze the time-series evolution of the wedge to infer the work done by the two styles of deformation and predict the trend over time to differ but the maximum work to be similar Our observations show that the critical taper theory determines the geometry of the wedge in particular the taper angle. However the path and style of deformation that the wedge adopts i.e. strain partitioning or deformation along one fault, is determined by the energetically lowest pathway. The observation is especially evident in wedges with added complexities or random changes as the wedge matures. This study combines two theories to explain variability in the results of analogue models and perhaps may aid in understanding the complexity in natural wedges. It also delineates that two different mechanics of deformation can lead to the same geometrical wedge or final topography.

  3. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    PubMed

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  4. Union operation image processing of data cubes separately processed by different objective filters and its application to void analysis in an all-solid-state lithium-ion battery.

    PubMed

    Yamamoto, Yuta; Iriyama, Yasutoshi; Muto, Shunsuke

    2016-04-01

    In this article, we propose a smart image-analysis method suitable for extracting target features with hierarchical dimension from original data. The method was applied to three-dimensional volume data of an all-solid lithium-ion battery obtained by the automated sequential sample milling and imaging process using a focused ion beam/scanning electron microscope to investigate the spatial configuration of voids inside the battery. To automatically fully extract the shape and location of the voids, three types of filters were consecutively applied: a median blur filter to extract relatively larger voids, a morphological opening operation filter for small dot-shaped voids and a morphological closing operation filter for small voids with concave contrasts. Three data cubes separately processed by the above-mentioned filters were integrated by a union operation to the final unified volume data, which confirmed the correct extraction of the voids over the entire dimension contained in the original data. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Ancient Yedoma carbon loss: primed by ice wedge thaw?

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Vonk, J. E.; Mann, P. J.; Zimov, N.; Bulygina, E. B.; Davydova, A.; Spencer, R. G.; Holmes, R. M.

    2012-12-01

    Northeast Siberian permafrost is dominated by frozen Yedoma deposits containing ca. 500 Gt of carbon, nearly a quarter of northern permafrost organic carbon (OC). Yedoma deposits are Pleistocene-age alluvial and/or aeolian accumulations characterized by high ice wedge content (~50%), making them particularly vulnerable to a warming climate and to surface collapse upon thaw. Dissolved OC in streams originating primarily from Yedoma has been shown to be highly biolabile, relative to waters containing more modern OC. The cause of this biolability, however, remains speculative. Here we investigate the influence of ice wedge input upon the bioavailability of Yedoma within streams from as a potential cause of Yedoma carbon biolability upon release into the Kolyma River from the thaw-eroding river exposures of Duvannyi Yar, NE Siberia. We measured biolability on (1) ice wedge, Kolyma, and Yedoma leachate controls; (2) ice wedge and Kolyma plus Yedoma OC (8 g/L); and (3) varying ratios of ice wedge water to Kolyma river water. Biolability assays were conducted using both 5-day BOD (biological oxygen demand) and 11-day BDOC (biodegradable dissolved organic carbon) incubations. We found that ancient DOC in Yedoma soil leachate alone was highly biolabile with losses of 52±0.1% C over a 5-day BOD incubation. Similarly, DOC contained in pure ice wedge water was found to be biolabile, losing 21±0% C during a 5-day BOD incubation. Increased ice wedge contributions led to higher overall C losses in identical Yedoma soil leachates, with 8.9±0.6% losses of Yedoma C with 100% ice wedge water, 7.1±1% (50% ice wedge/ 50% Kolyma) and 5±0.3% with 100% Kolyma River water. We discuss potential mechanisms for the increased loss of ancient C using associated measurements of nutrient availability, carbon quality (CDOM/FDOM) and extracellular enzyme activity rates. Our initial results indicate that ice wedge meltwater forming Yedoma streams makes Yedoma OC more bioavailable than it would be if mixed with Kolyma River water alone, suggesting that leach water origin acts as a control on the turnover of old C. The higher reactivity of Yedoma OC in ice wedge meltwater compared to Kolyma River water suggests that further ice wedge and permafrost thaw in Yedoma deposits will likely result in increased CO2 flux into the atmosphere.

  6. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ilao, Kimberly A.; Morley, Christopher K.; Aurelio, Mario A.

    2018-04-01

    The Pagasa Wedge is a poorly imaged deepwater orogenic wedge that has been variously interpreted as representing an accretionary prism, a former accretionary prism modified by thrusting onto a thinned continental margin, and a gravity-driven fold-thrust belt. This study, using 2D and 3D seismic data, together with well information indicates that at least the external part of the wedge is dominantly composed of mass transport complexes, capped by syn-kinematic sediments that have thrusts and normal faults superimposed upon them. Drilling shows that despite stratigraphic repetition of Eocene Middle Miocene units, there is stratigraphic omission of Oligocene and Early Miocene units. This absence suggests that mass transport processes have introduced the Eocene section into the wedge rather than tectonic thrusting. The accretionary prism stage (Oligocene) of the Central Palawan Ophiolite history appears to be marked by predominantly north-vergent deformation. The Deep Regional Unconformity (∼17 Ma) likely indicates the approximate time when obduction ceased in Palawan. The Pagasa Wedge is a late-stage product of the convergence history that was active in its final phase sometime above the top of the Nido Limestone (∼16 Ma) and the base of the Tabon Limestone in the Aboabo-A1X well (∼9 Ma). The top of the wedge is traditionally associated with the Middle Miocene Unconformity (MMU), However the presence of multiple unconformities, diachronous formation tops, local tectonic unconformities and regional diachronous events (e.g. migrating forebulges) all suggest simply giving a single age (or assigning a single unconformity, such as the MMU as defining the top of the Pagasa Wedge is inappropriate. The overall NE-SW trend of the wedge, and the dominant NW transport of structures within the wedge diverge from the more northerly transport direction determined from outcrops in Palawan, and also from the Nido Limestone in the SW part of the Pagasa Wedge. Possibly this NW transport direction is more related to gravity-driven structures responding to uplift of NE-SW Dangerous Grounds margin during the Middle Miocene (related to slab breakoff?) than it is to thrusting rooted in a plate boundary. The final modification of the wedge occurred when the effects of compression deformation on the wedge had largely ended, but gravity processes (in particular mass transport and normal faulting) still operated.

  7. Beyond the Playground: Sandboxes in the Classroom examine the Interplay of Mountain Building and Erosion

    NASA Astrophysics Data System (ADS)

    Cooke, M.; Ellsworth, M.; Del Castello, M.; Jakubowyc, K.

    2006-05-01

    The growth of accretionary wedges along subducting plate margins has inspired generations of sandbox experiments. These experiments typically contract sand layers to simulate the deformation of sedimentary rocks as the wedge grows in width and height. In the absence of erosional processes, the ratio of wedge height to width will remain constant during wedge growth. The growth is accommodated by the successive development of faults in front of the wedge. However, as erosion reduces the slope of the wedge or removes material from portions of the wedge, the internal deformation of the wedge changes and the faulting sequence is altered. Scientists at the University of Massachusetts are researching fault system development within accretionary systems using a work budget approach. Faults slip and grow in order to minimize the work against gravity, internal work and frictional heating due to slip along faults. High school Earth System teachers at the Model Secondary School for the Deaf in Washington, DC have performed sandbox experiments where students document and record the changes in accretionary wedge growth due to erosion. The sandbox was designed to simulate a variety of tectonic situations and to be suitable for use in the classroom. The wide dimensions of the sandbox permit comparison of different erosive patterns along the strike of the wedge. Students can observe and measure the growth of the wedge within side windows and within map view. The data recorded by students can be integrated with numerical models of the UMass scientists to show how erosion reduces work against gravity and frictional heating to facilitate faulting within the wedge. Collaboration between the high school students and geoscientists has been augmented by video-conferences and annual field trip workshops with other high schools for the deaf participating in the SOAR-high partnership. The 6 schools from around the United States involved with the SOAR-high learning community all use sandbox experiments within their earth system classrooms. The sandbox experiments provide a wonderful hands-on opportunity that invigorates learning about geologic deformation.

  8. Ice Wedges as Winter Climate Archives - New Results from the Northeast Siberian Arctic and Discussion of the Paleoclimatic Value of Ice Wedges

    NASA Astrophysics Data System (ADS)

    Opel, T.; Meyer, H.; Laepple, T.; Rehfeld, K.; Mollenhauer, G.; Alexander, D.; Murton, J.

    2017-12-01

    Arctic climate has experienced major changes over the past millennia that are yet not fully understood in terms of external and internal controls, spatial, temporal, and seasonal patterns. The interpretation of stable isotope data in permafrost ice wedges provides unique information on past winter climate, not or not sufficiently captured by other Arctic climate archives. Ice wedges grow in polygonal patterns owing to frost cracking of the frozen ground in winter and frost-crack filling mostly by snowmelt in spring. Their oxygen isotope values are indicative of temperatures in the cold period of the year (meteorological winter and spring). Recently, an ice-wedge record from the Lena River Delta suggested for the first time, that Siberian winter temperatures were warming throughout the Holocene, contradicting most other Arctic paleoclimate reconstructions. As this was based on a single record, the representativity and spatial extent of the reconstructed winter warming signal remained unclear. In this two-part contribution, we first present a new ice-wedge δ18O record from the Oyogos Yar mainland coast (Northeast Siberian Arctic) and then discuss more generally the paleoclimatic value of ice wedges. The new Oyogos Yar ice-wedge record is based on paired stable-isotope and radiocarbon-age data and spans the last two millennia. It confirms the long-term winter warming signal as well as the unprecedented temperature rise in the last decades. This demonstrates that winter warming over the last millennia is a coherent feature in the Northeastern Siberian Arctic, supporting the hypothesis of an insolation-driven seasonal Holocene temperature evolution followed by a strong warming most likely related to anthropogenic forcing. Considering additional ice-wedge data from the Siberian Laptev Sea region we discuss the paleoclimatic value of ice wedges as high-quality winter climate archive. We assess potentials and challenges of this so far rather understudied source of paleoclimate information that remains to be evaluated systematically. In addition, we outline priorities for future ice-wedge research in order to fully exploit the potential of ice wedges for paleoclimate reconstruction, including e.g. better process understanding, dating, and data-model comparison.

  9. Effect of chlorine in clay-mineral specimens prepared on silver metal-membrane mounts for X-ray powder diffraction analysis

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, J.A.; Pense, G.M.

    1989-01-01

    Silver metal-membrane filters are commonly used as substrates in the preparation of oriented clay-mineral specimens for X-ray powder diffraction (XRD). They are relatively unaffected by organic solvent treatments and specimens can be prepared rapidly. The filter mounts are adaptable to automatic sample changers, have few discrete reflections at higher 20 angles, and, because of the high atomic number of silver, produce a relatively low overall background compared with other membrane filters, such as cellulose (Poppe and Hathaway, 1979). The silver metal-membrane filters, however, present some problems after heat treatment if either the filters or the samples contain significant amounts of chlorine. At elevated temperature, the chloride ions react with the silver substrate to form crystalline compounds. These compounds change the mass-absorption coefficient of the sample, reducing peak intensities and areas and, therefore, complicating the semiquantitative estimation of clay minerals. A simple procedure that eliminates most of the chloride from a sample and the silver metal-membrane substrate is presented here.

  10. A possible mechanism for earthquakes found in the mantle wedge of the Nazca subduction zone

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Chang, Y.; Prieto, G. A.

    2017-12-01

    Beneath Colombia, the Cauca cluster of intermediate-depth earthquakes extends for 200 km along the trench (3.5°N-5.5°N, 77.0°W-75.3°W) and, with 58 earthquakes per year with local magnitude ML >= 2.5, has a higher rate of seismicity than the subduction zone immediately to the north or south. By precisely locating 433 cluster earthquakes from 1/2010-3/2014 with data from the Colombian National Seismic Network, we found that the earthquakes are located both in a continuous Nazca plate subducting at an angle of 33°-43° and in the overlying mantle wedge. The mantle wedge earthquakes (12% of the earthquakes) form two isolated 40-km-tall columns extending perpendicular to the subducting slab. Using waveform inversion, we computed focal mechanisms for 69 of the larger earthquakes. The focal mechanisms are variable, but the intraslab earthquakes are generally consistent with an in-slab extensional stress axis oriented 25° counterclockwise from the down-dip direction. We suggest that the observed mantle wedge earthquakes are the result of hydrofracture in a relatively cool mantle wedge. This segment of the Nazca Plate is currently subducting at a normal angle, but Wagner et al. (2017) suggested that a flat slab slowly developed in the region between 9-5.9 Ma and persisted until 4 Ma. During flat slab subduction, the overlying mantle wedge typically cools because it is cut off from mantle corner flow. After hydrous minerals in the slab dehydrate, the dehydrated fluid is expelled from the slab and migrates through the mantle wedge. If a cool mantle wedge remains today, fluid dehydrated from the slab may generate earthquakes by hydrofracture, with the mantle wedge earthquakes representing fluid migration pathways. Dahm's (2000) model of water-filled fracture propagation in the mantle wedge shows hydrofractures propagating normal to the subducting slab and extending tens of km into the mantle wedge, as we observe.

  11. RANDOM PULSE GENERATOR PRODUCING FIDUCIAL MARKS

    DOEpatents

    Nielsen, W.F.

    1960-02-01

    The apparatus for automatically applying a fiducial marking, having a nonrepetitive pattern, to a plurality of simultaneously made records comprises, in series, a bypass filter, a trigger circuit, and a pulse generator, with printing means connected to and controlled by the pulse generator for simultaneously making the visible fiducial marks on a plurality of simultaneously produced records.

  12. Hysteresis Control of Parallel-Connected Hybrid Inverters

    DTIC Science & Technology

    2005-09-01

    92 C. MILITARY APPLICATIONS .....................................................................92 D...unbalanced to replicate the “real-world” application of the controller. Other areas of the controller could be changed to improve the fidelity of the load...a chip to perform the complex mathematics to transform from one reference frame to another while automatically adjusting the filter parameters. The

  13. High-performance analysis of filtered semantic graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluc, Aydin; Fox, Armando; Gilbert, John R.

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less

  14. A Kalman-Filter-Based Common Algorithm Approach for Object Detection in Surgery Scene to Assist Surgeon's Situation Awareness in Robot-Assisted Laparoscopic Surgery

    PubMed Central

    2018-01-01

    Although the use of the surgical robot is rapidly expanding for various medical treatments, there still exist safety issues and concerns about robot-assisted surgeries due to limited vision through a laparoscope, which may cause compromised situation awareness and surgical errors requiring rapid emergency conversion to open surgery. To assist surgeon's situation awareness and preventive emergency response, this study proposes situation information guidance through a vision-based common algorithm architecture for automatic detection and tracking of intraoperative hemorrhage and surgical instruments. The proposed common architecture comprises the location of the object of interest using feature texture, morphological information, and the tracking of the object based on Kalman filter for robustness with reduced error. The average recall and precision of the instrument detection in four prostate surgery videos were 96% and 86%, and the accuracy of the hemorrhage detection in two prostate surgery videos was 98%. Results demonstrate the robustness of the automatic intraoperative object detection and tracking which can be used to enhance the surgeon's preventive state recognition during robot-assisted surgery. PMID:29854366

  15. Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system

    NASA Astrophysics Data System (ADS)

    Wang, Yaoli; Chen, Yuanyuan

    2018-07-01

    An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.

  16. Automatic detection of magnetic flux emergings in the solar atmosphere from full-disk magnetogram sequences.

    PubMed

    Fu, Gang; Shih, Frank Y; Wang, Haimin

    2008-11-01

    In this paper, we present a novel method to detect Emerging Flux Regions (EFRs) in the solar atmosphere from consecutive full-disk Michelson Doppler Imager (MDI) magnetogram sequences. To our knowledge, this is the first developed technique for automatically detecting EFRs. The method includes several steps. First, the projection distortion on the MDI magnetograms is corrected. Second, the bipolar regions are extracted by applying multiscale circular harmonic filters. Third, the extracted bipolar regions are traced in consecutive MDI frames by Kalman filter as candidate EFRs. Fourth, the properties, such as positive and negative magnetic fluxes and distance between two polarities, are measured in each frame. Finally, a feature vector is constructed for each bipolar region using the measured properties, and the Support Vector Machine (SVM) classifier is applied to distinguish EFRs from other regions. Experimental results show that the detection rate of EFRs is 96.4% and of non-EFRs is 98.0%, and the false alarm rate is 25.7%, based on all the available MDI magnetograms in 2001 and 2002.

  17. Robust automatic line scratch detection in films.

    PubMed

    Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick

    2014-03-01

    Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.

  18. Pandora Operation and Analysis Software

    NASA Technical Reports Server (NTRS)

    Herman, Jay; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    Pandora Operation and Analysis Software controls the Pandora Sun- and sky-pointing optical head and built-in filter wheels (neutral density, UV bandpass, polarization filters, and opaque). The software also controls the attached spectrometer exposure time and thermoelectric cooler to maintain the spectrometer temperature to within 1 C. All functions are available through a GUI so as to be easily accessible by the user. The data are automatically stored on a miniature computer (netbook) for automatic download to a designated server at user defined intervals (once per day, once per week, etc.), or to a USB external device. An additional software component reduces the raw data (spectrometer counts) to preliminary scientific products for quick-view purposes. The Pandora systems are built from off-the-shelf commercial parts and from mechanical parts machined using electronic machine shop drawings. The Pandora spectrometer system is designed to look at the Sun (tracking to within 0.1 ), or to look at the sky at any zenith or azimuth angle, to gather information about the amount of trace gases or aerosols that are present.

