Sample records for automatically extract important

  1. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  2. Target recognition based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  3. Analysis of Technique to Extract Data from the Web for Improved Performance

    NASA Astrophysics Data System (ADS)

    Gupta, Neena; Singh, Manish

    2010-11-01

    The World Wide Web rapidly guides the world into a newly amazing electronic world, where everyone can publish anything in electronic form and extract almost all the information. Extraction of information from semi structured or unstructured documents, such as web pages, is a useful yet complex task. Data extraction, which is important for many applications, extracts the records from the HTML files automatically. Ontologies can achieve a high degree of accuracy in data extraction. We analyze method for data extraction OBDE (Ontology-Based Data Extraction), which automatically extracts the query result records from the web with the help of agents. OBDE first constructs an ontology for a domain according to information matching between the query interfaces and query result pages from different web sites within the same domain. Then, the constructed domain ontology is used during data extraction to identify the query result section in a query result page and to align and label the data values in the extracted records. The ontology-assisted data extraction method is fully automatic and overcomes many of the deficiencies of current automatic data extraction methods.

  4. Automatic updating and 3D modeling of airport information from high resolution images using GIS and LIDAR data

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng

    2007-11-01

    As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.

  5. Information retrieval and terminology extraction in online resources for patients with diabetes.

    PubMed

    Seljan, Sanja; Baretić, Maja; Kucis, Vlasta

    2014-06-01

    Terminology use, as a mean for information retrieval or document indexing, plays an important role in health literacy. Specific types of users, i.e. patients with diabetes need access to various online resources (on foreign and/or native language) searching for information on self-education of basic diabetic knowledge, on self-care activities regarding importance of dietetic food, medications, physical exercises and on self-management of insulin pumps. Automatic extraction of corpus-based terminology from online texts, manuals or professional papers, can help in building terminology lists or list of "browsing phrases" useful in information retrieval or in document indexing. Specific terminology lists represent an intermediate step between free text search and controlled vocabulary, between user's demands and existing online resources in native and foreign language. The research aiming to detect the role of terminology in online resources, is conducted on English and Croatian manuals and Croatian online texts, and divided into three interrelated parts: i) comparison of professional and popular terminology use ii) evaluation of automatic statistically-based terminology extraction on English and Croatian texts iii) comparison and evaluation of extracted terminology performed on English manual using statistical and hybrid approaches. Extracted terminology candidates are evaluated by comparison with three types of reference lists: list created by professional medical person, list of highly professional vocabulary contained in MeSH and list created by non-medical persons, made as intersection of 15 lists. Results report on use of popular and professional terminology in online diabetes resources, on evaluation of automatically extracted terminology candidates in English and Croatian texts and on comparison of statistical and hybrid extraction methods in English text. Evaluation of automatic and semi-automatic terminology extraction methods is performed by recall, precision and f-measure.

  6. Automatic River Network Extraction from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.

    2016-06-01

    National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  7. Automatically extracting the significant aspects evaluated in game reviews

    NASA Astrophysics Data System (ADS)

    Fong, Chiok Hoong; Ng, Yen Kaow

    2017-04-01

    Understanding the criteria (or "aspects") that reviewers use to evaluate games is important to game developers and publishers, since this will give them important input on how to improve their products. Techniques for the extraction of such aspects have been studied by others, albeit not specific to the gaming industry. In this paper we demonstrate an aspect extraction and analysis system specific to computer games. The system extracts game review texts from a list of known websites and automatically extracts candidate aspects from the review text using techniques from natural language processing and sentiment analysis. It then ranks the candidate aspects using the HITS algorithm. To evaluate the correctness of the extracted aspects, we used the system to calculate an overall score for each game by aggregating its highly-rated aspects, weighted by the importance of the respective aspects. The aggregated scores resulted in a ranking of games, which we compared to a known ranking from a popular website - the rankings showed overall consistency, which suggests that the system has extracted valuable aspects from the reviews. Using the extracted aspect, our system also facilitates the analysis of a game, by evaluating how review articles have rated its performance in these extracted aspects.

  8. Automatic segmentation of the bone and extraction of the bone cartilage interface from magnetic resonance images of the knee

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2007-03-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  9. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction.

    PubMed

    Najafi, Elham; Darooneh, Amir H

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction.

  10. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction

    PubMed Central

    Najafi, Elham; Darooneh, Amir H.

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction. PMID:26091207

  11. Automatic extraction of blocks from 3D point clouds of fractured rock

    NASA Astrophysics Data System (ADS)

    Chen, Na; Kemeny, John; Jiang, Qinghui; Pan, Zhiwen

    2017-12-01

    This paper presents a new method for extracting blocks and calculating block size automatically from rock surface 3D point clouds. Block size is an important rock mass characteristic and forms the basis for several rock mass classification schemes. The proposed method consists of four steps: 1) the automatic extraction of discontinuities using an improved Ransac Shape Detection method, 2) the calculation of discontinuity intersections based on plane geometry, 3) the extraction of block candidates based on three discontinuities intersecting one another to form corners, and 4) the identification of "true" blocks using an improved Floodfill algorithm. The calculated block sizes were compared with manual measurements in two case studies, one with fabricated cardboard blocks and the other from an actual rock mass outcrop. The results demonstrate that the proposed method is accurate and overcomes the inaccuracies, safety hazards, and biases of traditional techniques.

  12. Automatic emotional expression analysis from eye area

    NASA Astrophysics Data System (ADS)

    Akkoç, Betül; Arslan, Ahmet

    2015-02-01

    Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.

  13. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Hoynck, Michael

    2005-01-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  14. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Höynck, Michael

    2004-12-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  15. Robust extraction of the aorta and pulmonary artery from 3D MDCT image data

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2010-03-01

    Accurate definition of the aorta and pulmonary artery from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents robust methods for defining the aorta and pulmonary artery in the central chest. The methods work on both contrast enhanced and no-contrast 3D MDCT image data. The automatic methods use a common approach employing model fitting and selection and adaptive refinement. During the occasional event that more precise vascular extraction is desired or the method fails, we also have an alternate semi-automatic fail-safe method. The semi-automatic method extracts the vasculature by extending the medial axes into a user-guided direction. A ground-truth study over a series of 40 human 3D MDCT images demonstrates the efficacy, accuracy, robustness, and efficiency of the methods.

  16. Design of Automatic Extraction Algorithm of Knowledge Points for MOOCs

    PubMed Central

    Chen, Haijian; Han, Dongmei; Zhao, Lina

    2015-01-01

    In recent years, Massive Open Online Courses (MOOCs) are very popular among college students and have a powerful impact on academic institutions. In the MOOCs environment, knowledge discovery and knowledge sharing are very important, which currently are often achieved by ontology techniques. In building ontology, automatic extraction technology is crucial. Because the general methods of text mining algorithm do not have obvious effect on online course, we designed automatic extracting course knowledge points (AECKP) algorithm for online course. It includes document classification, Chinese word segmentation, and POS tagging for each document. Vector Space Model (VSM) is used to calculate similarity and design the weight to optimize the TF-IDF algorithm output values, and the higher scores will be selected as knowledge points. Course documents of “C programming language” are selected for the experiment in this study. The results show that the proposed approach can achieve satisfactory accuracy rate and recall rate. PMID:26448738

  17. Automatic indexing of scanned documents: a layout-based approach

    NASA Astrophysics Data System (ADS)

    Esser, Daniel; Schuster, Daniel; Muthmann, Klemens; Berger, Michael; Schill, Alexander

    2012-01-01

    Archiving official written documents such as invoices, reminders and account statements in business and private area gets more and more important. Creating appropriate index entries for document archives like sender's name, creation date or document number is a tedious manual work. We present a novel approach to handle automatic indexing of documents based on generic positional extraction of index terms. For this purpose we apply the knowledge of document templates stored in a common full text search index to find index positions that were successfully extracted in the past.

  18. Automated methods of tree boundary extraction and foliage transparency estimation from digital imagery

    Treesearch

    Sang-Mook Lee; Neil A. Clark; Philip A. Araman

    2003-01-01

    Foliage transparency in trees is an important indicator for forest health assessment. This paper helps advance transparency measurement research by presenting methods of automatic tree boundary extraction and foliage transparency estimation from digital images taken from the ground of open grown trees.Extraction of proper boundaries of tree crowns is the...

  19. A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis

    NASA Astrophysics Data System (ADS)

    Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui

    2015-07-01

    Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.

  20. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas

    NASA Astrophysics Data System (ADS)

    Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa

    2017-12-01

    Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.

  1. Convolution neural-network-based detection of lung structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.

    1994-05-01

    Chest radiography is one of the most primary and widely used techniques in diagnostic imaging. Nowadays with the advent of digital radiology, the digital medical image processing techniques for digital chest radiographs have attracted considerable attention, and several studies on the computer-aided diagnosis (CADx) as well as on the conventional image processing techniques for chest radiographs have been reported. In the automatic diagnostic process for chest radiographs, it is important to outline the areas of the lungs, the heart, and the diaphragm. This is because the original chest radiograph is composed of important anatomic structures and, without knowing exact positions of the organs, the automatic diagnosis may result in unexpected detections. The automatic extraction of an anatomical structure from digital chest radiographs can be a useful tool for (1) the evaluation of heart size, (2) automatic detection of interstitial lung diseases, (3) automatic detection of lung nodules, and (4) data compression, etc. Based on the clearly defined boundaries of heart area, rib spaces, rib positions, and rib cage extracted, one should be able to use this information to facilitate the tasks of the CADx on chest radiographs. In this paper, we present an automatic scheme for the detection of lung field from chest radiographs by using a shift-invariant convolution neural network. A novel algorithm for smoothing boundaries of lungs is also presented.

  2. A quality score for coronary artery tree extraction results

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Broersen, Alexander; Kitslaar, Pieter H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2018-02-01

    Coronary artery trees (CATs) are often extracted to aid the fully automatic analysis of coronary artery disease on coronary computed tomography angiography (CCTA) images. Automatically extracted CATs often miss some arteries or include wrong extractions which require manual corrections before performing successive steps. For analyzing a large number of datasets, a manual quality check of the extraction results is time-consuming. This paper presents a method to automatically calculate quality scores for extracted CATs in terms of clinical significance of the extracted arteries and the completeness of the extracted CAT. Both right dominant (RD) and left dominant (LD) anatomical statistical models are generated and exploited in developing the quality score. To automatically determine which model should be used, a dominance type detection method is also designed. Experiments are performed on the automatically extracted and manually refined CATs from 42 datasets to evaluate the proposed quality score. In 39 (92.9%) cases, the proposed method is able to measure the quality of the manually refined CATs with higher scores than the automatically extracted CATs. In a 100-point scale system, the average scores for automatically and manually refined CATs are 82.0 (+/-15.8) and 88.9 (+/-5.4) respectively. The proposed quality score will assist the automatic processing of the CAT extractions for large cohorts which contain both RD and LD cases. To the best of our knowledge, this is the first time that a general quality score for an extracted CAT is presented.

  3. [The automatic iris map overlap technology in computer-aided iridiagnosis].

    PubMed

    He, Jia-feng; Ye, Hu-nian; Ye, Miao-yuan

    2002-11-01

    In the paper, iridology and computer-aided iridiagnosis technologies are briefly introduced and the extraction method of the collarette contour is then investigated. The iris map can be overlapped on the original iris image based on collarette contour extraction. The research on collarette contour extraction and iris map overlap is of great importance to computer-aided iridiagnosis technologies.

  4. A Method for Extracting Important Segments from Documents Using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Suzuki, Daisuke; Utsumi, Akira

    In this paper we propose an extraction-based method for automatic summarization. The proposed method consists of two processes: important segment extraction and sentence compaction. The process of important segment extraction classifies each segment in a document as important or not by Support Vector Machines (SVMs). The process of sentence compaction then determines grammatically appropriate portions of a sentence for a summary according to its dependency structure and the classification result by SVMs. To test the performance of our method, we conducted an evaluation experiment using the Text Summarization Challenge (TSC-1) corpus of human-prepared summaries. The result was that our method achieved better performance than a segment-extraction-only method and the Lead method, especially for sentences only a part of which was included in human summaries. Further analysis of the experimental results suggests that a hybrid method that integrates sentence extraction with segment extraction may generate better summaries.

  5. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  6. Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Yeo, Boon-Lock; Liu, Bede

    1996-03-01

    Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.

  7. Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation.

    PubMed

    Pereira, Sérgio; Meier, Raphael; McKinley, Richard; Wiest, Roland; Alves, Victor; Silva, Carlos A; Reyes, Mauricio

    2018-02-01

    Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end-user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable "black boxes". In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understanding if the system learned the relevant relations in the data correctly, while the later is focused on predictions performed on a voxel- and patient-level. In addition, we propose a novel feature importance strategy that considers both imaging data and target variables, and we demonstrate the ability of the approach to leverage the interpretability of the obtained representation for the task at hand. We evaluated the proposed methodology in brain tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the proposed methodology to unveil information regarding relationships between imaging modalities and extracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that the proposed methodology enhances the interpretability of automatically learned features, highlighting specific learning patterns that resemble how an expert extracts relevant data from medical images. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sample processor for the automatic extraction of families of compounds from liquid samples and/or homogenized solid samples suspended in a liquid

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor); Campen, Jr., Charles F. (Inventor)

    1980-01-01

    A sample processor and method for the automatic extraction of families of compounds, known as extracts, from liquid and/or homogenized solid samples are disclosed. The sample processor includes a tube support structure which supports a plurality of extraction tubes, each containing a sample from which families of compounds are to be extracted. The support structure is moveable automatically with respect to one or more extraction stations, so that as each tube is at each station a solvent system, consisting of a solvent and reagents, is introduced therein. As a result an extract is automatically extracted from the tube. The sample processor includes an arrangement for directing the different extracts from each tube to different containers, or to direct similar extracts from different tubes to the same utilization device.

  9. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    PubMed

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  10. Inter-comparison of Methods for Extracting Subsurface Layers from SHARAD Radargrams over Martian polar regions

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.; Carretero, R. C.

    2017-09-01

    Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.

  11. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    NASA Astrophysics Data System (ADS)

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  12. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry

    PubMed Central

    AAlAbdulsalam, Abdulrahman K.; Garvin, Jennifer H.; Redd, Andrew; Carter, Marjorie E.; Sweeny, Carol; Meystre, Stephane M.

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%–98.4% and classification sensitivity: 83.5%–87%). PMID:29888032

  13. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry.

    PubMed

    AAlAbdulsalam, Abdulrahman K; Garvin, Jennifer H; Redd, Andrew; Carter, Marjorie E; Sweeny, Carol; Meystre, Stephane M

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%-98.4% and classification sensitivity: 83.5%-87%).

  14. Brain extraction in partial volumes T2*@7T by using a quasi-anatomic segmentation with bias field correction.

    PubMed

    Valente, João; Vieira, Pedro M; Couto, Carlos; Lima, Carlos S

    2018-02-01

    Poor brain extraction in Magnetic Resonance Imaging (MRI) has negative consequences in several types of brain post-extraction such as tissue segmentation and related statistical measures or pattern recognition algorithms. Current state of the art algorithms for brain extraction work on weighted T1 and T2, being not adequate for non-whole brain images such as the case of T2*FLASH@7T partial volumes. This paper proposes two new methods that work directly in T2*FLASH@7T partial volumes. The first is an improvement of the semi-automatic threshold-with-morphology approach adapted to incomplete volumes. The second method uses an improved version of a current implementation of the fuzzy c-means algorithm with bias correction for brain segmentation. Under high inhomogeneity conditions the performance of the first method degrades, requiring user intervention which is unacceptable. The second method performed well for all volumes, being entirely automatic. State of the art algorithms for brain extraction are mainly semi-automatic, requiring a correct initialization by the user and knowledge of the software. These methods can't deal with partial volumes and/or need information from atlas which is not available in T2*FLASH@7T. Also, combined volumes suffer from manipulations such as re-sampling which deteriorates significantly voxel intensity structures making segmentation tasks difficult. The proposed method can overcome all these difficulties, reaching good results for brain extraction using only T2*FLASH@7T volumes. The development of this work will lead to an improvement of automatic brain lesions segmentation in T2*FLASH@7T volumes, becoming more important when lesions such as cortical Multiple-Sclerosis need to be detected. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Presentation video retrieval using automatically recovered slide and spoken text

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew

    2013-03-01

    Video is becoming a prevalent medium for e-learning. Lecture videos contain text information in both the presentation slides and lecturer's speech. This paper examines the relative utility of automatically recovered text from these sources for lecture video retrieval. To extract the visual information, we automatically detect slides within the videos and apply optical character recognition to obtain their text. Automatic speech recognition is used similarly to extract spoken text from the recorded audio. We perform controlled experiments with manually created ground truth for both the slide and spoken text from more than 60 hours of lecture video. We compare the automatically extracted slide and spoken text in terms of accuracy relative to ground truth, overlap with one another, and utility for video retrieval. Results reveal that automatically recovered slide text and spoken text contain different content with varying error profiles. Experiments demonstrate that automatically extracted slide text enables higher precision video retrieval than automatically recovered spoken text.

  16. Image analysis for skeletal evaluation of carpal bones

    NASA Astrophysics Data System (ADS)

    Ko, Chien-Chuan; Mao, Chi-Wu; Lin, Chi-Jen; Sun, Yung-Nien

    1995-04-01

    The assessment of bone age is an important field to the pediatric radiology. It provides very important information for treatment and prediction of skeletal growth in a developing child. So far, various computerized algorithms for automatically assessing the skeletal growth have been reported. Most of these methods made attempt to analyze the phalangeal growth. The most fundamental step in these automatic measurement methods is the image segmentation that extracts bones from soft-tissue and background. These automatic segmentation methods of hand radiographs can roughly be categorized into two main approaches that are edge and region based methods. This paper presents a region-based carpal-bone segmentation approach. It is organized into four stages: contrast enhancement, moment-preserving thresholding, morphological processing, and region-growing labeling.

  17. Refining Automatically Extracted Knowledge Bases Using Crowdsourcing.

    PubMed

    Li, Chunhua; Zhao, Pengpeng; Sheng, Victor S; Xian, Xuefeng; Wu, Jian; Cui, Zhiming

    2017-01-01

    Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far from perfect. In this paper, we leverage crowdsourcing to improve the quality of automatically extracted knowledge bases. As human labelling is costly, an important research challenge is how we can use limited human resources to maximize the quality improvement for a knowledge base. To address this problem, we first introduce a concept of semantic constraints that can be used to detect potential errors and do inference among candidate facts. Then, based on semantic constraints, we propose rank-based and graph-based algorithms for crowdsourced knowledge refining, which judiciously select the most beneficial candidate facts to conduct crowdsourcing and prune unnecessary questions. Our experiments show that our method improves the quality of knowledge bases significantly and outperforms state-of-the-art automatic methods under a reasonable crowdsourcing cost.

  18. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    NASA Astrophysics Data System (ADS)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  19. Relation extraction for biological pathway construction using node2vec.

    PubMed

    Kim, Munui; Baek, Seung Han; Song, Min

    2018-06-13

    Systems biology is an important field for understanding whole biological mechanisms composed of interactions between biological components. One approach for understanding complex and diverse mechanisms is to analyze biological pathways. However, because these pathways consist of important interactions and information on these interactions is disseminated in a large number of biomedical reports, text-mining techniques are essential for extracting these relationships automatically. In this study, we applied node2vec, an algorithmic framework for feature learning in networks, for relationship extraction. To this end, we extracted genes from paper abstracts using pkde4j, a text-mining tool for detecting entities and relationships. Using the extracted genes, a co-occurrence network was constructed and node2vec was used with the network to generate a latent representation. To demonstrate the efficacy of node2vec in extracting relationships between genes, performance was evaluated for gene-gene interactions involved in a type 2 diabetes pathway. Moreover, we compared the results of node2vec to those of baseline methods such as co-occurrence and DeepWalk. Node2vec outperformed existing methods in detecting relationships in the type 2 diabetes pathway, demonstrating that this method is appropriate for capturing the relatedness between pairs of biological entities involved in biological pathways. The results demonstrated that node2vec is useful for automatic pathway construction.

  20. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  1. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  2. Gender classification from face images by using local binary pattern and gray-level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Uzbaş, Betül; Arslan, Ahmet

    2018-04-01

    Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.

  3. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  4. Behavioral Feature Extraction to Determine Learning Styles in e-Learning Environments

    ERIC Educational Resources Information Center

    Fatahi, Somayeh; Moradi, Hadi; Farmad, Elaheh

    2015-01-01

    Learning Style (LS) is an important parameter in the learning process. Therefore, learning styles should be considered in the design, development, and implementation of e-learning environments. Consequently, an important capability of an e-learning system could be the automatic determination of a student's learning style. In this paper, a set of…

  5. Developing an Intelligent Automatic Appendix Extraction Method from Ultrasonography Based on Fuzzy ART and Image Processing.

    PubMed

    Kim, Kwang Baek; Park, Hyun Jun; Song, Doo Heon; Han, Sang-suk

    2015-01-01

    Ultrasound examination (US) does a key role in the diagnosis and management of the patients with clinically suspected appendicitis which is the most common abdominal surgical emergency. Among the various sonographic findings of appendicitis, outer diameter of the appendix is most important. Therefore, clear delineation of the appendix on US images is essential. In this paper, we propose a new intelligent method to extract appendix automatically from abdominal sonographic images as a basic building block of developing such an intelligent tool for medical practitioners. Knowing that the appendix is located at the lower organ area below the bottom fascia line, we conduct a series of image processing techniques to find the fascia line correctly. And then we apply fuzzy ART learning algorithm to the organ area in order to extract appendix accurately. The experiment verifies that the proposed method is highly accurate (successful in 38 out of 40 cases) in extracting appendix.

  6. Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area

    NASA Astrophysics Data System (ADS)

    Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.

    2018-04-01

    Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.

  7. LexValueSets: An Approach for Context-Driven Value Sets Extraction

    PubMed Central

    Pathak, Jyotishman; Jiang, Guoqian; Dwarkanath, Sridhar O.; Buntrock, James D.; Chute, Christopher G.

    2008-01-01

    The ability to model, share and re-use value sets across multiple medical information systems is an important requirement. However, generating value sets semi-automatically from a terminology service is still an unresolved issue, in part due to the lack of linkage to clinical context patterns that provide the constraints in defining a concept domain and invocation of value sets extraction. Towards this goal, we develop and evaluate an approach for context-driven automatic value sets extraction based on a formal terminology model. The crux of the technique is to identify and define the context patterns from various domains of discourse and leverage them for value set extraction using two complementary ideas based on (i) local terms provided by the Subject Matter Experts (extensional) and (ii) semantic definition of the concepts in coding schemes (intensional). A prototype was implemented based on SNOMED CT rendered in the LexGrid terminology model and a preliminary evaluation is presented. PMID:18998955

  8. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning.

    PubMed

    Norouzzadeh, Mohammad Sadegh; Nguyen, Anh; Kosmala, Margaret; Swanson, Alexandra; Palmer, Meredith S; Packer, Craig; Clune, Jeff

    2018-06-19

    Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences. Motion-sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild. Copyright © 2018 the Author(s). Published by PNAS.

  9. Study on the extraction method of tidal flat area in northern Jiangsu Province based on remote sensing waterlines

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Gao, Zhiqiang; Liu, Xiangyang; Xu, Ning; Liu, Chaoshun; Gao, Wei

    2016-09-01

    Reclamation caused a significant dynamic change in the coastal zone, the tidal flat zone is an unstable reserve land resource, it has important significance for its research. In order to realize the efficient extraction of the tidal flat area information, this paper takes Rudong County in Jiangsu Province as the research area, using the HJ1A/1B images as the data source, on the basis of previous research experience and literature review, the paper chooses the method of object-oriented classification as a semi-automatic extraction method to generate waterlines. Then waterlines are analyzed by DSAS software to obtain tide points, automatic extraction of outer boundary points are followed under the use of Python to determine the extent of tidal flats in 2014 of Rudong County, the extraction area was 55182hm2, the confusion matrix is used to verify the accuracy and the result shows that the kappa coefficient is 0.945. The method could improve deficiencies of previous studies and its available free nature on the Internet makes a generalization.

  10. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  11. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  12. The Extraction of Terrace in the Loess Plateau Based on radial method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Li, F.

    2016-12-01

    The terrace of Loess Plateau, as a typical kind of artificial landform and an important measure of soil and water conservation, its positioning and automatic extraction will simplify the work of land use investigation. The existing methods of terrace extraction mainly include visual interpretation and automatic extraction. The manual method is used in land use investigation, but it is time-consuming and laborious. Researchers put forward some automatic extraction methods. For example, Fourier transform method can recognize terrace and find accurate position from frequency domain image, but it is more affected by the linear objects in the same direction of terrace; Texture analysis method is simple and have a wide range application of image processing. The disadvantage of texture analysis method is unable to recognize terraces' edge; Object-oriented is a new method of image classification, but when introduce it to terrace extracting, fracture polygons will be the most serious problem and it is difficult to explain its geological meaning. In order to positioning the terraces, we use high- resolution remote sensing image to extract and analyze the gray value of the pixels which the radial went through. During the recognition process, we firstly use the DEM data analysis or by manual selecting, to roughly confirm the position of peak points; secondly, take each of the peak points as the center to make radials in all directions; finally, extracting the gray values of the pixels which the radials went through, and analyzing its changing characteristics to confirm whether the terrace exists. For the purpose of getting accurate position of terrace, terraces' discontinuity, extension direction, ridge width, image processing algorithm, remote sensing image illumination and other influence factors were fully considered when designing the algorithms.

  13. Automatic Keyword Extraction from Individual Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Stuart J.; Engel, David W.; Cramer, Nicholas O.

    2010-05-03

    This paper introduces a novel and domain-independent method for automatically extracting keywords, as sequences of one or more words, from individual documents. We describe the method’s configuration parameters and algorithm, and present an evaluation on a benchmark corpus of technical abstracts. We also present a method for generating lists of stop words for specific corpora and domains, and evaluate its ability to improve keyword extraction on the benchmark corpus. Finally, we apply our method of automatic keyword extraction to a corpus of news articles and define metrics for characterizing the exclusivity, essentiality, and generality of extracted keywords within a corpus.

  14. Automatic Extraction of Urban Built-Up Area Based on Object-Oriented Method and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Wen, Q.; Chen, T.; Guan, F.; Ren, B.; Yu, H.; Wang, Z.

    2018-04-01

    Built-up area marks the use of city construction land in the different periods of the development, the accurate extraction is the key to the studies of the changes of urban expansion. This paper studies the technology of automatic extraction of urban built-up area based on object-oriented method and remote sensing data, and realizes the automatic extraction of the main built-up area of the city, which saves the manpower cost greatly. First, the extraction of construction land based on object-oriented method, the main technical steps include: (1) Multi-resolution segmentation; (2) Feature Construction and Selection; (3) Information Extraction of Construction Land Based on Rule Set, The characteristic parameters used in the rule set mainly include the mean of the red band (Mean R), Normalized Difference Vegetation Index (NDVI), Ratio of residential index (RRI), Blue band mean (Mean B), Through the combination of the above characteristic parameters, the construction site information can be extracted. Based on the degree of adaptability, distance and area of the object domain, the urban built-up area can be quickly and accurately defined from the construction land information without depending on other data and expert knowledge to achieve the automatic extraction of the urban built-up area. In this paper, Beijing city as an experimental area for the technical methods of the experiment, the results show that: the city built-up area to achieve automatic extraction, boundary accuracy of 2359.65 m to meet the requirements. The automatic extraction of urban built-up area has strong practicality and can be applied to the monitoring of the change of the main built-up area of city.