  19. Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Z.; Niu, K.; He, Z. Q.

    2017-09-01

    Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.

  20. Five-way smoking status classification using text hot-spot identification and error-correcting output codes.

    PubMed

    Cohen, Aaron M

    2008-01-01

    We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.

  1. Scalable Node Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drotar, Alexander P.; Quinn, Erin E.; Sutherland, Landon D.

    2012-07-30

    Project description is: (1) Build a high performance computer; and (2) Create a tool to monitor node applications in Component Based Tool Framework (CBTF) using code from Lightweight Data Metric Service (LDMS). The importance of this project is that: (1) there is a need a scalable, parallel tool to monitor nodes on clusters; and (2) New LDMS plugins need to be able to be easily added to tool. CBTF stands for Component Based Tool Framework. It's scalable and adjusts to different topologies automatically. It uses MRNet (Multicast/Reduction Network) mechanism for information transport. CBTF is flexible and general enough to bemore » used for any tool that needs to do a task on many nodes. Its components are reusable and 'EASILY' added to a new tool. There are three levels of CBTF: (1) frontend node - interacts with users; (2) filter nodes - filters or concatenates information from backend nodes; and (3) backend nodes - where the actual work of the tool is done. LDMS stands for lightweight data metric servies. It's a tool used for monitoring nodes. Ltool is the name of the tool we derived from LDMS. It's dynamically linked and includes the following components: Vmstat, Meminfo, Procinterrupts and more. It works by: Ltool command is run on the frontend node; Ltool collects information from the backend nodes; backend nodes send information to the filter nodes; and filter nodes concatenate information and send to a database on the front end node. Ltool is a useful tool when it comes to monitoring nodes on a cluster because the overhead involved with running the tool is not particularly high and it will automatically scale to any size cluster.« less

  2. Automatic adjustment of astrochronologic correlations

    NASA Astrophysics Data System (ADS)

    Zeeden, Christian; Kaboth, Stefanie; Hilgen, Frederik; Laskar, Jacques

    2017-04-01

    Here we present an algorithm for the automated adjustment and optimisation of correlations between proxy data and an orbital tuning target (or similar datasets as e.g. ice models) for the R environment (R Development Core Team 2008), building on the 'astrochron' package (Meyers et al.2014). The basis of this approach is an initial tuning on orbital (precession, obliquity, eccentricity) scale. We use filters of orbital frequency ranges related to e.g. precession, obliquity or eccentricity of data and compare these filters to an ensemble of target data, which may consist of e.g. different combinations of obliquity and precession, different phases of precession and obliquity, a mix of orbital and other data (e.g. ice models), or different orbital solutions. This approach allows for the identification of an ideal mix of precession and obliquity to be used as tuning target. In addition, the uncertainty related to different tuning tie points (and also precession- and obliquity contributions of the tuning target) can easily be assessed. Our message is to suggest an initial tuning and then obtain a reproducible tuned time scale, avoiding arbitrary chosen tie points and replacing these by automatically chosen ones, representing filter maxima (or minima). We present and discuss the above outlined approach and apply it to artificial and geological data. Artificial data are assessed to find optimal filter settings; real datasets are used to demonstrate the possibilities of such an approach. References: Meyers, S.R. (2014). Astrochron: An R Package for Astrochronology. http://cran.r-project.org/package=astrochron R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  3. Fast, automatically darkening welding filter offering an improved level of safety.

    PubMed

    Palmer, S

    1996-03-01

    A mode of operation is introduced for the standard 90° twisted nematic (TN) liquid-crystal cell when placed together with an interference filter and positioned between crossed polarizers such that a small stimulating voltage of between ±2.0 and ±13.0 V is required in order to attain the light state. Further incrementation of the driving electronics reverts the system back to a darker phase. Such cells offer advantages over those of the standard 90° TN device operating in the normally white mode, in that the unit maintains the fast response time from the light to the dark state associated with the employment of TN cells placed between crossed polarizers. In addition, a low transmittance state is achieved when the unit is in the inactivated phase; this is an effect usually correlated with the normally black mode of operation. These cells are therefore ideal candidates for incorporation into fast, automatically darkening, welding filters that are designed to change rapidly from the light to the dark protective state, while offering an improved level of safety by not holding in a potentially hazardous light state should the controlling electronics malfunction. The requirement for this phenomenon to be observed is that the cell displays a low optical transmittance over the green wavelengths of the visible spectrum when in the inactivated phase and placed between crossed polarizers. The presence of an interference filter that possesses a peak transmittance over the central part of the visible spectrum is also necessary. It is shown that there are only two possible cell types that satisfy this criteria, and the optical properties of such cells are analyzed in some detail.

  4. Universite de Nancy (France) measurement report

    NASA Astrophysics Data System (ADS)

    Hadni, A.; Gerbaux, X.

    1991-10-01

    Measurements made by conventional Fourier transform spectroscopy using a polarizing wire grid interferometer with roof top reflectors and a rotating polarizing radiation chopper giving 10 Hz radiation modulation are presented. The radiation source used is a mercury vapor arc discharge lamp, and the detector a pumped liquid helium temperature silicon bolometer with a teflon input window and a low temperature quartz wedge acting as a low pass filter. The power transmission spectrum of each specimen measured is determined at nearly normal incidence with the specimen placed in a nominally collimated beam between the final analyzer grid and the output lens. The interferograms are recorded over a range of moving mirror positions about the position of zero path difference. No interferogram weighting function is used in the measurements. The spectral resolution of the measurements is 0.006 cm.

  5. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    PubMed

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  6. Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.

    PubMed

    Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo

    2016-10-01

    This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.

  7. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    PubMed

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  8. Scattering of In-Plane Waves by Elastic Wedges

    NASA Astrophysics Data System (ADS)

    Mohammadi, K.; Asimaki, D.; Fradkin, L.

    2014-12-01

    The scattering of seismic waves by elastic wedges has been a topic of interest in seismology and geophysics for many decades. Analytical, semi-analytical, experimental and numerical studies on idealized wedges have provided insight into the seismic behavior of continental margins, mountain roots and crustal discontinuities. Published results, however, have almost exclusively focused on incident Rayleigh waves and out-of-plane body (SH) waves. Complementing the existing body of work, we here present results from our study on the res­ponse of elastic wedges to incident P or SV waves, an idealized pro­blem that can provide valuable insight to the understanding and parameterization of topographic ampli­fication of seismic ground mo­tion. We first show our earlier work on explicit finite difference simulations of SV-wave scattering by elastic wedges over a wide range of internal angles. We next present a semi-analytical solution that we developed using the approach proposed by Gautesen, to describe the scattered wavefield in the immediate vicinity of the wedge's tip (near-field). We use the semi-analytical solution to validate the numerical analyses, and improve resolution of the amplification factor at the wedge vertex that spikes when the internal wedge angle approaches the critical angle of incidence.

  9. Stable isotope and gas properties of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Boereboom, T.; Samyn, D.; Meyer, H.; Tison, J.-L.

    2011-12-01

    This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.

  10. Are the new starting block facilities beneficial for backstroke start performance?

    PubMed

    de Jesus, Karla; de Jesus, Kelly; Abraldes, J Arturo; Medeiros, Alexandre Igor Araripe; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2016-01-01

    We aimed to analyse the handgrip positioning and the wedge effects on the backstroke start performance and technique. Ten swimmers completed randomly eight 15 m backstroke starts (four with hands on highest horizontal and four on vertical handgrip) performed with and without wedge. One surface and one underwater camera recorded kinematic data. Standardised mean difference (SMD) and 95% confidence intervals (CI) were used. Handgrip positioning did not affect kinematics with and without wedge use. Handgrips horizontally positioned and feet over wedge displayed greater knee angular velocity than without it (SMD = -0.82; 95% CI: -1.56, -0.08). Hands vertically positioned and feet over wedge presented greater take-off angle (SMD = -0.81; 95% CI: -1.55, -0.07), centre of mass (CM) vertical positioning at first water contact (SMD = -0.97; 95% CI: -1.87, -0.07) and CM vertical velocity at CM immersion (SMD = 1.03; 95% CI: 0.08, 1.98) when comparing without wedge use. Swimmers extended the hip previous to the knee and ankle joints, except for the variant with hands vertically positioned without wedge (SMD = 0.75; 95% CI: -0.03, 1.53). Swimmers should preserve biomechanical advantages achieved during flight with variant with hands vertically positioned and wedge throughout entry and underwater phase.

  11. Developing topic-specific search filters for PubMed with click-through data.

    PubMed

    Li, J; Lu, Z

    2013-01-01

    Search filters have been developed and demonstrated for better information access to the immense and ever-growing body of publications in the biomedical domain. However, to date the number of filters remains quite limited because the current filter development methods require significant human efforts in manual document review and filter term selection. In this regard, we aim to investigate automatic methods for generating search filters. We present an automated method to develop topic-specific filters on the basis of users' search logs in PubMed. Specifically, for a given topic, we first detect its relevant user queries and then include their corresponding clicked articles to serve as the topic-relevant document set accordingly. Next, we statistically identify informative terms that best represent the topic-relevant document set using a background set composed of topic irrelevant articles. Lastly, the selected representative terms are combined with Boolean operators and evaluated on benchmark datasets to derive the final filter with the best performance. We applied our method to develop filters for four clinical topics: nephrology, diabetes, pregnancy, and depression. For the nephrology filter, our method obtained performance comparable to the state of the art (sensitivity of 91.3%, specificity of 98.7%, precision of 94.6%, and accuracy of 97.2%). Similarly, high-performing results (over 90% in all measures) were obtained for the other three search filters. Based on PubMed click-through data, we successfully developed a high-performance method for generating topic-specific search filters that is significantly more efficient than existing manual methods. All data sets (topic-relevant and irrelevant document sets) used in this study and a demonstration system are publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/downloads/CQ_filter/

  12. Developing Topic-Specific Search Filters for PubMed with Click-Through Data

    PubMed Central

    Li, Jiao; Lu, Zhiyong

    2013-01-01

    Summary Objectives Search filters have been developed and demonstrated for better information access to the immense and ever-growing body of publications in the biomedical domain. However, to date the number of filters remains quite limited because the current filter development methods require significant human efforts in manual document review and filter term selection. In this regard, we aim to investigate automatic methods for generating search filters. Methods We present an automated method to develop topic-specific filters on the basis of users’ search logs in PubMed. Specifically, for a given topic, we first detect its relevant user queries and then include their corresponding clicked articles to serve as the topic-relevant document set accordingly. Next, we statistically identify informative terms that best represent the topic-relevant document set using a background set composed of topic irrelevant articles. Lastly, the selected representative terms are combined with Boolean operators and evaluated on benchmark datasets to derive the final filter with the best performance. Results We applied our method to develop filters for four clinical topics: nephrology, diabetes, pregnancy, and depression. For the nephrology filter, our method obtained performance comparable to the state of the art (sensitivity of 91.3%, specificity of 98.7%, precision of 94.6%, and accuracy of 97.2%). Similarly, high-performing results (over 90% in all measures) were obtained for the other three search filters. Conclusion Based on PubMed click-through data, we successfully developed a high-performance method for generating topic-specific search filters that is significantly more efficient than existing manual methods. All data sets (topic-relevant and irrelevant document sets) used in this study and a demonstration system are publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/downloads/CQ_filter/ PMID:23666447

  13. Wind modeling and lateral control for automatic landing

    NASA Technical Reports Server (NTRS)

    Holley, W. E.; Bryson, A. E., Jr.

    1975-01-01

    For the purposes of aircraft control system design and analysis, the wind can be characterized by a mean component which varies with height and by turbulent components which are described by the von Karman correlation model. The aircraft aero-dynamic forces and moments depend linearly on uniform and gradient gust components obtained by averaging over the aircraft's length and span. The correlations of the averaged components are then approximated by the outputs of linear shaping filters forced by white noise. The resulting model of the crosswind shear and turbulence effects is used in the design of a lateral control system for the automatic landing of a DC-8 aircraft.

  14. Automatic measurement of images on astrometric plates

    NASA Astrophysics Data System (ADS)

    Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.

    1994-04-01

    We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).

  15. CREKID: A computer code for transient, gas-phase combustion of kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.; Radhakrishnan, K.

    1984-01-01

    A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics.

  16. Rotation in a gravitational billiard

    NASA Astrophysics Data System (ADS)

    Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.

    Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.

  17. Pseudoslit Spectrometer

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; McCabe, George H.

    2004-01-01

    The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear-variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit. Like a prior LVE spectrometer, the pseudoslit spectrometer would include an LVE (essentially, a wedge-like narrowband- pass filter, the pass wavelength of which varies linearly with position in one dimension) in a focal plane covering an imaging planar array of photodetectors. However, the pseudoslit spectrometer would be more efficient because unlike a prior LVE spectrometer, the pseudoslit spectrometer would not have to be scanned across an entire field of view to obtain the spectrum of an object of interest that may occupy only a small portion of the field of view. Like a prior slit spectrometer, the pseudoslit spectrometer could acquire the entire spectrum of such a small object without need for scanning. However, the pseudoslit spectrometer would be optically and mechanically simpler: it would have fewer components and, hence, would pose less of a problem of alignment of components and would be less vulnerable to misalignment.

  18. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  19. Terminal area automatic navigation, guidance and control research using the Microwave Landing System (MLS). Part 5: Design and development of a Digital Integrated Automatic Landing System (DIALS) for steep final approach using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1983-01-01

    The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.

  20. Sedimentary Fabrics of Stratified Slope Deposits at a Site near Hoover's Camp, Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Smoot, Joseph P.

    2004-01-01

    An outcrop of stratified slope deposits in Shenandoah National Park is described in detail. The Pleistocene age deposits are comprised of a mixture of clay to cobbles defining a series of offlapping wedges. Elongate clasts are oriented parallel to wedge boundaries except at the toe of the wedge, where they are oriented nearly vertical. The wedges represent sedimentation by freeze-thaw of ground ice. Thin layers of pebbly sand separate matrix-rich wedge deposits, which represent sheetfloods during periods of thaw. Thicker sand layers and lenses of clay are placed upslope of coarse-grained wedge fronts. This association represents ponding of water around the solifluction lobe topography during warm periods. Stratified slope deposits at an outcrop at a higher elevation lack the sandy sheetflood and pond deposits, whereas sheetflood fabrics dominate deposits at a lower elevation. These variations are attributed to differences in temperature at the different elevations.

  1. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  2. A Multi-Scale Algorithm for Graffito Advertisement Detection from Images of Real Estate

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Zhu, Shi-Jiao

    There is a significant need to detect and extract the graffito advertisement embedded in the housing images automatically. However, it is a hard job to separate the advertisement region well since housing images generally have complex background. In this paper, a detecting algorithm which uses multi-scale Gabor filters to identify graffito regions is proposed. Firstly, multi-scale Gabor filters with different directions are applied to housing images, then the approach uses these frequency data to find likely graffito regions using the relationship of different channels, it exploits the ability of different filters technique to solve the detection problem with low computational efforts. Lastly, the method is tested on several real estate images which are embedded graffito advertisement to verify its robustness and efficiency. The experiments demonstrate graffito regions can be detected quite well.

  3. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  4. The challenges of numerically simulating analogue brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2017-04-01

    Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that failed. References 1. Buiter and the GeoMod2004 Team, 2006. The numerical sandbox: comparison of model results for a shortening and an extension experiment. Geol. Soc. Lond. Spec. Publ. 253, 29-64 2. Schreurs and the GeoMod2004 Team, 2006. Analogue benchmarks of shortening and extension experiments. Geol. Soc. Lond. Spec. Publ. 253, 1-27 3. Buiter, Schreurs and the GeoMod2008 Team, 2016. Benchmarking numerical models of brittle thrust wedges, J. Struct. Geol. 92, 140-177 4. Schreurs, Buiter and the GeoMod2008 Team, 2016. Benchmarking analogue models of brittle thrust wedges, J. Struct. Geol. 92, 116-13

  5. Seasonal Ice Wedge Dynamics in Fosheim Peninsula, Ellesmere Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Ward, M. K.; Pollard, W. H.

    2017-12-01

    Areas with ice-rice permafrost are vulnerable to thermokarst (lowering of the land surface from melting ground ice). The Fosheim Peninsula on Ellesmere Island, Nunavut is a high Arctic polar desert system with cold permafrost 500 m thick that is ice-rich in the upper 20 - 30 m. Our team has been monitoring changing permafrost conditions on the Fosheim since 1990. In this area ground ice consists mainly of ice-wedge ice and massive tabular ice bodies. With a mean annual temperature of - 19°C, the area is still sensitive to thermokarst as experienced in 2012; one of the warmest summers on record there was a three-fold increase in thermokarst, with the accelerated deepening of ice wedge troughs and the development of retrogressive thaw slumps. In this study, 7 ice wedges were monitored for 7 weeks in July and August, 2017. Ice wedges were chosen to represent different conditions including varying tough depths (0.36 m to 1.2 m), secondary wedge, varying plant cover (heavily covered to bare soil) and one wedge initially experienced ponding from snow melt that subsequently drained. Data collected included active layer depth measurements, soil moisture, ground temperatures at ice wedge through and polygon centres, dGPS and GPR surveys. Using Worldview 2 satellite imagery from 2008, 2012, 2016, these sites were compared to assess changes in polygons at a landscape scale. Ice wedges are ubiquitous to the arctic but may respond differently within different high Arctic environments. With the majority of studies being focused in the lower arctic, this study provides important field data from a high arctic site.