  15. Refining Automatically Extracted Knowledge Bases Using Crowdsourcing

    PubMed Central

    Xian, Xuefeng; Cui, Zhiming

    2017-01-01

    Machine-constructed knowledge bases often contain noisy and inaccurate facts. There exists significant work in developing automated algorithms for knowledge base refinement. Automated approaches improve the quality of knowledge bases but are far from perfect. In this paper, we leverage crowdsourcing to improve the quality of automatically extracted knowledge bases. As human labelling is costly, an important research challenge is how we can use limited human resources to maximize the quality improvement for a knowledge base. To address this problem, we first introduce a concept of semantic constraints that can be used to detect potential errors and do inference among candidate facts. Then, based on semantic constraints, we propose rank-based and graph-based algorithms for crowdsourced knowledge refining, which judiciously select the most beneficial candidate facts to conduct crowdsourcing and prune unnecessary questions. Our experiments show that our method improves the quality of knowledge bases significantly and outperforms state-of-the-art automatic methods under a reasonable crowdsourcing cost. PMID:28588611

  16. Kinase Pathway Database: An Integrated Protein-Kinase and NLP-Based Protein-Interaction Resource

    PubMed Central

    Koike, Asako; Kobayashi, Yoshiyuki; Takagi, Toshihisa

    2003-01-01

    Protein kinases play a crucial role in the regulation of cellular functions. Various kinds of information about these molecules are important for understanding signaling pathways and organism characteristics. We have developed the Kinase Pathway Database, an integrated database involving major completely sequenced eukaryotes. It contains the classification of protein kinases and their functional conservation, ortholog tables among species, protein–protein, protein–gene, and protein–compound interaction data, domain information, and structural information. It also provides an automatic pathway graphic image interface. The protein, gene, and compound interactions are automatically extracted from abstracts for all genes and proteins by natural-language processing (NLP).The method of automatic extraction uses phrase patterns and the GENA protein, gene, and compound name dictionary, which was developed by our group. With this database, pathways are easily compared among species using data with more than 47,000 protein interactions and protein kinase ortholog tables. The database is available for querying and browsing at http://kinasedb.ontology.ims.u-tokyo.ac.jp/. PMID:12799355

  17. Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis

    DTIC Science & Technology

    1989-08-01

    Automatic Line Network Extraction from Aerial Imangery of Urban Areas Sthrough KnowledghBased Image Analysis N 04 Final Technical ReportI December...Automatic Line Network Extraction from Aerial Imagery of Urban Areas through Knowledge Based Image Analysis Accesion For NTIS CRA&I DTIC TAB 0...paittern re’ognlition. blac’kboardl oriented symbollic processing, knowledge based image analysis , image understanding, aer’ial imsagery, urban area, 17

  18. ANNUAL REPORT-AUTOMATIC INDEXING AND ABSTRACTING.

    ERIC Educational Resources Information Center

    Lockheed Missiles and Space Co., Palo Alto, CA. Electronic Sciences Lab.

    THE INVESTIGATION IS CONCERNED WITH THE DEVELOPMENT OF AUTOMATIC INDEXING, ABSTRACTING, AND EXTRACTING SYSTEMS. BASIC INVESTIGATIONS IN ENGLISH MORPHOLOGY, PHONETICS, AND SYNTAX ARE PURSUED AS NECESSARY MEANS TO THIS END. IN THE FIRST SECTION THE THEORY AND DESIGN OF THE "SENTENCE DICTIONARY" EXPERIMENT IN AUTOMATIC EXTRACTION IS OUTLINED. SOME OF…

  19. Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images

    PubMed Central

    Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.

    2010-01-01

    High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043

  20. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    PubMed

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Building Extraction Based on Openstreetmap Tags and Very High Spatial Resolution Image in Urban Area

    NASA Astrophysics Data System (ADS)

    Kang, L.; Wang, Q.; Yan, H. W.

    2018-04-01

    How to derive contour of buildings from VHR images is the essential problem for automatic building extraction in urban area. To solve this problem, OSM data is introduced to offer vector contour information of buildings which is hard to get from VHR images. First, we import OSM data into database. The line string data of OSM with tags of building, amenity, office etc. are selected and combined into completed contours; Second, the accuracy of contours of buildings is confirmed by comparing with the real buildings in Google Earth; Third, maximum likelihood classification is conducted with the confirmed building contours, and the result demonstrates that the proposed approach is effective and accurate. The approach offers a new way for automatic interpretation of VHR images.

  2. Impact of Machine-Translated Text on Entity and Relationship Extraction

    DTIC Science & Technology

    2014-12-01

    20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL

  3. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network

    PubMed Central

    Dietz, Hans Peter; D’hooge, Jan; Barratt, Dean; Deprest, Jan

    2018-01-01

    Abstract. Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams’ index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach. PMID:29340289

  4. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Sindhwani, Nikhil; Dietz, Hans Peter; D'hooge, Jan; Barratt, Dean; Deprest, Jan; Vercauteren, Tom

    2018-04-01

    Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach.

  5. Automatic Extraction of Metadata from Scientific Publications for CRIS Systems

    ERIC Educational Resources Information Center

    Kovacevic, Aleksandar; Ivanovic, Dragan; Milosavljevic, Branko; Konjovic, Zora; Surla, Dusan

    2011-01-01

    Purpose: The aim of this paper is to develop a system for automatic extraction of metadata from scientific papers in PDF format for the information system for monitoring the scientific research activity of the University of Novi Sad (CRIS UNS). Design/methodology/approach: The system is based on machine learning and performs automatic extraction…

  6. Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle

    We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.

  7. System steganalysis with automatic fingerprint extraction

    PubMed Central

    Sloan, Tom; Hernandez-Castro, Julio; Isasi, Pedro

    2018-01-01

    This paper tries to tackle the modern challenge of practical steganalysis over large data by presenting a novel approach whose aim is to perform with perfect accuracy and in a completely automatic manner. The objective is to detect changes introduced by the steganographic process in those data objects, including signatures related to the tools being used. Our approach achieves this by first extracting reliable regularities by analyzing pairs of modified and unmodified data objects; then, combines these findings by creating general patterns present on data used for training. Finally, we construct a Naive Bayes model that is used to perform classification, and operates on attributes extracted using the aforementioned patterns. This technique has been be applied for different steganographic tools that operate in media files of several types. We are able to replicate or improve on a number or previously published results, but more importantly, we in addition present new steganalytic findings over a number of popular tools that had no previous known attacks. PMID:29694366

  8. A method for automatically extracting infectious disease-related primers and probes from the literature

    PubMed Central

    2010-01-01

    Background Primer and probe sequences are the main components of nucleic acid-based detection systems. Biologists use primers and probes for different tasks, some related to the diagnosis and prescription of infectious diseases. The biological literature is the main information source for empirically validated primer and probe sequences. Therefore, it is becoming increasingly important for researchers to navigate this important information. In this paper, we present a four-phase method for extracting and annotating primer/probe sequences from the literature. These phases are: (1) convert each document into a tree of paper sections, (2) detect the candidate sequences using a set of finite state machine-based recognizers, (3) refine problem sequences using a rule-based expert system, and (4) annotate the extracted sequences with their related organism/gene information. Results We tested our approach using a test set composed of 297 manuscripts. The extracted sequences and their organism/gene annotations were manually evaluated by a panel of molecular biologists. The results of the evaluation show that our approach is suitable for automatically extracting DNA sequences, achieving precision/recall rates of 97.98% and 95.77%, respectively. In addition, 76.66% of the detected sequences were correctly annotated with their organism name. The system also provided correct gene-related information for 46.18% of the sequences assigned a correct organism name. Conclusions We believe that the proposed method can facilitate routine tasks for biomedical researchers using molecular methods to diagnose and prescribe different infectious diseases. In addition, the proposed method can be expanded to detect and extract other biological sequences from the literature. The extracted information can also be used to readily update available primer/probe databases or to create new databases from scratch. PMID:20682041

  9. Hybrid Automatic Building Interpretation System

    NASA Astrophysics Data System (ADS)

    Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.

    2011-09-01

    HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.

  10. Espresso coffee foam delays cooling of the liquid phase.

    PubMed

    Arii, Yasuhiro; Nishizawa, Kaho

    2017-04-01

    Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.

  11. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. TableSeer: Automatic Table Extraction, Search, and Understanding

    ERIC Educational Resources Information Center

    Liu, Ying

    2009-01-01

    Tables are ubiquitous with a history that pre-dates that of sentential text. Authors often report a summary of their most important findings using tabular structure in documents. For example, scientists widely use tables to present the latest experimental results or statistical data in a condensed fashion. Along with the explosive development of…

  13. Automatic extraction of relations between medical concepts in clinical texts

    PubMed Central

    Harabagiu, Sanda; Roberts, Kirk

    2011-01-01

    Objective A supervised machine learning approach to discover relations between medical problems, treatments, and tests mentioned in electronic medical records. Materials and methods A single support vector machine classifier was used to identify relations between concepts and to assign their semantic type. Several resources such as Wikipedia, WordNet, General Inquirer, and a relation similarity metric inform the classifier. Results The techniques reported in this paper were evaluated in the 2010 i2b2 Challenge and obtained the highest F1 score for the relation extraction task. When gold standard data for concepts and assertions were available, F1 was 73.7, precision was 72.0, and recall was 75.3. F1 is defined as 2*Precision*Recall/(Precision+Recall). Alternatively, when concepts and assertions were discovered automatically, F1 was 48.4, precision was 57.6, and recall was 41.7. Discussion Although a rich set of features was developed for the classifiers presented in this paper, little knowledge mining was performed from medical ontologies such as those found in UMLS. Future studies should incorporate features extracted from such knowledge sources, which we expect to further improve the results. Moreover, each relation discovery was treated independently. Joint classification of relations may further improve the quality of results. Also, joint learning of the discovery of concepts, assertions, and relations may also improve the results of automatic relation extraction. Conclusion Lexical and contextual features proved to be very important in relation extraction from medical texts. When they are not available to the classifier, the F1 score decreases by 3.7%. In addition, features based on similarity contribute to a decrease of 1.1% when they are not available. PMID:21846787

  14. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  15. Automatic 3D Extraction of Buildings, Vegetation and Roads from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Bellakaout, A.; Cherkaoui, M.; Ettarid, M.; Touzani, A.

    2016-06-01

    Aerial topographic surveys using Light Detection and Ranging (LiDAR) technology collect dense and accurate information from the surface or terrain; it is becoming one of the important tools in the geosciences for studying objects and earth surface. Classification of Lidar data for extracting ground, vegetation, and buildings is a very important step needed in numerous applications such as 3D city modelling, extraction of different derived data for geographical information systems (GIS), mapping, navigation, etc... Regardless of what the scan data will be used for, an automatic process is greatly required to handle the large amount of data collected because the manual process is time consuming and very expensive. This paper is presenting an approach for automatic classification of aerial Lidar data into five groups of items: buildings, trees, roads, linear object and soil using single return Lidar and processing the point cloud without generating DEM. Topological relationship and height variation analysis is adopted to segment, preliminary, the entire point cloud preliminarily into upper and lower contours, uniform and non-uniform surface, non-uniform surfaces, linear objects, and others. This primary classification is used on the one hand to know the upper and lower part of each building in an urban scene, needed to model buildings façades; and on the other hand to extract point cloud of uniform surfaces which contain roofs, roads and ground used in the second phase of classification. A second algorithm is developed to segment the uniform surface into buildings roofs, roads and ground, the second phase of classification based on the topological relationship and height variation analysis, The proposed approach has been tested using two areas : the first is a housing complex and the second is a primary school. The proposed approach led to successful classification results of buildings, vegetation and road classes.

  16. Automatic Extraction of Drug Adverse Effects from Product Characteristics (SPCs): A Text Versus Table Comparison.

    PubMed

    Lamy, Jean-Baptiste; Ugon, Adrien; Berthelot, Hélène

    2016-01-01

    Potential adverse effects (AEs) of drugs are described in their summary of product characteristics (SPCs), a textual document. Automatic extraction of AEs from SPCs is useful for detecting AEs and for building drug databases. However, this task is difficult because each AE is associated with a frequency that must be extracted and the presentation of AEs in SPCs is heterogeneous, consisting of plain text and tables in many different formats. We propose a taxonomy for the presentation of AEs in SPCs. We set up natural language processing (NLP) and table parsing methods for extracting AEs from texts and tables of any format, and evaluate them on 10 SPCs. Automatic extraction performed better on tables than on texts. Tables should be recommended for the presentation of the AEs section of the SPCs.

  17. Automatic Molar Extraction from Dental Panoramic Radiographs for Forensic Personal Identification

    NASA Astrophysics Data System (ADS)

    Samopa, Febriliyan; Asano, Akira; Taguchi, Akira

    Measurement of an individual molar provides rich information for forensic personal identification. We propose a computer-based system for extracting an individual molar from dental panoramic radiographs. A molar is obtained by extracting the region-of-interest, separating the maxilla and mandible, and extracting the boundaries between teeth. The proposed system is almost fully automatic; all that the user has to do is clicking three points on the boundary between the maxilla and the mandible.

  18. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Luo, Shuqian

    2010-11-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  19. Optimal algorithm for automatic detection of microaneurysms based on receiver operating characteristic curve.

    PubMed

    Xu, Lili; Luo, Shuqian

    2010-01-01

    Microaneurysms (MAs) are the first manifestations of the diabetic retinopathy (DR) as well as an indicator for its progression. Their automatic detection plays a key role for both mass screening and monitoring and is therefore in the core of any system for computer-assisted diagnosis of DR. The algorithm basically comprises the following stages: candidate detection aiming at extracting the patterns possibly corresponding to MAs based on mathematical morphological black top hat, feature extraction to characterize these candidates, and classification based on support vector machine (SVM), to validate MAs. Feature vector and kernel function of SVM selection is very important to the algorithm. We use the receiver operating characteristic (ROC) curve to evaluate the distinguishing performance of different feature vectors and different kernel functions of SVM. The ROC analysis indicates the quadratic polynomial SVM with a combination of features as the input shows the best discriminating performance.

  20. Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text

    NASA Astrophysics Data System (ADS)

    Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.

    2015-12-01

    We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction process. We will describe our experience and implementation of our system and share lessons learned from our development. We will also discuss ways in which this could be adapted to other science fields. [1] Funk et al., 2014. [2] Kang et al., 2014. [3] Utopia Documents, http://utopiadocs.com [4] Apache cTAKES, http://ctakes.apache.org

  1. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  2. A Risk Assessment System with Automatic Extraction of Event Types

    NASA Astrophysics Data System (ADS)

    Capet, Philippe; Delavallade, Thomas; Nakamura, Takuya; Sandor, Agnes; Tarsitano, Cedric; Voyatzi, Stavroula

    In this article we describe the joint effort of experts in linguistics, information extraction and risk assessment to integrate EventSpotter, an automatic event extraction engine, into ADAC, an automated early warning system. By detecting as early as possible weak signals of emerging risks ADAC provides a dynamic synthetic picture of situations involving risk. The ADAC system calculates risk on the basis of fuzzy logic rules operated on a template graph whose leaves are event types. EventSpotter is based on a general purpose natural language dependency parser, XIP, enhanced with domain-specific lexical resources (Lexicon-Grammar). Its role is to automatically feed the leaves with input data.

  3. 2D Automatic body-fitted structured mesh generation using advancing extraction method

    USDA-ARS?s Scientific Manuscript database

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...

  4. 2D automatic body-fitted structured mesh generation using advancing extraction method

    USDA-ARS?s Scientific Manuscript database

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...

  5. Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.

    PubMed

    Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana

    2017-07-01

    Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.

  6. Automatic lip reading by using multimodal visual features

    NASA Astrophysics Data System (ADS)

    Takahashi, Shohei; Ohya, Jun

    2013-12-01

    Since long time ago, speech recognition has been researched, though it does not work well in noisy places such as in the car or in the train. In addition, people with hearing-impaired or difficulties in hearing cannot receive benefits from speech recognition. To recognize the speech automatically, visual information is also important. People understand speeches from not only audio information, but also visual information such as temporal changes in the lip shape. A vision based speech recognition method could work well in noisy places, and could be useful also for people with hearing disabilities. In this paper, we propose an automatic lip-reading method for recognizing the speech by using multimodal visual information without using any audio information such as speech recognition. First, the ASM (Active Shape Model) is used to track and detect the face and lip in a video sequence. Second, the shape, optical flow and spatial frequencies of the lip features are extracted from the lip detected by ASM. Next, the extracted multimodal features are ordered chronologically so that Support Vector Machine is performed in order to learn and classify the spoken words. Experiments for classifying several words show promising results of this proposed method.

  7. Automatic sentence extraction for the detection of scientific paper relations

    NASA Astrophysics Data System (ADS)

    Sibaroni, Y.; Prasetiyowati, S. S.; Miftachudin, M.

    2018-03-01

    The relations between scientific papers are very useful for researchers to see the interconnection between scientific papers quickly. By observing the inter-article relationships, researchers can identify, among others, the weaknesses of existing research, performance improvements achieved to date, and tools or data typically used in research in specific fields. So far, methods that have been developed to detect paper relations include machine learning and rule-based methods. However, a problem still arises in the process of sentence extraction from scientific paper documents, which is still done manually. This manual process causes the detection of scientific paper relations longer and inefficient. To overcome this problem, this study performs an automatic sentences extraction while the paper relations are identified based on the citation sentence. The performance of the built system is then compared with that of the manual extraction system. The analysis results suggested that the automatic sentence extraction indicates a very high level of performance in the detection of paper relations, which is close to that of manual sentence extraction.

  8. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    NASA Astrophysics Data System (ADS)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  9. Collaborative human-machine analysis to disambiguate entities in unstructured text and structured datasets

    NASA Astrophysics Data System (ADS)

    Davenport, Jack H.

    2016-05-01

    Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.

  10. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis.

    PubMed

    Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra

    2014-01-01

    Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. The aims were to describe how to:(i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and(ii) automatically identify the features that best distinguish the groups. The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described - simple or complex; presentation order - which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo 18 were used,which included 200 healthy Brazilians of both genders. A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods.

  11. Terminology extraction from medical texts in Polish

    PubMed Central

    2014-01-01

    Background Hospital documents contain free text describing the most important facts relating to patients and their illnesses. These documents are written in specific language containing medical terminology related to hospital treatment. Their automatic processing can help in verifying the consistency of hospital documentation and obtaining statistical data. To perform this task we need information on the phrases we are looking for. At the moment, clinical Polish resources are sparse. The existing terminologies, such as Polish Medical Subject Headings (MeSH), do not provide sufficient coverage for clinical tasks. It would be helpful therefore if it were possible to automatically prepare, on the basis of a data sample, an initial set of terms which, after manual verification, could be used for the purpose of information extraction. Results Using a combination of linguistic and statistical methods for processing over 1200 children hospital discharge records, we obtained a list of single and multiword terms used in hospital discharge documents written in Polish. The phrases are ordered according to their presumed importance in domain texts measured by the frequency of use of a phrase and the variety of its contexts. The evaluation showed that the automatically identified phrases cover about 84% of terms in domain texts. At the top of the ranked list, only 4% out of 400 terms were incorrect while out of the final 200, 20% of expressions were either not domain related or syntactically incorrect. We also observed that 70% of the obtained terms are not included in the Polish MeSH. Conclusions Automatic terminology extraction can give results which are of a quality high enough to be taken as a starting point for building domain related terminological dictionaries or ontologies. This approach can be useful for preparing terminological resources for very specific subdomains for which no relevant terminologies already exist. The evaluation performed showed that none of the tested ranking procedures were able to filter out all improperly constructed noun phrases from the top of the list. Careful choice of noun phrases is crucial to the usefulness of the created terminological resource in applications such as lexicon construction or acquisition of semantic relations from texts. PMID:24976943

  12. Terminology extraction from medical texts in Polish.

    PubMed

    Marciniak, Małgorzata; Mykowiecka, Agnieszka

    2014-01-01

    Hospital documents contain free text describing the most important facts relating to patients and their illnesses. These documents are written in specific language containing medical terminology related to hospital treatment. Their automatic processing can help in verifying the consistency of hospital documentation and obtaining statistical data. To perform this task we need information on the phrases we are looking for. At the moment, clinical Polish resources are sparse. The existing terminologies, such as Polish Medical Subject Headings (MeSH), do not provide sufficient coverage for clinical tasks. It would be helpful therefore if it were possible to automatically prepare, on the basis of a data sample, an initial set of terms which, after manual verification, could be used for the purpose of information extraction. Using a combination of linguistic and statistical methods for processing over 1200 children hospital discharge records, we obtained a list of single and multiword terms used in hospital discharge documents written in Polish. The phrases are ordered according to their presumed importance in domain texts measured by the frequency of use of a phrase and the variety of its contexts. The evaluation showed that the automatically identified phrases cover about 84% of terms in domain texts. At the top of the ranked list, only 4% out of 400 terms were incorrect while out of the final 200, 20% of expressions were either not domain related or syntactically incorrect. We also observed that 70% of the obtained terms are not included in the Polish MeSH. Automatic terminology extraction can give results which are of a quality high enough to be taken as a starting point for building domain related terminological dictionaries or ontologies. This approach can be useful for preparing terminological resources for very specific subdomains for which no relevant terminologies already exist. The evaluation performed showed that none of the tested ranking procedures were able to filter out all improperly constructed noun phrases from the top of the list. Careful choice of noun phrases is crucial to the usefulness of the created terminological resource in applications such as lexicon construction or acquisition of semantic relations from texts.

  13. A prototype system to support evidence-based practice.

    PubMed

    Demner-Fushman, Dina; Seckman, Charlotte; Fisher, Cheryl; Hauser, Susan E; Clayton, Jennifer; Thoma, George R

    2008-11-06

    Translating evidence into clinical practice is a complex process that depends on the availability of evidence, the environment into which the research evidence is translated, and the system that facilitates the translation. This paper presents InfoBot, a system designed for automatic delivery of patient-specific information from evidence-based resources. A prototype system has been implemented to support development of individualized patient care plans. The prototype explores possibilities to automatically extract patients problems from the interdisciplinary team notes and query evidence-based resources using the extracted terms. Using 4,335 de-identified interdisciplinary team notes for 525 patients, the system automatically extracted biomedical terminology from 4,219 notes and linked resources to 260 patient records. Sixty of those records (15 each for Pediatrics, Oncology & Hematology, Medical & Surgical, and Behavioral Health units) have been selected for an ongoing evaluation of the quality of automatically proactively delivered evidence and its usefulness in development of care plans.

  14. A Prototype System to Support Evidence-based Practice

    PubMed Central

    Demner-Fushman, Dina; Seckman, Charlotte; Fisher, Cheryl; Hauser, Susan E.; Clayton, Jennifer; Thoma, George R.

    2008-01-01

    Translating evidence into clinical practice is a complex process that depends on the availability of evidence, the environment into which the research evidence is translated, and the system that facilitates the translation. This paper presents InfoBot, a system designed for automatic delivery of patient-specific information from evidence-based resources. A prototype system has been implemented to support development of individualized patient care plans. The prototype explores possibilities to automatically extract patients’ problems from the interdisciplinary team notes and query evidence-based resources using the extracted terms. Using 4,335 de-identified interdisciplinary team notes for 525 patients, the system automatically extracted biomedical terminology from 4,219 notes and linked resources to 260 patient records. Sixty of those records (15 each for Pediatrics, Oncology & Hematology, Medical & Surgical, and Behavioral Health units) have been selected for an ongoing evaluation of the quality of automatically proactively delivered evidence and its usefulness in development of care plans. PMID:18998835

  15. Application of Magnetic Nanoparticles in Pretreatment Device for POPs Analysis in Water

    NASA Astrophysics Data System (ADS)

    Chu, Dongzhi; Kong, Xiangfeng; Wu, Bingwei; Fan, Pingping; Cao, Xuan; Zhang, Ting

    2018-01-01

    In order to reduce process time and labour force of POPs pretreatment, and solve the problem that extraction column was easily clogged, the paper proposed a new technology of extraction and enrichment which used magnetic nanoparticles. Automatic pretreatment system had automatic sampling unit, extraction enrichment unit and elution enrichment unit. The paper briefly introduced the preparation technology of magnetic nanoparticles, and detailly introduced the structure and control system of automatic pretreatment system. The result of magnetic nanoparticles mass recovery experiments showed that the system had POPs analysis preprocessing capability, and the recovery rate of magnetic nanoparticles were over 70%. In conclusion, the author proposed three points optimization recommendation.

  16. Impact of translation on named-entity recognition in radiology texts

    PubMed Central

    Pedro, Vasco

    2017-01-01

    Abstract Radiology reports describe the results of radiography procedures and have the potential of being a useful source of information which can bring benefits to health care systems around the world. One way to automatically extract information from the reports is by using Text Mining tools. The problem is that these tools are mostly developed for English and reports are usually written in the native language of the radiologist, which is not necessarily English. This creates an obstacle to the sharing of Radiology information between different communities. This work explores the solution of translating the reports to English before applying the Text Mining tools, probing the question of what translation approach should be used. We created MRRAD (Multilingual Radiology Research Articles Dataset), a parallel corpus of Portuguese research articles related to Radiology and a number of alternative translations (human, automatic and semi-automatic) to English. This is a novel corpus which can be used to move forward the research on this topic. Using MRRAD we studied which kind of automatic or semi-automatic translation approach is more effective on the Named-entity recognition task of finding RadLex terms in the English version of the articles. Considering the terms extracted from human translations as our gold standard, we calculated how similar to this standard were the terms extracted using other translations. We found that a completely automatic translation approach using Google leads to F-scores (between 0.861 and 0.868, depending on the extraction approach) similar to the ones obtained through a more expensive semi-automatic translation approach using Unbabel (between 0.862 and 0.870). To better understand the results we also performed a qualitative analysis of the type of errors found in the automatic and semi-automatic translations. Database URL: https://github.com/lasigeBioTM/MRRAD PMID:29220455

  17. Research on Automatic Classification, Indexing and Extracting. Annual Progress Report.

    ERIC Educational Resources Information Center

    Baker, F.T.; And Others

    In order to contribute to the success of several studies for automatic classification, indexing and extracting currently in progress, as well as to further the theoretical and practical understanding of textual item distributions, the development of a frequency program capable of supplying these types of information was undertaken. The program…

  18. Intelligence Surveillance And Reconnaissance Full Motion Video Automatic Anomaly Detection Of Crowd Movements: System Requirements For Airborne Application

    DTIC Science & Technology

    The collection of Intelligence , Surveillance, and Reconnaissance (ISR) Full Motion Video (FMV) is growing at an exponential rate, and the manual... intelligence for the warfighter. This paper will address the question of how can automatic pattern extraction, based on computer vision, extract anomalies in

  19. A dual growing method for the automatic extraction of individual trees from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Li, Lin; Li, Dalin; Zhu, Haihong; Li, You

    2016-10-01

    Street trees interlaced with other objects in cluttered point clouds of urban scenes inhibit the automatic extraction of individual trees. This paper proposes a method for the automatic extraction of individual trees from mobile laser scanning data, according to the general constitution of trees. Two components of each individual tree - a trunk and a crown can be extracted by the dual growing method. This method consists of coarse classification, through which most of artifacts are removed; the automatic selection of appropriate seeds for individual trees, by which the common manual initial setting is avoided; a dual growing process that separates one tree from others by circumscribing a trunk in an adaptive growing radius and segmenting a crown in constrained growing regions; and a refining process that draws a singular trunk from the interlaced other objects. The method is verified by two datasets with over 98% completeness and over 96% correctness. The low mean absolute percentage errors in capturing the morphological parameters of individual trees indicate that this method can output individual trees with high precision.

  20. Automatic Online Educational Game Content Creation by Identifying Similar Chinese Characters with Radical Extraction and Graph Matching Algorithms

    ERIC Educational Resources Information Center

    Lai, Jason Kwong-Hung; Leung, Howard; Hu, Zhi-Hui; Tang, Jeff K. T.; Xu, Yun

    2010-01-01

    One of the difficulties in learning Chinese characters is distinguishing similar characters. This can cause misunderstanding and miscommunication in daily life. Thus, it is important for students learning the Chinese language to be able to distinguish similar characters and understand their proper usage. In this paper, the authors propose a game…

  1. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America

  2. Methods for automatically analyzing humpback song units.

    PubMed

    Rickwood, Peter; Taylor, Andrew

    2008-03-01

    This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.

  3. Object extraction method for image synthesis

    NASA Astrophysics Data System (ADS)

    Inoue, Seiki

    1991-11-01

    The extraction of component objects from images is fundamentally important for image synthesis. In TV program production, one useful method is the Video-Matte technique for specifying the necessary boundary of an object. This, however, involves some manually intricate and tedious processes. A new method proposed in this paper can reduce the needed level of operator skill and simplify object extraction. The object is automatically extracted by just a simple drawing of a thick boundary line. The basic principle involves a thinning of the thick boundary line binary image using the edge intensity of the original image. This method has many practical advantages, including the simplicity of specifying an object, the high accuracy of thinned-out boundary line, its ease of application to moving images, and the lack of any need for adjustment.

  4. An algorithm for automatic parameter adjustment for brain extraction in BrainSuite

    NASA Astrophysics Data System (ADS)

    Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.

    2017-02-01

    Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.

  5. THE APPLICATION OF ENGLISH-WORD MORPHOLOGY TO AUTOMATIC INDEXING AND EXTRACTING. ANNUAL SUMMARY REPORT.

    ERIC Educational Resources Information Center

    DOLBY, J.L.; AND OTHERS

    THE STUDY IS CONCERNED WITH THE LINGUISTIC PROBLEM INVOLVED IN TEXT COMPRESSION--EXTRACTING, INDEXING, AND THE AUTOMATIC CREATION OF SPECIAL-PURPOSE CITATION DICTIONARIES. IN SPITE OF EARLY SUCCESS IN USING LARGE-SCALE COMPUTERS TO AUTOMATE CERTAIN HUMAN TASKS, THESE PROBLEMS REMAIN AMONG THE MOST DIFFICULT TO SOLVE. ESSENTIALLY, THE PROBLEM IS TO…

  6. A new artefacts resistant method for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering (MHHC)

    NASA Astrophysics Data System (ADS)

    Šilhavý, Jakub; Minár, Jozef; Mentlík, Pavel; Sládek, Ján

    2016-07-01

    This paper presents a new method of automatic lineament extraction which includes the removal of the 'artefacts effect' which is associated with the process of raster based analysis. The core of the proposed Multi-Hillshade Hierarchic Clustering (MHHC) method incorporates a set of variously illuminated and rotated hillshades in combination with hierarchic clustering of derived 'protolineaments'. The algorithm also includes classification into positive and negative lineaments. MHHC was tested in two different territories in Bohemian Forest and Central Western Carpathians. The original vector-based algorithm was developed for comparison of the individual lineaments proximity. Its use confirms the compatibility of manual and automatic extraction and their similar relationships to structural data in the study areas.

  7. Automatic extraction of road features in urban environments using dense ALS data

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra

    2018-02-01

    This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.

  8. 2D automatic body-fitted structured mesh generation using advancing extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoxin; Jia, Yafei

    2018-01-01

    This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.

  9. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  10. Feasibility of Extracting Key Elements from ClinicalTrials.gov to Support Clinicians' Patient Care Decisions.

    PubMed

    Kim, Heejun; Bian, Jiantao; Mostafa, Javed; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2016-01-01

    Motivation: Clinicians need up-to-date evidence from high quality clinical trials to support clinical decisions. However, applying evidence from the primary literature requires significant effort. Objective: To examine the feasibility of automatically extracting key clinical trial information from ClinicalTrials.gov. Methods: We assessed the coverage of ClinicalTrials.gov for high quality clinical studies that are indexed in PubMed. Using 140 random ClinicalTrials.gov records, we developed and tested rules for the automatic extraction of key information. Results: The rate of high quality clinical trial registration in ClinicalTrials.gov increased from 0.2% in 2005 to 17% in 2015. Trials reporting results increased from 3% in 2005 to 19% in 2015. The accuracy of the automatic extraction algorithm for 10 trial attributes was 90% on average. Future research is needed to improve the algorithm accuracy and to design information displays to optimally present trial information to clinicians.

  11. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  12. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    PubMed

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  13. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  14. An effective self-assessment based on concept map extraction from test-sheet for personalized learning

    NASA Astrophysics Data System (ADS)

    Liew, Keng-Hou; Lin, Yu-Shih; Chang, Yi-Chun; Chu, Chih-Ping

    2013-12-01

    Examination is a traditional way to assess learners' learning status, progress and performance after a learning activity. Except the test grade, a test sheet hides some implicit information such as test concepts, their relationships, importance, and prerequisite. The implicit information can be extracted and constructed a concept map for considering (1) the test concepts covered in the same question means these test concepts have strong relationships, and (2) questions in the same test sheet means the test concepts are relative. Concept map has been successfully employed in many researches to help instructors and learners organize relationships among concepts. However, concept map construction depends on experts who need to take effort and time for the organization of the domain knowledge. In addition, the previous researches regarding to automatic concept map construction are limited to consider all learners of a class, which have not considered personalized learning. To cope with this problem, this paper proposes a new approach to automatically extract and construct concept map based on implicit information in a test sheet. Furthermore, the proposed approach also can help learner for self-assessment and self-diagnosis. Finally, an example is given to depict the effectiveness of proposed approach.

  15. Semi-Automatic Terminology Generation for Information Extraction from German Chest X-Ray Reports.

    PubMed

    Krebs, Jonathan; Corovic, Hamo; Dietrich, Georg; Ertl, Max; Fette, Georg; Kaspar, Mathias; Krug, Markus; Stoerk, Stefan; Puppe, Frank

    2017-01-01

    Extraction of structured data from textual reports is an important subtask for building medical data warehouses for research and care. Many medical and most radiology reports are written in a telegraphic style with a concatenation of noun phrases describing the presence or absence of findings. Therefore a lexico-syntactical approach is promising, where key terms and their relations are recognized and mapped on a predefined standard terminology (ontology). We propose a two-phase algorithm for terminology matching: In the first pass, a local terminology for recognition is derived as close as possible to the terms used in the radiology reports. In the second pass, the local terminology is mapped to a standard terminology. In this paper, we report on an algorithm for the first step of semi-automatic generation of the local terminology and evaluate the algorithm with radiology reports of chest X-ray examinations from Würzburg university hospital. With an effort of about 20 hours work of a radiologist as domain expert and 10 hours for meetings, a local terminology with about 250 attributes and various value patterns was built. In an evaluation with 100 randomly chosen reports it achieved an F1-Score of about 95% for information extraction.

  16. Recent progress in automatically extracting information from the pharmacogenomic literature

    PubMed Central

    Garten, Yael; Coulet, Adrien; Altman, Russ B

    2011-01-01

    The biomedical literature holds our understanding of pharmacogenomics, but it is dispersed across many journals. In order to integrate our knowledge, connect important facts across publications and generate new hypotheses we must organize and encode the contents of the literature. By creating databases of structured pharmocogenomic knowledge, we can make the value of the literature much greater than the sum of the individual reports. We can, for example, generate candidate gene lists or interpret surprising hits in genome-wide association studies. Text mining automatically adds structure to the unstructured knowledge embedded in millions of publications, and recent years have seen a surge in work on biomedical text mining, some specific to pharmacogenomics literature. These methods enable extraction of specific types of information and can also provide answers to general, systemic queries. In this article, we describe the main tasks of text mining in the context of pharmacogenomics, summarize recent applications and anticipate the next phase of text mining applications. PMID:21047206

  17. Feasibility of Automatic Extraction of Electronic Health Data to Evaluate a Status Epilepticus Clinical Protocol.

    PubMed

    Hafeez, Baria; Paolicchi, Juliann; Pon, Steven; Howell, Joy D; Grinspan, Zachary M

    2016-05-01

    Status epilepticus is a common neurologic emergency in children. Pediatric medical centers often develop protocols to standardize care. Widespread adoption of electronic health records by hospitals affords the opportunity for clinicians to rapidly, and electronically evaluate protocol adherence. We reviewed the clinical data of a small sample of 7 children with status epilepticus, in order to (1) qualitatively determine the feasibility of automated data extraction and (2) demonstrate a timeline-style visualization of each patient's first 24 hours of care. Qualitatively, our observations indicate that most clinical data are well labeled in structured fields within the electronic health record, though some important information, particularly electroencephalography (EEG) data, may require manual abstraction. We conclude that a visualization that clarifies a patient's clinical course can be automatically created using the patient's electronic clinical data, supplemented with some manually abstracted data. Future work could use this timeline to evaluate adherence to status epilepticus clinical protocols. © The Author(s) 2015.

  18. Human image tracking technique applied to remote collaborative environments

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Suzuki, Gen

    1993-10-01

    To support various kinds of collaborations over long distances by using visual telecommunication, it is necessary to transmit visual information related to the participants and topical materials. When people collaborate in the same workspace, they use visual cues such as facial expressions and eye movement. The realization of coexistence in a collaborative workspace requires the support of these visual cues. Therefore, it is important that the facial images be large enough to be useful. During collaborations, especially dynamic collaborative activities such as equipment operation or lectures, the participants often move within the workspace. When the people move frequently or over a wide area, the necessity for automatic human tracking increases. Using the movement area of the human being or the resolution of the extracted area, we have developed a memory tracking method and a camera tracking method for automatic human tracking. Experimental results using a real-time tracking system show that the extracted area fairly moves according to the movement of the human head.

  19. Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports

    PubMed Central

    Yim, Wen-wai; Kwan, Sharon W; Johnson, Guy; Yetisgen, Meliha

    2017-01-01

    Cancer stage information is important for clinical research. However, they are not always explicitly noted in electronic medical records. In this paper, we present our work on automatic classification of hepatocellular carcinoma (HCC) stages from free-text clinical and radiology notes. To accomplish this, we defined 11 stage parameters used in the three HCC staging systems, American Joint Committee on Cancer (AJCC), Barcelona Clinic Liver Cancer (BCLC), and Cancer of the Liver Italian Program (CLIP). After aggregating stage parameters to the patient-level, the final stage classifications were achieved using an expert-created decision logic. Each stage parameter relevant for staging was extracted using several classification methods, e.g. sentence classification and automatic information structuring, to identify and normalize text as cancer stage parameter values. Stage parameter extraction for the test set performed at 0.81 F1. Cancer stage prediction for AJCC, BCLC, and CLIP stage classifications were 0.55, 0.50, and 0.43 F1.

  20. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  1. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    PubMed

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.

  2. An automatic and accurate method of full heart segmentation from CT image based on linear gradient model

    NASA Astrophysics Data System (ADS)

    Yang, Zili

    2017-07-01

    Heart segmentation is an important auxiliary method in the diagnosis of many heart diseases, such as coronary heart disease and atrial fibrillation, and in the planning of tumor radiotherapy. Most of the existing methods for full heart segmentation treat the heart as a whole part and cannot accurately extract the bottom of the heart. In this paper, we propose a new method based on linear gradient model to segment the whole heart from the CT images automatically and accurately. Twelve cases were tested in order to test this method and accurate segmentation results were achieved and identified by clinical experts. The results can provide reliable clinical support.

  3. Parsing Citations in Biomedical Articles Using Conditional Random Fields

    PubMed Central

    Zhang, Qing; Cao, Yong-Gang; Yu, Hong

    2011-01-01

    Citations are used ubiquitously in biomedical full-text articles and play an important role for representing both the rhetorical structure and the semantic content of the articles. As a result, text mining systems will significantly benefit from a tool that automatically extracts the content of a citation. In this study, we applied the supervised machine-learning algorithms Conditional Random Fields (CRFs) to automatically parse a citation into its fields (e.g., Author, Title, Journal, and Year). With a subset of html format open-access PubMed Central articles, we report an overall 97.95% F1-score. The citation parser can be accessed at: http://www.cs.uwm.edu/~qing/projects/cithit/index.html. PMID:21419403

  4. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.

    PubMed

    Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki

    2013-11-01

    The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Literature mining of protein-residue associations with graph rules learned through distant supervision.

    PubMed

    Ravikumar, Ke; Liu, Haibin; Cohn, Judith D; Wall, Michael E; Verspoor, Karin

    2012-10-05

    We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. The primary contributions of this work are to (1) demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2) show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  6. Feature Extraction and Selection Strategies for Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  7. Feature extraction and selection strategies for automated target recognition

    NASA Astrophysics Data System (ADS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-04-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  8. Knowledge-Driven Event Extraction in Russian: Corpus-Based Linguistic Resources

    PubMed Central

    Solovyev, Valery; Ivanov, Vladimir

    2016-01-01

    Automatic event extraction form text is an important step in knowledge acquisition and knowledge base population. Manual work in development of extraction system is indispensable either in corpus annotation or in vocabularies and pattern creation for a knowledge-based system. Recent works have been focused on adaptation of existing system (for extraction from English texts) to new domains. Event extraction in other languages was not studied due to the lack of resources and algorithms necessary for natural language processing. In this paper we define a set of linguistic resources that are necessary in development of a knowledge-based event extraction system in Russian: a vocabulary of subordination models, a vocabulary of event triggers, and a vocabulary of Frame Elements that are basic building blocks for semantic patterns. We propose a set of methods for creation of such vocabularies in Russian and other languages using Google Books NGram Corpus. The methods are evaluated in development of event extraction system for Russian. PMID:26955386

  9. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis

    PubMed Central

    Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra

    2014-01-01

    Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. Objective The aims were to describe how to: (i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and (ii) automatically identify the features that best distinguish the groups. Methods The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described – simple or complex; presentation order – which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo18 were used,which included 200 healthy Brazilians of both genders. Results and Conclusion A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods. PMID:29213908

  10. Three-dimensional tracking for efficient fire fighting in complex situations

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay; Rossi, Lucile

    2009-05-01

    Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.

  11. Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment.

    PubMed

    Sirgo, Gonzalo; Esteban, Federico; Gómez, Josep; Moreno, Gerard; Rodríguez, Alejandro; Blanch, Lluis; Guardiola, Juan José; Gracia, Rafael; De Haro, Lluis; Bodí, María

    2018-04-01

    Big data analytics promise insights into healthcare processes and management, improving outcomes while reducing costs. However, data quality is a major challenge for reliable results. Business process discovery techniques and an associated data model were used to develop data management tool, ICU-DaMa, for extracting variables essential for overseeing the quality of care in the intensive care unit (ICU). To determine the feasibility of using ICU-DaMa to automatically extract variables for the minimum dataset and ICU quality indicators from the clinical information system (CIS). The Wilcoxon signed-rank test and Fisher's exact test were used to compare the values extracted from the CIS with ICU-DaMa for 25 variables from all patients attended in a polyvalent ICU during a two-month period against the gold standard of values manually extracted by two trained physicians. Discrepancies with the gold standard were classified into plausibility, conformance, and completeness errors. Data from 149 patients were included. Although there were no significant differences between the automatic method and the manual method, we detected differences in values for five variables, including one plausibility error and two conformance and completeness errors. Plausibility: 1) Sex, ICU-DaMa incorrectly classified one male patient as female (error generated by the Hospital's Admissions Department). Conformance: 2) Reason for isolation, ICU-DaMa failed to detect a human error in which a professional misclassified a patient's isolation. 3) Brain death, ICU-DaMa failed to detect another human error in which a professional likely entered two mutually exclusive values related to the death of the patient (brain death and controlled donation after circulatory death). Completeness: 4) Destination at ICU discharge, ICU-DaMa incorrectly classified two patients due to a professional failing to fill out the patient discharge form when thepatients died. 5) Length of continuous renal replacement therapy, data were missing for one patient because the CRRT device was not connected to the CIS. Automatic generation of minimum dataset and ICU quality indicators using ICU-DaMa is feasible. The discrepancies were identified and can be corrected by improving CIS ergonomics, training healthcare professionals in the culture of the quality of information, and using tools for detecting and correcting data errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications

    PubMed Central

    Cameron, Delroy; Bodenreider, Olivier; Yalamanchili, Hima; Danh, Tu; Vallabhaneni, Sreeram; Thirunarayan, Krishnaprasad; Sheth, Amit P.; Rindflesch, Thomas C.

    2014-01-01

    Objectives This paper presents a methodology for recovering and decomposing Swanson’s Raynaud Syndrome–Fish Oil Hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson’s manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. Methods Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson has been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson has been developed. Results Our methodology not only recovered the 3 associations commonly recognized as Swanson’s Hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson’s Hypothesis has never been attempted. Conclusion In this work therefore, we presented a methodology for semi- automatically recovering and decomposing Swanson’s RS-DFO Hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD). These suggest that three critical aspects of LBD include: 1) the need for more expressive representations beyond Swanson’s ABC model; 2) an ability to accurately extract semantic information from text; and 3) the semantic integration of scientific literature with structured background knowledge. PMID:23026233

  13. Computer-aided diagnostic detection system of venous beading in retinal images

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.

    2000-05-01

    The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.

  14. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin

    2017-08-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.

  15. 46 CFR 161.002-2 - Types of fire-protective systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...

  16. 46 CFR 161.002-2 - Types of fire-protective systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...

  17. A Bayesian framework for extracting human gait using strong prior knowledge.

    PubMed

    Zhou, Ziheng; Prügel-Bennett, Adam; Damper, Robert I

    2006-11-01

    Extracting full-body motion of walking people from monocular video sequences in complex, real-world environments is an important and difficult problem, going beyond simple tracking, whose satisfactory solution demands an appropriate balance between use of prior knowledge and learning from data. We propose a consistent Bayesian framework for introducing strong prior knowledge into a system for extracting human gait. In this work, the strong prior is built from a simple articulated model having both time-invariant (static) and time-variant (dynamic) parameters. The model is easily modified to cater to situations such as walkers wearing clothing that obscures the limbs. The statistics of the parameters are learned from high-quality (indoor laboratory) data and the Bayesian framework then allows us to "bootstrap" to accurate gait extraction on the noisy images typical of cluttered, outdoor scenes. To achieve automatic fitting, we use a hidden Markov model to detect the phases of images in a walking cycle. We demonstrate our approach on silhouettes extracted from fronto-parallel ("sideways on") sequences of walkers under both high-quality indoor and noisy outdoor conditions. As well as high-quality data with synthetic noise and occlusions added, we also test walkers with rucksacks, skirts, and trench coats. Results are quantified in terms of chamfer distance and average pixel error between automatically extracted body points and corresponding hand-labeled points. No one part of the system is novel in itself, but the overall framework makes it feasible to extract gait from very much poorer quality image sequences than hitherto. This is confirmed by comparing person identification by gait using our method and a well-established baseline recognition algorithm.

  18. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  19. Shape and texture fused recognition of flying targets

    NASA Astrophysics Data System (ADS)

    Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás

    2011-06-01

    This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).

  20. Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data

    PubMed Central

    Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin

    2014-01-01

    Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563

  1. Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis.

    PubMed

    Gordaliza, P M; Muñoz-Barrutia, A; Via, L E; Sharpe, S; Desco, M; Vaquero, J J

    2018-05-29

    Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R 2  ≈ 0.8). We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.

  2. A new approach for automatic matching of ground control points in urban areas from heterogeneous images

    NASA Astrophysics Data System (ADS)

    Cong, Chao; Liu, Dingsheng; Zhao, Lingjun

    2008-12-01

    This paper discusses a new method for the automatic matching of ground control points (GCPs) between satellite remote sensing Image and digital raster graphic (DRG) in urban areas. The key of this method is to automatically extract tie point pairs according to geographic characters from such heterogeneous images. Since there are big differences between such heterogeneous images respect to texture and corner features, more detail analyzations are performed to find similarities and differences between high resolution remote sensing Image and (DRG). Furthermore a new algorithms based on the fuzzy-c means (FCM) method is proposed to extract linear feature in remote sensing Image. Based on linear feature, crossings and corners extracted from these features are chosen as GCPs. On the other hand, similar method was used to find same features from DRGs. Finally, Hausdorff Distance was adopted to pick matching GCPs from above two GCP groups. Experiences shown the method can extract GCPs from such images with a reasonable RMS error.

  3. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  4. Feasibility of Extracting Key Elements from ClinicalTrials.gov to Support Clinicians’ Patient Care Decisions

    PubMed Central

    Kim, Heejun; Bian, Jiantao; Mostafa, Javed; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2016-01-01

    Motivation: Clinicians need up-to-date evidence from high quality clinical trials to support clinical decisions. However, applying evidence from the primary literature requires significant effort. Objective: To examine the feasibility of automatically extracting key clinical trial information from ClinicalTrials.gov. Methods: We assessed the coverage of ClinicalTrials.gov for high quality clinical studies that are indexed in PubMed. Using 140 random ClinicalTrials.gov records, we developed and tested rules for the automatic extraction of key information. Results: The rate of high quality clinical trial registration in ClinicalTrials.gov increased from 0.2% in 2005 to 17% in 2015. Trials reporting results increased from 3% in 2005 to 19% in 2015. The accuracy of the automatic extraction algorithm for 10 trial attributes was 90% on average. Future research is needed to improve the algorithm accuracy and to design information displays to optimally present trial information to clinicians. PMID:28269867

  5. Automatic Contour Extraction of Facial Organs for Frontal Facial Images with Various Facial Expressions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Suzuki, Seiji; Takahashi, Hisanori; Tange, Akira; Kikuchi, Kohki

    This study deals with a method to realize automatic contour extraction of facial features such as eyebrows, eyes and mouth for the time-wise frontal face with various facial expressions. Because Snakes which is one of the most famous methods used to extract contours, has several disadvantages, we propose a new method to overcome these issues. We define the elastic contour model in order to hold the contour shape and then determine the elastic energy acquired by the amount of modification of the elastic contour model. Also we utilize the image energy obtained by brightness differences of the control points on the elastic contour model. Applying the dynamic programming method, we determine the contour position where the total value of the elastic energy and the image energy becomes minimum. Employing 1/30s time-wise facial frontal images changing from neutral to one of six typical facial expressions obtained from 20 subjects, we have estimated our method and find it enables high accuracy automatic contour extraction of facial features.

  6. Signal recognition and parameter estimation of BPSK-LFM combined modulation

    NASA Astrophysics Data System (ADS)

    Long, Chao; Zhang, Lin; Liu, Yu

    2015-07-01

    Intra-pulse analysis plays an important role in electronic warfare. Intra-pulse feature abstraction focuses on primary parameters such as instantaneous frequency, modulation, and symbol rate. In this paper, automatic modulation recognition and feature extraction for combined BPSK-LFM modulation signals based on decision theoretic approach is studied. The simulation results show good recognition effect and high estimation precision, and the system is easy to be realized.

  7. Automatic crack detection method for loaded coal in vibration failure process

    PubMed Central

    Li, Chengwu

    2017-01-01

    In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032

  8. Automatic crack detection method for loaded coal in vibration failure process.

    PubMed

    Li, Chengwu; Ai, Dihao

    2017-01-01

    In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  9. Estimated content percentages of volatile liquids and fat extractables in ready-to-eat foods.

    PubMed

    Daft, J L; Cline, J K; Palmer, R E; Sisk, R L; Griffitt, K R

    1996-01-01

    Content percentages of volatile liquids and fat extractables in 340 samples of ready-to-eat foods were determined gravimetrically. Volatile liquids were determined by drying samples in a microwave oven with a self-contained balance; results were printed out automatically. Fat extractables were extracted from the samples with mixed ethers; extracts were dried and weighed manually. The samples, 191 nonfat and 149 fatty (containing ca 2% or more fat) foods, represent about 5000 different food items and include infant and toddler, ethnic, fast, and imported items. Samples were initially prepared for screening of essential and toxic elements and chemical contamination by chopping and mixing into homogenous composites. Content determinations were then made on separate portions from each composite. Content results were put into a database for evaluation. Overall, mean results from both determinations agree with published data for moisture and fat contents of similar food items. Coefficients of variation, however, were lower for determination of volatile liquids than for that of fat extractables.

  10. Single-trial laser-evoked potentials feature extraction for prediction of pain perception.

    PubMed

    Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo

    2013-01-01

    Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.

  11. Automatic Rail Extraction and Celarance Check with a Point Cloud Captured by Mls in a Railway

    NASA Astrophysics Data System (ADS)

    Niina, Y.; Honma, R.; Honma, Y.; Kondo, K.; Tsuji, K.; Hiramatsu, T.; Oketani, E.

    2018-05-01

    Recently, MLS (Mobile Laser Scanning) has been successfully used in a road maintenance. In this paper, we present the application of MLS for the inspection of clearance along railway tracks of West Japan Railway Company. Point clouds around the track are captured by MLS mounted on a bogie and rail position can be determined by matching the shape of the ideal rail head with respect to the point cloud by ICP algorithm. A clearance check is executed automatically with virtual clearance model laid along the extracted rail. As a result of evaluation, the accuracy of extracting rail positions is less than 3 mm. With respect to the automatic clearance check, the objects inside the clearance and the ones related to a contact line is successfully detected by visual confirmation.

  12. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  13. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method

    PubMed Central

    Chen, Meizhu; Li, Jichun; Zhang, Encai

    2017-01-01

    As a nonintrusive method, the retina imaging provides us with a better way for the diagnosis of ophthalmologic diseases. Extracting the vessel profile automatically from the retina image is an important step in analyzing retina images. A novel hybrid active contour model is proposed to segment the fundus image automatically in this paper. It combines the signed pressure force function introduced by the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model with the local intensity property introduced by the Local Binary fitting (LBF) model to overcome the difficulty of the low contrast in segmentation process. It is more robust to the initial condition than the traditional methods and is easily implemented compared to the supervised vessel extraction methods. Proposed segmentation method was evaluated on two public datasets, DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured Analysis of the Retina) (the average accuracy of 0.9390 with 0.7358 sensitivity and 0.9680 specificity on DRIVE datasets and average accuracy of 0.9409 with 0.7449 sensitivity and 0.9690 specificity on STARE datasets). The experimental results show that our method is effective and our method is also robust to some kinds of pathology images compared with the traditional level set methods. PMID:28840122

  14. Retina vascular network recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  15. Automatic Extraction of Planetary Image Features

    NASA Technical Reports Server (NTRS)

    Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.

    2009-01-01

    With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.

  16. Count Me In! on the Automaticity of Numerosity Processing

    ERIC Educational Resources Information Center

    Naparstek, Sharon; Henik, Avishai

    2010-01-01

    Extraction of numerosity (i.e., enumeration) is an essential component of mathematical abilities. The current study asked how automatic is the processing of numerosity and whether automatic activation is task dependent. Participants were presented with displays containing a variable number of digits and were asked to pay attention to the number of…

  17. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics1[OPEN

    PubMed Central

    Poeschl, Yvonne; Plötner, Romina

    2017-01-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. PMID:28931626

  18. Pattern Mining for Extraction of mentions of Adverse Drug Reactions from User Comments

    PubMed Central

    Nikfarjam, Azadeh; Gonzalez, Graciela H.

    2011-01-01

    Rapid growth of online health social networks has enabled patients to communicate more easily with each other. This way of exchange of opinions and experiences has provided a rich source of information about drugs and their effectiveness and more importantly, their possible adverse reactions. We developed a system to automatically extract mentions of Adverse Drug Reactions (ADRs) from user reviews about drugs in social network websites by mining a set of language patterns. The system applied association rule mining on a set of annotated comments to extract the underlying patterns of colloquial expressions about adverse effects. The patterns were tested on a set of unseen comments to evaluate their performance. We reached to precision of 70.01% and recall of 66.32% and F-measure of 67.96%. PMID:22195162

  19. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    PubMed

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening.

    PubMed

    Chen, C; Li, H; Zhou, X; Wong, S T C

    2008-05-01

    Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.

  1. Automatic Authorship Detection Using Textual Patterns Extracted from Integrated Syntactic Graphs

    PubMed Central

    Gómez-Adorno, Helena; Sidorov, Grigori; Pinto, David; Vilariño, Darnes; Gelbukh, Alexander

    2016-01-01

    We apply the integrated syntactic graph feature extraction methodology to the task of automatic authorship detection. This graph-based representation allows integrating different levels of language description into a single structure. We extract textual patterns based on features obtained from shortest path walks over integrated syntactic graphs and apply them to determine the authors of documents. On average, our method outperforms the state of the art approaches and gives consistently high results across different corpora, unlike existing methods. Our results show that our textual patterns are useful for the task of authorship attribution. PMID:27589740

  2. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    PubMed Central

    Escalera, Sergio; Baró, Xavier; Vitrià, Jordi; Radeva, Petia; Raducanu, Bogdan

    2012-01-01

    Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network. PMID:22438733

  3. Automatic extraction of via in the CT image of PCB

    NASA Astrophysics Data System (ADS)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  4. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  5. Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents

    DTIC Science & Technology

    1997-11-01

    status can sometimes be reflected in the infectious potential or drug resistance of those pathogens. For example, in Mycobacterium tuberculosis ... Mycobacterium tuberculosis , its antibiotic resistance and prediction of pathogenicity amongst Mycobacterium spp. based on signature lipid biomarkers ...TITLE AND SUBTITLE Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents 5a. CONTRACT NUMBER 5b

  6. Road Network Extraction from Dsm by Mathematical Morphology and Reasoning

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wu, Jianliang; Zhu, Lin; Tachibana, Kikuo

    2016-06-01

    The objective of this research is the automatic extraction of the road network in a scene of the urban area from a high resolution digital surface model (DSM). Automatic road extraction and modeling from remote sensed data has been studied for more than one decade. The methods vary greatly due to the differences of data types, regions, resolutions et al. An advanced automatic road network extraction scheme is proposed to address the issues of tedium steps on segmentation, recognition and grouping. It is on the basis of a geometric road model which describes a multiple-level structure. The 0-dimension element is intersection. The 1-dimension elements are central line and side. The 2-dimension element is plane, which is generated from the 1-dimension elements. The key feature of the presented approach is the cross validation for the three road elements which goes through the entire procedure of their extraction. The advantage of our model and method is that linear elements of the road can be derived directly, without any complex, non-robust connection hypothesis. An example of Japanese scene is presented to display the procedure and the performance of the approach.

  7. A Robust Automatic Ionospheric O/X Mode Separation Technique for Vertical Incidence Sounders

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Pederick, L. H.

    2017-12-01

    The sounding of the ionosphere by a vertical incidence sounder (VIS) is the oldest and most common technique for determining the state of the ionosphere. The automatic extraction of relevant ionospheric parameters from the ionogram image, referred to as scaling, is important for the effective utilization of data from large ionospheric sounder networks. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies, so a VIS will typically see two distinct returns for each frequency. For the automatic scaling of ionograms, it is highly desirable to be able to separate the two modes. Defence Science and Technology Group has developed a new VIS solution which is based on direct digital receiver technology and includes an algorithm to separate the O and X modes. This algorithm can provide high-quality separation even in difficult ionospheric conditions. In this paper we describe the algorithm and demonstrate its consistency and reliability in successfully separating 99.4% of the ionograms during a 27 day experimental campaign under sometimes demanding ionospheric conditions.