  6. The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France

    NASA Astrophysics Data System (ADS)

    Andrieux, Eric; Bateman, Mark D.; Bertran, Pascal

    2018-03-01

    Much of France remained unglaciated during the Late Quaternary and was subjected to repeated phases of periglacial activity. Numerous periglacial features have been reported but disentangling the environmental and climatic conditions they formed under, the timing and extent of permafrost and the role of seasonal frost has remained elusive. The primary sandy infillings of relict sand-wedges and composite-wedge pseudomorphs record periglacial activity. As they contain well-bleached quartz-rich aeolian material they are suitable for optically stimulated luminescence dating (OSL). This study aims to reconstruct when wedge activity took place in two regions of France; Northern Aquitaine and in the Loire valley. Results from single-grain OSL measurements identify multiple phases of activity within sand wedges which suggest that wedge activity in France occurred at least 11 times over the last 100 ka. The most widespread events of thermal contraction cracking occurred between ca. 30 and 24 ka (Last Permafrost Maximum) which are concomitant with periods of high sand availability (MIS 2). Although most phases of sand-wedge growth correlate well with known Pleistocene cold periods, the identification of wedge activity during late MIS 5 and the Younger Dryas strongly suggests that these features do not only indicate permafrost but also deep seasonal ground freezing in the context of low winter insolation. These data also suggest that the overall young ages yielded by North-European sand-wedges likely result from poor record of periglacial periods concomitant with low sand availability and/or age averaging inherent with standard luminescence methods.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lolicato, Marco; Arrigoni, Cristina; Mori, Takahiro

    Polymodal thermo- and mechanosensitive two-pore domain potassium (K2P) channels of the TREK1 subfamily generate ‘leak’ currents that regulate neuronal excitability, respond to lipids, temperature and mechanical stretch, and influence pain, temperature perception and anaesthetic responses1, 2, 3. These dimeric voltage-gated ion channel (VGIC) superfamily members have a unique topology comprising two pore-forming regions per subunit4, 5, 6. In contrast to other potassium channels, K2P channels use a selectivity filter ‘C-type’ gate7, 8, 9, 10 as the principal gating site. Despite recent advances3, 11, 12, poor pharmacological profiles of K2P channels limit mechanistic and biological studies. Here we describe a classmore » of small-molecule TREK activators that directly stimulate the C-type gate by acting as molecular wedges that restrict interdomain interface movement behind the selectivity filter. Structures of K2P2.1 (also known as TREK-1) alone and with two selective K2P2.1 (TREK-1) and K2P10.1 (TREK-2) activators—an N-aryl-sulfonamide, ML335, and a thiophene-carboxamide, ML402—define a cryptic binding pocket unlike other ion channel small-molecule binding sites and, together with functional studies, identify a cation–π interaction that controls selectivity. Together, our data reveal a druggable K2P site that stabilizes the C-type gate ‘leak mode’ and provide direct evidence for K2P selectivity filter gating.« less

  8. Gaussian-based filters for detecting Martian dust devils

    USGS Publications Warehouse

    Yang, F.; Mlsna, P.A.; Geissler, P.

    2006-01-01

    The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.

  9. Testing Saliency Parameters for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Pandya, Sagar

    2012-01-01

    A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.

  10. An Experimental Investigation of Transonic Flow Past Two-Dimensional Wedge and Circular-Arc Sections Using A Mach-Zehnder Interferometer

    NASA Technical Reports Server (NTRS)

    Bryson, Arthur Earl, Jr

    1952-01-01

    Report presents the results of interferometer measurements of the flow field near two-dimensional wedge and circular-arc sections of zero angle of attack at high-subsonic and low-supersonic velocities. Both subsonic flow with local supersonic zone and supersonic flow with detached shock wave have been investigated. Pressure distributions and drag coefficients as a function of Mach number have been obtained. The wedge data are compared with the theoretical work on flow past wedge sections of Guderley and Yoshihara, Vincenti and Wagner, and Cole. Pressure distributions and drag coefficients for the wedge and circular-arc sections are presented throughout the entire transonic range of velocities.

  11. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOEpatents

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  12. Effect of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.

  13. A support vector machine approach to the automatic identification of fluorescence spectra emitted by biological agents

    NASA Astrophysics Data System (ADS)

    Gelfusa, M.; Murari, A.; Lungaroni, M.; Malizia, A.; Parracino, S.; Peluso, E.; Cenciarelli, O.; Carestia, M.; Pizzoferrato, R.; Vega, J.; Gaudio, P.

    2016-10-01

    Two of the major new concerns of modern societies are biosecurity and biosafety. Several biological agents (BAs) such as toxins, bacteria, viruses, fungi and parasites are able to cause damage to living systems either humans, animals or plants. Optical techniques, in particular LIght Detection And Ranging (LIDAR), based on the transmission of laser pulses and analysis of the return signals, can be successfully applied to monitoring the release of biological agents into the atmosphere. It is well known that most of biological agents tend to emit specific fluorescence spectra, which in principle allow their detection and identification, if excited by light of the appropriate wavelength. For these reasons, the detection of the UVLight Induced Fluorescence (UV-LIF) emitted by BAs is particularly promising. On the other hand, the stand-off detection of BAs poses a series of challenging issues; one of the most severe is the automatic discrimination between various agents which emit very similar fluorescence spectra. In this paper, a new data analysis method, based on a combination of advanced filtering techniques and Support Vector Machines, is described. The proposed approach covers all the aspects of the data analysis process, from filtering and denoising to automatic recognition of the agents. A systematic series of numerical tests has been performed to assess the potential and limits of the proposed methodology. The first investigations of experimental data have already given very encouraging results.

  14. A chest-shape target automatic detection method based on Deformable Part Models

    NASA Astrophysics Data System (ADS)

    Zhang, Mo; Jin, Weiqi; Li, Li

    2016-10-01

    Automatic weapon platform is one of the important research directions at domestic and overseas, it needs to accomplish fast searching for the object to be shot under complex background. Therefore, fast detection for given target is the foundation of further task. Considering that chest-shape target is common target of shoot practice, this paper treats chestshape target as the target and studies target automatic detection method based on Deformable Part Models. The algorithm computes Histograms of Oriented Gradient(HOG) features of the target and trains a model using Latent variable Support Vector Machine(SVM); In this model, target image is divided into several parts then we can obtain foot filter and part filters; Finally, the algorithm detects the target at the HOG features pyramid with method of sliding window. The running time of extracting HOG pyramid with lookup table can be shorten by 36%. The result indicates that this algorithm can detect the chest-shape target in natural environments indoors or outdoors. The true positive rate of detection reaches 76% with many hard samples, and the false positive rate approaches 0. Running on a PC (Intel(R)Core(TM) i5-4200H CPU) with C++ language, the detection time of images with the resolution of 640 × 480 is 2.093s. According to TI company run library about image pyramid and convolution for DM642 and other hardware, our detection algorithm is expected to be implemented on hardware platform, and it has application prospect in actual system.

  15. Hemodiafiltration: Technical and Clinical Issues.

    PubMed

    Ronco, Claudio

    2015-01-01

    Hemodiafiltration (HDF) seems to represent the gold standard in the field of replacement of renal function by dialysis. High convective fluxes have been correlated with better clinical outcomes. Sometimes, however, there are technical barriers to the achievement of high blood flows adequate to perform effective convective therapies. In spite of optimized procedures, the progressive increase in transmembrane pressure (TMP), the blood viscosity due to hemoconcentration and blood path resistance sometimes becomes inevitable. We propose two possible solutions that can be operated automatically via specific software in the dialysis machine: predilution on demand and backflush on demand. Predilution on demand consists in an automatic feedback of the machine, diverting part of the filtered dialysate into a predilution mode with an infusion of 200 ml in 30 s while the ultrafiltration pump stops. This produces a sudden hemodilution with a return of the parameters to acceptable values. The performance of the filter improves, and the pressure alterations are mitigated. Backflush on demand consists in an automatic feedback of the machine triggered by the TMP control, producing a positive pressure in the dialysate compartment due to a stop of filtration and rapid infusion of at least 100 ml of ultrapure dialysate into the hollow fiber. This not only produces a significant hemodilution, but also backflushes the membrane pores detaching protein layers and improving membrane permeability. These are two examples of how technology will permit to overcome technical barriers to a widespread diffusion of HDF and adequate convective dose delivery. © 2015 S. Karger AG, Basel.

  16. 28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT PIER, DRIVE SYSTEM FOR SWING-SPAN INCLUDES: (from left to right) ELECTRIC LINE FROM SHORE (bottom left), TRACK AND RAIL ON CONCRETE PIER, ELECTRIC MOTOR, GASOLINE MOTOR, SHAFTS TO WEDGE DRIVE CRANKS, WEDGE DRIVE DRIVE SHAFT, WEDGE DRIVE GEAR BOX, AND (on right) GEARING FOR MANUAL WEDGE DRIVE ACCESSED THROUGH BRIDGE DECK - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

  17. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  18. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  19. The functional anatomy of Kager's fat pad in relation to retrocalcaneal problems and other hindfoot disorders.

    PubMed

    Theobald, P; Bydder, G; Dent, C; Nokes, L; Pugh, N; Benjamin, M

    2006-01-01

    Kager's fat pad is a mass of adipose tissue occupying Kager's triangle. By means of a combined magnetic resonance imaging, ultrasound, gross anatomical and histological study, we show that it has three regions that are closely related to the sides of the triangle. Thus, it has parts related to the Achilles and flexor hallucis longus (FHL) tendons and a wedge of fat adjacent to the calcaneus. The calcaneal wedge moves into the bursa during plantarflexion, as a consequence of both an upward displacement of the calcaneus relative to the wedge and a downward displacement of the wedge relative to the calcaneus. During dorsiflexion, the bursal wedge is retracted. The movements are promoted by the tapering shape of the bursal wedge and by its deep synovial infolds. Fibrous connections linking the fat to the Achilles tendon anchor and stabilize it proximally and thus contribute to the motility of its tip. We conclude that the three regions of Kager's fat pad have specialized functions: an FHL part which contributes to moving the bursal wedge during plantarflexion, an Achilles part which protects blood vessels entering this tendon, and a bursal wedge which we suggest minimizes pressure changes in the bursa. All three regions contribute to reducing the risk of tendon kinking and each may be implicated in heel pain syndromes.

  20. Mechanics of forearc basins

    NASA Astrophysics Data System (ADS)

    Cassola, Teodoro; Willett, Sean D.; Kopp, Heidrun

    2010-05-01

    In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between wedge deformation and forearc basin formation. The aim of this work is to gain an insight into the dynamics of the formation of the forearc basin, in particular the mechanism of formation of accommodation space and the preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle and thermally-dependent viscosity. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy of the basin will also be studied, because in underfilled conditions the sediments are more likely to undergo tectonic deformation due to inner wedge deformation. We compare the numerical model with basins along the Sunda-Java Trench. This margin shows a variety of structural-settings and basin types including underfilled and overfilled basins and different wedge geometries. We interpret and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available through the IFM-GEOMAR and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR). One important aspect of these margins that we observe is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stable field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.

  1. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim that scoliosis could be initiated through a hypokyphosis. PMID:23977058

  2. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  3. 40 CFR 62.14690 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alarm system that will sound automatically when an increase in relative particulate matter emissions over a preset level is detected. The alarm must be located where it is easily heard by plant operating personnel. (7) For positive pressure fabric filter systems, a bag leak detection system must be installed in...

  4. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  5. An Automatic Caption Filtering and Partial Hiding Approach to Improving the English Listening Comprehension of EFL Students

    ERIC Educational Resources Information Center

    Hsu, Ching-Kun; Hwang, Gwo-Jen; Chang, Chih-Kai

    2014-01-01

    Fostering the listening comprehension of English as Foreign Language (EFL) learners has been recognized as an important and challenging issue. Videos have been used as one of the English listening learning resources; however, without effective learning supports, EFL students are likely to encounter difficulties in comprehending the video content,…

  6. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  7. Precision zero-home locator

    DOEpatents

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  8. Consequences of the presence of a weak fault on the stress and strain within an active margin

    NASA Astrophysics Data System (ADS)

    Conin, M.; Henry, P.; Godard, V.; Bourlange, S.

    2009-12-01

    Accreting margins often display an outer thrust and fold belt and an inner forearc domain overlying the subduction plate. Assuming that this overlying material behaves as Coulomb material, the outer wedge and the inner wedge are classically approximated as a critical state and a stable state Coulomb wedge, respectively. Critical Coulomb wedge theory can account for the transition from wedge to forearc. However, it cannot be used to determine the state of stress in the transition zone, nor the consequences of a discontinuity within the margin. The presence of a discontinuity such as a splay fault having a low effective friction coefficient should affect the stress state within the wedge, at least locally around the splay fault. Moreover, the effective friction coefficient of the seismogenic zone is expected to vary during the seismic cycle, and this may influence the stability of the Coulomb wedges. We use the ADELI finite element code (Chery and Hassani, 2000) to model the quasi-static stress and strain of a decollement and splay fault system, within a two dimensional elasto-plastic wedge with Drucker-Prager rheology. The subduction plane, the basal decollement of the accretionary wedge and the splay fault are modeled with contact elements. The modeled margin comprises an inner and an outer domain with distinct tapers and basal friction coefficients. For a given splay fault geometry, we evaluate the friction coefficient threshold for splay fault activation as a function of the basal friction coefficients, and examine the consequences of motion along the splay fault on stress and strain within the wedge and on the surface slope at equilibrium. Friction coefficients are varied in time to mimic the consequence of the seismic cycle on the static stress state and strain distribution. Results show the possibility of coexistence of localized extensional regime above the splay fault within a regional compressional regime. Such coexistence is consistent with stress orientation estimation made from breakouts in the Nankai accretionary prim (Kinoshita et al, 2009).

  9. Group sequential designs for stepped-wedge cluster randomised trials

    PubMed Central

    Grayling, Michael J; Wason, James MS; Mander, Adrian P

    2017-01-01

    Background/Aims: The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Methods: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. Results: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial’s type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. Conclusion: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into stepped-wedge cluster randomised trials according to the needs of the particular trial. PMID:28653550

  10. Group sequential designs for stepped-wedge cluster randomised trials.

    PubMed

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-10-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into stepped-wedge cluster randomised trials according to the needs of the particular trial.

  11. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  12. Structural functional associations of the orbit in thyroid eye disease: Kalman filters to track extraocular rectal muscles

    NASA Astrophysics Data System (ADS)

    Chaganti, Shikha; Nelson, Katrina; Mundy, Kevin; Luo, Yifu; Harrigan, Robert L.; Damon, Steve; Fabbri, Daniel; Mawn, Louise; Landman, Bennett

    2016-03-01

    Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention, and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, it is shown that the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

  13. Learning-based image preprocessing for robust computer-aided detection

    NASA Astrophysics Data System (ADS)

    Raghupathi, Laks; Devarakota, Pandu R.; Wolf, Matthias

    2013-03-01

    Recent studies have shown that low dose computed tomography (LDCT) can be an effective screening tool to reduce lung cancer mortality. Computer-aided detection (CAD) would be a beneficial second reader for radiologists in such cases. Studies demonstrate that while iterative reconstructions (IR) improve LDCT diagnostic quality, it however degrades CAD performance significantly (increased false positives) when applied directly. For improving CAD performance, solutions such as retraining with newer data or applying a standard preprocessing technique may not be suffice due to high prevalence of CT scanners and non-uniform acquisition protocols. Here, we present a learning-based framework that can adaptively transform a wide variety of input data to boost an existing CAD performance. This not only enhances their robustness but also their applicability in clinical workflows. Our solution consists of applying a suitable pre-processing filter automatically on the given image based on its characteristics. This requires the preparation of ground truth (GT) of choosing an appropriate filter resulting in improved CAD performance. Accordingly, we propose an efficient consolidation process with a novel metric. Using key anatomical landmarks, we then derive consistent feature descriptors for the classification scheme that then uses a priority mechanism to automatically choose an optimal preprocessing filter. We demonstrate CAD prototype∗ performance improvement using hospital-scale datasets acquired from North America, Europe and Asia. Though we demonstrated our results for a lung nodule CAD, this scheme is straightforward to extend to other post-processing tools dedicated to other organs and modalities.

  14. Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing

    DOE PAGES

    Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...