  8. Automatic topics segmentation for TV news video

    NASA Astrophysics Data System (ADS)

    Hmayda, Mounira; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    Automatic identification of television programs in the TV stream is an important task for operating archives. This article proposes a new spatio-temporal approach to identify the programs in TV stream into two main steps: First, a reference catalogue for video features visual jingles built. We operate the features that characterize the instances of the same program type to identify the different types of programs in the flow of television. The role of video features is to represent the visual invariants for each visual jingle using appropriate automatic descriptors for each television program. On the other hand, programs in television streams are identified by examining the similarity of the video signal for visual grammars in the catalogue. The main idea of the identification process is to compare the visual similarity of the video signal features in the flow of television to the catalogue. After presenting the proposed approach, the paper overviews encouraging experimental results on several streams extracted from different channels and compounds of several programs.

  9. Automatic Fontanel Extraction from Newborns' CT Images Using Variational Level Set

    NASA Astrophysics Data System (ADS)

    Kazemi, Kamran; Ghadimi, Sona; Lyaghat, Alireza; Tarighati, Alla; Golshaeyan, Narjes; Abrishami-Moghaddam, Hamid; Grebe, Reinhard; Gondary-Jouet, Catherine; Wallois, Fabrice

    A realistic head model is needed for source localization methods used for the study of epilepsy in neonates applying Electroencephalographic (EEG) measurements from the scalp. The earliest models consider the head as a series of concentric spheres, each layer corresponding to a different tissue whose conductivity is assumed to be homogeneous. The results of the source reconstruction depend highly on the electric conductivities of the tissues forming the head.The most used model is constituted of three layers (scalp, skull, and intracranial). Most of the major bones of the neonates’ skull are ossified at birth but can slightly move relative to each other. This is due to the sutures, fibrous membranes that at this stage of development connect the already ossified flat bones of the neurocranium. These weak parts of the neurocranium are called fontanels. Thus it is important to enter the exact geometry of fontaneles and flat bone in a source reconstruction because they show pronounced in conductivity. Computer Tomography (CT) imaging provides an excellent tool for non-invasive investigation of the skull which expresses itself in high contrast to all other tissues while the fontanels only can be identified as absence of bone, gaps in the skull formed by flat bone. Therefore, the aim of this paper is to extract the fontanels from CT images applying a variational level set method. We applied the proposed method to CT-images of five different subjects. The automatically extracted fontanels show good agreement with the manually extracted ones.

  10. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  11. Reasons for extraction in primary teeth among 5-12 years school children in Haryana, India- A cross-sectional study.

    PubMed

    Bansal, Mohit; Gupta, Nidhi; Gupta, Preety; Arora, Vikram; Thakar, Sahil

    2017-04-01

    Due to high prevalence of oral diseases extraction of primary teeth is a common and a major concern in developing countries. These teeth are given least importance as they are believed to shed off automatically, thus leading to serious problems like crowding and malocclusion. A cross sectional study was carried out among children aged 5 to 12 years among 1347 children. The data was recorded on a prestructured questionnaire. Reasons for extraction of teeth were based on Kay and Blinkhorn criteria. 20.4% children were having tooth loss due to various reasons. The main reason for extraction was found to be caries in 64.3% followed by trauma in maxillary teeth among 43.02% of children. Presence of early loss of primary teeth result in occlusal disturbances and space loss among children. Hence, proper treatment regimens must be followed by the dental professionals and should be the need of the hour. Key words: Extraction, children, primary teeth, caries.

  12. A data reduction package for multiple object spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, J. M.; Eisenhamer, J. D.; Silva, D. R.

    1986-01-01

    Experience with fiber-optic spectrometers has demonstrated improvements in observing efficiency for clusters of 30 or more objects that must in turn be matched by data reduction capability increases. The Medusa Automatic Reduction System reduces data generated by multiobject spectrometers in the form of two-dimensional images containing 44 to 66 individual spectra, using both software and hardware improvements to efficiently extract the one-dimensional spectra. Attention is given to the ridge-finding algorithm for automatic location of the spectra in the CCD frame. A simultaneous extraction of calibration frames allows an automatic wavelength calibration routine to determine dispersion curves, and both line measurements and cross-correlation techniques are used to determine galaxy redshifts.

  13. Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts

    NASA Astrophysics Data System (ADS)

    Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.

    2015-04-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when those have been scanned in two parts, detect and cut the borders of bands not used (demanded by the software). Also some variations in which colour system is tried basing in HUE or RGB colour have been included. Thanks to apply this digitization rainfall strip charts 209 station-years of three locations in the centre of Spain have been transformed to long-term rainfall time series with 5-min resolution. References van Piggelen, H.E., T. Brandsma, H. Manders, and J. F. Lichtenauer, 2011: Automatic Curve Extraction for Digitizing Rainfall Strip Charts. J. Atmos. Oceanic Technol., 28, 891-906. Acknowledgements Financial support for this research by DURERO Project (Env.C1.3913442) is greatly appreciated.

  14. Automatic Extraction of JPF Options and Documentation

    NASA Technical Reports Server (NTRS)

    Luks, Wojciech; Tkachuk, Oksana; Buschnell, David

    2011-01-01

    Documenting existing Java PathFinder (JPF) projects or developing new extensions is a challenging task. JPF provides a platform for creating new extensions and relies on key-value properties for their configuration. Keeping track of all possible options and extension mechanisms in JPF can be difficult. This paper presents jpf-autodoc-options, a tool that automatically extracts JPF projects options and other documentation-related information, which can greatly help both JPF users and developers of JPF extensions.

  15. Automatic differential analysis of NMR experiments in complex samples.

    PubMed

    Margueritte, Laure; Markov, Petar; Chiron, Lionel; Starck, Jean-Philippe; Vonthron-Sénécheau, Catherine; Bourjot, Mélanie; Delsuc, Marc-André

    2018-06-01

    Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Copyright © 2017 John Wiley & Sons, Ltd.

  16. MIAQuant, a novel system for automatic segmentation, measurement, and localization comparison of different biomarkers from serialized histological slices.

    PubMed

    Casiraghi, Elena; Cossa, Mara; Huber, Veronica; Rivoltini, Licia; Tozzi, Matteo; Villa, Antonello; Vergani, Barbara

    2017-11-02

    In the clinical practice, automatic image analysis methods quickly quantizing histological results by objective and replicable methods are getting more and more necessary and widespread. Despite several commercial software products are available for this task, they are very little flexible, and provided as black boxes without modifiable source code. To overcome the aforementioned problems, we employed the commonly used MATLAB platform to develop an automatic method, MIAQuant, for the analysis of histochemical and immunohistochemical images, stained with various methods and acquired by different tools. It automatically extracts and quantifies markers characterized by various colors and shapes; furthermore, it aligns contiguous tissue slices stained by different markers and overlaps them with differing colors for visual comparison of their localization. Application of MIAQuant for clinical research fields, such as oncology and cardiovascular disease studies, has proven its efficacy, robustness and flexibility with respect to various problems; we highlight that, the flexibility of MIAQuant makes it an important tool to be exploited for basic researches where needs are constantly changing. MIAQuant software and its user manual are freely available for clinical studies, pathological research, and diagnosis.

  17. Extracting semantically enriched events from biomedical literature

    PubMed Central

    2012-01-01

    Background Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare. PMID:22621266

  18. Extracting semantically enriched events from biomedical literature.

    PubMed

    Miwa, Makoto; Thompson, Paul; McNaught, John; Kell, Douglas B; Ananiadou, Sophia

    2012-05-23

    Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.

  19. New auto-segment method of cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Weijiang; Shen, Tingzhi; Dang, Hua

    2007-12-01

    A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.

  20. Automatic detection of typical dust devils from Mars landscape images

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Watanabe, Takeru; Okumura, Susumu; Hatanaka, Yuji

    2018-02-01

    This paper presents an improved algorithm for automatic detection of Martian dust devils that successfully extracts tiny bright dust devils and obscured large dust devils from two subtracted landscape images. These dust devils are frequently observed using visible cameras onboard landers or rovers. Nevertheless, previous research on automated detection of dust devils has not focused on these common types of dust devils, but on dust devils that appear on images to be irregularly bright and large. In this study, we detect these common dust devils automatically using two kinds of parameter sets for thresholding when binarizing subtracted images. We automatically extract dust devils from 266 images taken by the Spirit rover to evaluate our algorithm. Taking dust devils detected by visual inspection to be ground truth, the precision, recall and F-measure values are 0.77, 0.86, and 0.81, respectively.

  1. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.

    PubMed

    Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng

    2018-04-20

    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.

  2. Vaccine Hesitancy in Discussion Forums: Computer-Assisted Argument Mining with Topic Models.

    PubMed

    Skeppstedt, Maria; Kerren, Andreas; Stede, Manfred

    2018-01-01

    Arguments used when vaccination is debated on Internet discussion forums might give us valuable insights into reasons behind vaccine hesitancy. In this study, we applied automatic topic modelling on a collection of 943 discussion posts in which vaccine was debated, and six distinct discussion topics were detected by the algorithm. When manually coding the posts ranked as most typical for these six topics, a set of semantically coherent arguments were identified for each extracted topic. This indicates that topic modelling is a useful method for automatically identifying vaccine-related discussion topics and for identifying debate posts where these topics are discussed. This functionality could facilitate manual coding of salient arguments, and thereby form an important component in a system for computer-assisted coding of vaccine-related discussions.

  3. An accurate method of extracting fat droplets in liver images for quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masahiro; Kobayashi, Naoki; Komagata, Hideki; Shinoda, Kazuma; Yamaguchi, Masahiro; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2015-03-01

    The steatosis in liver pathological tissue images is a promising indicator of nonalcoholic fatty liver disease (NAFLD) and the possible risk of hepatocellular carcinoma (HCC). The resulting values are also important for ensuring the automatic and accurate classification of HCC images, because the existence of many fat droplets is likely to create errors in quantifying the morphological features used in the process. In this study we propose a method that can automatically detect, and exclude regions with many fat droplets by using the feature values of colors, shapes and the arrangement of cell nuclei. We implement the method and confirm that it can accurately detect fat droplets and quantify the fat droplet ratio of actual images. This investigation also clarifies the effective characteristics that contribute to accurate detection.

  4. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Conclusions Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains. PMID:26551454

  5. Sieve-based relation extraction of gene regulatory networks from biological literature.

    PubMed

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains.

  6. Rapid automatic keyword extraction for information retrieval and analysis

    DOEpatents

    Rose, Stuart J [Richland, WA; Cowley,; E, Wendy [Richland, WA; Crow, Vernon L [Richland, WA; Cramer, Nicholas O [Richland, WA

    2012-03-06

    Methods and systems for rapid automatic keyword extraction for information retrieval and analysis. Embodiments can include parsing words in an individual document by delimiters, stop words, or both in order to identify candidate keywords. Word scores for each word within the candidate keywords are then calculated based on a function of co-occurrence degree, co-occurrence frequency, or both. Based on a function of the word scores for words within the candidate keyword, a keyword score is calculated for each of the candidate keywords. A portion of the candidate keywords are then extracted as keywords based, at least in part, on the candidate keywords having the highest keyword scores.

  7. Integrating Information Extraction Agents into a Tourism Recommender System

    NASA Astrophysics Data System (ADS)

    Esparcia, Sergio; Sánchez-Anguix, Víctor; Argente, Estefanía; García-Fornes, Ana; Julián, Vicente

    Recommender systems face some problems. On the one hand information needs to be maintained updated, which can result in a costly task if it is not performed automatically. On the other hand, it may be interesting to include third party services in the recommendation since they improve its quality. In this paper, we present an add-on for the Social-Net Tourism Recommender System that uses information extraction and natural language processing techniques in order to automatically extract and classify information from the Web. Its goal is to maintain the system updated and obtain information about third party services that are not offered by service providers inside the system.

  8. Automated Extraction of Secondary Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne M.; Haimes, Robert

    2005-01-01

    The use of Computational Fluid Dynamics (CFD) has become standard practice in the design and development of the major components used for air and space propulsion. To aid in the post-processing and analysis phase of CFD many researchers now use automated feature extraction utilities. These tools can be used to detect the existence of such features as shocks, vortex cores and separation and re-attachment lines. The existence of secondary flow is another feature of significant importance to CFD engineers. Although the concept of secondary flow is relatively understood there is no commonly accepted mathematical definition for secondary flow. This paper will present a definition for secondary flow and one approach for automatically detecting and visualizing secondary flow.

  9. The impact of OCR accuracy on automated cancer classification of pathology reports.

    PubMed

    Zuccon, Guido; Nguyen, Anthony N; Bergheim, Anton; Wickman, Sandra; Grayson, Narelle

    2012-01-01

    To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.

  10. Assessment of Automatically Exported Clinical Data from a Hospital Information System for Clinical Research in Multiple Myeloma.

    PubMed

    Torres, Viviana; Cerda, Mauricio; Knaup, Petra; Löpprich, Martin

    2016-01-01

    An important part of the electronic information available in Hospital Information System (HIS) has the potential to be automatically exported to Electronic Data Capture (EDC) platforms for improving clinical research. This automation has the advantage of reducing manual data transcription, a time consuming and prone to errors process. However, quantitative evaluations of the process of exporting data from a HIS to an EDC system have not been reported extensively, in particular comparing with manual transcription. In this work an assessment to study the quality of an automatic export process, focused in laboratory data from a HIS is presented. Quality of the laboratory data was assessed in two types of processes: (1) a manual process of data transcription, and (2) an automatic process of data transference. The automatic transference was implemented as an Extract, Transform and Load (ETL) process. Then, a comparison was carried out between manual and automatic data collection methods. The criteria to measure data quality were correctness and completeness. The manual process had a general error rate of 2.6% to 7.1%, obtaining the lowest error rate if data fields with a not clear definition were removed from the analysis (p < 10E-3). In the case of automatic process, the general error rate was 1.9% to 12.1%, where lowest error rate is obtained when excluding information missing in the HIS but transcribed to the EDC from other physical sources. The automatic ETL process can be used to collect laboratory data for clinical research if data in the HIS as well as physical documentation not included in HIS, are identified previously and follows a standardized data collection protocol.

  11. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  12. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.

    PubMed

    Möller, Birgit; Poeschl, Yvonne; Plötner, Romina; Bürstenbinder, Katharina

    2017-11-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems.

    PubMed

    Peng, Yifan; Torii, Manabu; Wu, Cathy H; Vijay-Shanker, K

    2014-08-23

    Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.

  14. Morphological feature extraction for the classification of digital images of cancerous tissues.

    PubMed

    Thiran, J P; Macq, B

    1996-10-01

    This paper presents a new method for automatic recognition of cancerous tissues from an image of a microscopic section. Based on the shape and the size analysis of the observed cells, this method provides the physician with nonsubjective numerical values for four criteria of malignancy. This automatic approach is based on mathematical morphology, and more specifically on the use of Geodesy. This technique is used first to remove the background noise from the image and then to operate a segmentation of the nuclei of the cells and an analysis of their shape, their size, and their texture. From the values of the extracted criteria, an automatic classification of the image (cancerous or not) is finally operated.

  15. Automatic extraction of building boundaries using aerial LiDAR data

    NASA Astrophysics Data System (ADS)

    Wang, Ruisheng; Hu, Yong; Wu, Huayi; Wang, Jian

    2016-01-01

    Building extraction is one of the main research topics of the photogrammetry community. This paper presents automatic algorithms for building boundary extractions from aerial LiDAR data. First, segmenting height information generated from LiDAR data, the outer boundaries of aboveground objects are expressed as closed chains of oriented edge pixels. Then, building boundaries are distinguished from nonbuilding ones by evaluating their shapes. The candidate building boundaries are reconstructed as rectangles or regular polygons by applying new algorithms, following the hypothesis verification paradigm. These algorithms include constrained searching in Hough space, enhanced Hough transformation, and the sequential linking technique. The experimental results show that the proposed algorithms successfully extract building boundaries at rates of 97%, 85%, and 92% for three LiDAR datasets with varying scene complexities.

  16. A semi-supervised learning framework for biomedical event extraction based on hidden topics.

    PubMed

    Zhou, Deyu; Zhong, Dayou

    2015-05-01

    Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely described by hidden topics and structures of the sentences. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Automatic Extraction of Road Markings from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.

    2017-09-01

    Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  18. Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.

    2017-05-01

    Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.

  19. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  20. A method for real-time implementation of HOG feature extraction

    NASA Astrophysics Data System (ADS)

    Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai

    2011-08-01

    Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.

  1. Automatic Short Essay Scoring Using Natural Language Processing to Extract Semantic Information in the Form of Propositions. CRESST Report 831

    ERIC Educational Resources Information Center

    Kerr, Deirdre; Mousavi, Hamid; Iseli, Markus R.

    2013-01-01

    The Common Core assessments emphasize short essay constructed-response items over multiple-choice items because they are more precise measures of understanding. However, such items are too costly and time consuming to be used in national assessments unless a way to score them automatically can be found. Current automatic essay-scoring techniques…

  2. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  3. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    PubMed

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  4. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells

    PubMed Central

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569

  5. An automatic method to detect and track the glottal gap from high speed videoendoscopic images.

    PubMed

    Andrade-Miranda, Gustavo; Godino-Llorente, Juan I; Moro-Velázquez, Laureano; Gómez-García, Jorge Andrés

    2015-10-29

    The image-based analysis of the vocal folds vibration plays an important role in the diagnosis of voice disorders. The analysis is based not only on the direct observation of the video sequences, but also in an objective characterization of the phonation process by means of features extracted from the recorded images. However, such analysis is based on a previous accurate identification of the glottal gap, which is the most challenging step for a further automatic assessment of the vocal folds vibration. In this work, a complete framework to automatically segment and track the glottal area (or glottal gap) is proposed. The algorithm identifies a region of interest that is adapted along time, and combine active contours and watershed transform for the final delineation of the glottis and also an automatic procedure for synthesize different videokymograms is proposed. Thanks to the ROI implementation, our technique is robust to the camera shifting and also the objective test proved the effectiveness and performance of the approach in the most challenging scenarios that it is when exist an inappropriate closure of the vocal folds. The novelties of the proposed algorithm relies on the used of temporal information for identify an adaptive ROI and the use of watershed merging combined with active contours for the glottis delimitation. Additionally, an automatic procedure for synthesize multiline VKG by the identification of the glottal main axis is developed.

  6. Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging.

    PubMed

    Mandelias, Kostas; Tsantis, Stavros; Spiliopoulos, Stavros; Katsakiori, Paraskevi F; Karnabatidis, Dimitris; Nikiforidis, George C; Kagadis, George C

    2013-06-01

    A new segmentation technique is implemented for automatic lumen area extraction and stent strut detection in intravascular optical coherence tomography (OCT) images for the purpose of quantitative analysis of in-stent restenosis (ISR). In addition, a user-friendly graphical user interface (GUI) is developed based on the employed algorithm toward clinical use. Four clinical datasets of frequency-domain OCT scans of the human femoral artery were analyzed. First, a segmentation method based on fuzzy C means (FCM) clustering and wavelet transform (WT) was applied toward inner luminal contour extraction. Subsequently, stent strut positions were detected by utilizing metrics derived from the local maxima of the wavelet transform into the FCM membership function. The inner lumen contour and the position of stent strut were extracted with high precision. Compared to manual segmentation by an expert physician, the automatic lumen contour delineation had an average overlap value of 0.917 ± 0.065 for all OCT images included in the study. The strut detection procedure achieved an overall accuracy of 93.80% and successfully identified 9.57 ± 0.5 struts for every OCT image. Processing time was confined to approximately 2.5 s per OCT frame. A new fast and robust automatic segmentation technique combining FCM and WT for lumen border extraction and strut detection in intravascular OCT images was designed and implemented. The proposed algorithm integrated in a GUI represents a step forward toward the employment of automated quantitative analysis of ISR in clinical practice.

  7. Realtime automatic metal extraction of medical x-ray images for contrast improvement

    NASA Astrophysics Data System (ADS)

    Prangl, Martin; Hellwagner, Hermann; Spielvogel, Christian; Bischof, Horst; Szkaliczki, Tibor

    2006-03-01

    This paper focuses on an approach for real-time metal extraction of x-ray images taken from modern x-ray machines like C-arms. Such machines are used for vessel diagnostics, surgical interventions, as well as cardiology, neurology and orthopedic examinations. They are very fast in taking images from different angles. For this reason, manual adjustment of contrast is infeasible and automatic adjustment algorithms have been applied to try to select the optimal radiation dose for contrast adjustment. Problems occur when metallic objects, e.g., a prosthesis or a screw, are in the absorption area of interest. In this case, the automatic adjustment mostly fails because the dark, metallic objects lead the algorithm to overdose the x-ray tube. This outshining effect results in overexposed images and bad contrast. To overcome this limitation, metallic objects have to be detected and extracted from images that are taken as input for the adjustment algorithm. In this paper, we present a real-time solution for extracting metallic objects of x-ray images. We will explore the characteristic features of metallic objects in x-ray images and their distinction from bone fragments which form the basis to find a successful way for object segmentation and classification. Subsequently, we will present our edge based real-time approach for successful and fast automatic segmentation and classification of metallic objects. Finally, experimental results on the effectiveness and performance of our approach based on a vast amount of input image data sets will be presented.

  8. Automatic extraction and visualization of object-oriented software design metrics

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, Anuradha; Newman, Timothy S.; Li, Wei; Talburt, John

    2000-02-01

    Software visualization is a graphical representation of software characteristics and behavior. Certain modes of software visualization can be useful in isolating problems and identifying unanticipated behavior. In this paper we present a new approach to aid understanding of object- oriented software through 3D visualization of software metrics that can be extracted from the design phase of software development. The focus of the paper is a metric extraction method and a new collection of glyphs for multi- dimensional metric visualization. Our approach utilize the extensibility interface of a popular CASE tool to access and automatically extract the metrics from Unified Modeling Language class diagrams. Following the extraction of the design metrics, 3D visualization of these metrics are generated for each class in the design, utilizing intuitively meaningful 3D glyphs that are representative of the ensemble of metrics. Extraction and visualization of design metrics can aid software developers in the early study and understanding of design complexity.

  9. Automatic Identification & Classification of Surgical Margin Status from Pathology Reports Following Prostate Cancer Surgery

    PubMed Central

    D’Avolio, Leonard W.; Litwin, Mark S.; Rogers, Selwyn O.; Bui, Alex A. T.

    2007-01-01

    Prostate cancer removal surgeries that result in tumor found at the surgical margin, otherwise known as a positive surgical margin, have a significantly higher chance of biochemical recurrence and clinical progression. To support clinical outcomes assessment a system was designed to automatically identify, extract, and classify key phrases from pathology reports describing this outcome. Heuristics and boundary detection were used to extract phrases. Phrases were then classified using support vector machines into one of three classes: ‘positive (involved) margins,’ ‘negative (uninvolved) margins,’ and ‘not-applicable or definitive.’ A total of 851 key phrases were extracted from a sample of 782 reports produced between 1996 and 2006 from two major hospitals. Despite differences in reporting style, at least 1 sentence containing a diagnosis was extracted from 780 of the 782 reports (99.74%). Of the 851 sentences extracted, 97.3% contained diagnoses. Overall accuracy of automated classification of extracted sentences into the three categories was 97.18%. PMID:18693818

  10. The development of an automatically produced cholangiography procedure using the reconstruction of portal-phase multidetector-row computed tomography images: preliminary experience.

    PubMed

    Hirose, Tomoaki; Igami, Tsuyoshi; Koga, Kusuto; Hayashi, Yuichiro; Ebata, Tomoki; Yokoyama, Yukihiro; Sugawara, Gen; Mizuno, Takashi; Yamaguchi, Junpei; Mori, Kensaku; Nagino, Masato

    2017-03-01

    Fusion angiography using reconstructed multidetector-row computed tomography (MDCT) images, and cholangiography using reconstructed images from MDCT with a cholangiographic agent include an anatomical gap due to the different periods of MDCT scanning. To conquer such gaps, we attempted to develop a cholangiography procedure that automatically reconstructs a cholangiogram from portal-phase MDCT images. The automatically produced cholangiography procedure utilized an original software program that was developed by the Graduate School of Information Science, Nagoya University. This program structured 5 candidate biliary tracts, and automatically selected one as the candidate for cholangiography. The clinical value of the automatically produced cholangiography procedure was estimated based on a comparison with manually produced cholangiography. Automatically produced cholangiograms were reconstructed for 20 patients who underwent MDCT scanning before biliary drainage for distal biliary obstruction. The procedure showed the ability to extract the 5 main biliary branches and the 21 subsegmental biliary branches in 55 and 25 % of the cases, respectively. The extent of aberrant connections and aberrant extractions outside the biliary tract was acceptable. Among all of the cholangiograms, 5 were clinically applied with no correction, 8 were applied with modest improvements, and 3 produced a correct cholangiography before automatic selection. Although our procedure requires further improvement based on the analysis of additional patient data, it may represent an alternative to direct cholangiography in the future.

  11. Information Retrieval and Text Mining Technologies for Chemistry.

    PubMed

    Krallinger, Martin; Rabal, Obdulia; Lourenço, Anália; Oyarzabal, Julen; Valencia, Alfonso

    2017-06-28

    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.

  12. Contour matching for a fish recognition and migration-monitoring system

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye; Schoenberger, Robert B.; Shiozawa, Dennis; Xu, Xiaoqian; Zhan, Pengcheng

    2004-12-01

    Fish migration is being monitored year round to provide valuable information for the study of behavioral responses of fish to environmental variations. However, currently all monitoring is done by human observers. An automatic fish recognition and migration monitoring system is more efficient and can provide more accurate data. Such a system includes automatic fish image acquisition, contour extraction, fish categorization, and data storage. Shape is a very important characteristic and shape analysis and shape matching are studied for fish recognition. Previous work focused on finding critical landmark points on fish shape using curvature function analysis. Fish recognition based on landmark points has shown satisfying results. However, the main difficulty of this approach is that landmark points sometimes cannot be located very accurately. Whole shape matching is used for fish recognition in this paper. Several shape descriptors, such as Fourier descriptors, polygon approximation and line segments, are tested. A power cepstrum technique has been developed in order to improve the categorization speed using contours represented in tangent space with normalized length. Design and integration including image acquisition, contour extraction and fish categorization are discussed in this paper. Fish categorization results based on shape analysis and shape matching are also included.

  13. A research of road centerline extraction algorithm from high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  14. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning.

    PubMed

    Feng, Yuntian; Zhang, Hongjun; Hao, Wenning; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q -Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.

  15. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning

    PubMed Central

    Zhang, Hongjun; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q-Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score. PMID:28894463

  16. A new patent-based approach for technology mapping in the pharmaceutical domain.

    PubMed

    Russo, Davide; Montecchi, Tiziano; Carrara, Paolo

    2013-09-01

    The key factor in decision-making is the quality of information collected and processed in the problem analysis. In most cases, patents represent a very important source of information. The main problem is how to extract such information from the huge corpus of documents with a high recall and precision, and in a short time. This article demonstrates a patent search and classification method, called Knowledge Organizing Module, which consists of creating, almost automatically, a pool of patents based on polysemy expansion and homonymy disambiguation. Since the pool is done, an automatic patent technology landscaping is provided for fixing the state of the art of our product, and exploring competing alternative treatments and/or possible technological opportunities. An exemplary case study is provided, it deals with a patent analysis in the field of verruca treatments.

  17. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.

    PubMed

    Xu, Kele; Feng, Dawei; Mi, Haibo

    2017-11-23

    The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.

  18. Automatic Content Creation for Games to Train Students Distinguishing Similar Chinese Characters

    NASA Astrophysics Data System (ADS)

    Lai, Kwong-Hung; Leung, Howard; Tang, Jeff K. T.

    In learning Chinese, many students often have the problem of mixing up similar characters. This can cause misunderstanding and miscommunication in daily life. It is thus important for students learning the Chinese language to be able to distinguish similar characters and understand their proper usage. In this paper, we propose a game style framework in which the game content in identifying similar Chinese characters in idioms and words is created automatically. Our prior work on analyzing students’ Chinese handwriting can be applied in the similarity measure of Chinese characters. We extend this work by adding the component of radical extraction to speed up the search process. Experimental results show that the proposed method is more accurate and faster in finding more similar Chinese characters compared with the baseline method without considering the radical information.

  19. Using UMLS to construct a generalized hierarchical concept-based dictionary of brain functions for information extraction from the fMRI literature.

    PubMed

    Hsiao, Mei-Yu; Chen, Chien-Chung; Chen, Jyh-Horng

    2009-10-01

    With a rapid progress in the field, a great many fMRI studies are published every year, to the extent that it is now becoming difficult for researchers to keep up with the literature, since reading papers is extremely time-consuming and labor-intensive. Thus, automatic information extraction has become an important issue. In this study, we used the Unified Medical Language System (UMLS) to construct a hierarchical concept-based dictionary of brain functions. To the best of our knowledge, this is the first generalized dictionary of this kind. We also developed an information extraction system for recognizing, mapping and classifying terms relevant to human brain study. The precision and recall of our system was on a par with that of human experts in term recognition, term mapping and term classification. Our approach presented in this paper presents an alternative to the more laborious, manual entry approach to information extraction.

  20. Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors.

    PubMed

    Bercovich, A; Edan, Y; Alchanatis, V; Moallem, U; Parmet, Y; Honig, H; Maltz, E; Antler, A; Halachmi, I

    2013-01-01

    Body condition evaluation is a common tool to assess energy reserves of dairy cows and to estimate their fatness or thinness. This study presents a computer-vision tool that automatically estimates cow's body condition score. Top-view images of 151 cows were collected on an Israeli research dairy farm using a digital still camera located at the entrance to the milking parlor. The cow's tailhead area and its contour were segmented and extracted automatically. Two types of features of the tailhead contour were extracted: (1) the angles and distances between 5 anatomical points; and (2) the cow signature, which is a 1-dimensional vector of the Euclidean distances from each point in the normalized tailhead contour to the shape center. Two methods were applied to describe the cow's signature and to reduce its dimension: (1) partial least squares regression, and (2) Fourier descriptors of the cow signature. Three prediction models were compared with manual scores of an expert. Results indicate that (1) it is possible to automatically extract and predict body condition from color images without any manual interference; and (2) Fourier descriptors of the cow's signature result in improved performance (R(2)=0.77). Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Comparison of methods of DNA extraction for real-time PCR in a model of pleural tuberculosis.

    PubMed

    Santos, Ana; Cremades, Rosa; Rodríguez, Juan Carlos; García-Pachón, Eduardo; Ruiz, Montserrat; Royo, Gloria

    2010-01-01

    Molecular methods have been reported to have different sensitivities in the diagnosis of pleural tuberculosis and this may in part be caused by the use of different methods of DNA extraction. Our study compares nine DNA extraction systems in an experimental model of pleural tuberculosis. An inoculum of Mycobacterium tuberculosis was added to 23 pleural liquid samples with different characteristics. DNA was subsequently extracted using nine different methods (seven manual and two automatic) for analysis with real-time PCR. Only two methods were able to detect the presence of M. tuberculosis DNA in all the samples: extraction using columns (Qiagen) and automated extraction with the TNAI system (Roche). The automatic method is more expensive, but requires less time. Almost all the false negatives were because of the difficulty involved in extracting M. tuberculosis DNA, as in general, all the methods studied are capable of eliminating inhibitory substances that block the amplification reaction. The method of M. tuberculosis DNA extraction used affects the results of the diagnosis of pleural tuberculosis by molecular methods. DNA extraction systems that have been shown to be effective in pleural liquid should be used.

  2. A knowledge engineering approach to recognizing and extracting sequences of nucleic acids from scientific literature.

    PubMed

    García-Remesal, Miguel; Maojo, Victor; Crespo, José

    2010-01-01

    In this paper we present a knowledge engineering approach to automatically recognize and extract genetic sequences from scientific articles. To carry out this task, we use a preliminary recognizer based on a finite state machine to extract all candidate DNA/RNA sequences. The latter are then fed into a knowledge-based system that automatically discards false positives and refines noisy and incorrectly merged sequences. We created the knowledge base by manually analyzing different manuscripts containing genetic sequences. Our approach was evaluated using a test set of 211 full-text articles in PDF format containing 3134 genetic sequences. For such set, we achieved 87.76% precision and 97.70% recall respectively. This method can facilitate different research tasks. These include text mining, information extraction, and information retrieval research dealing with large collections of documents containing genetic sequences.

  3. Automated Assessment of Child Vocalization Development Using LENA

    ERIC Educational Resources Information Center

    Richards, Jeffrey A.; Xu, Dongxin; Gilkerson, Jill; Yapanel, Umit; Gray, Sharmistha; Paul, Terrance

    2017-01-01

    Purpose: To produce a novel, efficient measure of children's expressive vocal development on the basis of automatic vocalization assessment (AVA), child vocalizations were automatically identified and extracted from audio recordings using Language Environment Analysis (LENA) System technology. Method: Assessment was based on full-day audio…

  4. Document cards: a top trumps visualization for documents.

    PubMed

    Strobelt, Hendrik; Oelke, Daniela; Rohrdantz, Christian; Stoffel, Andreas; Keim, Daniel A; Deussen, Oliver

    2009-01-01

    Finding suitable, less space consuming views for a document's main content is crucial to provide convenient access to large document collections on display devices of different size. We present a novel compact visualization which represents the document's key semantic as a mixture of images and important key terms, similar to cards in a top trumps game. The key terms are extracted using an advanced text mining approach based on a fully automatic document structure extraction. The images and their captions are extracted using a graphical heuristic and the captions are used for a semi-semantic image weighting. Furthermore, we use the image color histogram for classification and show at least one representative from each non-empty image class. The approach is demonstrated for the IEEE InfoVis publications of a complete year. The method can easily be applied to other publication collections and sets of documents which contain images.

  5. Automatic crack detection and classification method for subway tunnel safety monitoring.

    PubMed

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  6. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-01-01

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337

  7. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.

    PubMed

    Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long

    2014-09-12

    Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Automatic digital image analysis for identification of mitotic cells in synchronous mammalian cell cultures.

    PubMed

    Eccles, B A; Klevecz, R R

    1986-06-01

    Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.

  9. Sulci segmentation using geometric active contours

    NASA Astrophysics Data System (ADS)

    Torkaman, Mahsa; Zhu, Liangjia; Karasev, Peter; Tannenbaum, Allen

    2017-02-01

    Sulci are groove-like regions lying in the depth of the cerebral cortex between gyri, which together, form a folded appearance in human and mammalian brains. Sulci play an important role in the structural analysis of the brain, morphometry (i.e., the measurement of brain structures), anatomical labeling and landmark-based registration.1 Moreover, sulcal morphological changes are related to cortical thickness, whose measurement may provide useful information for studying variety of psychiatric disorders. Manually extracting sulci requires complying with complex protocols, which make the procedure both tedious and error prone.2 In this paper, we describe an automatic procedure, employing geometric active contours, which extract the sulci. Sulcal boundaries are obtained by minimizing a certain energy functional whose minimum is attained at the boundary of the given sulci.

  10. Automatic Author Profiling of Online Chat Logs

    DTIC Science & Technology

    2007-03-01

    CLASSIFICATION WITH PRIOR ..........91 1. All Test Data ................................91 2. Extracted Test Data: Teens and 20s ...........92 3...Extracted Test Data: Teens and 30s ...........92 4. Extracted Test Data: Teens and 40s ...........93 5. Extracted Test Data: Teens and 50s ...........93 6...Data ................................97 C. AGE: BINARY CLASSIFICATION WITH PRIOR .............98 1. Extracted Test Data: Teens and 20s ...........98 2

  11. Automatic extraction of tree crowns from aerial imagery in urban environment

    NASA Astrophysics Data System (ADS)

    Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng

    2006-10-01

    Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.

  12. Impact of JPEG2000 compression on spatial-spectral endmember extraction from hyperspectral data

    NASA Astrophysics Data System (ADS)

    Martín, Gabriel; Ruiz, V. G.; Plaza, Antonio; Ortiz, Juan P.; García, Inmaculada

    2009-08-01

    Hyperspectral image compression has received considerable interest in recent years. However, an important issue that has not been investigated in the past is the impact of lossy compression on spectral mixture analysis applications, which characterize mixed pixels in terms of a suitable combination of spectrally pure spectral substances (called endmembers) weighted by their estimated fractional abundances. In this paper, we specifically investigate the impact of JPEG2000 compression of hyperspectral images on the quality of the endmembers extracted by algorithms that incorporate both the spectral and the spatial information (useful for incorporating contextual information in the spectral endmember search). The two considered algorithms are the automatic morphological endmember extraction (AMEE) and the spatial spectral endmember extraction (SSEE) techniques. Experimental results are conducted using a well-known data set collected by AVIRIS over the Cuprite mining district in Nevada and with detailed ground-truth information available from U. S. Geological Survey. Our experiments reveal some interesting findings that may be useful to specialists applying spatial-spectral endmember extraction algorithms to compressed hyperspectral imagery.

  13. Sugarcane Crop Extraction Using Object-Oriented Method from ZY-3 High Resolution Satellite Tlc Image

    NASA Astrophysics Data System (ADS)

    Luo, H.; Ling, Z. Y.; Shao, G. Z.; Huang, Y.; He, Y. Q.; Ning, W. Y.; Zhong, Z.

    2018-04-01

    Sugarcane is one of the most important crops in Guangxi, China. As the development of satellite remote sensing technology, more remotely sensed images can be used for monitoring sugarcane crop. With the help of Three Line Camera (TLC) images, wide coverage and stereoscopic mapping ability, Chinese ZY-3 high resolution stereoscopic mapping satellite is useful in attaining more information for sugarcane crop monitoring, such as spectral, shape, texture difference between forward, nadir and backward images. Digital surface model (DSM) derived from ZY-3 TLC images are also able to provide height information for sugarcane crop. In this study, we make attempt to extract sugarcane crop from ZY-3 images, which are acquired in harvest period. Ortho-rectified TLC images, fused image, DSM are processed for our extraction. Then Object-oriented method is used in image segmentation, example collection, and feature extraction. The results of our study show that with the help of ZY-3 TLC image, the information of sugarcane crop in harvest time can be automatic extracted, with an overall accuracy of about 85.3 %.

  14. Reasons for extraction in primary teeth among 5-12 years school children in Haryana, India- A cross-sectional study

    PubMed Central

    Gupta, Nidhi; Gupta, Preety; Arora, Vikram; Thakar, Sahil

    2017-01-01

    Background Due to high prevalence of oral diseases extraction of primary teeth is a common and a major concern in developing countries. These teeth are given least importance as they are believed to shed off automatically, thus leading to serious problems like crowding and malocclusion. Material and Methods A cross sectional study was carried out among children aged 5 to 12 years among 1347 children. The data was recorded on a prestructured questionnaire. Reasons for extraction of teeth were based on Kay and Blinkhorn criteria. Results 20.4% children were having tooth loss due to various reasons. The main reason for extraction was found to be caries in 64.3% followed by trauma in maxillary teeth among 43.02% of children. Conclusions Presence of early loss of primary teeth result in occlusal disturbances and space loss among children. Hence, proper treatment regimens must be followed by the dental professionals and should be the need of the hour. Key words:Extraction, children, primary teeth, caries. PMID:28469820

  15. A 3D THz image processing methodology for a fully integrated, semi-automatic and near real-time operational system

    NASA Astrophysics Data System (ADS)

    Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.

    2012-05-01

    The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.

  16. Cerebral Oxygenation and Pain of Heel Blood Sampling Using Manual and Automatic Lancets in Premature Infants.

    PubMed

    Hwang, Mi-Jung; Seol, Geun Hee

    2015-01-01

    Heel blood sampling is a common but painful procedure for neonates. Automatic lancets have been shown to be more effective, with reduced pain and tissue damage, than manual lancets, but the effects of lancet type on cortical activation have not yet been compared. The study aimed to compare the effects of manual and automatic lancets on cerebral oxygenation and pain of heel blood sampling in 24 premature infants with respiratory distress syndrome. Effectiveness was measured by assessing numbers of pricks and squeezes and duration of heel blood sampling. Pain responses were measured using the premature infant pain profile score, heart rate, and oxygen saturation (SpO2). Regional cerebral oxygen saturation (rScO2) was measured using near-infrared spectroscopy, and cerebral fractional tissue oxygen extraction was calculated from SpO2 and rScO. Measures of effectiveness were significantly better with automatic than with manual lancing, including fewer heel punctures (P = .009) and squeezes (P < .001) and shorter duration of heel blood sampling (P = .002). rScO2 was significantly higher (P = .013) and cerebral fractional tissue oxygen extraction after puncture significantly lower (P = .040) with automatic lancing. Premature infant pain profile scores during (P = .004) and after (P = .048) puncture were significantly lower in the automatic than in the manual lancet group. Automatic lancets for heel blood sampling in neonates with respiratory distress syndrome significantly reduced pain and enhanced cerebral oxygenation, suggesting that heel blood should be sampled routinely using an automatic lancet.

  17. ExaCT: automatic extraction of clinical trial characteristics from journal publications

    PubMed Central

    2010-01-01

    Background Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs). Methods ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study. Results We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (first stage) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rules (second stage) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers. Conclusions Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols). PMID:20920176

  18. FacetGist: Collective Extraction of Document Facets in Large Technical Corpora.

    PubMed

    Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei

    2016-10-01

    Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets ( e.g. , application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.

  19. FacetGist: Collective Extraction of Document Facets in Large Technical Corpora

    PubMed Central

    Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei

    2017-01-01

    Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes. PMID:28210517

  20. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  1. Deep feature extraction and combination for synthetic aperture radar target classification

    NASA Astrophysics Data System (ADS)

    Amrani, Moussa; Jiang, Feng

    2017-10-01

    Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.

  2. Extracting the Textual and Temporal Structure of Supercomputing Logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, S; Singh, I; Chandra, A

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less

  3. A new blood vessel extraction technique using edge enhancement and object classification.

    PubMed

    Badsha, Shahriar; Reza, Ahmed Wasif; Tan, Kim Geok; Dimyati, Kaharudin

    2013-12-01

    Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.

  4. Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition

    NASA Astrophysics Data System (ADS)

    Kim, Jonghwa; André, Elisabeth

    This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.

  5. Extraction of sandy bedforms features through geodesic morphometry

    NASA Astrophysics Data System (ADS)

    Debese, Nathalie; Jacq, Jean-José; Garlan, Thierry

    2016-09-01

    State-of-art echosounders reveal fine-scale details of mobile sandy bedforms, which are commonly found on continental shelfs. At present, their dynamics are still far from being completely understood. These bedforms are a serious threat to navigation security, anthropic structures and activities, placing emphasis on research breakthroughs. Bedform geometries and their dynamics are closely linked; therefore, one approach is to develop semi-automatic tools aiming at extracting their structural features from bathymetric datasets. Current approaches mimic manual processes or rely on morphological simplification of bedforms. The 1D and 2D approaches cannot address the wide ranges of both types and complexities of bedforms. In contrast, this work attempts to follow a 3D global semi-automatic approach based on a bathymetric TIN. The currently extracted primitives are the salient ridge and valley lines of the sand structures, i.e., waves and mega-ripples. The main difficulty is eliminating the ripples that are found to heavily overprint any observations. To this end, an anisotropic filter that is able to discard these structures while still enhancing the wave ridges is proposed. The second part of the work addresses the semi-automatic interactive extraction and 3D augmented display of the main lines structures. The proposed protocol also allows geoscientists to interactively insert topological constraints.

  6. Automatic detection of Martian dark slope streaks by machine learning using HiRISE images

    NASA Astrophysics Data System (ADS)

    Wang, Yexin; Di, Kaichang; Xin, Xin; Wan, Wenhui

    2017-07-01

    Dark slope streaks (DSSs) on the Martian surface are one of the active geologic features that can be observed on Mars nowadays. The detection of DSS is a prerequisite for studying its appearance, morphology, and distribution to reveal its underlying geological mechanisms. In addition, increasingly massive amounts of Mars high resolution data are now available. Hence, an automatic detection method for locating DSSs is highly desirable. In this research, we present an automatic DSS detection method by combining interest region extraction and machine learning techniques. The interest region extraction combines gradient and regional grayscale information. Moreover, a novel recognition strategy is proposed that takes the normalized minimum bounding rectangles (MBRs) of the extracted regions to calculate the Local Binary Pattern (LBP) feature and train a DSS classifier using the Adaboost machine learning algorithm. Comparative experiments using five different feature descriptors and three different machine learning algorithms show the superiority of the proposed method. Experimental results utilizing 888 extracted region samples from 28 HiRISE images show that the overall detection accuracy of our proposed method is 92.4%, with a true positive rate of 79.1% and false positive rate of 3.7%, which in particular indicates great performance of the method at eliminating non-DSS regions.

  7. Automated prediction of protein function and detection of functional sites from structure.

    PubMed

    Pazos, Florencio; Sternberg, Michael J E

    2004-10-12

    Current structural genomics projects are yielding structures for proteins whose functions are unknown. Accordingly, there is a pressing requirement for computational methods for function prediction. Here we present PHUNCTIONER, an automatic method for structure-based function prediction using automatically extracted functional sites (residues associated to functions). The method relates proteins with the same function through structural alignments and extracts 3D profiles of conserved residues. Functional features to train the method are extracted from the Gene Ontology (GO) database. The method extracts these features from the entire GO hierarchy and hence is applicable across the whole range of function specificity. 3D profiles associated with 121 GO annotations were extracted. We tested the power of the method both for the prediction of function and for the extraction of functional sites. The success of function prediction by our method was compared with the standard homology-based method. In the zone of low sequence similarity (approximately 15%), our method assigns the correct GO annotation in 90% of the protein structures considered, approximately 20% higher than inheritance of function from the closest homologue.

  8. An Overview of Biomolecular Event Extraction from Scientific Documents

    PubMed Central

    Vanegas, Jorge A.; Matos, Sérgio; González, Fabio; Oliveira, José L.

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed. PMID:26587051

  9. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  10. A Unified Overset Grid Generation Graphical Interface and New Concepts on Automatic Gridding Around Surface Discontinuities

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Akien, Edwin (Technical Monitor)

    2002-01-01

    For many years, generation of overset grids for complex configurations has required the use of a number of different independently developed software utilities. Results created by each step were then visualized using a separate visualization tool before moving on to the next. A new software tool called OVERGRID was developed which allows the user to perform all the grid generation steps and visualization under one environment. OVERGRID provides grid diagnostic functions such as surface tangent and normal checks as well as grid manipulation functions such as extraction, extrapolation, concatenation, redistribution, smoothing, and projection. Moreover, it also contains hyperbolic surface and volume grid generation modules that are specifically suited for overset grid generation. It is the first time that such a unified interface existed for the creation of overset grids for complex geometries. New concepts on automatic overset surface grid generation around surface discontinuities will also be briefly presented. Special control curves on the surface such as intersection curves, sharp edges, open boundaries, are called seam curves. The seam curves are first automatically extracted from a multiple panel network description of the surface. Points where three or more seam curves meet are automatically identified and are called seam corners. Seam corner surface grids are automatically generated using a singular axis topology. Hyperbolic surface grids are then grown from the seam curves that are automatically trimmed away from the seam corners.

  11. Study on online community user motif using web usage mining

    NASA Astrophysics Data System (ADS)

    Alphy, Meera; Sharma, Ajay

    2016-04-01

    The Web usage mining is the application of data mining, which is used to extract useful information from the online community. The World Wide Web contains at least 4.73 billion pages according to Indexed Web and it contains at least 228.52 million pages according Dutch Indexed web on 6th august 2015, Thursday. It’s difficult to get needed data from these billions of web pages in World Wide Web. Here is the importance of web usage mining. Personalizing the search engine helps the web user to identify the most used data in an easy way. It reduces the time consumption; automatic site search and automatic restore the useful sites. This study represents the old techniques to latest techniques used in pattern discovery and analysis in web usage mining from 1996 to 2015. Analyzing user motif helps in the improvement of business, e-commerce, personalisation and improvement of websites.

  12. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  14. A hybrid model for automatic identification of risk factors for heart disease.

    PubMed

    Yang, Hui; Garibaldi, Jonathan M

    2015-12-01

    Coronary artery disease (CAD) is the leading cause of death in both the UK and worldwide. The detection of related risk factors and tracking their progress over time is of great importance for early prevention and treatment of CAD. This paper describes an information extraction system that was developed to automatically identify risk factors for heart disease in medical records while the authors participated in the 2014 i2b2/UTHealth NLP Challenge. Our approaches rely on several nature language processing (NLP) techniques such as machine learning, rule-based methods, and dictionary-based keyword spotting to cope with complicated clinical contexts inherent in a wide variety of risk factors. Our system achieved encouraging performance on the challenge test data with an overall micro-averaged F-measure of 0.915, which was competitive to the best system (F-measure of 0.927) of this challenge task. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. An automatic system to detect and extract texts in medical images for de-identification

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael

    2010-03-01

    Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.

  16. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track

    PubMed Central

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users—learning BEL, working with a completely new interface, and performing complex curation—a score so close to the overall SUS average highlights the usability of BELIEF. Database URL: BELIEF is available at http://www.scaiview.com/belief/ PMID:27694210

  17. Challenges for automatically extracting molecular interactions from full-text articles.

    PubMed

    McIntosh, Tara; Curran, James R

    2009-09-24

    The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles. We manually annotated passages from full-text articles that describe interactions summarised in a Molecular Interaction Map (MIM). Our corpus tracks the process of identifying facts to form the MIM summaries and captures any factual dependencies that must be resolved to extract the fact completely. For example, a fact in the results section may require a synonym defined in the introduction. The passages are also annotated with negated and coreference expressions that must be resolved.We describe the guidelines for identifying relevant passages and possible dependencies. The corpus includes 2162 sentences from 78 full-text articles. Our corpus analysis demonstrates the necessity of full-text processing; identifies the article sections where interactions are most commonly stated; and quantifies the proportion of interaction statements requiring coherent dependencies. Further, it allows us to report on the relative importance of identifying synonyms and resolving negated expressions. We also experiment with an oracle sentence retrieval system using the corpus as a gold-standard evaluation set. We introduce the MIM corpus, a unique resource that maps interaction facts in a MIM to annotated passages within full-text articles. It is an invaluable case study providing guidance to developers of biomedical IR and IE systems, and can be used as a gold-standard evaluation set for full-text IR tasks.

  18. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track.

    PubMed

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users-learning BEL, working with a completely new interface, and performing complex curation-a score so close to the overall SUS average highlights the usability of BELIEF.Database URL: BELIEF is available at http://www.scaiview.com/belief/. © The Author(s) 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Using Information from the Electronic Health Record to Improve Measurement of Unemployment in Service Members and Veterans with mTBI and Post-Deployment Stress

    PubMed Central

    Dillahunt-Aspillaga, Christina; Finch, Dezon; Massengale, Jill; Kretzmer, Tracy; Luther, Stephen L.; McCart, James A.

    2014-01-01

    Objective The purpose of this pilot study is 1) to develop an annotation schema and a training set of annotated notes to support the future development of a natural language processing (NLP) system to automatically extract employment information, and 2) to determine if information about employment status, goals and work-related challenges reported by service members and Veterans with mild traumatic brain injury (mTBI) and post-deployment stress can be identified in the Electronic Health Record (EHR). Design Retrospective cohort study using data from selected progress notes stored in the EHR. Setting Post-deployment Rehabilitation and Evaluation Program (PREP), an in-patient rehabilitation program for Veterans with TBI at the James A. Haley Veterans' Hospital in Tampa, Florida. Participants Service members and Veterans with TBI who participated in the PREP program (N = 60). Main Outcome Measures Documentation of employment status, goals, and work-related challenges reported by service members and recorded in the EHR. Results Two hundred notes were examined and unique vocational information was found indicating a variety of self-reported employment challenges. Current employment status and future vocational goals along with information about cognitive, physical, and behavioral symptoms that may affect return-to-work were extracted from the EHR. The annotation schema developed for this study provides an excellent tool upon which NLP studies can be developed. Conclusions Information related to employment status and vocational history is stored in text notes in the EHR system. Information stored in text does not lend itself to easy extraction or summarization for research and rehabilitation planning purposes. Development of NLP systems to automatically extract text-based employment information provides data that may improve the understanding and measurement of employment in this important cohort. PMID:25541956

  20. Extraction of Greenhouse Areas with Image Processing Methods in Karabuk Province

    NASA Astrophysics Data System (ADS)

    Yildirima, M. Z.; Ozcan, C.

    2017-11-01

    Greenhouses provide the environmental conditions to be controlled and regulated as desired while allowing agricultural products to be produced without being affected by external environmental conditions. High quality and a wide variety of agricultural products can be produced throughout the year. In addition, mapping and detection of these areas has great importance in terms of factors such as yield analysis, natural resource management and environmental impact. Various remote sensing techniques are currently available for extraction of greenhouse areas. These techniques are based on the automatic detection and interpretation of objects on remotely sensed images. In this study, greenhouse areas were determined from optical images obtained from Landsat. The study was carried out in the greenhouse areas in Karabuk province. The obtained results are presented with figures and tables.

  1. Analysis of separation test for automatic brake adjuster based on linear radon transformation

    NASA Astrophysics Data System (ADS)

    Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi

    2015-01-01

    The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.

  2. Automatic concept extraction from spoken medical reports.

    PubMed

    Happe, André; Pouliquen, Bruno; Burgun, Anita; Cuggia, Marc; Le Beux, Pierre

    2003-07-01

    The objective of this project is to investigate methods whereby a combination of speech recognition and automated indexing methods substitute for current transcription and indexing practices. We based our study on existing speech recognition software programs and on NOMINDEX, a tool that extracts MeSH concepts from medical text in natural language and that is mainly based on a French medical lexicon and on the UMLS. For each document, the process consists of three steps: (1) dictation and digital audio recording, (2) speech recognition, (3) automatic indexing. The evaluation consisted of a comparison between the set of concepts extracted by NOMINDEX after the speech recognition phase and the set of keywords manually extracted from the initial document. The method was evaluated on a set of 28 patient discharge summaries extracted from the MENELAS corpus in French, corresponding to in-patients admitted for coronarography. The overall precision was 73% and the overall recall was 90%. Indexing errors were mainly due to word sense ambiguity and abbreviations. A specific issue was the fact that the standard French translation of MeSH terms lacks diacritics. A preliminary evaluation of speech recognition tools showed that the rate of accurate recognition was higher than 98%. Only 3% of the indexing errors were generated by inadequate speech recognition. We discuss several areas to focus on to improve this prototype. However, the very low rate of indexing errors due to speech recognition errors highlights the potential benefits of combining speech recognition techniques and automatic indexing.

  3. Automation of liquid-liquid extraction-spectrophotometry using prolonged pseudo-liquid drops and handheld CCD for speciation of Cr(VI) and Cr(III) in water samples.

    PubMed

    Chen, Wen; Zhong, Guanping; Zhou, Zaide; Wu, Peng; Hou, Xiandeng

    2005-10-01

    A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.

  4. A Supporting Platform for Semi-Automatic Hyoid Bone Tracking and Parameter Extraction from Videofluoroscopic Images for the Diagnosis of Dysphagia Patients.

    PubMed

    Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Paik, Nam Jong; Ryu, Ju Seok; Kim, In Young

    2017-04-01

    Conventional kinematic analysis of videofluoroscopic (VF) swallowing image, most popular for dysphagia diagnosis, requires time-consuming and repetitive manual extraction of diagnostic information from multiple images representing one swallowing period, which results in a heavy work load for clinicians and excessive hospital visits for patients to receive counseling and prescriptions. In this study, a software platform was developed that can assist in the VF diagnosis of dysphagia by automatically extracting a two-dimensional moving trajectory of the hyoid bone as well as 11 temporal and kinematic parameters. Fifty VF swallowing videos containing both non-mandible-overlapped and mandible-overlapped cases from eight patients with dysphagia of various etiologies and 19 videos from ten healthy controls were utilized for performance verification. Percent errors of hyoid bone tracking were 1.7 ± 2.1% for non-overlapped images and 4.2 ± 4.8% for overlapped images. Correlation coefficients between manually extracted and automatically extracted moving trajectories of the hyoid bone were 0.986 ± 0.017 (X-axis) and 0.992 ± 0.006 (Y-axis) for non-overlapped images, and 0.988 ± 0.009 (X-axis) and 0.991 ± 0.006 (Y-axis) for overlapped images. Based on the experimental results, we believe that the proposed platform has the potential to improve the satisfaction of both clinicians and patients with dysphagia.

  5. Automatic design of conformal cooling channels in injection molding tooling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingming; Hou, Binkui; Wang, Qian; Li, Yang; Huang, Zhigao

    2018-02-01

    The generation of cooling system plays an important role in injection molding design. A conformal cooling system can effectively improve molding efficiency and product quality. This paper provides a generic approach for building conformal cooling channels. The centrelines of these channels are generated in two steps. First, we extract conformal loops based on geometric information of product. Second, centrelines in spiral shape are built by blending these loops. We devise algorithms to implement the entire design process. A case study verifies the feasibility of this approach.

  6. Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Schad, Lothar R.

    We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.

  7. Towards fish-eye camera based in-home activity assessment.

    PubMed

    Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha

    2008-01-01

    Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.