    2016-11-22

    Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less

  15. Diving wedges

    NASA Astrophysics Data System (ADS)

    Vincent, Lionel; Kanso, Eva

    2017-11-01

    Diving induces large pressures during water entry, accompanied by the creation of cavity behind the diver and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of diving wedges as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, diving wedges experience significantly smaller drag forces (two-fold smaller) than immersed wedges. We characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. Combining experimental approach and a discrete fluid particle model, we show that the splash shape is governed by a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. These findings may have implications in a wide range of water entry problems, with applications in engineering and bio-related problems, including naval engineering, disease spreading and platform diving. This work was funded by the National Science Foundation.

  16. Aerodynamic Analysis Over Double Wedge Airfoil

    NASA Astrophysics Data System (ADS)

    Prasad, U. S.; Ajay, V. S.; Rajat, R. H.; Samanyu, S.

    2017-05-01

    Aeronautical studies are being focused more towards supersonic flights and methods to attain a better and safer flight with highest possible performance. Aerodynamic analysis is part of the whole procedure, which includes focusing on airfoil shapes which will permit sustained flight of aircraft at these speeds. Airfoil shapes differ based on the applications, hence the airfoil shapes considered for supersonic speeds are different from the ones considered for Subsonic. The present work is based on the effects of change in physical parameter for the Double wedge airfoil. Mach number range taken is for transonic and supersonic. Physical parameters considered for the Double wedge case with wedge angle (ranging from 5 degree to 15 degree. Available Computational tools are utilized for analysis. Double wedge airfoil is analysed at different Angles of attack (AOA) based on the wedge angle. Analysis is carried out using fluent at standard conditions with specific heat ratio taken as 1.4. Manual calculations for oblique shock properties are calculated with the help of Microsoft excel. MATLAB is used to form a code for obtaining shock angle with Mach number and wedge angle at the given parameters. Results obtained from manual calculations and fluent analysis are cross checked.

  17. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading

    PubMed Central

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-01-01

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably. PMID:28632183

  18. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    PubMed

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  19. Porous Titanium Wedges in Lateral Column Lengthening for Adult-Acquired Flatfoot Deformity.

    PubMed

    Moore, Spencer H; Carstensen, S Evan; Burrus, M Tyrrell; Cooper, Truitt; Park, Joseph S; Perumal, Venkat

    2017-10-01

    Lateral column lengthening (LCL) is a common procedure for reconstruction of stage II flexible adult-acquired flatfoot deformity (AAFD). The recent development of porous titanium wedges for this procedure provides an alternative to allograft and autograft. The purpose of this study was to report radiographic and clinical outcomes achieved with porous titanium wedges in LCL. A retrospective analysis of 34 feet in 30 patients with AAFD that received porous titanium wedges for LCL from January 2011 to October 2014. Deformity correction was assessed using both radiographic and clinical parameters. Radiographic correction was assessed using the lateral talo-first metatarsal angle, the talonavicular uncoverage percentage, and the first metatarsocuneiform height. The hindfoot valgus angle was measured. Patients were followed from a minimum of 6 months up to 4 years (mean 16.1 months). Postoperative radiographs demonstrated significant correction in all 3 radiographic criteria and the hindfoot valgus angle. We had no cases of nonunion, no wedge migration, and no wedges have been removed to date. The most common complication was calcaneocuboid joint pain (14.7%). Porous titanium wedges in LCL can achieve good radiographic and clinical correction of AAFD with a low rate of nonunion and other complications. Level IV: Case series.

  20. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  1. 28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK TO OUTSIDE, SHOWN TO RIGHT OF THE WEDGE. PHOTO TAKEN AT SOUTH SWING SPAN. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  2. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  3. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  4. Influence of the substorm current wedge on the Dst index

    NASA Astrophysics Data System (ADS)

    Friedrich, Erena; Rostoker, Gordon; Connors, Martin G.; McPherron, R. L.

    1999-03-01

    One of the major questions confronting researchers studying the nature of the solar-terrestrial interaction centers around whether or not the substorm expansive phase has any causal effect on the growth of the storm time ring current. This question is often addressed by using the Dst index as a proxy for the storm time ring current and inspecting the main phase growth of Dst in the context of the substorm expansive phases which occur in the same time frame as the ring current growth. In the past it has been assumed that the magnetic effects of the substorm current wedge have little influence on the Dst index because the current wedge is an asymmetric current system, while Dst is supposed to reflect changes in the symmetric component of the ring current. In this paper we shall shown that the substorm current wedge can have a significant effect on the present Dst index, primarily as a consequence of the fact that only four stations are presently used to formulate the index. Calculations are made assuming the instantaneous magnitude of the wedge current is constant at 1 MA. Hourly values of Dst may be as much as 50° smaller than those presented here because of variation of the wedge current over the hour. We shall show how the effect of the current wedge depends on the UT of the expansive phase onset, the angular extent of the current wedge, and the locale of the closure current in the magnetosphere. The fact that the substorm current wedge is a conjugate phenomenon has an important influence on the magnitude of the expansive phase effect in the Dst index.

  5. Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)

    NASA Astrophysics Data System (ADS)

    Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-01-01

    In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.

  6. Strategies for automatic processing of large aftershock sequences

    NASA Astrophysics Data System (ADS)

    Kvaerna, T.; Gibbons, S. J.

    2017-12-01

    Aftershock sequences following major earthquakes present great challenges to seismic bulletin generation. The analyst resources needed to locate events increase with increased event numbers as the quality of underlying, fully automatic, event lists deteriorates. While current pipelines, designed a generation ago, are usually limited to single passes over the raw data, modern systems also allow multiple passes. Processing the raw data from each station currently generates parametric data streams that are later subject to phase-association algorithms which form event hypotheses. We consider a major earthquake scenario and propose to define a region of likely aftershock activity in which we will detect and accurately locate events using a separate, specially targeted, semi-automatic process. This effort may use either pattern detectors or more general algorithms that cover wider source regions without requiring waveform similarity. An iterative procedure to generate automatic bulletins would incorporate all the aftershock event hypotheses generated by the auxiliary process, and filter all phases from these events from the original detection lists prior to a new iteration of the global phase-association algorithm.

  7. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’smore » vertical displacement soon after the wedge-clad contact resistance is initiated.« less

  8. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  9. Automatic segmentation of brain hemispheres by midplane detection in class images

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Sabri, Osama; Buell, Udalrich

    2000-06-01

    Segmentation of brain hemispheres is necessary to study left- right differences in structure and function. For extraction of a 3D individual region-of-interest atlas of the human brain, detection of the midplane is the sine qua non as it provides the reference plane for determining other anatomical objects. Extraction of the sagittal midplane is done in two main steps. First, a 2D filter is used to give a first approximation of the midplane position. To model symmetry properties of the midplane neighborhood, the different filter columns contain class-dependent weights for cerebrospinal fluid, gray and white matter. The filter can be rotated in a range of angles. In a user-defined range of planes, the global maximum of the filter response is searched for and the resulting position is utilized to restrict the search in the remaining planes. In a second step, midplane extraction is refined by searching for the optimal path of the midplane within the filter mask at optimum position. Symmetry properties are modeled analogous to the first step with class-dependent weights of the filter columns. The extraction of the midplane gives accurate and reliable results in simulated data sets and patient studies even if asymmetric artifacts are simulated.

  10. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

    NASA Astrophysics Data System (ADS)

    Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng

    2014-06-01

    The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

  11. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The special...

  12. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The special...

  13. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The special...

  14. Wedge measures parallax separations...on large-scale 70-mm

    Treesearch

    Steven L. Wert; Richard J. Myhre

    1967-01-01

    A new parallax wedge (range: 1.5 to 2 inches) has been designed for use with large-scaled 70-mm. aerial photographs. The narrow separation of the wedge allows the user to measure small parallax separations that are characteristic of large-scale photographs.

  15. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  16. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  17. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    PubMed Central

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-01-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263

  18. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1993-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesimal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  19. The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Almqvist, Bjarne S. G.

    2014-12-01

    The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800-1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic anisotropy.

  20. Mechanics of Formation of Forearc Basins of Indonesia and Alaska

    NASA Astrophysics Data System (ADS)

    Cassola, T.; Willett, S.; Kopp, H.

    2010-12-01

    In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between the wedge deformation and forearc basin formation. The aim of this work is to gain insight into the dynamics of the formation of the forearc basin on top of a deforming accretionary wedge, including the mechanism of formation of accommodation space and preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle, thermally-activated viscosity and strain softening. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy in the basin is simulated, because, as noted in earlier studies, underfilled conditions incourage tectonic deformation in the inner wedge. We compare the numerical model to basins along the Sunda-Java Trench and the Alaskan margin. The Sunda-Java Trench shows a variety of structural and basin styles including underfilled and overfilled basins and different wedge geometries along the same trench. We interprete and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available by the IFM-GEOMAR group in Kiel and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR) in Hannover. On the Alaska margin we focus on the Kenai Peninsula, Kodiak Island plateau. This segment of the margin has one of the largest accretionary wedge - forearc basin systems in the world. It also exhibits a double forearc basin system with an interior basin (Cook inlet) and an outer basin, outboard of Kodiak Island, which is a prime candidate for a negative-alpha basin, as described by Fuller et al., (Geology, 2006). A number of studies of the Alaska margin were conducted in the 1990s based out of GEOMAR. One important aspect of these margins is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stability field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.

  1. Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee-ankle-foot complex.

    PubMed

    Liu, Xuan; Zhang, Ming

    2013-01-01

    Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Compressive Detection of Highly Overlapped Spectra Using Walsh-Hadamard-Based Filter Functions.

    PubMed

    Corcoran, Timothy C

    2018-03-01

    In the chemometric context in which spectral loadings of the analytes are already known, spectral filter functions may be constructed which allow the scores of mixtures of analytes to be determined in on-the-fly fashion directly, by applying a compressive detection strategy. Rather than collecting the entire spectrum over the relevant region for the mixture, a filter function may be applied within the spectrometer itself so that only the scores are recorded. Consequently, compressive detection shrinks data sets tremendously. The Walsh functions, the binary basis used in Walsh-Hadamard transform spectroscopy, form a complete orthonormal set well suited to compressive detection. A method for constructing filter functions using binary fourfold linear combinations of Walsh functions is detailed using mathematics borrowed from genetic algorithm work, as a means of optimizing said functions for a specific set of analytes. These filter functions can be constructed to automatically strip the baseline from analysis. Monte Carlo simulations were performed with a mixture of four highly overlapped Raman loadings and with ten excitation-emission matrix loadings; both sets showed a very high degree of spectral overlap. Reasonable estimates of the true scores were obtained in both simulations using noisy data sets, proving the linearity of the method.

  3. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  4. Adaptive Self Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Matthew; Draelos, Timothy; Knox, Hunter

    2017-05-02

    The AST software includes numeric methods to 1) adjust STA/LTA signal detector trigger level (TL) values and 2) filter detections for a network of sensors. AST adapts TL values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: TL values are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The AST algorithm adapts in near real-time to changing conditions in an attempt tomore » automatically self-tune a signal detector to identify (detect) only signals from events of interest.« less

  5. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America

  6. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Accuracy

    PubMed Central

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-01-01

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter. PMID:23535715

  7. Multi-sensor fusion with interacting multiple model filter for improved aircraft position accuracy.

    PubMed

    Cho, Taehwan; Lee, Changho; Choi, Sangbang

    2013-03-27

    The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.

  8. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    PubMed

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  9. Towards a Collaborative Filtering Approach to Medication Reconciliation

    PubMed Central

    Hasan, Sharique; Duncan, George T.; Neill, Daniel B.; Padman, Rema

    2008-01-01

    A physician’s prescribing decisions depend on knowledge of the patient’s medication list. This knowledge is often incomplete, and errors or omissions could result in adverse outcomes. To address this problem, the Joint Commission recommends medication reconciliation for creating a more accurate list of a patient’s medications. In this paper, we develop techniques for automatic detection of omissions in medication lists, identifying drugs that the patient may be taking but are not on the patient’s medication list. Our key insight is that this problem is analogous to the collaborative filtering framework increasingly used by online retailers to recommend relevant products to customers. The collaborative filtering approach enables a variety of solution techniques, including nearest neighbor and co-occurrence approaches. We evaluate the effectiveness of these approaches using medication data from a long-term care center in the Eastern US. Preliminary results suggest that this framework may become a valuable tool for medication reconciliation. PMID:18998834

  10. Towards a collaborative filtering approach to medication reconciliation.

    PubMed

    Hasan, Sharique; Duncan, George T; Neill, Daniel B; Padman, Rema

    2008-11-06

    A physicians prescribing decisions depend on knowledge of the patients medication list. This knowledge is often incomplete, and errors or omissions could result in adverse outcomes. To address this problem, the Joint Commission recommends medication reconciliation for creating a more accurate list of a patients medications. In this paper, we develop techniques for automatic detection of omissions in medication lists, identifying drugs that the patient may be taking but are not on the patients medication list. Our key insight is that this problem is analogous to the collaborative filtering framework increasingly used by online retailers to recommend relevant products to customers. The collaborative filtering approach enables a variety of solution techniques, including nearest neighbor and co-occurrence approaches. We evaluate the effectiveness of these approaches using medication data from a long-term care center in the Eastern US. Preliminary results suggest that this framework may become a valuable tool for medication reconciliation.

  11. An efficient algorithm for measurement of retinal vessel diameter from fundus images based on directional filtering

    NASA Astrophysics Data System (ADS)

    Wang, Xuchu; Niu, Yanmin

    2011-02-01

    Automatic measurement of vessels from fundus images is a crucial step for assessing vessel anomalies in ophthalmological community, where the change in retinal vessel diameters is believed to be indicative of the risk level of diabetic retinopathy. In this paper, a new retinal vessel diameter measurement method by combining vessel orientation estimation and filter response is proposed. Its interesting characteristics include: (1) different from the methods that only fit the vessel profiles, the proposed method extracts more stable and accurate vessel diameter by casting this problem as a maximal response problem of a variation of Gabor filter; (2) the proposed method can directly and efficiently estimate the vessel's orientation, which is usually captured by time-consuming multi-orientation fitting techniques in many existing methods. Experimental results shows that the proposed method both retains the computational simplicity and achieves stable and accurate estimation results.

  12. Filter design for cancellation of baseline-fluctuation in needle EMG recordings.

    PubMed

    Rodríguez-Carreño, I; Malanda-Trigueros, A; Gila-Useros, L; Navallas-Irujo, J; Rodríguez-Falces, J

    2006-01-01

    Appropriate cancellation of the baseline fluctuation (BLF) is an important issue when recording EMG signals as it may degrade signal quality and distort qualitative and quantitative analysis. We present a novel filter-design approach for automatic cancellation of the BLF based on several signal processing techniques used sequentially. The methodology is to estimate the spectral content of the BLF, and then to use this estimation to design a high-pass FIR filter that cancel the BLF present in the signal. Two merit figures are devised for measuring the degree of BLF present in an EMG record. These figures are used to compare our method with the conventional approach, which naively considers the baseline course to be of constant (without any fluctuation) potential shift. Applications of the technique on real and simulated EMG signals show the superior performance of our approach in terms of both visual inspection and the merit figures.

  13. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Specialised acousto-optical processor for input, display, and coherent-optical processing of multiparameter information from spaceborne telemetric systems

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Eloev, E. N.; Kukharenko, K. L.; Panin, A. M.; Solodovnikov, N. P.; Torgashin, A. N.; Arestova, E. L.

    1995-10-01

    An acousto-optical system for input, display, and coherent-optical processing of information was implemented experimentally. The information transmission capacity, the structure of the information fluxes, and the efficiency of spaceborne telemetric systems were taken into account. The number of equivalent frequency-resolved channels corresponded to the structure of a telemetric frame of a two-step switch. The number of intensity levels of laser radiation corresponded to the scale of changes in the parameters. Use was made of the technology of a liquid optical contact between a wedge-shaped piezoelectric transducer made of lithium niobate and an anisotropic light-and-sound guide made of paratellurite with asymmetric scattering geometry. The simplest technique for optical filtering of multiparameter signals was analysed.

  14. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    PubMed

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  15. A Low Cost Grism Spectrometer for Small Telescopes

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic

    2016-06-01

    We have designed and built a low cost (appx. $500) low resolution (R ~ 300) grating-prism (grism) spectrometer for the University of Iowa's robotic observatory. Grism spectrometers differ from simple transmission grating systems by partially compensating for the curved focal plane using a wedge prism. The spectrometer has five optical elements, and was designed using a ray tracing program. The collimating and focusing optics are easily modified for other telescope optics. The optics are mounted in an enclosure made with a 3-d printer. The spectrometer was installed in a modified (extended) filter wheel and has been in routine operation since January 2016. I will show sample spectra using this system and discuss spectral calibration, and optical design considerations for other telescopes. I will also discuss how low-resolution spectrometers can be used in undergraduate teaching laboratories.

  16. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  17. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  18. Sojourner APXS & Wedge

    NASA Image and Video Library

    1997-08-27

    This image of the rock "Wedge" was taken from the Sojourner rover's rear color camera on Sol 37. The position of the rover relative to Wedge is seen in MRPS 83349. The segmented rod visible in the middle of the frame is the deployment arm for the Alpha Proton X-Ray Spectrometer (APXS). The APXS, the bright, cylindrical object at the end of the arm, is positioned against Wedge and is designed to measure the rock's chemical composition. This was done successfully on the night of Sol 37. http://photojournal.jpl.nasa.gov/catalog/PIA00906

  19. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.