  8. Exploration of Web Users' Search Interests through Automatic Subject Categorization of Query Terms.

    ERIC Educational Resources Information Center

    Pu, Hsiao-tieh; Yang, Chyan; Chuang, Shui-Lung

    2001-01-01

    Proposes a mechanism that carefully integrates human and machine efforts to explore Web users' search interests. The approach consists of a four-step process: extraction of core terms; construction of subject taxonomy; automatic subject categorization of query terms; and observation of users' search interests. Research findings are proved valuable…

  9. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  10. A novel approach for the efficient extraction of silybin from milk thistle fruits.

    PubMed

    Tan, Caihong; Xu, Xianrong; Shang, Yaqi; Fu, Xianli; Xia, Guohua; Yang, Huan

    2014-10-01

    Milk Thistle fruit is an important herb popularly consumed worldwide for a very long time. Silybin is the main bioactive constituent of the herb, and it has been approved by US Food and Drug Administration (FDA) as a medicine to treat liver diseases. Presently, using conventional technology, the meal of Milk Thistle fruit is used as the raw material to extract silybin. To investigate the necessity of detaching husk from kernel of the herb and also to propose a novel approach to enhance the extraction technology in pharmaceutical practices. The husk of Milk Thistle fruit was detached from the kernel of the herb using an automatic huller specially designed for this application. The husk and the meal of Milk Thistle fruit was subsequently refluxed, separately, with production rate of silybin as index for comparison of their extraction effect. The highest production rate was achieved under optimized condition. The husk was extracted 2 times (3 hrs each) using ethyl acetate, and the ratio of solvent to raw material was 8:1. The extract was allowed to be crystallized out. The separation of kernel from the husk of Milk Thistle fruit and using only the husk as raw material can largely enhance the extraction of silybin.

  11. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotations.

    PubMed

    Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L

    2018-01-01

    The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.

  12. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  13. MPEG content summarization based on compressed domain feature analysis

    NASA Astrophysics Data System (ADS)

    Sugano, Masaru; Nakajima, Yasuyuki; Yanagihara, Hiromasa

    2003-11-01

    This paper addresses automatic summarization of MPEG audiovisual content on compressed domain. By analyzing semantically important low-level and mid-level audiovisual features, our method universally summarizes the MPEG-1/-2 contents in the form of digest or highlight. The former is a shortened version of an original, while the latter is an aggregation of important or interesting events. In our proposal, first, the incoming MPEG stream is segmented into shots and the above features are derived from each shot. Then the features are adaptively evaluated in an integrated manner, and finally the qualified shots are aggregated into a summary. Since all the processes are performed completely on compressed domain, summarization is achieved at very low computational cost. The experimental results show that news highlights and sports highlights in TV baseball games can be successfully extracted according to simple shot transition models. As for digest extraction, subjective evaluation proves that meaningful shots are extracted from content without a priori knowledge, even if it contains multiple genres of programs. Our method also has the advantage of generating an MPEG-7 based description such as summary and audiovisual segments in the course of summarization.

  14. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel import...

  15. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel import...

  16. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel import...

  17. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel import...

  18. 19 CFR 360.103 - Automatic issuance of import licenses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Automatic issuance of import licenses. 360.103 Section 360.103 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.103 Automatic issuance of import licenses. (a) In general. Steel import...

  19. An automatic scaling method for obtaining the trace and parameters from oblique ionogram based on hybrid genetic algorithm

    NASA Astrophysics Data System (ADS)

    Song, Huan; Hu, Yaogai; Jiang, Chunhua; Zhou, Chen; Zhao, Zhengyu; Zou, Xianjian

    2016-12-01

    Scaling oblique ionogram plays an important role in obtaining ionospheric structure at the midpoint of oblique sounding path. The paper proposed an automatic scaling method to extract the trace and parameters of oblique ionogram based on hybrid genetic algorithm (HGA). The extracted 10 parameters come from F2 layer and Es layer, such as maximum observation frequency, critical frequency, and virtual height. The method adopts quasi-parabolic (QP) model to describe F2 layer's electron density profile that is used to synthesize trace. And it utilizes secant theorem, Martyn's equivalent path theorem, image processing technology, and echoes' characteristics to determine seven parameters' best fit values, and three parameter's initial values in QP model to set up their searching spaces which are the needed input data of HGA. Then HGA searches the three parameters' best fit values from their searching spaces based on the fitness between the synthesized trace and the real trace. In order to verify the performance of the method, 240 oblique ionograms are scaled and their results are compared with manual scaling results and the inversion results of the corresponding vertical ionograms. The comparison results show that the scaling results are accurate or at least adequate 60-90% of the time.

  20. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology.

    PubMed

    Emadzadeh, Ehsan; Sarker, Abeed; Nikfarjam, Azadeh; Gonzalez, Graciela

    2017-01-01

    Social networks, such as Twitter, have become important sources for active monitoring of user-reported adverse drug reactions (ADRs). Automatic extraction of ADR information can be crucial for healthcare providers, drug manufacturers, and consumers. However, because of the non-standard nature of social media language, automatically extracted ADR mentions need to be mapped to standard forms before they can be used by operational pharmacovigilance systems. We propose a modular natural language processing pipeline for mapping (normalizing) colloquial mentions of ADRs to their corresponding standardized identifiers. We seek to accomplish this task and enable customization of the pipeline so that distinct unlabeled free text resources can be incorporated to use the system for other normalization tasks. Our approach, which we call Hybrid Semantic Analysis (HSA), sequentially employs rule-based and semantic matching algorithms for mapping user-generated mentions to concept IDs in the Unified Medical Language System vocabulary. The semantic matching component of HSA is adaptive in nature and uses a regression model to combine various measures of semantic relatedness and resources to optimize normalization performance on the selected data source. On a publicly available corpus, our normalization method achieves 0.502 recall and 0.823 precision (F-measure: 0.624). Our proposed method outperforms a baseline based on latent semantic analysis and another that uses MetaMap.

  1. Combining Recurrence Analysis and Automatic Movement Extraction from Video Recordings to Study Behavioral Coupling in Face-to-Face Parent-Child Interactions.

    PubMed

    López Pérez, David; Leonardi, Giuseppe; Niedźwiecka, Alicja; Radkowska, Alicja; Rączaszek-Leonardi, Joanna; Tomalski, Przemysław

    2017-01-01

    The analysis of parent-child interactions is crucial for the understanding of early human development. Manual coding of interactions is a time-consuming task, which is a limitation in many projects. This becomes especially demanding if a frame-by-frame categorization of movement needs to be achieved. To overcome this, we present a computational approach for studying movement coupling in natural settings, which is a combination of a state-of-the-art automatic tracker, Tracking-Learning-Detection (TLD), and nonlinear time-series analysis, Cross-Recurrence Quantification Analysis (CRQA). We investigated the use of TLD to extract and automatically classify movement of each partner from 21 video recordings of interactions, where 5.5-month-old infants and mothers engaged in free play in laboratory settings. As a proof of concept, we focused on those face-to-face episodes, where the mother animated an object in front of the infant, in order to measure the coordination between the infants' head movement and the mothers' hand movement. We also tested the feasibility of using such movement data to study behavioral coupling between partners with CRQA. We demonstrate that movement can be extracted automatically from standard definition video recordings and used in subsequent CRQA to quantify the coupling between movement of the parent and the infant. Finally, we assess the quality of this coupling using an extension of CRQA called anisotropic CRQA and show asymmetric dynamics between the movement of the parent and the infant. When combined these methods allow automatic coding and classification of behaviors, which results in a more efficient manner of analyzing movements than manual coding.

  2. Combining Recurrence Analysis and Automatic Movement Extraction from Video Recordings to Study Behavioral Coupling in Face-to-Face Parent-Child Interactions

    PubMed Central

    López Pérez, David; Leonardi, Giuseppe; Niedźwiecka, Alicja; Radkowska, Alicja; Rączaszek-Leonardi, Joanna; Tomalski, Przemysław

    2017-01-01

    The analysis of parent-child interactions is crucial for the understanding of early human development. Manual coding of interactions is a time-consuming task, which is a limitation in many projects. This becomes especially demanding if a frame-by-frame categorization of movement needs to be achieved. To overcome this, we present a computational approach for studying movement coupling in natural settings, which is a combination of a state-of-the-art automatic tracker, Tracking-Learning-Detection (TLD), and nonlinear time-series analysis, Cross-Recurrence Quantification Analysis (CRQA). We investigated the use of TLD to extract and automatically classify movement of each partner from 21 video recordings of interactions, where 5.5-month-old infants and mothers engaged in free play in laboratory settings. As a proof of concept, we focused on those face-to-face episodes, where the mother animated an object in front of the infant, in order to measure the coordination between the infants' head movement and the mothers' hand movement. We also tested the feasibility of using such movement data to study behavioral coupling between partners with CRQA. We demonstrate that movement can be extracted automatically from standard definition video recordings and used in subsequent CRQA to quantify the coupling between movement of the parent and the infant. Finally, we assess the quality of this coupling using an extension of CRQA called anisotropic CRQA and show asymmetric dynamics between the movement of the parent and the infant. When combined these methods allow automatic coding and classification of behaviors, which results in a more efficient manner of analyzing movements than manual coding. PMID:29312075

  3. Automatic diagnosis of malaria based on complete circle-ellipse fitting search algorithm.

    PubMed

    Sheikhhosseini, M; Rabbani, H; Zekri, M; Talebi, A

    2013-12-01

    Diagnosis of malaria parasitemia from blood smears is a subjective and time-consuming task for pathologists. The automatic diagnostic process will reduce the diagnostic time. Also, it can be worked as a second opinion for pathologists and may be useful in malaria screening. This study presents an automatic method for malaria diagnosis from thin blood smears. According to this fact that malaria life cycle is started by forming a ring around the parasite nucleus, the proposed approach is mainly based on curve fitting to detect parasite ring in the blood smear. The method is composed of six main phases: stain object extraction step, which extracts candidate objects that may be infected by malaria parasites. This phase includes stained pixel extraction step based on intensity and colour, and stained object segmentation by defining stained circle matching. Second step is preprocessing phase which makes use of nonlinear diffusion filtering. The process continues with detection of parasite nucleus from resulted image of previous step according to image intensity. Fourth step introduces a complete search process in which the circle search step identifies the direction and initial points for direct least-square ellipse fitting algorithm. Furthermore in the ellipse searching process, although parasite shape is completed undesired regions with high error value are removed and ellipse parameters are modified. Features are extracted from the parasite candidate region instead of whole candidate object in the fifth step. By employing this special feature extraction way, which is provided by special searching process, the necessity of employing clump splitting methods is removed. Also, defining stained circle matching process in the first step speeds up the whole procedure. Finally, a series of decision rules are applied on the extracted features to decide on the positivity or negativity of malaria parasite presence. The algorithm is applied on 26 digital images which are provided from thin blood smear films. The images are contained 1274 objects which may be infected by parasite or healthy. Applying the automatic identification of malaria on provided database showed a sensitivity of 82.28% and specificity of 98.02%. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  4. Automatic corpus callosum segmentation for standardized MR brain scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Chen, Hong; Zhang, Li; Novak, Carol L.

    2007-03-01

    Magnetic Resonance (MR) brain scanning is often planned manually with the goal of aligning the imaging plane with key anatomic landmarks. The planning is time-consuming and subject to inter- and intra- operator variability. An automatic and standardized planning of brain scans is highly useful for clinical applications, and for maximum utility should work on patients of all ages. In this study, we propose a method for fully automatic planning that utilizes the landmarks from two orthogonal images to define the geometry of the third scanning plane. The corpus callosum (CC) is segmented in sagittal images by an active shape model (ASM), and the result is further improved by weighting the boundary movement with confidence scores and incorporating region based refinement. Based on the extracted contour of the CC, several important landmarks are located and then combined with landmarks from the coronal or transverse plane to define the geometry of the third plane. Our automatic method is tested on 54 MR images from 24 patients and 3 healthy volunteers, with ages ranging from 4 months to 70 years old. The average accuracy with respect to two manually labeled points on the CC is 3.54 mm and 4.19 mm, and differed by an average of 2.48 degrees from the orientation of the line connecting them, demonstrating that our method is sufficiently accurate for clinical use.

  5. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    PubMed

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  6. Automatically measuring brain ventricular volume within PACS using artificial intelligence.

    PubMed

    Yepes-Calderon, Fernando; Nelson, Marvin D; McComb, J Gordon

    2018-01-01

    The picture archiving and communications system (PACS) is currently the standard platform to manage medical images but lacks analytical capabilities. Staying within PACS, the authors have developed an automatic method to retrieve the medical data and access it at a voxel level, decrypted and uncompressed that allows analytical capabilities while not perturbing the system's daily operation. Additionally, the strategy is secure and vendor independent. Cerebral ventricular volume is important for the diagnosis and treatment of many neurological disorders. A significant change in ventricular volume is readily recognized, but subtle changes, especially over longer periods of time, may be difficult to discern. Clinical imaging protocols and parameters are often varied making it difficult to use a general solution with standard segmentation techniques. Presented is a segmentation strategy based on an algorithm that uses four features extracted from the medical images to create a statistical estimator capable of determining ventricular volume. When compared with manual segmentations, the correlation was 94% and holds promise for even better accuracy by incorporating the unlimited data available. The volume of any segmentable structure can be accurately determined utilizing the machine learning strategy presented and runs fully automatically within the PACS.

  7. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    NASA Astrophysics Data System (ADS)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  8. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    PubMed Central

    Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272

  9. Automatic dirt trail analysis in dermoscopy images.

    PubMed

    Cheng, Beibei; Joe Stanley, R; Stoecker, William V; Osterwise, Christopher T P; Stricklin, Sherea M; Hinton, Kristen A; Moss, Randy H; Oliviero, Margaret; Rabinovitz, Harold S

    2013-02-01

    Basal cell carcinoma (BCC) is the most common cancer in the US. Dermatoscopes are devices used by physicians to facilitate the early detection of these cancers based on the identification of skin lesion structures often specific to BCCs. One new lesion structure, referred to as dirt trails, has the appearance of dark gray, brown or black dots and clods of varying sizes distributed in elongated clusters with indistinct borders, often appearing as curvilinear trails. In this research, we explore a dirt trail detection and analysis algorithm for extracting, measuring, and characterizing dirt trails based on size, distribution, and color in dermoscopic skin lesion images. These dirt trails are then used to automatically discriminate BCC from benign skin lesions. For an experimental data set of 35 BCC images with dirt trails and 79 benign lesion images, a neural network-based classifier achieved a 0.902 are under a receiver operating characteristic curve using a leave-one-out approach. Results obtained from this study show that automatic detection of dirt trails in dermoscopic images of BCC is feasible. This is important because of the large number of these skin cancers seen every year and the challenge of discovering these earlier with instrumentation. © 2011 John Wiley & Sons A/S.

  10. Drug drug interaction extraction from the literature using a recursive neural network

    PubMed Central

    Lim, Sangrak; Lee, Kyubum

    2018-01-01

    Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599

  11. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    PubMed Central

    Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang

    2018-01-01

    The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407

  12. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics.

    PubMed

    Chriskos, Panteleimon; Frantzidis, Christos A; Gkivogkli, Polyxeni T; Bamidis, Panagiotis D; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.

  13. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics

    PubMed Central

    Chriskos, Panteleimon; Frantzidis, Christos A.; Gkivogkli, Polyxeni T.; Bamidis, Panagiotis D.; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the “ENVIHAB” facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging. PMID:29628883

  14. Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs.

    PubMed

    Oliveira, Hugo M; Segundo, Marcela A; Lima, José L F C; Miró, Manuel; Cerdà, Victor

    2010-05-01

    In the present work, it is proposed, for the first time, an on-line automatic renewable molecularly imprinted solid-phase extraction (MISPE) protocol for sample preparation prior to liquid chromatographic analysis. The automatic microscale procedure was based on the bead injection (BI) concept under the lab-on-valve (LOV) format, using a multisyringe burette as propulsion unit for handling solutions and suspensions. A high precision on handling the suspensions containing irregularly shaped molecularly imprinted polymer (MIP) particles was attained, enabling the use of commercial MIP as renewable sorbent. The features of the proposed BI-LOV manifold also allowed a strict control of the different steps within the extraction protocol, which are essential for promoting selective interactions in the cavities of the MIP. By using this on-line method, it was possible to extract and quantify riboflavin from different foodstuff samples in the range between 0.450 and 5.00 mg L(-1) after processing 1,000 microL of sample (infant milk, pig liver extract, and energy drink) without any prior treatment. For milk samples, LOD and LOQ values were 0.05 and 0.17 mg L(-1), respectively. The method was successfully applied to the analysis of two certified reference materials (NIST 1846 and BCR 487) with high precision (RSD < 5.5%). Considering the downscale and simplification of the sample preparation protocol and the simultaneous performance of extraction and chromatographic assays, a cost-effective and enhanced throughput (six determinations per hour) methodology for determination of riboflavin in foodstuff samples is deployed here.

  15. Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan

    Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.

  16. Abbreviation definition identification based on automatic precision estimates.

    PubMed

    Sohn, Sunghwan; Comeau, Donald C; Kim, Won; Wilbur, W John

    2008-09-25

    The rapid growth of biomedical literature presents challenges for automatic text processing, and one of the challenges is abbreviation identification. The presence of unrecognized abbreviations in text hinders indexing algorithms and adversely affects information retrieval and extraction. Automatic abbreviation definition identification can help resolve these issues. However, abbreviations and their definitions identified by an automatic process are of uncertain validity. Due to the size of databases such as MEDLINE only a small fraction of abbreviation-definition pairs can be examined manually. An automatic way to estimate the accuracy of abbreviation-definition pairs extracted from text is needed. In this paper we propose an abbreviation definition identification algorithm that employs a variety of strategies to identify the most probable abbreviation definition. In addition our algorithm produces an accuracy estimate, pseudo-precision, for each strategy without using a human-judged gold standard. The pseudo-precisions determine the order in which the algorithm applies the strategies in seeking to identify the definition of an abbreviation. On the Medstract corpus our algorithm produced 97% precision and 85% recall which is higher than previously reported results. We also annotated 1250 randomly selected MEDLINE records as a gold standard. On this set we achieved 96.5% precision and 83.2% recall. This compares favourably with the well known Schwartz and Hearst algorithm. We developed an algorithm for abbreviation identification that uses a variety of strategies to identify the most probable definition for an abbreviation and also produces an estimated accuracy of the result. This process is purely automatic.

  17. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  18. Automatic extraction of disease-specific features from Doppler images

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Moradi, Mehdi; Parajuli, Nripesh; Syeda-Mahmood, Tanveer

    2017-03-01

    Flow Doppler imaging is widely used by clinicians to detect diseases of the valves. In particular, continuous wave (CW) Doppler mode scan is routinely done during echocardiography and shows Doppler signal traces over multiple heart cycles. Traditionally, echocardiographers have manually traced such velocity envelopes to extract measurements such as decay time and pressure gradient which are then matched to normal and abnormal values based on clinical guidelines. In this paper, we present a fully automatic approach to deriving these measurements for aortic stenosis retrospectively from echocardiography videos. Comparison of our method with measurements made by echocardiographers shows large agreement as well as identification of new cases missed by echocardiographers.

  19. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.

    PubMed

    Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe

    2014-01-01

    The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.

  20. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Casey, Cameron P.; Zheng, Xueyun

    Motivation: Drift tube ion mobility spectrometry (DTIMS) is increasingly implemented in high throughput omics workflows, and new informatics approaches are necessary for processing the associated data. To automatically extract arrival times for molecules measured by DTIMS coupled with mass spectrometry and compute their associated collisional cross sections (CCS) we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary application presented for this algorithm is the extraction of information necessary to create a reference library containing accu-rate masses, DTIMS arrival times and CCSs for use in high throughput omics analyses. Results: We demonstrate the utility of this approach bymore » automatically extracting arrival times and calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-generated CCS values were identical to those calculated by hand and within error of those calcu-lated using commercially available instrument vendor software.« less

  2. BioSimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction.

    PubMed

    Jonnalagadda, Siddhartha; Gonzalez, Graciela

    2010-11-13

    BioSimplify is an open source tool written in Java that introduces and facilitates the use of a novel model for sentence simplification tuned for automatic discourse analysis and information extraction (as opposed to sentence simplification for improving human readability). The model is based on a "shot-gun" approach that produces many different (simpler) versions of the original sentence by combining variants of its constituent elements. This tool is optimized for processing biomedical scientific literature such as the abstracts indexed in PubMed. We tested our tool on its impact to the task of PPI extraction and it improved the f-score of the PPI tool by around 7%, with an improvement in recall of around 20%. The BioSimplify tool and test corpus can be downloaded from https://biosimplify.sourceforge.net.

  3. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  4. A hybrid model based on neural networks for biomedical relation extraction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification

    NASA Astrophysics Data System (ADS)

    Gao, Hui

    2018-04-01

    The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  6. A semi-automatic method for extracting thin line structures in images as rooted tree network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazzini, Jacopo; Dillard, Scott; Soille, Pierre

    2010-01-01

    This paper addresses the problem of semi-automatic extraction of line networks in digital images - e.g., road or hydrographic networks in satellite images, blood vessels in medical images, robust. For that purpose, we improve a generic method derived from morphological and hydrological concepts and consisting in minimum cost path estimation and flow simulation. While this approach fully exploits the local contrast and shape of the network, as well as its arborescent nature, we further incorporate local directional information about the structures in the image. Namely, an appropriate anisotropic metric is designed by using both the characteristic features of the targetmore » network and the eigen-decomposition of the gradient structure tensor of the image. Following, the geodesic propagation from a given seed with this metric is combined with hydrological operators for overland flow simulation to extract the line network. The algorithm is demonstrated for the extraction of blood vessels in a retina image and of a river network in a satellite image.« less

  7. The automatic extraction of pitch perturbation using microcomputers: some methodological considerations.

    PubMed

    Deem, J F; Manning, W H; Knack, J V; Matesich, J S

    1989-09-01

    A program for the automatic extraction of jitter (PAEJ) was developed for the clinical measurement of pitch perturbations using a microcomputer. The program currently includes 12 implementations of an algorithm for marking the boundary criteria for a fundamental period of vocal fold vibration. The relative sensitivity of these extraction procedures for identifying the pitch period was compared using sine waves. Data obtained to date provide information for each procedure concerning the effects of waveform peakedness and slope, sample duration in cycles, noise level of the analysis system with both direct and tape recorded input, and the influence of interpolation. Zero crossing extraction procedures provided lower jitter values regardless of sine wave frequency or sample duration. The procedures making use of positive- or negative-going zero crossings with interpolation provided the lowest measures of jitter with the sine wave stimuli. Pilot data obtained with normal-speaking adults indicated that jitter measures varied as a function of the speaker, vowel, and sample duration.

  8. Fast modal extraction in NASTRAN via the FEER computer program. [based on automatic matrix reduction method for lower modes of structures with many degrees of freedom

    NASA Technical Reports Server (NTRS)

    Newman, M. B.; Pipano, A.

    1973-01-01

    A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes.

  9. Virtual Surveyor based Object Extraction from Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Habib, Md. Ahsan

    Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.

  10. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  11. [Terahertz Spectroscopic Identification with Deep Belief Network].

    PubMed

    Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao

    2015-12-01

    Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.

  12. Automatically Recognizing Medication and Adverse Event Information From Food and Drug Administration’s Adverse Event Reporting System Narratives

    PubMed Central

    Polepalli Ramesh, Balaji; Belknap, Steven M; Li, Zuofeng; Frid, Nadya; West, Dennis P

    2014-01-01

    Background The Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS) is a repository of spontaneously-reported adverse drug events (ADEs) for FDA-approved prescription drugs. FAERS reports include both structured reports and unstructured narratives. The narratives often include essential information for evaluation of the severity, causality, and description of ADEs that are not present in the structured data. The timely identification of unknown toxicities of prescription drugs is an important, unsolved problem. Objective The objective of this study was to develop an annotated corpus of FAERS narratives and biomedical named entity tagger to automatically identify ADE related information in the FAERS narratives. Methods We developed an annotation guideline and annotate medication information and adverse event related entities on 122 FAERS narratives comprising approximately 23,000 word tokens. A named entity tagger using supervised machine learning approaches was built for detecting medication information and adverse event entities using various categories of features. Results The annotated corpus had an agreement of over .9 Cohen’s kappa for medication and adverse event entities. The best performing tagger achieves an overall performance of 0.73 F1 score for detection of medication, adverse event and other named entities. Conclusions In this study, we developed an annotated corpus of FAERS narratives and machine learning based models for automatically extracting medication and adverse event information from the FAERS narratives. Our study is an important step towards enriching the FAERS data for postmarketing pharmacovigilance. PMID:25600332

  13. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  14. Automatic definition of the oncologic EHR data elements from NCIT in OWL.

    PubMed

    Cuggia, Marc; Bourdé, Annabel; Turlin, Bruno; Vincendeau, Sebastien; Bertaud, Valerie; Bohec, Catherine; Duvauferrier, Régis

    2011-01-01

    Semantic interoperability based on ontologies allows systems to combine their information and process them automatically. The ability to extract meaningful fragments from ontology is a key for the ontology re-use and the construction of a subset will help to structure clinical data entries. The aim of this work is to provide a method for extracting a set of concepts for a specific domain, in order to help to define data elements of an oncologic EHR. a generic extraction algorithm was developed to extract, from the NCIT and for a specific disease (i.e. prostate neoplasm), all the concepts of interest into a sub-ontology. We compared all the concepts extracted to the concepts encoded manually contained into the multi-disciplinary meeting report form (MDMRF). We extracted two sub-ontologies: sub-ontology 1 by using a single key concept and sub-ontology 2 by using 5 additional keywords. The coverage of sub-ontology 2 to the MDMRF concepts was 51%. The low rate of coverage is due to the lack of definition or mis-classification of the NCIT concepts. By providing a subset of concepts focused on a particular domain, this extraction method helps at optimizing the binding process of data elements and at maintaining and enriching a domain ontology.

  15. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information.

    PubMed

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Yan, Bin; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition.

  16. Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information

    PubMed Central

    Zhang, Chi; Tong, Li; Zeng, Ying; Jiang, Jingfang; Bu, Haibing; Li, Jianxin

    2015-01-01

    Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition. PMID:26380294

  17. Extricating Manual and Non-Manual Features for Subunit Level Medical Sign Modelling in Automatic Sign Language Classification and Recognition.

    PubMed

    R, Elakkiya; K, Selvamani

    2017-09-22

    Subunit segmenting and modelling in medical sign language is one of the important studies in linguistic-oriented and vision-based Sign Language Recognition (SLR). Many efforts were made in the precedent to focus the functional subunits from the view of linguistic syllables but the problem is implementing such subunit extraction using syllables is not feasible in real-world computer vision techniques. And also, the present recognition systems are designed in such a way that it can detect the signer dependent actions under restricted and laboratory conditions. This research paper aims at solving these two important issues (1) Subunit extraction and (2) Signer independent action on visual sign language recognition. Subunit extraction involved in the sequential and parallel breakdown of sign gestures without any prior knowledge on syllables and number of subunits. A novel Bayesian Parallel Hidden Markov Model (BPaHMM) is introduced for subunit extraction to combine the features of manual and non-manual parameters to yield better results in classification and recognition of signs. Signer independent action aims in using a single web camera for different signer behaviour patterns and for cross-signer validation. Experimental results have proved that the proposed signer independent subunit level modelling for sign language classification and recognition has shown improvement and variations when compared with other existing works.

  18. Tropical Timber Identification using Backpropagation Neural Network

    NASA Astrophysics Data System (ADS)

    Siregar, B.; Andayani, U.; Fatihah, N.; Hakim, L.; Fahmi, F.

    2017-01-01

    Each and every type of wood has different characteristics. Identifying the type of wood properly is important, especially for industries that need to know the type of timber specifically. However, it requires expertise in identifying the type of wood and only limited experts available. In addition, the manual identification even by experts is rather inefficient because it requires a lot of time and possibility of human errors. To overcome these problems, a digital image based method to identify the type of timber automatically is needed. In this study, backpropagation neural network is used as artificial intelligence component. Several stages were developed: a microscope image acquisition, pre-processing, feature extraction using gray level co-occurrence matrix and normalization of data extraction using decimal scaling features. The results showed that the proposed method was able to identify the timber with an accuracy of 94%.

  19. A Discriminative Sentence Compression Method as Combinatorial Optimization Problem

    NASA Astrophysics Data System (ADS)

    Hirao, Tsutomu; Suzuki, Jun; Isozaki, Hideki

    In the study of automatic summarization, the main research topic was `important sentence extraction' but nowadays `sentence compression' is a hot research topic. Conventional sentence compression methods usually transform a given sentence into a parse tree or a dependency tree, and modify them to get a shorter sentence. However, this method is sometimes too rigid. In this paper, we regard sentence compression as an combinatorial optimization problem that extracts an optimal subsequence of words. Hori et al. also proposed a similar method, but they used only a small number of features and their weights were tuned by hand. We introduce a large number of features such as part-of-speech bigrams and word position in the sentence. Furthermore, we train the system by discriminative learning. According to our experiments, our method obtained better score than other methods with statistical significance.

  20. Review of automatic detection of pig behaviours by using image analysis

    NASA Astrophysics Data System (ADS)

    Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Kong, Fantao

    2017-06-01

    Automatic detection of lying, moving, feeding, drinking, and aggressive behaviours of pigs by means of image analysis can save observation input by staff. It would help staff make early detection of diseases or injuries of pigs during breeding and improve management efficiency of swine industry. This study describes the progress of pig behaviour detection based on image analysis and advancement in image segmentation of pig body, segmentation of pig adhesion and extraction of pig behaviour characteristic parameters. Challenges for achieving automatic detection of pig behaviours were summarized.

  1. A semi-automatic microextraction in packed sorbent, using a digitally controlled syringe, combined with ultra-high pressure liquid chromatography as a new and ultra-fast approach for the determination of prenylflavonoids in beers.

    PubMed

    Gonçalves, João L; Alves, Vera L; Rodrigues, Fátima P; Figueira, José A; Câmara, José S

    2013-08-23

    In this work a highly selective and sensitive analytical procedure based on semi-automatic microextraction by packed sorbents (MEPS) technique, using a new digitally controlled syringe (eVol(®)) combined with ultra-high pressure liquid chromatography (UHPLC), is proposed to determine the prenylated chalcone derived from the hop (Humulus lupulus L.), xanthohumol (XN), and its isomeric flavonone isoxanthohumol (IXN) in beers. Extraction and UHPLC parameters were accurately optimized to achieve the highest recoveries and to enhance the analytical characteristics of the method. Important parameters affecting MEPS performance, namely the type of sorbent material (C2, C8, C18, SIL, and M1), elution solvent system, number of extraction cycles (extract-discard), sample volume, elution volume, and sample pH, were evaluated. The optimal experimental conditions involves the loading of 500μL of sample through a C18 sorbent in a MEPS syringe placed in the semi-automatic eVol(®) syringe followed by elution using 250μL of acetonitrile (ACN) in a 10 extractions cycle (about 5min for the entire sample preparation step). The obtained extract is directly analyzed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and ACN (eluent B) in the gradient elution mode (10min total analysis). Under optimized conditions good results were obtained in terms of linearity within the established concentration range with correlation coefficients (R) values higher than 0.986, with a residual deviation for each calibration point below 12%. The limit of detection (LOD) and limit of quantification (LOQ) obtained were 0.4ngmL(-1) and 1.0ngmL(-1) for IXN, and 0.9ngmL(-1) and 3.0ngmL(-1) for XN, respectively. Precision was lower than 4.6% for IXN and 8.4% for XN. Typical recoveries ranged between 67.1% and 99.3% for IXN and between 74.2% and 99.9% for XN, with relative standard deviations %RSD no larger than 8%. The applicability of the proposed analytical procedure in commercial beers, revealed the presence of both target prenylchalcones in all samples being IXN the most abundant with concentration of between 0.126 and 0.200μgmL(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Extracting rate changes in transcriptional regulation from MEDLINE abstracts.

    PubMed

    Liu, Wenting; Miao, Kui; Li, Guangxia; Chang, Kuiyu; Zheng, Jie; Rajapakse, Jagath C

    2014-01-01

    Time delays are important factors that are often neglected in gene regulatory network (GRN) inference models. Validating time delays from knowledge bases is a challenge since the vast majority of biological databases do not record temporal information of gene regulations. Biological knowledge and facts on gene regulations are typically extracted from bio-literature with specialized methods that depend on the regulation task. In this paper, we mine evidences for time delays related to the transcriptional regulation of yeast from the PubMed abstracts. Since the vast majority of abstracts lack quantitative time information, we can only collect qualitative evidences of time delays. Specifically, the speed-up or delay in transcriptional regulation rate can provide evidences for time delays (shorter or longer) in GRN. Thus, we focus on deriving events related to rate changes in transcriptional regulation. A corpus of yeast regulation related abstracts was manually labeled with such events. In order to capture these events automatically, we create an ontology of sub-processes that are likely to result in transcription rate changes by combining textual patterns and biological knowledge. We also propose effective feature extraction methods based on the created ontology to identify the direct evidences with specific details of these events. Our ontologies outperform existing state-of-the-art gene regulation ontologies in the automatic rule learning method applied to our corpus. The proposed deterministic ontology rule-based method can achieve comparable performance to the automatic rule learning method based on decision trees. This demonstrates the effectiveness of our ontology in identifying rate-changing events. We also tested the effectiveness of the proposed feature mining methods on detecting direct evidence of events. Experimental results show that the machine learning method on these features achieves an F1-score of 71.43%. The manually labeled corpus of events relating to rate changes in transcriptional regulation for yeast is available in https://sites.google.com/site/wentingntu/data. The created ontologies summarized both biological causes of rate changes in transcriptional regulation and corresponding positive and negative textual patterns from the corpus. They are demonstrated to be effective in identifying rate-changing events, which shows the benefits of combining textual patterns and biological knowledge on extracting complex biological events.

  3. Highway extraction from high resolution aerial photography using a geometric active contour model

    NASA Astrophysics Data System (ADS)

    Niu, Xutong

    Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the image or at a position where possible blocking may occur, such as at an overpass bridge or near vehicle crowds. These seed points can be automatically propagated throughout the entire highway network. During the process, road center points are also extracted, which introduces a search direction for solving possible blocking problems. This new framework has been successfully applied to highway network extraction from a large orthophoto mosaic. In the process, vehicles on the highway extracted from mosaic were detected with an 83% success rate.

  4. Vertical-Control Subsystem for Automatic Coal Mining

    NASA Technical Reports Server (NTRS)

    Griffiths, W. R.; Smirlock, M.; Aplin, J.; Fish, R. B.; Fish, D.

    1984-01-01

    Guidance and control system automatically positions cutting drums of double-ended longwall shearer so they follow coal seam. System determines location of upper interface between coal and shale and continuously adjusts cutting-drum positions, upward or downward, to track undulating interface. Objective to keep cutting edges as close as practicable to interface and thus extract as much coal as possible from seam.

  5. Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods.

    PubMed

    Kong, Xiangyi; Gong, Shun; Su, Lijuan; Howard, Newton; Kong, Yanguo

    2018-01-01

    Automatic early detection of acromegaly is theoretically possible from facial photographs, which can lessen the prevalence and increase the cure probability. In this study, several popular machine learning algorithms were used to train a retrospective development dataset consisting of 527 acromegaly patients and 596 normal subjects. We firstly used OpenCV to detect the face bounding rectangle box, and then cropped and resized it to the same pixel dimensions. From the detected faces, locations of facial landmarks which were the potential clinical indicators were extracted. Frontalization was then adopted to synthesize frontal facing views to improve the performance. Several popular machine learning methods including LM, KNN, SVM, RT, CNN, and EM were used to automatically identify acromegaly from the detected facial photographs, extracted facial landmarks, and synthesized frontal faces. The trained models were evaluated using a separate dataset, of which half were diagnosed as acromegaly by growth hormone suppression test. The best result of our proposed methods showed a PPV of 96%, a NPV of 95%, a sensitivity of 96% and a specificity of 96%. Artificial intelligence can automatically early detect acromegaly with a high sensitivity and specificity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Extraction of tidal channel networks from airborne scanning laser altimetry

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.

  7. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    PubMed

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P < 10 -560 ) for FHR and 0.97 (P < 10 -560 ) for UC. On average, MSE value was 0.00 for both FHR and UC. No CTG feature was found significantly different when measured in eCTG vs. reference signals. eCTG procedure is a promising useful tool to accurately extract digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. iFER: facial expression recognition using automatically selected geometric eye and eyebrow features

    NASA Astrophysics Data System (ADS)

    Oztel, Ismail; Yolcu, Gozde; Oz, Cemil; Kazan, Serap; Bunyak, Filiz

    2018-03-01

    Facial expressions have an important role in interpersonal communications and estimation of emotional states or intentions. Automatic recognition of facial expressions has led to many practical applications and became one of the important topics in computer vision. We present a facial expression recognition system that relies on geometry-based features extracted from eye and eyebrow regions of the face. The proposed system detects keypoints on frontal face images and forms a feature set using geometric relationships among groups of detected keypoints. Obtained feature set is refined and reduced using the sequential forward selection (SFS) algorithm and fed to a support vector machine classifier to recognize five facial expression classes. The proposed system, iFER (eye-eyebrow only facial expression recognition), is robust to lower face occlusions that may be caused by beards, mustaches, scarves, etc. and lower face motion during speech production. Preliminary experiments on benchmark datasets produced promising results outperforming previous facial expression recognition studies using partial face features, and comparable results to studies using whole face information, only slightly lower by ˜ 2.5 % compared to the best whole face facial recognition system while using only ˜ 1 / 3 of the facial region.

  9. A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification

    NASA Astrophysics Data System (ADS)

    Yang, Qiuju; Hu, Ze-Jun

    2018-03-01

    Aurora is a very important geophysical phenomenon in the high latitudes of Arctic and Antarctic regions, and it is important to make a comparative study of the auroral morphology between the two hemispheres. Based on the morphological characteristics of the four labeled dayside discrete auroral types (auroral arc, drapery corona, radial corona and hot-spot aurora) on the 8001 dayside auroral images at the Chinese Arctic Yellow River Station in 2003, and by extracting the local binary pattern (LBP) features and using a k-nearest classifier, this paper performs an automatic classification of the 65 361 auroral images of the Chinese Arctic Yellow River Station during 2004-2009 and the 39 335 auroral images of the South Pole Station between 2003 and 2005. Finally, it obtains the occurrence distribution of the dayside auroral morphology in the Northern and Southern Hemisphere. The statistical results indicate that the four dayside discrete auroral types present a similar occurrence distribution between the two stations. To the best of our knowledge, we are the first to report statistical comparative results of dayside auroral morphology distribution between the Northern and Southern Hemisphere.

  10. A framework for biomedical figure segmentation towards image-based document retrieval

    PubMed Central

    2013-01-01

    The figures included in many of the biomedical publications play an important role in understanding the biological experiments and facts described within. Recent studies have shown that it is possible to integrate the information that is extracted from figures in classical document classification and retrieval tasks in order to improve their accuracy. One important observation about the figures included in biomedical publications is that they are often composed of multiple subfigures or panels, each describing different methodologies or results. The use of these multimodal figures is a common practice in bioscience, as experimental results are graphically validated via multiple methodologies or procedures. Thus, for a better use of multimodal figures in document classification or retrieval tasks, as well as for providing the evidence source for derived assertions, it is important to automatically segment multimodal figures into subfigures and panels. This is a challenging task, however, as different panels can contain similar objects (i.e., barcharts and linecharts) with multiple layouts. Also, certain types of biomedical figures are text-heavy (e.g., DNA sequences and protein sequences images) and they differ from traditional images. As a result, classical image segmentation techniques based on low-level image features, such as edges or color, are not directly applicable to robustly partition multimodal figures into single modal panels. In this paper, we describe a robust solution for automatically identifying and segmenting unimodal panels from a multimodal figure. Our framework starts by robustly harvesting figure-caption pairs from biomedical articles. We base our approach on the observation that the document layout can be used to identify encoded figures and figure boundaries within PDF files. Taking into consideration the document layout allows us to correctly extract figures from the PDF document and associate their corresponding caption. We combine pixel-level representations of the extracted images with information gathered from their corresponding captions to estimate the number of panels in the figure. Thus, our approach simultaneously identifies the number of panels and the layout of figures. In order to evaluate the approach described here, we applied our system on documents containing protein-protein interactions (PPIs) and compared the results against a gold standard that was annotated by biologists. Experimental results showed that our automatic figure segmentation approach surpasses pure caption-based and image-based approaches, achieving a 96.64% accuracy. To allow for efficient retrieval of information, as well as to provide the basis for integration into document classification and retrieval systems among other, we further developed a web-based interface that lets users easily retrieve panels containing the terms specified in the user queries. PMID:24565394

  11. Doppler extraction with a digital VCO

    NASA Technical Reports Server (NTRS)

    Starner, E. R.; Nossen, E. J.

    1977-01-01

    Digitally controlled oscillator in phased-locked loop may be useful for data communications systems, or may be modified to serve as information extraction component of microwave or optical system for collision avoidance or automatic braking. Instrument is frequency-synthesizing device with output specified precisely by digital number programmed into frequency register.

  12. Variogram-based feature extraction for neural network recognition of logos

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.

    2003-03-01

    This paper presents a new approach for extracting spatial features of images based on the theory of regionalized variables. These features can be effectively used for automatic recognition of logo images using neural networks. Experimental results on a public-domain logo database show the effectiveness of the proposed approach.

  13. Pattern-Based Extraction of Argumentation from the Scientific Literature

    ERIC Educational Resources Information Center

    White, Elizabeth K.

    2010-01-01

    As the number of publications in the biomedical field continues its exponential increase, techniques for automatically summarizing information from this body of literature have become more diverse. In addition, the targets of summarization have become more subtle; initial work focused on extracting the factual assertions from full-text papers,…

  14. Automatic segmentation of mandible in panoramic x-ray.

    PubMed

    Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh

    2015-10-01

    As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.

  15. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.

  16. Automated Assessment of Child Vocalization Development Using LENA.

    PubMed

    Richards, Jeffrey A; Xu, Dongxin; Gilkerson, Jill; Yapanel, Umit; Gray, Sharmistha; Paul, Terrance

    2017-07-12

    To produce a novel, efficient measure of children's expressive vocal development on the basis of automatic vocalization assessment (AVA), child vocalizations were automatically identified and extracted from audio recordings using Language Environment Analysis (LENA) System technology. Assessment was based on full-day audio recordings collected in a child's unrestricted, natural language environment. AVA estimates were derived using automatic speech recognition modeling techniques to categorize and quantify the sounds in child vocalizations (e.g., protophones and phonemes). These were expressed as phone and biphone frequencies, reduced to principal components, and inputted to age-based multiple linear regression models to predict independently collected criterion-expressive language scores. From these models, we generated vocal development AVA estimates as age-standardized scores and development age estimates. AVA estimates demonstrated strong statistical reliability and validity when compared with standard criterion expressive language assessments. Automated analysis of child vocalizations extracted from full-day recordings in natural settings offers a novel and efficient means to assess children's expressive vocal development. More research remains to identify specific mechanisms of operation.

  17. Automatic energy calibration algorithm for an RBS setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala

    2013-05-06

    This work describes a computer algorithm for automatic extraction of the energy calibration parameters from a Rutherford Back-Scattering Spectroscopy (RBS) spectrum. Parameters like the electronic gain, electronic offset and detection resolution (FWHM) of a RBS setup are usually determined using a standard sample. In our case, the standard sample comprises of a multi-elemental thin film made of a mixture of Ti-Al-Ta that is analyzed at the beginning of each run at defined beam energy. A computer program has been developed to extract automatically the calibration parameters from the spectrum of the standard sample. The code evaluates the first derivative ofmore » the energy spectrum, locates the trailing edges of the Al, Ti and Ta peaks and fits a first order polynomial for the energy-channel relation. The detection resolution is determined fitting the convolution of a pre-calculated theoretical spectrum. To test the code, data of two years have been analyzed and the results compared with the manual calculations done previously, obtaining good agreement.« less

  18. Detection of exudates in fundus images using a Markovian segmentation model.

    PubMed

    Harangi, Balazs; Hajdu, Andras

    2014-01-01

    Diabetic retinopathy (DR) is one of the most common causing of vision loss in developed countries. In early stage of DR, some signs like exudates appear in the retinal images. An automatic screening system must be capable to detect these signs properly so that the treatment of the patients may begin in time. The appearance of exudates shows a rich variety regarding their shape and size making automatic detection more challenging. We propose a way for the automatic segmentation of exudates consisting of a candidate extraction step followed by exact contour detection and region-wise classification. More specifically, we extract possible exudate candidates using grayscale morphology and their proper shape is determined by a Markovian segmentation model considering edge information. Finally, we label the candidates as true or false ones by an optimally adjusted SVM classifier. For testing purposes, we considered the publicly available database DiaretDB1, where the proposed method outperformed several state-of-the-art exudate detectors.

  19. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.

  20. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  1. Unsupervised Extraction of Diagnosis Codes from EMRs Using Knowledge-Based and Extractive Text Summarization Techniques

    PubMed Central

    Kavuluru, Ramakanth; Han, Sifei; Harris, Daniel

    2017-01-01

    Diagnosis codes are extracted from medical records for billing and reimbursement and for secondary uses such as quality control and cohort identification. In the US, these codes come from the standard terminology ICD-9-CM derived from the international classification of diseases (ICD). ICD-9 codes are generally extracted by trained human coders by reading all artifacts available in a patient’s medical record following specific coding guidelines. To assist coders in this manual process, this paper proposes an unsupervised ensemble approach to automatically extract ICD-9 diagnosis codes from textual narratives included in electronic medical records (EMRs). Earlier attempts on automatic extraction focused on individual documents such as radiology reports and discharge summaries. Here we use a more realistic dataset and extract ICD-9 codes from EMRs of 1000 inpatient visits at the University of Kentucky Medical Center. Using named entity recognition (NER), graph-based concept-mapping of medical concepts, and extractive text summarization techniques, we achieve an example based average recall of 0.42 with average precision 0.47; compared with a baseline of using only NER, we notice a 12% improvement in recall with the graph-based approach and a 7% improvement in precision using the extractive text summarization approach. Although diagnosis codes are complex concepts often expressed in text with significant long range non-local dependencies, our present work shows the potential of unsupervised methods in extracting a portion of codes. As such, our findings are especially relevant for code extraction tasks where obtaining large amounts of training data is difficult. PMID:28748227

  2. Monitoring Obstructive Sleep Apnea by means of a real-time mobile system based on the automatic extraction of sets of rules through Differential Evolution.

    PubMed

    Sannino, Giovanna; De Falco, Ivanoe; De Pietro, Giuseppe

    2014-06-01

    Real-time Obstructive Sleep Apnea (OSA) episode detection and monitoring are important for society in terms of an improvement in the health of the general population and of a reduction in mortality and healthcare costs. Currently, to diagnose OSA patients undergo PolySomnoGraphy (PSG), a complicated and invasive test to be performed in a specialized center involving many sensors and wires. Accordingly, each patient is required to stay in the same position throughout the duration of one night, thus restricting their movements. This paper proposes an easy, cheap, and portable approach for the monitoring of patients with OSA, which collects single-channel ElectroCardioGram (ECG) data only. It is easy to perform from the patient's point of view because only one wearable sensor is required, so the patient is not restricted to keeping the same position all night long, and the detection and monitoring can be carried out in any place through the use of a mobile device. Our approach is based on the automatic extraction, from a database containing information about the monitored patient, of explicit knowledge in the form of a set of IF…THEN rules containing typical parameters derived from Heart Rate Variability (HRV) analysis. The extraction is carried out off-line by means of a Differential Evolution algorithm. This set of rules can then be exploited in the real-time mobile monitoring system developed at our Laboratory: the ECG data is gathered by a wearable sensor and sent to a mobile device, where it is processed in real time. Subsequently, HRV-related parameters are computed from this data, and, if their values activate some of the rules describing the occurrence of OSA, an alarm is automatically produced. This approach has been tested on a well-known literature database of OSA patients. The numerical results show its effectiveness in terms of accuracy, sensitivity, and specificity, and the achieved sets of rules evidence the user-friendliness of the approach. Furthermore, the method is compared against other well known classifiers, and its discrimination ability is shown to be higher. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  4. An automatic graph-based approach for artery/vein classification in retinal images.

    PubMed

    Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio

    2014-03-01

    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.

  5. Tracking multiple surgical instruments in a near-infrared optical system.

    PubMed

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Wang, Zhigang

    2016-12-01

    Surgical navigation systems can assist doctors in performing more precise and more efficient surgical procedures to avoid various accidents. The near-infrared optical system (NOS) is an important component of surgical navigation systems. However, several surgical instruments are used during surgery, and effectively tracking all of them is challenging. A stereo matching algorithm using two intersecting lines and surgical instrument codes is proposed in this paper. In our NOS, the markers on the surgical instruments can be captured by two near-infrared cameras. After automatically searching and extracting their subpixel coordinates in the left and right images, the coordinates of the real and pseudo markers are determined by the two intersecting lines. Finally, the pseudo markers are removed to achieve accurate stereo matching by summing the codes for the distances between a specific marker with the other two markers on the surgical instrument. Experimental results show that the markers on the different surgical instruments can be automatically and accurately recognized. The NOS can accurately track multiple surgical instruments.

  6. [Assessment of skin aging grading based on computer vision].

    PubMed

    Li, Lingyu; Xue, Jinxia; He, Xiangqian; Zhang, Sheng; Fan, Chu

    2017-06-01

    Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e. , mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.

  7. Recognising discourse causality triggers in the biomedical domain.

    PubMed

    Mihăilă, Claudiu; Ananiadou, Sophia

    2013-12-01

    Current domain-specific information extraction systems represent an important resource for biomedical researchers, who need to process vast amounts of knowledge in a short time. Automatic discourse causality recognition can further reduce their workload by suggesting possible causal connections and aiding in the curation of pathway models. We describe here an approach to the automatic identification of discourse causality triggers in the biomedical domain using machine learning. We create several baselines and experiment with and compare various parameter settings for three algorithms, i.e. Conditional Random Fields (CRF), Support Vector Machines (SVM) and Random Forests (RF). We also evaluate the impact of lexical, syntactic, and semantic features on each of the algorithms, showing that semantics improves the performance in all cases. We test our comprehensive feature set on two corpora containing gold standard annotations of causal relations, and demonstrate the need for more gold standard data. The best performance of 79.35% F-score is achieved by CRFs when using all three feature types.

  8. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  10. Combining contour detection algorithms for the automatic extraction of the preparation line from a dental 3D measurement

    NASA Astrophysics Data System (ADS)

    Ahlers, Volker; Weigl, Paul; Schachtzabel, Hartmut

    2005-04-01

    Due to the increasing demand for high-quality ceramic crowns and bridges, the CAD/CAM-based production of dental restorations has been a subject of intensive research during the last fifteen years. A prerequisite for the efficient processing of the 3D measurement of prepared teeth with a minimal amount of user interaction is the automatic determination of the preparation line, which defines the sealing margin between the restoration and the prepared tooth. Current dental CAD/CAM systems mostly require the interactive definition of the preparation line by the user, at least by means of giving a number of start points. Previous approaches to the automatic extraction of the preparation line rely on single contour detection algorithms. In contrast, we use a combination of different contour detection algorithms to find several independent potential preparation lines from a height profile of the measured data. The different algorithms (gradient-based, contour-based, and region-based) show their strengths and weaknesses in different clinical situations. A classifier consisting of three stages (range check, decision tree, support vector machine), which is trained by human experts with real-world data, finally decides which is the correct preparation line. In a test with 101 clinical preparations, a success rate of 92.0% has been achieved. Thus the combination of different contour detection algorithms yields a reliable method for the automatic extraction of the preparation line, which enables the setup of a turn-key dental CAD/CAM process chain with a minimal amount of interactive screen work.

  11. Automatic Clustering and Thickness Measurement of Anatomical Variants of the Human Perirhinal Cortex

    PubMed Central

    Xie, Long; Pluta, John; Wang, Hongzhi; Das, Sandhitsu R.; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Wolk, David A.; Yushkevich, Paul A.

    2015-01-01

    The entorhinal cortex (ERC) and the perirhinal cortex (PRC) are subregions of the medial temporal lobe (MTL) that play important roles in episodic memory representations, as well as serving as a conduit between other neocortical areas and the hippocampus. They are also the sites where neuronal damage first occurs in Alzheimer’s disease (AD). The ability to automatically quantify the volume and thickness of the ERC and PRC is desirable because these localized measures can potentially serve as better imaging biomarkers for AD and other neurodegenerative diseases. However, large anatomical variation in the PRC makes it a challenging area for analysis. In order to address this problem, we propose an automatic segmentation, clustering, and thickness measurement approach that explicitly accounts for anatomical variation. The approach is targeted to highly anisotropic (0.4×0.4×2.0mm3) T2-weighted MRI scans that are preferred by many authors for detailed imaging of the MTL, but which pose challenges for segmentation and shape analysis. After automatically labeling MTL substructures using multi-atlas segmentation, our method clusters subjects into groups based on the shape of the PRC, constructs unbiased population templates for each group, and uses the smooth surface representations obtained during template construction to extract regional thickness measurements in the space of each subject. The proposed thickness measures are evaluated in the context of discrimination between patients with Mild Cognitive Impairment (MCI) and normal controls (NC). PMID:25320785

  12. Computerized Interpretation of Dynamic Breast MRI

    DTIC Science & Technology

    2006-05-01

    correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The

  13. An automatic method for retrieving and indexing catalogues of biomedical courses.

    PubMed

    Maojo, Victor; de la Calle, Guillermo; García-Remesal, Miguel; Bankauskaite, Vaida; Crespo, Jose

    2008-11-06

    Although there is wide information about Biomedical Informatics education and courses in different Websites, information is usually not exhaustive and difficult to update. We propose a new methodology based on information retrieval techniques for extracting, indexing and retrieving automatically information about educational offers. A web application has been developed to make available such information in an inventory of courses and educational offers.

  14. Extraction of latent images from printed media

    NASA Astrophysics Data System (ADS)

    Sergeyev, Vladislav; Fedoseev, Victor

    2015-12-01

    In this paper we propose an automatic technology for extraction of latent images from printed media such as documents, banknotes, financial securities, etc. This technology includes image processing by adaptively constructed Gabor filter bank for obtaining feature images, as well as subsequent stages of feature selection, grouping and multicomponent segmentation. The main advantage of the proposed technique is versatility: it allows to extract latent images made by different texture variations. Experimental results showing performance of the method over another known system for latent image extraction are given.

  15. Automatic extraction of three-dimensional thoracic aorta geometric model from phase contrast MRI for morphometric and hemodynamic characterization.

    PubMed

    Volonghi, Paola; Tresoldi, Daniele; Cadioli, Marcello; Usuelli, Antonio M; Ponzini, Raffaele; Morbiducci, Umberto; Esposito, Antonio; Rizzo, Giovanna

    2016-02-01

    To propose and assess a new method that automatically extracts a three-dimensional (3D) geometric model of the thoracic aorta (TA) from 3D cine phase contrast MRI (PCMRI) acquisitions. The proposed method is composed of two steps: segmentation of the TA and creation of the 3D geometric model. The segmentation algorithm, based on Level Set, was set and applied to healthy subjects acquired in three different modalities (with and without SENSE reduction factors). Accuracy was evaluated using standard quality indices. The 3D model is characterized by the vessel surface mesh and its centerline; the comparison of models obtained from the three different datasets was also carried out in terms of radius of curvature (RC) and average tortuosity (AT). In all datasets, the segmentation quality indices confirmed very good agreement between manual and automatic contours (average symmetric distance < 1.44 mm, DICE Similarity Coefficient > 0.88). The 3D models extracted from the three datasets were found to be comparable, with differences of less than 10% for RC and 11% for AT. Our method was found effective on PCMRI data to provide a 3D geometric model of the TA, to support morphometric and hemodynamic characterization of the aorta. © 2015 Wiley Periodicals, Inc.

  16. Automatic digital surface model (DSM) generation from aerial imagery data

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  17. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    PubMed Central

    Siddiqi, Muhammad Hameed; Lee, Sungyoung; Lee, Young-Koo; Khan, Adil Mehmood; Truc, Phan Tran Ho

    2013-01-01

    Over the last decade, human facial expressions recognition (FER) has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER. PMID:24316568

  18. Automated image analysis of uterine cervical images

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gu, Jia; Ferris, Daron; Poirson, Allen

    2007-03-01

    Cervical Cancer is the second most common cancer among women worldwide and the leading cause of cancer mortality of women in developing countries. If detected early and treated adequately, cervical cancer can be virtually prevented. Cervical precursor lesions and invasive cancer exhibit certain morphologic features that can be identified during a visual inspection exam. Digital imaging technologies allow us to assist the physician with a Computer-Aided Diagnosis (CAD) system. In colposcopy, epithelium that turns white after application of acetic acid is called acetowhite epithelium. Acetowhite epithelium is one of the major diagnostic features observed in detecting cancer and pre-cancerous regions. Automatic extraction of acetowhite regions from cervical images has been a challenging task due to specular reflection, various illumination conditions, and most importantly, large intra-patient variation. This paper presents a multi-step acetowhite region detection system to analyze the acetowhite lesions in cervical images automatically. First, the system calibrates the color of the cervical images to be independent of screening devices. Second, the anatomy of the uterine cervix is analyzed in terms of cervix region, external os region, columnar region, and squamous region. Third, the squamous region is further analyzed and subregions based on three levels of acetowhite are identified. The extracted acetowhite regions are accompanied by color scores to indicate the different levels of acetowhite. The system has been evaluated by 40 human subjects' data and demonstrates high correlation with experts' annotations.