  20. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  1. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion.

    PubMed

    Yoo, Won-Gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring.

  2. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion

    PubMed Central

    Yoo, Won-gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring. PMID:28210048

  3. Use of Wedge Absorbers in MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Summers, D.; Mohayai, T.

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL andmore » G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.« less

  4. Nature of the Coastal Range Wedge Along the Rupture Area of the 2015, Illapel Chile Earthquake Mw 8.4

    NASA Astrophysics Data System (ADS)

    Farías, M.; Comte, D.; Roecker, S. W.; Brandon, M. T.

    2017-12-01

    Wedge theory is usually applied to the pro-side of active subduction margins, where fold-and-thrust belts related to frontal accretion develop, but rarely to the entire wedge, where the retro-side is also relevant. We present a new 3D body wave tomographic image that combines data from the Chile-Illapel Aftershock Experiment (CHILLAX) with previous temporary seismic networks, with the aim of illuminating the nature of the wedge of the continental margin above the seismogenic part of the subducting slab. The downdip extent of the coupled part, called the S-point in the wedge theory, corresponds to the place where upper plate completely decouples from the subducting slab. This point is characterized by a Vp/Vs contrast at about 60 km depth that extends upward-and-eastward in a west-dipping ramp-like geometry. This ramp emerges about 180 km from the trench, near the topographic break related to the front of the Andean retro-side. The Coastal wedge domain is characterized by a monotonous east-dipping homocline with the older rocks of this region along the coast. The offshore region, corresponding to the pro-side, exhibits normal faulting and a very small frontal accretionary complex. Normal faulting in this region is related to rapid uplift of marine terraces since ca. 2 Ma, suggesting strong basal accretion and thus high friction on the thrust. In fact, the epicentral region of the 2015 Illapel Earthquake coincides with the highest elevations along the coast, i.e., the region with the highest slope of the margin. In this region, the lack of a continental forearc basin suggests an overlapping between the Andean and Coastal wedges. The western edge of the Andean wedge is also part of the homocline about 10 km east of the topographic boundary between both wedges, suggesting that the Coastal wedge has been deforming a part of the retro-side of the Andean wedge during the Miocene. The east-ward tilting of the retro-side was acquired mainly before the late Miocene, since at least the Late Cretaceous, before the proposed arrival of the Juan Fernandez ridge at this area and the consequent flat slab that characterize this part of the margin in the Present.

  5. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon.

    PubMed

    Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung

    2015-02-01

    A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while the highest pollution level occurs in the canyon for the upward wedged roof.

  6. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  7. An e-Learning Collaborative Filtering Approach to Suggest Problems to Solve in Programming Online Judges

    ERIC Educational Resources Information Center

    Toledo, Raciel Yera; Mota, Yailé Caballero

    2014-01-01

    The paper proposes a recommender system approach to cover online judge's domains. Online judges are e-learning tools that support the automatic evaluation of programming tasks done by individual users, and for this reason they are usually used for training students in programming contest and for supporting basic programming teachings. The…

  8. A New Approach to Automated Labeling of Internal Features of Hardwood Logs Using CT Images

    Treesearch

    Daniel L. Schmoldt; Pei Li; A. Lynn Abbott

    1996-01-01

    The feasibility of automatically identifying internal features of hardwood logs using CT imagery has been established previously. Features of primary interest are bark, knots, voids, decay, and clear wood. Our previous approach: filtered original CT images, applied histogram segmentation, grew volumes to extract 3-d regions, and applied a rule base, with Dempster-...

  9. An algorithm developed in Matlab for the automatic selection of cut-off frequencies, in the correction of strong motion data

    NASA Astrophysics Data System (ADS)

    Sakkas, Georgios; Sakellariou, Nikolaos

    2018-05-01

    Strong motion recordings are the key in many earthquake engineering applications and are also fundamental for seismic design. The present study focuses on the automated correction of accelerograms, analog and digital. The main feature of the proposed algorithm is the automatic selection for the cut-off frequencies based on a minimum spectral value in a predefined frequency bandwidth, instead of the typical signal-to-noise approach. The algorithm follows the basic steps of the correction procedure (instrument correction, baseline correction and appropriate filtering). Besides the corrected time histories, Peak Ground Acceleration, Peak Ground Velocity, Peak Ground Displacement values and the corrected Fourier Spectra are also calculated as well as the response spectra. The algorithm is written in Matlab environment, is fast enough and can be used for batch processing or in real-time applications. In addition, the possibility to also perform a signal-to-noise ratio is added as well as to perform causal or acausal filtering. The algorithm has been tested in six significant earthquakes (Kozani-Grevena 1995, Aigio 1995, Athens 1999, Lefkada 2003 and Kefalonia 2014) of the Greek territory with analog and digital accelerograms.

  10. New technique for real-time distortion-invariant multiobject recognition and classification

    NASA Astrophysics Data System (ADS)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  11. Long-term recording and automatic analysis of cough using filtered acoustic signals and movements on static charge sensitive bed.

    PubMed

    Salmi, T; Sovijärvi, A R; Brander, P; Piirilä, P

    1988-11-01

    Reliable long-term assessment of cough is necessary in many clinical and scientific settings. A new method for long-term recording and automatic analysis of cough is presented. The method is based on simultaneous recording of two independent signals: high-pass filtered cough sounds and cough-induced fast movements of the body. The acoustic signals are recorded with a dynamic microphone in the acoustic focus of a glass fiber paraboloid mirror. Body movements are recorded with a static charge-sensitive bed located under an ordinary plastic foam mattress. The patient can be studied lying or sitting with no transducers or electrodes attached. A microcomputer is used for sampling of signals, detection of cough, statistical analyses, and on-line printing of results. The method was validated in seven adult patients with a total of 809 spontaneous cough events, using clinical observation as a reference. The sensitivity of the method to detect cough was 99.0 percent, and the positive predictivity was 98.1 percent. The system ignored speaking and snoring. The method provides a convenient means of reliable long-term follow-up of cough in clinical work and research.

  12. Automatic multimodal detection for long-term seizure documentation in epilepsy.

    PubMed

    Fürbass, F; Kampusch, S; Kaniusas, E; Koren, J; Pirker, S; Hopfengärtner, R; Stefan, H; Kluge, T; Baumgartner, C

    2017-08-01

    This study investigated sensitivity and false detection rate of a multimodal automatic seizure detection algorithm and the applicability to reduced electrode montages for long-term seizure documentation in epilepsy patients. An automatic seizure detection algorithm based on EEG, EMG, and ECG signals was developed. EEG/ECG recordings of 92 patients from two epilepsy monitoring units including 494 seizures were used to assess detection performance. EMG data were extracted by bandpass filtering of EEG signals. Sensitivity and false detection rate were evaluated for each signal modality and for reduced electrode montages. All focal seizures evolving to bilateral tonic-clonic (BTCS, n=50) and 89% of focal seizures (FS, n=139) were detected. Average sensitivity in temporal lobe epilepsy (TLE) patients was 94% and 74% in extratemporal lobe epilepsy (XTLE) patients. Overall detection sensitivity was 86%. Average false detection rate was 12.8 false detections in 24h (FD/24h) for TLE and 22 FD/24h in XTLE patients. Utilization of 8 frontal and temporal electrodes reduced average sensitivity from 86% to 81%. Our automatic multimodal seizure detection algorithm shows high sensitivity with full and reduced electrode montages. Evaluation of different signal modalities and electrode montages paces the way for semi-automatic seizure documentation systems. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Individual and Joint Expert Judgments as Reference Standards in Artifact Detection

    PubMed Central

    Verduijn, Marion; Peek, Niels; de Keizer, Nicolette F.; van Lieshout, Erik-Jan; de Pont, Anne-Cornelie J.M.; Schultz, Marcus J.; de Jonge, Evert; de Mol, Bas A.J.M.

    2008-01-01

    Objective To investigate the agreement among clinical experts in their judgments of monitoring data with respect to artifacts, and to examine the effect of reference standards that consist of individual and joint expert judgments on the performance of artifact filters. Design Individual judgments of four physicians, a majority vote judgment, and a consensus judgment were obtained for 30 time series of three monitoring variables: mean arterial blood pressure (ABPm), central venous pressure (CVP), and heart rate (HR). The individual and joint judgments were used to tune three existing automated filtering methods and to evaluate the performance of the resulting filters. Measurements The interrater agreement was calculated in terms of positive specific agreement (PSA). The performance of the artifact filters was quantified in terms of sensitivity and positive predictive value (PPV). Results PSA values between 0.33 and 0.85 were observed among clinical experts in their selection of artifacts, with relatively high values for CVP data. Artifact filters developed using judgments of individual experts were found to moderately generalize to new time series and other experts; sensitivity values ranged from 0.40 to 0.60 for ABPm and HR filters (PPV: 0.57–0.84), and from 0.63 to 0.80 for CVP filters (PPV: 0.71–0.86). A higher performance value for the filters was found for the three variable types when joint judgments were used for tuning the filtering methods. Conclusion Given the disagreement among experts in their individual judgment of monitoring data with respect to artifacts, the use of joint reference standards obtained from multiple experts is recommended for development of automatic artifact filters. PMID:18096912

  14. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    NASA Astrophysics Data System (ADS)

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated with different clusters. The enumeration of fungal colonies among the ice wedge and pool ice samples were also different. These results demonstrate that different massive ice structures had different microbial and geochemical environments or backgrounds when they were formed.

  15. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    NASA Astrophysics Data System (ADS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-05-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed. The wedge gives a more uniform dose distribution than commonly used techniques. Further development and shape optimization may be necessary prior to clinical implementation.

  16. Evidence for Patchy Sediment Underthrusting and a Strong, Drained Outer Accretionary Wedge in Central Cascadia: Implications for Dynamic Slip Conditions

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Webb, S. I.

    2017-12-01

    The central Cascadia subduction zone forearc in the region offshore Washington, where a hot, young incoming plate is covered by a 2-3 km thick sedimentary sequence, features a wide, very narrowly-tapered outer accretionary wedge composed of landward vergent thrust sheets. Longstanding questions for this region include the position and host-rock environment of the plate boundary décollement fault, the thickness of sedimentary strata underthrust beneath the wedge with the downgoing plate, and the effective stress or pore fluid pressure condition in the wedge and along its base. We have analyzed nine multichannel seismic lines of the 2012 COAST multi-channel seismic reflection survey using both time- and depth- migrated seismic sections for structural interpretation. Results show that there is evidence for two parallel décollement levels, with up to 200 - 500 meters thickness of a mostly-underthrust sequence in places, but which is absent entirely in others. This patchy distribution is mapped and related to features of the overlying wedge structure. We also analyzed the seismic interval velocity distribution produced during pre-stack depth migration imaging, and used it to compute estimated porosity, pore fluid pressure, and effective stress via empirical physical properties transforms. We find that the wedge shows evidence for at most only modest, localized excess pore pressure, and instead most of the wedge appears to be at near-hydrostatic, drained condition. Modest overpressure ratios of up to only 0.15 are detected, localized in the footwalls of thrust splays. We find no evidence for overpressure zones in the underthrust sequence below the upper décollement, in contrast to findings from several other wedges worldwide. Taken together, the accretionary wedge structure and apparent low pore pressure condition here is consistent with a mechanically strong wedge overlying a base that is very weak, at least transiently. By analogy with recent work from Sumatra, Tohoku, and elsewhere, we speculate that this is potentially conducive to efficient propagation of megathrust slip to the deformation front in large earthquakes.

  17. SU-E-T-362: Enhanced Dynamic Wedge Output Factors for Varian 2300CD and the Case for a Reference Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njeh, C

    2015-06-15

    Purpose: Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the short comings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby adding credence to the case of the validity of reference databases. Methods: The enhanced dynamic wedge output factors were measured for the Varian 2300CD for bothmore » 6 MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian Linac models were found in the literature. Results: The EDWOF for 6 MV varied from 0.980 for a 5×5 cm 10 degree wedge to 0.424 for 20×20 cm 60 degree wedge. Similarly for 20 MV, the EDWOF varied from 0.986 for 5×5 cm 10 degree wedge to 0.529 for 20×20 cm 60 degree wedge. EDWOF are highly dependent on field size. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF with the percentage differences ranging from 0.01% to 0.57% with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18MV photon energies respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. Conclusion: The consistency of EDWOF across models and institution provide further support that, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes.« less

  18. SU-E-T-562: Scanned Percent Depth Dose Curve Discrepancy for Photon Beams with Physical Wedge in Place (Varian IX) Using Different Sensitive Volume Ion Chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H; Sarkar, V; Rassiah-Szegedi, P

    2014-06-01

    Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffermore » RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.« less

  19. Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    NASA Technical Reports Server (NTRS)

    Kanning, G.; Cicolani, L. S.; Schmidt, S. F.

    1983-01-01

    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system.

  20. Monoplanar versus biplanar medial open-wedge proximal tibial osteotomy for varus gonarthrosis: a comparison of clinical and radiological outcomes.

    PubMed

    Elmalı, Nurzat; Esenkaya, Irfan; Can, Murat; Karakaplan, Mustafa

    2013-12-01

    We compared clinical and radiological results of two proximal tibial osteotomy (PTO) techniques: monoplanar medial open-wedge osteotomy and biplanar retrotubercle medial open-wedge osteotomy, stabilised by a wedged plate. We evaluated 88 knees in 78 patients. Monoplanar medial open-wedge PTO was performed on 56 knees in 50 patients with a mean age of 55 ± 9 years. Biplanar retrotubercle medial open-wedge PTO was performed on 32 knees in 28 patients with a mean age of 57 ± 7 years. Mean follow-up periods were 40.6 ± 7 months for the monoplanar PTO group and 38 ± 5 months for the biplanar retrotubercle PTO group. Clinical outcome was evaluated using the hospital for special surgery scoring system, and radiological outcome was evaluated by the measurements of femorotibial angle (FTA), patellar height and tibial slope changes. In both groups, post-operative HSS scores increased significantly. No significant difference was found between groups in FTA alteration, but the FTA decreased significantly in both groups. Patellar index ratios decreased significantly in the monoplanar PTO group (Insall-Salvati Index by 0.07, Blackburne-Peel Index by 0.07), but not in the biplanar retrotubercle PTO group. Tibial slopes were increased significantly in the monoplanar PTO group, but not in the retrotubercle PTO group. Biplanar retrotubercle medial open-wedge osteotomy and monoplanar medial open-wedge osteotomy are both clinically effective for the treatment for varus gonarthrosis. Retrotubercle osteotomy also prevents patella infera and tibial slope changes radiologically.

  1. Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy.

    PubMed

    Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M

    2018-03-01

    One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.

  2. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  3. Shear-wave polarization anisotropy in the mantle wedge beneath the southern part of Tohoku, Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, J.; Nakajima, J.; Hasegawa, A.

    2003-12-01

    We investigated shear-wave polarization anisotropy in the mantle wedge beneath the southern part of Tohoku, Japan, by using waveform data of intermediate depth earthquakes with M>2.5 recorded by the seismic networks of Tohoku University and Japan Meteorological Agency (JMA). We selected waveform data with ray paths whose incident angles to the surface are 35 degrees or less to avoid contamination of particle motions by converted phases. All the seismograms thus selected were filtered with bandpassed ranges of 2-8 Hz. Cross-correlation method [Ando et al., 1983] was used for determining delay time between the leading and following shear-waves (delay time) and the leading shear-wave polarization direction (fast direction). Two horizontal components of observed seismograms were rotated with the direction from 0 to 180 degrees with an interval of 5 degrees, and shifted one horizontal component by a time lag. The time lag varied from 0 to 1 s with an interval of 0.01 s. The length of time window used to calculate correlation coefficient was set to be nearly equal to one cycle of the shear-wave. We do not use the data whose maximum correlation coefficient is less than 0.8. Obtained results show that most of the fast directions at stations in the back-arc side are nearly E-W, whereas those at stations in the fore-arc side are N-S. We infer that the anisotropy caused by lattice-preferred orientation of olivine, which is probably produced by flow in the mantle wedge, is a likely candidate for the observed shear-wave splitting with E-W trend fast directions in the back-arc side. Although it is not certain what causes the N-S trend fast directions in the for-arc side, the same trend is seen in the previous studies of other areas in Tohoku [Okada et al.,1995; Nakajima, 2002]. Observed delay times are mostly 0.1-0.3 s, which is consistent with the results of Okada et al. [1995] and Nakajima [2002]. Acknowledgments: We are grateful to the staff of the JMA for allowing us to use their data.

  4. Nonlocal Means Denoising of Self-Gated and k-Space Sorted 4-Dimensional Magnetic Resonance Imaging Using Block-Matching and 3-Dimensional Filtering: Implications for Pancreatic Tumor Registration and Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jun; McKenzie, Elizabeth; Fan, Zhaoyang

    Purpose: To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Methods and Materials: Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. Themore » pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases (σ-GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Results: Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI (σ-GTV = 0.6 cm{sup 3}) than on the raw 4D-MRI (σ-GTV = 0.8 cm{sup 3}). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Conclusions: Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown to be more consistent on the denoised 4D-MRI than on the raw 4D-MRI.« less

  5. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  6. Quantification of the first-order high-pass filter's influence on the automatic measurements of the electrocardiogram.

    PubMed

    Isaksen, Jonas; Leber, Remo; Schmid, Ramun; Schmid, Hans-Jakob; Generali, Gianluca; Abächerli, Roger

    2017-02-01

    The first-order high-pass filter (AC coupling) has previously been shown to affect the ECG for higher cut-off frequencies. We seek to find a systematic deviation in computer measurements of the electrocardiogram when the AC coupling with a 0.05 Hz first-order high-pass filter is used. The standard 12-lead electrocardiogram from 1248 patients and the automated measurements of their DC and AC coupled version were used. We expect a large unipolar QRS-complex to produce a deviation in the opposite direction in the ST-segment. We found a strong correlation between the QRS integral and the offset throughout the ST-segment. The coefficient for J amplitude deviation was found to be -0.277 µV/(µV⋅s). Potential dangerous alterations to the diagnostically important ST-segment were found. Medical professionals and software developers for electrocardiogram interpretation programs should be aware of such high-pass filter effects since they could be misinterpreted as pathophysiology or some pathophysiology could be masked by these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantar, D.

    This document provides information on the distribution of unconverted light in the National Ignition Facility (NIF) target chamber with the wedged final focus lens that has been adopted by the NIF project. It includes a comparison of the wedged lens configuration with the color separation grating (CSG). There are significant benefits to the wedged lens design as it greatly simplifies experiment design.

  9. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  10. Automatic detection and analysis of cell motility in phase-contrast time-lapse images using a combination of maximally stable extremal regions and Kalman filter approaches.

    PubMed

    Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L

    2014-01-01

    Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  11. Evaluation of Pan-Sharpening Methods for Automatic Shadow Detection in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    de Azevedo, Samara C.; Singh, Ramesh P.; da Silva, Erivaldo A.

    2017-04-01

    Finer spatial resolution of areas with tall objects within urban environment causes intense shadows that lead to wrong information in urban mapping. Due to the shadows, automatic detection of objects (such as buildings, trees, structures, towers) and to estimate the surface coverage from high spatial resolution is difficult. Thus, automatic shadow detection is the first necessary preprocessing step to improve the outcome of many remote sensing applications, particularly for high spatial resolution images. Efforts have been made to explore spatial and spectral information to evaluate such shadows. In this paper, we have used morphological attribute filtering to extract contextual relations in an efficient multilevel approach for high resolution images. The attribute selected for the filtering was the area estimated from shadow spectral feature using the Normalized Saturation-Value Difference Index (NSVDI) derived from pan-sharpening images. In order to assess the quality of fusion products and the influence on shadow detection algorithm, we evaluated three pan-sharpening methods - Intensity-Hue-Saturation (IHS), Principal Components (PC) and Gran-Schmidt (GS) through the image quality measures: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Dimensionless Global Error in Synthesis (ERGAS) and Universal Image Quality Index (UIQI). Experimental results over Worldview II scene from São Paulo city (Brazil) show that GS method provides good correlation with original multispectral bands with no radiometric and contrast distortion. The automatic method using GS method for NSDVI generation clearly provide a clear distinction of shadows and non-shadows pixels with an overall accuracy more than 90%. The experimental results confirm the effectiveness of the proposed approach which could be used for further shadow removal and reliable for object recognition, land-cover mapping, 3D reconstruction, etc. especially in developing countries where land use and land cover are rapidly changing with tall objects within urban areas.

  12. A generalized adaptive mathematical morphological filter for LIDAR data

    NASA Astrophysics Data System (ADS)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

  13. Accurate and Standardized Coronary Wave Intensity Analysis.

    PubMed

    Rivolo, Simone; Patterson, Tiffany; Asrress, Kaleab N; Marber, Michael; Redwood, Simon; Smith, Nicolas P; Lee, Jack

    2017-05-01

    Coronary wave intensity analysis (cWIA) has increasingly been applied in the clinical research setting to distinguish between the proximal and distal mechanical influences on coronary blood flow. Recently, a cWIA-derived clinical index demonstrated prognostic value in predicting functional recovery postmyocardial infarction. Nevertheless, the known operator dependence of the cWIA metrics currently hampers its routine application in clinical practice. Specifically, it was recently demonstrated that the cWIA metrics are highly dependent on the chosen Savitzky-Golay filter parameters used to smooth the acquired traces. Therefore, a novel method to make cWIA standardized and automatic was proposed and evaluated in vivo. The novel approach combines an adaptive Savitzky-Golay filter with high-order central finite differencing after ensemble-averaging the acquired waveforms. Its accuracy was assessed using in vivo human data. The proposed approach was then modified to automatically perform beat wise cWIA. Finally, the feasibility (accuracy and robustness) of the method was evaluated. The automatic cWIA algorithm provided satisfactory accuracy under a wide range of noise scenarios (≤10% and ≤20% error in the estimation of wave areas and peaks, respectively). These results were confirmed when beat-by-beat cWIA was performed. An accurate, standardized, and automated cWIA was developed. Moreover, the feasibility of beat wise cWIA was demonstrated for the first time. The proposed algorithm provides practitioners with a standardized technique that could broaden the application of cWIA in the clinical practice as enabling multicenter trials. Furthermore, the demonstrated potential of beatwise cWIA opens the possibility investigating the coronary physiology in real time.

  14. Automated renal histopathology: digital extraction and quantification of renal pathology

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.

    2016-03-01

    The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.

  15. VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM

    NASA Technical Reports Server (NTRS)

    White, J. S.

    1994-01-01

    VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.

  16. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707

  17. Split-field pupil plane determination apparatus

    DOEpatents

    Salmon, Joseph T.

    1996-01-01

    A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).

  18. Real-time Automatic Detectors of P and S Waves Using Singular Values Decomposition

    NASA Astrophysics Data System (ADS)

    Kurzon, I.; Vernon, F.; Rosenberger, A.; Ben-Zion, Y.

    2013-12-01

    We implement a new method for the automatic detection of the primary P and S phases using Singular Value Decomposition (SVD) analysis. The method is based on a real-time iteration algorithm of Rosenberger (2010) for the SVD of three component seismograms. Rosenberger's algorithm identifies the incidence angle by applying SVD and separates the waveforms into their P and S components. We have been using the same algorithm with the modification that we filter the waveforms prior to the SVD, and then apply SNR (Signal-to-Noise Ratio) detectors for picking the P and S arrivals, on the new filtered+SVD-separated channels. A recent deployment in San Jacinto Fault Zone area provides a very dense seismic network that allows us to test the detection algorithm in diverse setting, such as: events with different source mechanisms, stations with different site characteristics, and ray paths that diverge from the SVD approximation used in the algorithm, (e.g., rays propagating within the fault and recorded on linear arrays, crossing the fault). We have found that a Butterworth band-pass filter of 2-30Hz, with four poles at each of the corner frequencies, shows the best performance in a large variety of events and stations within the SJFZ. Using the SVD detectors we obtain a similar number of P and S picks, which is a rare thing to see in ordinary SNR detectors. Also for the actual real-time operation of the ANZA and SJFZ real-time seismic networks, the above filter (2-30Hz) shows a very impressive performance, tested on many events and several aftershock sequences in the region from the MW 5.2 of June 2005, through the MW 5.4 of July 2010, to MW 4.7 of March 2013. Here we show the results of testing the detectors on the most complex and intense aftershock sequence, the MW 5.2 of June 2005, in which in the very first hour there were ~4 events a minute. This aftershock sequence was thoroughly reviewed by several analysts, identifying 294 events in the first hour, located in a condensed cluster around the main shock. We used this hour of events to fine-tune the automatic SVD detection, association and location of the real-time system, reaching a 37% automatic identification and location of events, with a minimum of 10 stations per event, all events fall within the same condensed cluster and there are no false events or large offsets of their locations. An ordinary SNR detector did not exceed the 11% success with a minimum of 8 stations per event, 2 false events and a wider spread of events (not within the reviewed cluster). One of the main advantages of the SVD detectors for real-time operations is the actual separation between the P and S components, by that significantly reducing the noise of picks detected by ordinary SNR detectors. The new method has been applied for a significant amount of events within the SJFZ in the past 8 years, and is now in the final stage of real-time implementation in UCSD for the ANZA and SJFZ networks, tuned for automatic detection and location of local events.

  19. Distal Femoral Osteotomy for the Valgus Knee: Medial Closing Wedge Versus Lateral Opening Wedge: A Systematic Review.

    PubMed

    Wylie, James D; Jones, Daniel L; Hartley, Melissa K; Kapron, Ashley L; Krych, Aaron J; Aoki, Stephen K; Maak, Travis G

    2016-10-01

    (1) To determine the radiographic correction/healing rate, patient-reported outcomes, reoperation rate, and complication rate after distal femoral osteotomy (DFO) for the valgus knee with lateral compartment pathology. (2) To summarize the reported results of medial closing wedge and lateral opening wedge DFO. We conducted a systematic review of PubMed, MEDLINE, and CINAHL to identify studies reporting outcomes of DFOs for the valgus knee. Keywords included "distal femoral osteotomy," "chondral," "cartilage," "valgus," "joint restoration," "joint preservation," "arthritis," and "gonarthrosis." Two authors first reviewed the articles; our study exclusion criteria were then applied, and the articles were included on the basis relevance defined by the aforementioned criteria. The Methodological Index for Nonrandomized Studies scale judged the quality of the literature. Sixteen studies were relevant to the research questions out of 191 studies identified by the original search. Sixteen studies were identified reporting on 372 osteotomies with mean follow-up of 45 to 180 months. All studies reported mean radiographic correction to a near neutral mechanical axis, with 3.2% nonunion and 3.8% delayed union rates. There was a 9% complication rate and a 34% reoperation rate, of which 15% were converted to arthroplasty. There were similar results reported for medial closing wedge and lateral opening wedge techniques, with a higher conversion to arthroplasty in the medial closing wedge that was confounded by longer mean follow-up in this group (mean follow-up 100 v 58 months). DFOs for the valgus knee with lateral compartment disease provide improvements in patient-reported knee health-related quality of life at midterm follow-up but have high rates of reoperation. No evidence exists proving better results of either the lateral opening wedge or medial closing wedge techniques. Level IV, systematic review of Level IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  20. SU-E-T-82: A Study On Enhanced Dynamic Wedge (EDW) Dosimetry Using 2D Seven29 Ion Chamber Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aparna

    2015-06-15

    Purpose: To study the dosimetric properties of Enhanced Dynamic Wedge (EDW) using PTW Seven29 ion chamber array Methods: PTW Seven29 ion chamber array and Solid Water phantoms for different depths were used for the study. The study was carried out in Varian Clinac ix with photon energies, 6MV & 15MV. Primarily the solid water phantoms with the 2D array were scanned using a CT scanner (GE Optima 580) at different depths. These scanned images were used for EDW planning in an Eclipse treatment planning system (version 10). Planning was done for different wedge angles and for different depths for 6MVmore » & 15MV. A dose of 100 CGy was delivered in each cases. For each delivery, calculated the Monitoring Unit (MU) required. Same set-up was created before delivering the plans in Varian Clinac-ix. For each clinically relevant depth and for different wedge angles, the same MU was delivered as calculated. Different wedged dose distributions where reconstructed from the measured 2D array data using the in-house developed excel program. Results: It is observed that the shoulder like region in the profile which reduces as depth increases. For the same depth and energy, the percentage difference between planned and measured dose is lesser than 3%. For smaller wedge angles, the percentage difference is found to be greater than 3% for the largest wedge angle. Standard deviation between measured doses at shoulder region for planned and measured profiles is 0.08 and 0.02 respectively. Standard deviations between planned and measured wedge factors for different depths (2.5cm, 5cm, 10cm, and 15cm) are (0.0021, 0.0007, 0.0050, 0.0001) for 6MV and (0.0024, 0.0191, 0.0013, 0.0005) for 15MV respectively. Conclusion: The 2D Seven29 ion chamber array is a good tool for the Enhanced Dynamic Wedge (EDW) dosimetry.« less

  1. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1974-01-01

    The plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle is discussed. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  2. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  3. Severe winter cooling during the Younger Dryas in northern Alaska - evidence from the stable isotope composition of a buried ice-wedge system

    NASA Astrophysics Data System (ADS)

    Meyer, Hanno; Schirrmeister, Lutz; Yoshikawa, Kenji; Opel, Thomas; Wetterich, Sebastian; Hubberten, Hans-W.; Brown, Jerry

    2010-05-01

    The Younger Dryas (YD) interval, from approximately 12.9 to 11.5 kyr cal BP, a rapid reversion to glacial climate conditions at the Pleistocene-Holocene transition, has generally been attributed to the release of meltwater from the Laurentide Ice Sheet to the North Atlantic or Arctic oceans. The reaction of the North Pacific region to this "shutdown" of the thermohaline circulation in the North Atlantic during Younger Dryas is, however, little understood. The YD cold interval is of great interest for understanding rapid natural climate change, especially with regard to recent global warming scenarios. Various archives such as glacier ice, tree rings, lacustrine and marine sediments provide evidence for strong climate variability during the Late Glacial-Holocene transition. In our study, we investigated a relict, buried ice-wedge system within the continuous permafrost zone near Barrow, northern Alaska (71°18'N, 156°40'W). The Barrow ice-wedge system is buried under about three meters of Late Glacial/early Holocene ice-rich sediments. The ice wedges are accessible through a shaft which extends into an underground excavation, where a detailed description and sampling with an electrical chain saw were carried out. Permafrost is not only susceptible to recent climate change, it also may store evidence of these changes in ground ice, especially in ice wedges. Ice wedges can be assessed by stable water isotope methods similar to glacier ice climate reconstructions. Ice wedges are assumed to be indicative of winter climate conditions, because the seasonality of thermal contraction cracking and of the infill of frost cracks are generally related to winter and spring, respectively. In this paper, we present a winter climate record from ice wedges in permafrost of northern Alaska, a region, where paleoclimate records extending beyond the Late Glacial-Holocene transition are generally rather sparse, often restricted to lake sediments and rely mostly on summer indicators such as pollen. This reconstruction is the first radiocarbon-dated centennial-scale stable water isotope record from permafrost at all. The Late Glacial winter climate reconstruction from Barrow ice wedges clearly demonstrates the existence of a Younger Dryas cold event, formerly believed to be reduced or absent in this area. Comparing the Barrow ice-wedge record to Greenland ice cores (such as N-GRIP), we observe similar and contemporaneous isotopic variations in the same order of magnitude, underpinning the climatic relevance of our ice wedge data. The Barrow ice-wedge stable isotope record additionally displays a gradual change of the atmospheric moisture source conditions during the Younger Dryas reflected in a shift of the d excess, potentially being associated with the successive opening of the Bering Strait.

  4. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liu, Lei

    2015-02-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  5. Brand cigarillos--a cheap and less harmful alternative to cigarettes? Particulate matter emissions suggest otherwise.

    PubMed

    Gerber, Alexander; Bigelow, Alexander; Schulze, Michaela; Groneberg, David A

    2015-01-06

    Environmental tobacco smoke (ETS)-associated particulate matter (PM) constitutes a considerable health risk for passive smokers. It ought to be assessed separately from the other known toxic compounds of tobacco smoke. Brand-specific differences between cigarettes and particularly between cigarettes and favorably taxed cigarillos, are of public interest and therefore worth being investigated. An automatic environmental tobacco smoke emitter (AETSE) was developed to generate cigarette and cigarillo smoke in a reliable and reproducible way. John Player Special (JPS) Red cigarettes, JPS filter cigarillos and 3R4F standard research cigarettes were smoked automatically in a 2.88 m3 glass chamber according to a standardized protocol until 5 cm from the top were burned down. Mean concentrations (Cmean) and area of the curve (AUC) of PM2.5 were measured and compared. Cmean PM2.5 were found to be 804 µg/m3 for 3R4F reference cigarettes, 1633 µg/m3 for JPS cigarettes, and 1059 µg/m3 for JPS filter cigarillos. AUC PM2.5-values are 433,873 µg/m3×s for 3R4F reference cigarettes, 534,267 µg/m3×s for JPS Red cigarettes and 782,850 µg/m3×s for JPS filter cigarillos. Potential brand-specific differences of ETS-associated PM emissions among brands of cigarettes, and between cigarettes and cigarillos of the same brand and size should be investigated and published. Information about relative PM-emissions should be printed on the package.

  6. Learning-based 3D surface optimization from medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  7. Are Filter-Tipped Cigarettes Still Less Harmful than Non-Filter Cigarettes?--A Laser Spectrometric Particulate Matter Analysis from the Non-Smokers Point of View.

    PubMed

    Schulz, Maria; Gerber, Alexander; Groneberg, David A

    2016-04-16

    Environmental tobacco smoke (ETS) is associated with human morbidity and mortality, particularly chronic obstructive pulmonary disease (COPD and lung cancer. Although direct DNA-damage is a leading pathomechanism in active smokers, passive smoking is enough to induce bronchial asthma, especially in children. Particulate matter (PM) demonstrably plays an important role in this ETS-associated human morbidity, constituting a surrogate parameter for ETS exposure. Using an Automatic Environmental Tobacco Smoke Emitter (AETSE) and an in-house developed, non-standard smoking regime, we tried to imitate the smoking process of human smokers to demonstrate the significance of passive smoking. Mean concentration (C(mean)) and area under the curve (AUC) of particulate matter (PM2.5) emitted by 3R4F reference cigarettes and the popular filter-tipped and non-filter brand cigarettes "Roth-Händle" were measured and compared. The cigarettes were not conditioned prior to smoking. The measurements were tested for Gaussian distribution and significant differences. C(mean) PM2.5 of the 3R4F reference cigarette: 3911 µg/m³; of the filter-tipped Roth-Händle: 3831 µg/m³; and of the non-filter Roth-Händle: 2053 µg/m³. AUC PM2.5 of the 3R4F reference cigarette: 1,647,006 µg/m³·s; of the filter-tipped Roth-Händle: 1,608,000 µg/m³·s; and of the non-filter Roth-Händle: 858,891 µg/m³·s. The filter-tipped cigarettes (the 3R4F reference cigarette and filter-tipped Roth-Händle) emitted significantly more PM2.5 than the non-filter Roth-Händle. Considering the harmful potential of PM, our findings note that the filter-tipped cigarettes are not a less harmful alternative for passive smokers. Tobacco taxation should be reconsidered and non-smoking legislation enforced.

  8. STUDY ON A STEP-ADVANCED FILTER MONITOR FOR CONTINUOUS RADON PROGENY MEASUREMENT.

    PubMed

    Zhang, Lei; Yang, Jinmin; Guo, Qiuju

    2017-04-01

    Traditional fixed-filter radon progeny monitors are usually clogged with the loading of dust and cannot be used for radon progeny continuous measurement for long period. To solve this problem, a step-advanced filter (SAF) monitor for radon progeny measurement was developed. This monitor automatically roll and stop the filter at each interview. Radon progeny is collected on a 'fresh' filter at a flowrate of 3 L/min. At the same time, alpha and beta particles emitted from filter are recorded by a PIPS detector. A newly developed alpha-beta spectrum method was used for radon progeny concentration calculation. The 218Po, 214Pb and 214Bi concentrations as well as equilibrium equivalent concentration (EEC) could be worked out at the same time. The lower level limit detection of this monitor is 0.48 Bq m-3 (EEC) for 1h interval. Comparison experiments were carried out in the radon chamber at the National Institute of Metrology of China. The measurement results of this SAF monitor are consistent with EQF3220 (SARAD GmbH, Germany), and the uncertainty is smaller. Due to its high sensitivity, the periodical variation of radon progeny concentration can be easily observed by this monitor. The SAF moniter is suitable for continuous measurement in both indoor and outdoor environments. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Seismic reflection images of the accretionary wedge of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, T.H.; Stoffa, P.L.; McIntosh, K.

    The large-scale structure of modern accretionary wedges is known almost entirely from seismic reflection investigations using single or grids of two-dimensional profiles. The authors will report on the first three-dimensional seismic reflection data volume collected of a wedge. This data set covers a 9-km-wide {times} 22-km-long {times} 6-km-thick volume of the accretionary wedge just arcward of the Middle America Trench off Costa Rica. The three-dimensional processing has improved the imaging ability of the multichannel data, and the data volume allows mapping of structures from a few hundred meters to kilometers in size. These data illustrate the relationships between the basement,more » the wedge shape, and overlying slope sedimentary deposits. Reflections from within the wedge define the gross structural features and tectonic processes active along this particular convergent margin. So far, the analysis shows that the subdued basement relief (horst and graben structures seldom have relief of more than a few hundred meters off Costa Rica) does affect the larger scale through going structural features within the wedge. The distribution of mud volcanoes and amplitude anomalies associated with the large-scale wedge structures suggests that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region at a distance of 50-100 km. Offscraping of the uppermost (about 45 m) sediment occurs within 4 km of the trench, creating a small pile of sediments near the trench lower slope. Underplating of parts of the 400-m-thick subducted sedimentary section begins at a very shallow structural level, 4-10 km arcward of the trench. Volumetrically, the most important accretionary process is underplating.« less

  10. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A ;basic; solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and ;basic; boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  11. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    PubMed

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  12. 40 CFR 63.1184 - What do I need to know about the design specifications, installation, and operation of a bag leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The bag leak detection system must have an alarm that will sound automatically when it detects an increase in relative PM emissions greater than a preset level. (d) The alarm must be located in an area where appropriate plant personnel will be able to hear it. (e) For a positive-pressure fabric filter...

  13. Multi-Sensor Information Integration and Automatic Understanding

    DTIC Science & Technology

    2008-11-01

    also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real- world data – either using real-time...surveillance and airborne IED detection . 15. SUBJECT TERMS Multi-hypothesis tracking , particle filters, anomalous behavior detection , Bayesian...analyst to support decision making with large data sets. A key feature of the real-time tracking and behavior detection system developed is that the

  14. Performance of Automated Speech Scoring on Different Low- to Medium-Entropy Item Types for Low-Proficiency English Learners. Research Report. ETS RR-17-12

    ERIC Educational Resources Information Center

    Loukina, Anastassia; Zechner, Klaus; Yoon, Su-Youn; Zhang, Mo; Tao, Jidong; Wang, Xinhao; Lee, Chong Min; Mulholland, Matthew

    2017-01-01

    This report presents an overview of the "SpeechRater"? automated scoring engine model building and evaluation process for several item types with a focus on a low-English-proficiency test-taker population. We discuss each stage of speech scoring, including automatic speech recognition, filtering models for nonscorable responses, and…

  15. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  16. Investigation of two-dimensional wedge exhaust nozzles for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.; Petit, J. E.

    1975-01-01

    Two-dimensional wedge nozzle performance characteristics were investigated in a series of wind-tunnel tests. An isolated single-engine/nozzle model was used to study the effects of internal expansion area ratio, aftbody cowl boattail angle, and wedge length. An integrated twin-engine/nozzle model, tested with and without empenage surfaces, included cruise, acceleration, thrust vectoring and thrust reversing nozzle operating modes. Results indicate that the thrust-minus-aftbody drag performance of the twin two-dimensional nozzle integration is significantly higher, for speeds greater than Mach 0.8, than the performance achieved with twin axisymmetric nozzle installations. Significant jet-induced lift was obtained on an aft-mounted lifting surface using a cambered wedge center body to vector thrust. The thrust reversing capabilities of reverser panels installed on the two-dimensional wedge center body were very effective for static or in-flight operation.

  17. ROSAT Observations of Solar Wind Charge Exchange with the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Benna, M.; Carter, J. A.; Cravens, T. E.; Hills, H. Kent; Hodges, R. R.; Kuntz, K. D.; Porter, F. Scott; Read, A.; hide

    2012-01-01

    We analyze the ROSAT PSPC soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the count rate in three wedges, two wedges (one north and one south) 13-32 degrees off (19 degrees wide) the terminator towards the dark side and one wedge 38 degrees wide centered on the anti-solar direction. The radial profiles of both the north and the south wedges show substantial limb brightening that is absent in the 38 degree wide antisolar wedge. An analysis of the count rate increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere. Along with Mars, Venus, and Earth, the Moon represents another solar system body at which solar wind charge exchange has been observed. This technique can be used to explore the solar wind-lunar interaction.

  18. Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles

    NASA Astrophysics Data System (ADS)

    Vignati, F.; Guardone, A.

    2017-11-01

    An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.

  19. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  20. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  1. Optimal filter parameters for low SNR seismograms as a function of station and event location

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Dowla, Farid U.; Schultz, Craig A.

    1999-06-01

    Global seismic monitoring requires deployment of seismic sensors worldwide, in many areas that have not been studied or have few useable recordings. Using events with lower signal-to-noise ratios (SNR) would increase the amount of data from these regions. Lower SNR events can add significant numbers to data sets, but recordings of these events must be carefully filtered. For a given region, conventional methods of filter selection can be quite subjective and may require intensive analysis of many events. To reduce this laborious process, we have developed an automated method to provide optimal filters for low SNR regional or teleseismic events. As seismic signals are often localized in frequency and time with distinct time-frequency characteristics, our method is based on the decomposition of a time series into a set of subsignals, each representing a band with f/Δ f constant (constant Q). The SNR is calculated on the pre-event noise and signal window. The band pass signals with high SNR are used to indicate the cutoff filter limits for the optimized filter. Results indicate a significant improvement in SNR, particularly for low SNR events. The method provides an optimum filter which can be immediately applied to unknown regions. The filtered signals are used to map the seismic frequency response of a region and may provide improvements in travel-time picking, azimuth estimation, regional characterization, and event detection. For example, when an event is detected and a preliminary location is determined, the computer could automatically select optimal filter bands for data from non-reporting stations. Results are shown for a set of low SNR events as well as 379 regional and teleseismic events recorded at stations ABKT, KIV, and ANTO in the Middle East.

  2. Development of a digital automatic control law for steep glideslope capture and flare

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1977-01-01

    A longitudinal digital guidance and control law for steep glideslopes using MLS (Microwave Landing System) data is developed for CTOL aircraft using modern estimation and control techniques. The control law covers the final approach phases of glideslope capture, glideslope tracking, and flare to touchdown for automatic landings under adverse weather conditions. The control law uses a constant gain Kalman filter to process MLS and body-mounted accelerometer data to form estimates of flight path errors and wind velocities including wind shear. The flight path error estimates and wind estimates are used for feedback in generating control surface commands. Results of a digital simulation of the aircraft dynamics and the guidance and control law are presented for various wind conditions.

  3. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  4. An ultra low-power CMOS automatic action potential detector.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad

    2009-08-01

    We present a low-power complementary metal-oxide semiconductor (CMOS) analog integrated biopotential detector intended for neural recording in wireless multichannel implants. The proposed detector can achieve accurate automatic discrimination of action potential (APs) from the background activity by means of an energy-based preprocessor and a linear delay element. This strategy improves detected waveforms integrity and prompts for better performance in neural prostheses. The delay element is implemented with a low-power continuous-time filter using a ninth-order equiripple allpass transfer function. All circuit building blocks use subthreshold OTAs employing dedicated circuit techniques for achieving ultra low-power and high dynamic range. The proposed circuit function in the submicrowatt range as the implemented CMOS 0.18- microm chip dissipates 780 nW, and it features a size of 0.07 mm(2). So it is suitable for massive integration in a multichannel device with modest overhead. The fabricated detector succeeds to automatically detect APs from underlying background activity. Testbench validation results obtained with synthetic neural waveforms are presented.

  5. Automated Segmentation Methods of Drusen to Diagnose Age-Related Macular Degeneration Screening in Retinal Images.

    PubMed

    Kim, Young Jae; Kim, Kwang Gi

    2018-01-01

    Existing drusen measurement is difficult to use in clinic because it requires a lot of time and effort for visual inspection. In order to resolve this problem, we propose an automatic drusen detection method to help clinical diagnosis of age-related macular degeneration. First, we changed the fundus image to a green channel and extracted the ROI of the macular area based on the optic disk. Next, we detected the candidate group using the difference image of the median filter within the ROI. We also segmented vessels and removed them from the image. Finally, we detected the drusen through Renyi's entropy threshold algorithm. We performed comparisons and statistical analysis between the manual detection results and automatic detection results for 30 cases in order to verify validity. As a result, the average sensitivity was 93.37% (80.95%~100%) and the average DSC was 0.73 (0.3~0.98). In addition, the value of the ICC was 0.984 (CI: 0.967~0.993, p < 0.01), showing the high reliability of the proposed automatic method. We expect that the automatic drusen detection helps clinicians to improve the diagnostic performance in the detection of drusen on fundus image.

  6. Stable and variable affordances are both automatic and flexible

    PubMed Central

    Borghi, Anna M.; Riggio, Lucia

    2015-01-01

    The mere observation of pictures or words referring to manipulable objects is sufficient to evoke their affordances since objects and their nouns elicit components of appropriate motor programs associated with object interaction. While nobody doubts that objects actually evoke motor information, the degree of automaticity of this activation has been recently disputed. Recent evidence has indeed revealed that affordances activation is flexibly modulated by the task and by the physical and social context. It is therefore crucial to understand whether these results challenge previous evidence showing that motor information is activated independently from the task. The context and the task can indeed act as an early or late filter. We will review recent data consistent with the notion that objects automatically elicit multiple affordances and that top-down processes select among them probably inhibiting motor information that is not consistent with behavior goals. We will therefore argue that automaticity and flexibility of affordances are not in conflict. We will also discuss how language can incorporate affordances showing similarities, but also differences, between the motor information elicited by vision and language. Finally we will show how the distinction between stable and variable affordances can accommodate all these effects. PMID:26150778

  7. Electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.

    1995-01-17

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.

  8. Electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.; Dahl, Leslie R.

    1995-01-01

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter.

  9. BOMB STABILIZING STRUCTURE

    DOEpatents

    Kelley, J.L.; Runyan, C.E.

    1963-12-10

    A stabilizinig structure capable of minimizing deviations of a falling body such as a bomb from desired trajectory is described. The structure comprises a fin or shroud arrangement of double-wedge configuration, the feeding portion being of narrow wedge shape and the after portion being of a wider wedge shape. The structure provides a force component for keeping the body on essentially desired trajectory throughout its fall. (AEC)

  10. Is Tongue Strength an Important Influence on Rate of Articulation in Diadochokinetic and Reading Tasks?

    ERIC Educational Resources Information Center

    Neel, Amy T.; Palmer, Phyllis M.

    2012-01-01

    Purpose: The purpose of this study was to assess the relationship between tongue strength and rate of articulation in 2 speech tasks, diadochokinetic rates and reading aloud, in healthy men and women between 20 and 78 years of age. Method: Diadochokinetic rates were measured for the syllables /p[wedge]/, /t[wedge]/, /k[wedge]/, and…

  11. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  12. An inverted continental Moho and serpentinization of the forearc mantle.

    PubMed

    Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M

    2002-05-30

    Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.

  13. Investigation of turbulent wedges generated by different single surface roughness elements

    NASA Astrophysics Data System (ADS)

    Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd

    2013-11-01

    It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.

  14. Effect of Shockwave Curvature on Run Distance Observed with a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2011-06-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various thicknesses of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the introduced shock would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor thickness via different widths of PMMA spacers placed between the donor and the wedge. A framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm thick donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  15. Effect of shockwave curvature on run distance observed with a modified wedge test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2012-03-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  16. Pretest 3-D finite element modeling of the wedge pillar portion of the WIPP (Waste Isolation Pilot Plant) Geomechanical Evaluation (Room G) in situ experiment. [Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, D.S.

    Pretest 3-D finite element calculations have been performed on the wedge pillar portion of the WIPP Geomechanical Evaluation Experiment. The wedge pillar separates two drifts that intersect at an angle of 7.5/sup 0/. Purpose of the experiment is to provide data on the creep behavior of the wedge and progressive failure at the tip. The first set of calculations utilized a symmetry plane on the center-line of the wedge which allowed treatment of the entire configuration by modeling half of the geometry. Two 3-D calculations in this first set were performed with different drift widths to study the influence ofmore » drift size on closure and maximum stress. A cross-section perpendicular to the wedge was also analyzed with 2-D finite element models and the results compared to the 3-D results. In another set of 3-D calculations both drifts were modeled but with less distance between the drifts and the outer boundaries. Results of these calculations are compared with results from the other calculations to better understand the influence of boundary conditions.« less

  17. Changes in prescribed doses for the Seattle neutron therapy system

    NASA Astrophysics Data System (ADS)

    Popescu, A.

    2008-06-01

    From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.

  18. Glass Microbeads in Analog Models of Thrust Wedges.

    PubMed

    D'Angelo, Taynara; Gomes, Caroline J S

    2017-01-01

    Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.

  19. Application of a radiophotoluminescent glass dosimeter to nonreference condition dosimetry in the postal dose audit system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, Hideyuki, E-mail: h-mizuno@nirs.go.jp; Fukumura, Akifumi; Fukahori, Mai

    Purpose: The purpose of this study was to obtain a set of correction factors of the radiophotoluminescent glass dosimeter (RGD) output for field size changes and wedge insertions. Methods: Several linear accelerators were used for irradiation of the RGDs. The field sizes were changed from 5 × 5 cm to 25 × 25 cm for 4, 6, 10, and 15 MV x-ray beams. The wedge angles were 15°, 30°, 45°, and 60°. In addition to physical wedge irradiation, nonphysical (dynamic/virtual) wedge irradiations were performed. Results: The obtained data were fitted with a single line for each energy, and correction factorsmore » were determined. Compared with ionization chamber outputs, the RGD outputs gradually increased with increasing field size, because of the higher RGD response to scattered low-energy photons. The output increase was about 1% per 10 cm increase in field size, with a slight difference dependent on the beam energy. For both physical and nonphysical wedged beam irradiation, there were no systematic trends in the RGD outputs, such as monotonic increase or decrease depending on the wedge angle change if the authors consider the uncertainty, which is approximately 0.6% for each set of measured points. Therefore, no correction factor was needed for all inserted wedges. Based on this work, postal dose audits using RGDs for the nonreference condition were initiated in 2010. The postal dose audit results between 2010 and 2012 were analyzed. The mean difference between the measured and stated doses was within 0.5% for all fields with field sizes between 5 × 5 cm and 25 × 25 cm and with wedge angles from 15° to 60°. The standard deviations (SDs) of the difference distribution were within the estimated uncertainty (1SD) except for the 25 × 25 cm field size data, which were not reliable because of poor statistics (n = 16). Conclusions: A set of RGD output correction factors was determined for field size changes and wedge insertions. The results obtained from recent postal dose audits were analyzed, and the mean differences between the measured and stated doses were within 0.5% for every field size and wedge angle. The SDs of the distribution were within the estimated uncertainty, except for one condition that was not reliable because of poor statistics.« less

  20. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  1. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  2. Comparing closed quotient in children singers' voices as measured by high-speed-imaging, electroglottography, and inverse filtering.

    PubMed

    Mecke, Ann-Christine; Sundberg, Johan; Granqvist, Svante; Echternach, Matthias

    2012-01-01

    The closed quotient, i.e., the ratio between the closed phase and the period, is commonly studied in voice research. However, the term may refer to measures derived from different methods, such as inverse filtering, electroglottography or high-speed digital imaging (HSDI). This investigation compares closed quotient data measured by these three methods in two boy singers. Each singer produced sustained tones on two different pitches and a glissando. Audio, electroglottographic signal (EGG), and HSDI were recorded simultaneously. The audio signal was inverse filtered by means of the decap program; the closed phase was defined as the flat minimum portion of the flow glottogram. Glottal area was automatically measured in the high speed images by the built-in camera software, and the closed phase was defined as the flat minimum portion of the area-signal. The EGG-signal was analyzed in four different ways using the matlab open quotient interface. The closed quotient data taken from the EGG were found to be considerably higher than those obtained from inverse filtering. Also, substantial differences were found between the closed quotient derived from HSDI and those derived from inverse filtering. The findings illustrate the importance of distinguishing between these quotients. © 2012 Acoustical Society of America.

  3. The role of heterogeneous fluid pressures in the shape of critical-taper submarine wedges, with application to Barbados

    NASA Astrophysics Data System (ADS)

    Yeh, En-Chao; Suppe, John

    2014-05-01

    Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.

  4. The calibration of photographic and spectroscopic films. 1: Film batch variations of reciprocity failure in IIaO film. 2: Thermal and aging effects in relationship to reciprocity failure. 3: Shifting of reciprocity failure points as a function of thermal and aging effects

    NASA Technical Reports Server (NTRS)

    Peters, K. A.; Atkinson, P. F.; Hammond, E. C., Jr.

    1986-01-01

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film.

  5. Plasmonic nanopatch array for optical integrated circuit applications.

    PubMed

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  6. Unlocking the Secrets of the Mantle Wedge: New Insights Into Melt Generation Processes in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2007-05-01

    Recent laboratory studies of the melting and crystallization behavior of mantle peridotite and subduction zone lavas have led to new insights into melting processes in island arc settings. Melting of the mantle wedge in the presence of H2O begins at much lower temperatures than previously thought. The solidus of mantle peridotite at 3 GPa is ~ 800 °C, which is 200 °C below previous estimates. At pressures greater than 2.4 GPa chlorite becomes a stable phase on the solidus and it remains stable until ~ 3.5 GPa. Therefore, melting over this pressure range occurs in the presence of chlorite, which contains ~ 12 wt. % H2O. Chlorite stabilized on the peridotite solidus by slab-derived H2O may be the ultimate source of H2O for subduction zone magmatism. Thus, chlorite could transport large amounts of H2O into the descending mantle wedge to depths where it can participate in melting to generate hydrous arc magmas. Our ability to identify primitive mantle melts at subduction zones has led to the following observations. 1) Primitive mantle melts show evidence of final equilibration at shallow depths near the mantle - crust boundary. 2) They contain variable amounts of dissolved H2O (up to 6 wt. %). 3) They record variable extents of melting (up to > 25 wt. %). To produce melts with such variable characteristics requires more than one melting process and requires consideration of a new type of melting called hydrous flux melting. Flux melting occurs when the H2O - rich melt initially produced on the solidus near the base of the mantle wedge ascends and continuously reacts with overlying hotter, shallower mantle. The mantle melts and magmatic H2O content is constantly diluted as the melt ascends and reacts with shallower, hotter mantle. Anhydrous mantle melts are also found in close temporal and spatial proximity to hydrous flux melts. These melts are extracted at similar depths near the top of the mantle wedge when mantle is advected up and into the wedge corner and melted by adiabatic decompression. In light of these new insights into the chemical processes that lead to melt generation in subduction zones, further study of the influence of mantle dynamics and physical processes on melting is crucial. Variations in mantle permeability near the base of the wedge may exercise important controls on the access of fluids and/or melts to the overlying wedge. The presence of chlorite in the wedge may also influence rheological properties and seismicity in the vicinity of the slab - wedge interface. Improved knowledge of rheology and permeability will help us to develop more robust models of mantle flow and temperature distribution in the mantle wedge. These are crucial for refining melting models. By combining evidence from petrology, geochemistry and geophysics the mysteries that attend the generation of melt in the mantle wedge can be resolved.

  7. Proximal opening wedge osteotomy with wedge-plate fixation compared with proximal chevron osteotomy for the treatment of hallux valgus: a prospective, randomized study.

    PubMed

    Glazebrook, Mark; Copithorne, Peter; Boyd, Gordon; Daniels, Timothy; Lalonde, Karl-André; Francis, Patricia; Hickey, Michael

    2014-10-01

    Hallux valgus with an increased intermetatarsal angle is usually treated with a proximal metatarsal osteotomy. The proximal chevron osteotomy is commonly used but is technically difficult. This study compares the proximal opening wedge osteotomy of the first metatarsal with the proximal chevron osteotomy for the treatment of hallux valgus with an increased intermetatarsal angle. This prospective, randomized multicenter (three-center) study was based on the clinical outcome scores of the Short Form-36, the American Orthopaedic Foot & Ankle Society forefoot questionnaire, and the visual analog scale for pain, activity, and patient satisfaction. Subjects were assessed prior to surgery and at three, six, and twelve months postoperatively. Surgeon preference was evaluated based on questionnaires and the operative times required for each procedure. No significant differences were found for any of the patients' clinical outcome measurements between the two procedures. The proximal opening wedge osteotomy was found to lengthen, and the proximal chevron osteotomy was found to shorten, the first metatarsal. The intermetatarsal angles improved (decreased) significantly, from 14.8° ± 3.2° to 9.1° ± 2.9 (mean and standard deviation) after a proximal opening wedge osteotomy and from 14.6° ± 3.9° to 11.3° ± 4.0° after a proximal chevron osteotomy (p < 0.05 for both). Operative time required for performing a proximal opening wedge osteotomy is similar to that required for performing a proximal chevron osteotomy (mean and standard deviation, 67.1 ± 16.5 minutes compared with 69.9 ± 18.6 minutes; p = 0.510). Opening wedge and proximal chevron osteotomies have comparable radiographic outcomes and comparable clinical outcomes for pain, satisfaction, and function. The proximal opening wedge osteotomy lengthens, and the proximal chevron osteotomy shortens, the first metatarsal. The proximal opening wedge osteotomy was subjectively less technically demanding and was preferred by the orthopaedic surgeons in this study. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  8. 3D modeling of seismic waves propagation in the Israeli continental shelf: soft sediments, buried canyons and their effects.

    NASA Astrophysics Data System (ADS)

    Tsesarsky, M.; Volk, O.; Shani-Kadmiel, S.; Gvirtzman, Z.

    2016-12-01

    Sedimentary wedges underlay many coastal areas, specifically along passive continental margins. Although a large portion of the world`s population is concentrated along coastal areas, relatively few studies investigated the seismic hazard related to internal structure of these wedges. This is particularly important, when the passive margin is located in proximity to active plate boundaries. Sedimentry wedges have low angles compared to fault bounded basins, hence commonly treated using 1D methods. In various locations the sedimentary wedges are transected by deep buried canyons typically filled with sediments softer than their surrounding bedrock. Such structures are found is the Mediterranean coast of Israel. Here, a sedimentary wedge and buried canyons underlay some of the country's most densely populated regions. Seismic sources can be found both at sea and on land at epicentral distances ranging from 50 to 200 km. Although this region has a proven seismic record, it has, like many other parts of the world, limited instrumental coverage and long return periods. This makes assessment of ground motions in a future earthquake difficult and highlights the importance of non-instrumental methods. We employ numerical modeling (SW4 FD code) to study seismic ground motions and their amplification atop the sedimentary wedge and canyons. This goal is a part of a larger objective aiming at developing a systematic approach for distinction between individual contributions of basin structures to the highly complex overall basin response. We show that the sedimentary wedge and buried canyon both exhibit a unique response and modeling them as one-dimensional structures could significantly underestimate seismic hazard. The sedimentary wedge exhibit amplification ratios, relative to a horizontally layered model, up to a factor of 2. This is mainly due to the amplification of Rayleigh waves traveling into the wedge from its thin side. The buried canyon structure shows a simple, "easy to use" response with considerably high PGV values and amplification ratios of up to 3 along its axis. This response is due to a geometrical focusing effect caused by the convex shape of the canyon's floor. The canyon's response is significant even where the canyon is buried deep under the surface.

  9. Planar shock reflection on a wedged concave reflector

    NASA Astrophysics Data System (ADS)

    Yu, Fan-Ming; Sheu, Kuen-Dong

    2001-04-01

    The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector. However, as considering the measured maximum pressure increment following the diffraction shocks, the results show that due to the focusing process upon (35 degree, 35 degree) reflector, it is of the largest increment.

  10. Spacing of Imbricated Thrust Faults and the Strength of Thrust-Belts and Accretionary Wedges

    NASA Astrophysics Data System (ADS)

    Ito, G.; Regensburger, P. V.; Moore, G. F.

    2017-12-01

    The pattern of imbricated thrust blocks is a prominent characteristic of the large-scale structure of thrust-belts and accretionary wedges around the world. Mechanical models of these systems have a rich history from laboratory analogs, and more recently from computational simulations, most of which, qualitatively reproduce the regular patterns of imbricated thrusts seen in nature. Despite the prevalence of these patterns in nature and in models, our knowledge of what controls the spacing of the thrusts remains immature at best. We tackle this problem using a finite difference, particle-in-cell method that simulates visco-elastic-plastic deformation with a Mohr-Coulomb brittle failure criterion. The model simulates a horizontal base that moves toward a rigid vertical backstop, carrying with it an overlying layer of crust. The crustal layer has a greater frictional strength than the base, is cohesive, and is initially uniform in thickness. As the layer contracts, a series of thrust blocks immerge sequentially and form a wedge having a mean taper consistent with that predicted by a noncohesive, critical Coulomb wedge. The widths of the thrust blocks (or spacing between adjacent thrusts) are greatest at the front of the wedge, tend to decrease with continued contraction, and then tend toward a pseudo-steady, minimum width. Numerous experiments show that the characteristic spacing of thrusts increases with the brittle strength of the wedge material (cohesion + friction) and decreases with increasing basal friction for low (<8°) taper angles. These relations are consistent with predictions of the elastic stresses forward of the frontal thrust and at what distance the differential stress exceeds the brittle threshold to form a new frontal thrust. Hence the characteristic spacing of the thrusts across the whole wedge is largely inherited at the very front of the wedge. Our aim is to develop scaling laws that will illuminate the basic physical processes controlling systems, as well as allow researchers to use observations of thrust spacing as an independent constraint on the brittle strength of wedges as well as their bases.

  11. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a-1 precipitation, -4.1 °C mean annual air temperature, warm summers (July mean 17.0 °C), and cold winters (January mean -26.6 °C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures (-15 to -25 °C), resulting in thermal contraction cracking to depths of 1.2 m. Cracking potentials are high in sandy soils when air temperatures are <-30 °C on successive days, mean freezing season air temperatures are ≤-17 °C, and snow cover is <0.15 m thick. In contrast, surface conditions in peatlands maintain permafrost, but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation-stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downturning and subsidence of adjacent strata. Sand wedge development in seasonally frozen ground with limited surface sediment supply can result in stratigraphy similar to ice-wedge and composite-wedge pseudomorphs. Therefore, caution must be exercised when interpreting this suite of forms and inferring paleoenvironments.

  12. Operator’s Manual. Prototype Heavy Rescue/Fire Fighting Vehicle

    DTIC Science & Technology

    1980-09-01

    system for emergency operation if pressure is lost in either parking or service brake systems . The system is operational automatically and is...controlled by the foot treadle ’sive. It will provide for TWO full brake applications and ONE release. ELECTRICAL SYSTEM A dual battery system is utilized for...cleaner. * Lubricate chassis. . Repack wheel bearings. . Inspect brake system and adjust brakes . . Replace fuel filter. . Check high and low idle.

  13. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  14. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle

    PubMed Central

    Brzezicki, Samuel J.

    2017-01-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412

  15. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle.

    PubMed

    Crowdy, Darren G; Brzezicki, Samuel J

    2017-06-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.

  16. Physical optics-based diffraction coefficient for a wedge with different face impedances.

    PubMed

    Umul, Yusuf Ziya

    2018-03-20

    A new diffraction field expression is introduced with the aid of the modified theory of physical optics for a wedge with different face impedances. First, the scattered geometrical optics fields are determined when both faces of the wedge are illuminated by the incident wave. The geometrical optics waves are then expressed in terms of the sum of two different fields that occur for different impedance wedges. The diffracted fields are determined for the two cases separately, and the total diffracted field is obtained as a sum of these waves. Lastly, the uniform field expressions are obtained, and the resultant fields are numerically compared with the solution of Maliuzhinets.

  17. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  18. Fiber sensors for molecular detection

    NASA Astrophysics Data System (ADS)

    Gu, Claire; Yang, Xuan; Zhang, Jin; Newhouse, Rebecca; Cao, Liangcai

    2010-11-01

    The demand on sensors for detecting chemical and biological agents is greater than ever before, including medical, environmental, food safety, military, and security applications. At present, most detection or sensing techniques tend to be either non-molecular specific, bulky, expensive, relatively inaccurate, or unable to provide real time data. Clearly, alternative sensing technologies are urgently needed. Recently, we have been working to develop a compact fiber optic surface enhanced Raman scattering (SERS) sensor system that integrates various novel ideas to achieve compactness, high sensitivity and consistency, molecular specificity, and automatic preliminary identification capabilities. The unique sensor architecture is expected to bring SERS sensors to practical applications due to a combination of 1) novel SERS substrates that provide the high sensitivity and consistency, molecular specificity, and applicability to a wide range of compounds; 2) a unique hollow core optical fiber probe with double SERS substrate structure that provides the compactness, reliability, low cost, and ease of sampling; and 3) an innovative matched spectral filter set that provides automatic preliminary molecule identification. In this paper, we will review the principle of operation and some of the important milestones of fiber SERS sensor development with emphasis on our recent work to integrate photonic crystal fiber SERS probes with a portable Raman spectrometer and to demonstrate a matched spectral filter for molecule identification.

  19. A comparison of line enhancement techniques: applications to guide-wire detection and respiratory motion tracking

    NASA Astrophysics Data System (ADS)

    Bismuth, Vincent; Vancamberg, Laurence; Gorges, Sébastien

    2009-02-01

    During interventional radiology procedures, guide-wires are usually inserted into the patients vascular tree for diagnosis or healing purpose. These procedures are monitored with an Xray interventional system providing images of the interventional devices navigating through the patient's body. The automatic detection of such tools by image processing means has gained maturity over the past years and enables applications ranging from image enhancement to multimodal image fusion. Sophisticated detection methods are emerging, which rely on a variety of device enhancement techniques. In this article we reviewed and classified these techniques into three families. We chose a state of the art approach in each of them and built a rigorous framework to compare their detection capability and their computational complexity. Through simulations and the intensive use of ROC curves we demonstrated that the Hessian based methods are the most robust to strong curvature of the devices and that the family of rotated filters technique is the most suited for detecting low CNR and low curvature devices. The steerable filter approach demonstrated less interesting detection capabilities and appears to be the most expensive one to compute. Finally we demonstrated the interest of automatic guide-wire detection on a clinical topic: the compensation of respiratory motion in multimodal image fusion.

  20. Efficiency test of filtering methods for the removal of transcranial magnetic stimulation artifacts on human electroencephalography with artificially transcranial magnetic stimulation-corrupted signals

    NASA Astrophysics Data System (ADS)

    Zilber, Nicolas A.; Katayama, Yoshinori; Iramina, Keiji; Erich, Wintermantel

    2010-05-01

    A new approach is proposed to test the efficiency of methods, such as the Kalman filter and the independent component analysis (ICA), when applied to remove the artifacts induced by transcranial magnetic stimulation (TMS) from electroencephalography (EEG). By using EEG recordings corrupted by TMS induction, the shape of the artifacts is approximately described with a model based on an equivalent circuit simulation. These modeled artifacts are subsequently added to other EEG signals—this time not influenced by TMS. The resulting signals prove of interest since we also know their form without the pseudo-TMS artifacts. Therefore, they enable us to use a fit test to compare the signals we obtain after removing the artifacts with the original signals. This efficiency test turned out very useful in comparing the methods between them, as well as in determining the parameters of the filtering that give satisfactory results with the automatic ICA.

Top