  19. Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel

    DOE PAGES

    Collette, R.; Douglas, J.; Patterson, L.; ...

    2015-05-01

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries.« less

  20. Automatic facial animation parameters extraction in MPEG-4 visual communication

    NASA Astrophysics Data System (ADS)

    Yang, Chenggen; Gong, Wanwei; Yu, Lu

    2002-01-01

    Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.

  1. Thermal feature extraction of servers in a datacenter using thermal image registration

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Ran, Jian; Xie, Ting; Gao, Shan

    2017-09-01

    Thermal cameras provide fine-grained thermal information that enhances monitoring and enables automatic thermal management in large datacenters. Recent approaches employing mobile robots or thermal camera networks can already identify the physical locations of hot spots. Other distribution information used to optimize datacenter management can also be obtained automatically using pattern recognition technology. However, most of the features extracted from thermal images, such as shape and gradient, may be affected by changes in the position and direction of the thermal camera. This paper presents a method for extracting the thermal features of a hot spot or a server in a container datacenter. First, thermal and visual images are registered based on textural characteristics extracted from images acquired in datacenters. Then, the thermal distribution of each server is standardized. The features of a hot spot or server extracted from the standard distribution can reduce the impact of camera position and direction. The results of experiments show that image registration is efficient for aligning the corresponding visual and thermal images in the datacenter, and the standardization procedure reduces the impacts of camera position and direction on hot spot or server features.

  2. Fast title extraction method for business documents

    NASA Astrophysics Data System (ADS)

    Katsuyama, Yutaka; Naoi, Satoshi

    1997-04-01

    Conventional electronic document filing systems are inconvenient because the user must specify the keywords in each document for later searches. To solve this problem, automatic keyword extraction methods using natural language processing and character recognition have been developed. However, these methods are slow, especially for japanese documents. To develop a practical electronic document filing system, we focused on the extraction of keyword areas from a document by image processing. Our fast title extraction method can automatically extract titles as keywords from business documents. All character strings are evaluated for similarity by rating points associated with title similarity. We classified these points as four items: character sitting size, position of character strings, relative position among character strings, and string attribution. Finally, the character string that has the highest rating is selected as the title area. The character recognition process is carried out on the selected area. It is fast because this process must recognize a small number of patterns in the restricted area only, and not throughout the entire document. The mean performance of this method is an accuracy of about 91 percent and a 1.8 sec. processing time for an examination of 100 Japanese business documents.

  3. An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hu, X.; Guan, H.; Liu, P.

    2016-06-01

    The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  4. Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform.

    PubMed

    Shahbeig, Saleh; Pourghassem, Hossein

    2013-01-01

    Optic disc or optic nerve (ON) head extraction in retinal images has widespread applications in retinal disease diagnosis and human identification in biometric systems. This paper introduces a fast and automatic algorithm for detecting and extracting the ON region accurately from the retinal images without the use of the blood-vessel information. In this algorithm, to compensate for the destructive changes of the illumination and also enhance the contrast of the retinal images, we estimate the illumination of background and apply an adaptive correction function on the curvelet transform coefficients of retinal images. In other words, we eliminate the fault factors and pave the way to extract the ON region exactly. Then, we detect the ON region from retinal images using the morphology operators based on geodesic conversions, by applying a proper adaptive correction function on the reconstructed image's curvelet transform coefficients and a novel powerful criterion. Finally, using a local thresholding on the detected area of the retinal images, we extract the ON region. The proposed algorithm is evaluated on available images of DRIVE and STARE databases. The experimental results indicate that the proposed algorithm obtains an accuracy rate of 100% and 97.53% for the ON extractions on DRIVE and STARE databases, respectively.

  5. Automatic information extraction from unstructured mammography reports using distributed semantics.

    PubMed

    Gupta, Anupama; Banerjee, Imon; Rubin, Daniel L

    2018-02-01

    To date, the methods developed for automated extraction of information from radiology reports are mainly rule-based or dictionary-based, and, therefore, require substantial manual effort to build these systems. Recent efforts to develop automated systems for entity detection have been undertaken, but little work has been done to automatically extract relations and their associated named entities in narrative radiology reports that have comparable accuracy to rule-based methods. Our goal is to extract relations in a unsupervised way from radiology reports without specifying prior domain knowledge. We propose a hybrid approach for information extraction that combines dependency-based parse tree with distributed semantics for generating structured information frames about particular findings/abnormalities from the free-text mammography reports. The proposed IE system obtains a F 1 -score of 0.94 in terms of completeness of the content in the information frames, which outperforms a state-of-the-art rule-based system in this domain by a significant margin. The proposed system can be leveraged in a variety of applications, such as decision support and information retrieval, and may also easily scale to other radiology domains, since there is no need to tune the system with hand-crafted information extraction rules. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Automatic color preference correction for color reproduction

    NASA Astrophysics Data System (ADS)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  7. [Comparison of MPure-12 Automatic Nucleic Acid Purification and Chelex-100 Method].

    PubMed

    Shen, X; Li, M; Wang, Y L; Chen, Y L; Lin, Y; Zhao, Z M; Que, T Z

    2017-04-01

    To explore the forensic application value of MPure-12 automatic nucleic acid purification (MPure-12 Method) for DNA extraction by extracting and typing DNA from bloodstains and various kinds of biological samples with different DNA contents. Nine types of biological samples, such as bloodstains, semen stains, and saliva were collected. DNA were extracted using MPure-12 method and Chelex-100 method, followed by PCR amplification and electrophoresis for obtaining STR-profiles. The samples such as hair root, chutty, butt, muscular tissue, saliva stain, bloodstain and semen stain were typed successfully by MPure-12 method. Partial alleles were lacked in the samples of saliva, and the genotyping of contact swabs was unsatisfactory. Additional, all of the bloodstains (20 μL, 15 μL, 10 μL, 5 μL, 1 μL) showed good typing results using Chelex-100 method. But the loss of alleles occurred in 1 μL blood volume by MPure-12 method. MPure-12 method is suitable for DNA extraction of a certain concentration blood samples.Chelex-100 method may be better for the extraction of trace blood samples.This instrument used in nucleic acid extraction has the advantages of simplicity of operator, rapidity, high extraction efficiency, high rate of reportable STR-profiles and lower man-made pollution. Copyright© by the Editorial Department of Journal of Forensic Medicine

  8. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  9. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    PubMed

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  10. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods.

  11. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Brinkworth, Craig S; Pigott, Eloise J; Bourne, David J

    2009-02-15

    Ricin is a highly toxic protein from the seeds of the castor bean plant. Crude extracts from castor beans are toxic by several routes, and there is international concern about the use of these extracts by terrorist organizations. Lethality in aerosolized form has spurred the development of methods for the rapid detection of this protein from air samples that is critical in determining the illicit use of this material. Matrix-assisted laser desorption ionization (MALDI) mass measurement with an automated laser firing sequence was used to detect intact ricin from solutions containing less than 4 microg/mL of ricin in the presence of other endogenous seed proteins. This sensitivity was attained with the addition of 0.01% Tween 80 to the extracts that greatly enhanced the ricin signal. Importantly, this treatment substantially reduces the interference from the castor bean seed storage proteins. Commonly the ricin signal can be completely obscured by the oligomers of seed storage proteins, and this treatment reveals the ricin molecular ion, allowing the analyst to make a judgment as to the ricin content of the extract. This method provides for sensitive and rapid identification of intact ricin from aqueous samples with little sample preparation and is amenable to automatic acquisition.

  12. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    PubMed

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  13. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    PubMed Central

    Yang, Wei

    2018-01-01

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792

  14. Extracting the frequencies of the pinna spectral notches in measured head related impulse responses

    NASA Astrophysics Data System (ADS)

    Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.

    2005-07-01

    The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.

  15. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE PAGES

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    2015-09-11

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  16. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  17. Automatic Picking of Foraminifera: Design of the Foraminifera Image Recognition and Sorting Tool (FIRST) Prototype and Results of the Image Classification Scheme

    NASA Astrophysics Data System (ADS)

    de Garidel-Thoron, T.; Marchant, R.; Soto, E.; Gally, Y.; Beaufort, L.; Bolton, C. T.; Bouslama, M.; Licari, L.; Mazur, J. C.; Brutti, J. M.; Norsa, F.

    2017-12-01

    Foraminifera tests are the main proxy carriers for paleoceanographic reconstructions. Both geochemical and taxonomical studies require large numbers of tests to achieve statistical relevance. To date, the extraction of foraminifera from the sediment coarse fraction is still done by hand and thus time-consuming. Moreover, the recognition of morphotypes, ecologically relevant, requires some taxonomical skills not easily taught. The automatic recognition and extraction of foraminifera would largely help paleoceanographers to overcome these issues. Recent advances in automatic image classification using machine learning opens the way to automatic extraction of foraminifera. Here we detail progress on the design of an automatic picking machine as part of the FIRST project. The machine handles 30 pre-sieved samples (100-1000µm), separating them into individual particles (including foraminifera) and imaging each in pseudo-3D. The particles are classified and specimens of interest are sorted either for Individual Foraminifera Analyses (44 per slide) and/or for classical multiple analyses (8 morphological classes per slide, up to 1000 individuals per hole). The classification is based on machine learning using Convolutional Neural Networks (CNNs), similar to the approach used in the coccolithophorid imaging system SYRACO. To prove its feasibility, we built two training image datasets of modern planktonic foraminifera containing approximately 2000 and 5000 images each, corresponding to 15 & 25 morphological classes. Using a CNN with a residual topology (ResNet) we achieve over 95% correct classification for each dataset. We tested the network on 160,000 images from 45 depths of a sediment core from the Pacific ocean, for which we have human counts. The current algorithm is able to reproduce the downcore variability in both Globigerinoides ruber and the fragmentation index (r2 = 0.58 and 0.88 respectively). The FIRST prototype yields some promising results for high-resolution paleoceanographic studies and evolutionary studies.

  18. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.

    PubMed

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-06-24

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  19. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  20. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  1. Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.

    2017-03-01

    4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.

  2. Multimodal Teaching Analytics: Automated Extraction of Orchestration Graphs from Wearable Sensor Data

    ERIC Educational Resources Information Center

    Prieto, L. P.; Sharma, K.; Kidzinski, L.; Rodríguez-Triana, M. J.; Dillenbourg, P.

    2018-01-01

    The pedagogical modelling of everyday classroom practice is an interesting kind of evidence, both for educational research and teachers' own professional development. This paper explores the usage of wearable sensors and machine learning techniques to automatically extract orchestration graphs (teaching activities and their social plane over time)…

  3. Keyword Extraction from Arabic Legal Texts

    ERIC Educational Resources Information Center

    Rammal, Mahmoud; Bahsoun, Zeinab; Al Achkar Jabbour, Mona

    2015-01-01

    Purpose: The purpose of this paper is to apply local grammar (LG) to develop an indexing system which automatically extracts keywords from titles of Lebanese official journals. Design/methodology/approach: To build LG for our system, the first word that plays the determinant role in understanding the meaning of a title is analyzed and grouped as…

  4. A portable foot-parameter-extracting system

    NASA Astrophysics Data System (ADS)

    Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan

    2016-03-01

    In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.

  5. A method for automatic feature points extraction of human vertebrae three-dimensional model

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wu, Junsheng

    2017-05-01

    A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.

  6. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking

    NASA Astrophysics Data System (ADS)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.

    2018-04-01

    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  7. An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.

    PubMed

    Ibrahim, Ali K; Chérubin, Laurent M; Zhuang, Hanqi; Schärer Umpierre, Michelle T; Dalgleish, Fraser; Erdol, Nurgun; Ouyang, B; Dalgleish, A

    2018-02-01

    Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive behavior during spawning aggregation. These low frequencies sounds (50-350 Hz) consist of a series of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classification of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on weighted features and sparse classifier. Group sounds were labeled initially by humans for training and testing various feature extraction and classification methods. In the feature extraction phase, four types of features were used to extract features of sounds produced by groupers. Once the sound features were extracted, three types of representative classifiers were applied to categorize the species that produced these sounds. Experimental results showed that the overall percentage of identification using the best combination of the selected feature extractor weighted mel frequency cepstral coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been implemented in an autonomous platform (wave glider) for real-time detection and classification of group vocalizations.

  8. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  9. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction

    NASA Astrophysics Data System (ADS)

    Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.

    2015-02-01

    Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.

  10. Automatic Fatigue Detection of Drivers through Yawning Analysis

    NASA Astrophysics Data System (ADS)

    Azim, Tayyaba; Jaffar, M. Arfan; Ramzan, M.; Mirza, Anwar M.

    This paper presents a non-intrusive fatigue detection system based on the video analysis of drivers. The focus of the paper is on how to detect yawning which is an important cue for determining driver's fatigue. Initially, the face is located through Viola-Jones face detection method in a video frame. Then, a mouth window is extracted from the face region, in which lips are searched through spatial fuzzy c-means (s-FCM) clustering. The degree of mouth openness is extracted on the basis of mouth features, to determine driver's yawning state. If the yawning state of the driver persists for several consecutive frames, the system concludes that the driver is non-vigilant due to fatigue and is thus warned through an alarm. The system reinitializes when occlusion or misdetection occurs. Experiments were carried out using real data, recorded in day and night lighting conditions, and with users belonging to different race and gender.

  11. Automated feature extraction in color retinal images by a model based approach.

    PubMed

    Li, Huiqi; Chutatape, Opas

    2004-02-01

    Color retinal photography is an important tool to detect the evidence of various eye diseases. Novel methods to extract the main features in color retinal images have been developed in this paper. Principal component analysis is employed to locate optic disk; A modified active shape model is proposed in the shape detection of optic disk; A fundus coordinate system is established to provide a better description of the features in the retinal images; An approach to detect exudates by the combined region growing and edge detection is proposed. The success rates of disk localization, disk boundary detection, and fovea localization are 99%, 94%, and 100%, respectively. The sensitivity and specificity of exudate detection are 100% and 71%, correspondingly. The success of the proposed algorithms can be attributed to the utilization of the model-based methods. The detection and analysis could be applied to automatic mass screening and diagnosis of the retinal diseases.

  12. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    PubMed

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  13. Automatic detection of wheezes by evaluation of multiple acoustic feature extraction methods and C-weighted SVM

    NASA Astrophysics Data System (ADS)

    Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.

    2015-01-01

    This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.

  14. Automatic epileptic seizure detection in EEGs using MF-DFA, SVM based on cloud computing.

    PubMed

    Zhang, Zhongnan; Wen, Tingxi; Huang, Wei; Wang, Meihong; Li, Chunfeng

    2017-01-01

    Epilepsy is a chronic disease with transient brain dysfunction that results from the sudden abnormal discharge of neurons in the brain. Since electroencephalogram (EEG) is a harmless and noninvasive detection method, it plays an important role in the detection of neurological diseases. However, the process of analyzing EEG to detect neurological diseases is often difficult because the brain electrical signals are random, non-stationary and nonlinear. In order to overcome such difficulty, this study aims to develop a new computer-aided scheme for automatic epileptic seizure detection in EEGs based on multi-fractal detrended fluctuation analysis (MF-DFA) and support vector machine (SVM). New scheme first extracts features from EEG by MF-DFA during the first stage. Then, the scheme applies a genetic algorithm (GA) to calculate parameters used in SVM and classify the training data according to the selected features using SVM. Finally, the trained SVM classifier is exploited to detect neurological diseases. The algorithm utilizes MLlib from library of SPARK and runs on cloud platform. Applying to a public dataset for experiment, the study results show that the new feature extraction method and scheme can detect signals with less features and the accuracy of the classification reached up to 99%. MF-DFA is a promising approach to extract features for analyzing EEG, because of its simple algorithm procedure and less parameters. The features obtained by MF-DFA can represent samples as well as traditional wavelet transform and Lyapunov exponents. GA can always find useful parameters for SVM with enough execution time. The results illustrate that the classification model can achieve comparable accuracy, which means that it is effective in epileptic seizure detection.

  15. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  16. Relations between Automatically Extracted Motion Features and the Quality of Mother-Infant Interactions at 4 and 13 Months

    PubMed Central

    Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S.; Køppe, Simo; Cohen, David; Chetouani, Mohamed

    2017-01-01

    Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features. PMID:29326626

  17. Relations between Automatically Extracted Motion Features and the Quality of Mother-Infant Interactions at 4 and 13 Months.

    PubMed

    Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S; Køppe, Simo; Cohen, David; Chetouani, Mohamed

    2017-01-01

    Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features.

  18. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  19. Multiple kernel learning in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei

    2011-03-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  1. Automatic recognition of seismic intensity based on RS and GIS: a case study in Wenchuan Ms8.0 earthquake of China.

    PubMed

    Zhang, Qiuwen; Zhang, Yan; Yang, Xiaohong; Su, Bin

    2014-01-01

    In recent years, earthquakes have frequently occurred all over the world, which caused huge casualties and economic losses. It is very necessary and urgent to obtain the seismic intensity map timely so as to master the distribution of the disaster and provide supports for quick earthquake relief. Compared with traditional methods of drawing seismic intensity map, which require many investigations in the field of earthquake area or are too dependent on the empirical formulas, spatial information technologies such as Remote Sensing (RS) and Geographical Information System (GIS) can provide fast and economical way to automatically recognize the seismic intensity. With the integrated application of RS and GIS, this paper proposes a RS/GIS-based approach for automatic recognition of seismic intensity, in which RS is used to retrieve and extract the information on damages caused by earthquake, and GIS is applied to manage and display the data of seismic intensity. The case study in Wenchuan Ms8.0 earthquake in China shows that the information on seismic intensity can be automatically extracted from remotely sensed images as quickly as possible after earthquake occurrence, and the Digital Intensity Model (DIM) can be used to visually query and display the distribution of seismic intensity.

  2. Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach

    NASA Astrophysics Data System (ADS)

    Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele

    2012-09-01

    The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.

  3. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  4. Text mining patents for biomedical knowledge.

    PubMed

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Automatic feature design for optical character recognition using an evolutionary search procedure.

    PubMed

    Stentiford, F W

    1985-03-01

    An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.

  6. Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia

    NASA Astrophysics Data System (ADS)

    Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin

    2013-10-01

    This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.

  7. Semi automatic indexing of PostScript files using Medical Text Indexer in medical education.

    PubMed

    Mollah, Shamim Ara; Cimino, Christopher

    2007-10-11

    At Albert Einstein College of Medicine a large part of online lecture materials contain PostScript files. As the collection grows it becomes essential to create a digital library to have easy access to relevant sections of the lecture material that is full-text indexed; to create this index it is necessary to extract all the text from the document files that constitute the originals of the lectures. In this study we present a semi automatic indexing method using robust technique for extracting text from PostScript files and National Library of Medicine's Medical Text Indexer (MTI) program for indexing the text. This model can be applied to other medical schools for indexing purposes.

  8. Independent component analysis for automatic note extraction from musical trills

    NASA Astrophysics Data System (ADS)

    Brown, Judith C.; Smaragdis, Paris

    2004-05-01

    The method of principal component analysis, which is based on second-order statistics (or linear independence), has long been used for redundancy reduction of audio data. The more recent technique of independent component analysis, enforcing much stricter statistical criteria based on higher-order statistical independence, is introduced and shown to be far superior in separating independent musical sources. This theory has been applied to piano trills and a database of trill rates was assembled from experiments with a computer-driven piano, recordings of a professional pianist, and commercially available compact disks. The method of independent component analysis has thus been shown to be an outstanding, effective means of automatically extracting interesting musical information from a sea of redundant data.

  9. Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens

    PubMed Central

    Ishikawa, Masahiro; Murakami, Yuri; Ahi, Sercan Taha; Yamaguchi, Masahiro; Kobayashi, Naoki; Kiyuna, Tomoharu; Yamashita, Yoshiko; Saito, Akira; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2016-01-01

    Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade. PMID:27335894

  10. Harvesting Intelligence in Multimedia Social Tagging Systems

    NASA Astrophysics Data System (ADS)

    Giannakidou, Eirini; Kaklidou, Foteini; Chatzilari, Elisavet; Kompatsiaris, Ioannis; Vakali, Athena

    As more people adopt tagging practices, social tagging systems tend to form rich knowledge repositories that enable the extraction of patterns reflecting the way content semantics is perceived by the web users. This is of particular importance, especially in the case of multimedia content, since the availability of such content in the web is very high and its efficient retrieval using textual annotations or content-based automatically extracted metadata still remains a challenge. It is argued that complementing multimedia analysis techniques with knowledge drawn from web social annotations may facilitate multimedia content management. This chapter focuses on analyzing tagging patterns and combining them with content feature extraction methods, generating, thus, intelligence from multimedia social tagging systems. Emphasis is placed on using all available "tracks" of knowledge, that is tag co-occurrence together with semantic relations among tags and low-level features of the content. Towards this direction, a survey on the theoretical background and the adopted practices for analysis of multimedia social content are presented. A case study from Flickr illustrates the efficiency of the proposed approach.

  11. A tool for NDVI time series extraction from wide-swath remotely sensed images

    NASA Astrophysics Data System (ADS)

    Li, Zhishan; Shi, Runhe; Zhou, Cong

    2015-09-01

    Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.

  12. Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images: a Comparative Study.

    PubMed

    Mercan, Ezgi; Aksoy, Selim; Shapiro, Linda G; Weaver, Donald L; Brunyé, Tad T; Elmore, Joann G

    2016-08-01

    Whole slide digital imaging technology enables researchers to study pathologists' interpretive behavior as they view digital slides and gain new understanding of the diagnostic medical decision-making process. In this study, we propose a simple yet important analysis to extract diagnostically relevant regions of interest (ROIs) from tracking records using only pathologists' actions as they viewed biopsy specimens in the whole slide digital imaging format (zooming, panning, and fixating). We use these extracted regions in a visual bag-of-words model based on color and texture features to predict diagnostically relevant ROIs on whole slide images. Using a logistic regression classifier in a cross-validation setting on 240 digital breast biopsy slides and viewport tracking logs of three expert pathologists, we produce probability maps that show 74 % overlap with the actual regions at which pathologists looked. We compare different bag-of-words models by changing dictionary size, visual word definition (patches vs. superpixels), and training data (automatically extracted ROIs vs. manually marked ROIs). This study is a first step in understanding the scanning behaviors of pathologists and the underlying reasons for diagnostic errors.

  13. Line segment extraction for large scale unorganized point clouds

    NASA Astrophysics Data System (ADS)

    Lin, Yangbin; Wang, Cheng; Cheng, Jun; Chen, Bili; Jia, Fukai; Chen, Zhonggui; Li, Jonathan

    2015-04-01

    Line segment detection in images is already a well-investigated topic, although it has received considerably less attention in 3D point clouds. Benefiting from current LiDAR devices, large-scale point clouds are becoming increasingly common. Most human-made objects have flat surfaces. Line segments that occur where pairs of planes intersect give important information regarding the geometric content of point clouds, which is especially useful for automatic building reconstruction and segmentation. This paper proposes a novel method that is capable of accurately extracting plane intersection line segments from large-scale raw scan points. The 3D line-support region, namely, a point set near a straight linear structure, is extracted simultaneously. The 3D line-support region is fitted by our Line-Segment-Half-Planes (LSHP) structure, which provides a geometric constraint for a line segment, making the line segment more reliable and accurate. We demonstrate our method on the point clouds of large-scale, complex, real-world scenes acquired by LiDAR devices. We also demonstrate the application of 3D line-support regions and their LSHP structures on urban scene abstraction.

  14. Synonym extraction and abbreviation expansion with ensembles of semantic spaces.

    PubMed

    Henriksson, Aron; Moen, Hans; Skeppstedt, Maria; Daudaravičius, Vidas; Duneld, Martin

    2014-02-05

    Terminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. A combination of two distributional models - Random Indexing and Random Permutation - employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora - a corpus of clinical text and a corpus of medical journal articles - further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms. This study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models - with different model parameters - and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks.

  15. Enhancing Comparative Effectiveness Research With Automated Pediatric Pneumonia Detection in a Multi-Institutional Clinical Repository: A PHIS+ Pilot Study.

    PubMed

    Meystre, Stephane; Gouripeddi, Ramkiran; Tieder, Joel; Simmons, Jeffrey; Srivastava, Rajendu; Shah, Samir

    2017-05-15

    Community-acquired pneumonia is a leading cause of pediatric morbidity. Administrative data are often used to conduct comparative effectiveness research (CER) with sufficient sample sizes to enhance detection of important outcomes. However, such studies are prone to misclassification errors because of the variable accuracy of discharge diagnosis codes. The aim of this study was to develop an automated, scalable, and accurate method to determine the presence or absence of pneumonia in children using chest imaging reports. The multi-institutional PHIS+ clinical repository was developed to support pediatric CER by expanding an administrative database of children's hospitals with detailed clinical data. To develop a scalable approach to find patients with bacterial pneumonia more accurately, we developed a Natural Language Processing (NLP) application to extract relevant information from chest diagnostic imaging reports. Domain experts established a reference standard by manually annotating 282 reports to train and then test the NLP application. Findings of pleural effusion, pulmonary infiltrate, and pneumonia were automatically extracted from the reports and then used to automatically classify whether a report was consistent with bacterial pneumonia. Compared with the annotated diagnostic imaging reports reference standard, the most accurate implementation of machine learning algorithms in our NLP application allowed extracting relevant findings with a sensitivity of .939 and a positive predictive value of .925. It allowed classifying reports with a sensitivity of .71, a positive predictive value of .86, and a specificity of .962. When compared with each of the domain experts manually annotating these reports, the NLP application allowed for significantly higher sensitivity (.71 vs .527) and similar positive predictive value and specificity . NLP-based pneumonia information extraction of pediatric diagnostic imaging reports performed better than domain experts in this pilot study. NLP is an efficient method to extract information from a large collection of imaging reports to facilitate CER. ©Stephane Meystre, Ramkiran Gouripeddi, Joel Tieder, Jeffrey Simmons, Rajendu Srivastava, Samir Shah. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 15.05.2017.

  16. Synonym extraction and abbreviation expansion with ensembles of semantic spaces

    PubMed Central

    2014-01-01

    Background Terminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. Results A combination of two distributional models – Random Indexing and Random Permutation – employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora – a corpus of clinical text and a corpus of medical journal articles – further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms. Conclusions This study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models – with different model parameters – and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks. PMID:24499679

  17. Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh

    2004-05-01

    The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.

  18. Development of portable health monitoring system for automatic self-blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Huijun; Mizuno, Yoshihumi; Nakamachi, Eiji; Morita, Yusuke

    2010-02-01

    In this study, a new HMS (Health Monitoring System) device is developed for diabetic patient. This device mainly consists of I) 3D blood vessel searching unit and II) automatic blood glucose measurement (ABGM) unit. This device has features such as 1)3D blood vessel location search 2) laptop type, 3) puncturing a blood vessel by using a minimally invasive micro-needle, 4) very little blood sampling (10μl), and 5) automatic blood extraction and blood glucose measurement. In this study, ABGM unit is described in detail. It employs a syringe type's blood extraction mechanism because of its high accuracy. And it consists of the syringe component and the driving component. The syringe component consists of a syringe itself, a piston, a magnet, a ratchet and a micro-needle whose inner diameter is about 80μm. And the syringe component is disposable. The driving component consists of body parts, a linear stepping motor, a glucose enzyme sensor and a slider for accurate positioning control. The driving component has the all-in-one mechanism with a glucose enzyme sensor for compact size and stable blood transfer. On designing, required thrust force to drive the slider is designed to be greater than the value of the blood extraction force. Further, only one linear stepping motor is employed for blood extraction and transportation processes. The experimental result showed more than 80% of volume ratio under the piston speed 2.4mm/s. Further, the blood glucose was measured successfully by using the prototype unit. Finally, the availability of our ABGM unit was confirmed.

  19. A new machine classification method applied to human peripheral blood leukocytes

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.; Fitzpatrick, Steven J.; Vitthal, Sanjay; Ladoulis, Charles T.

    1994-01-01

    Human beings judge images by complex mental processes, whereas computing machines extract features. By reducing scaled human judgments and machine extracted features to a common metric space and fitting them by regression, the judgments of human experts rendered on a sample of images may be imposed on an image population to provide automatic classification.

  20. IMS - MS Data Extractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  1. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    NASA Astrophysics Data System (ADS)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  2. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  3. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Steven

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less

  4. Determination of rifampicin in human plasma by high-performance liquid chromatography coupled with ultraviolet detection after automatized solid-liquid extraction.

    PubMed

    Louveau, B; Fernandez, C; Zahr, N; Sauvageon-Martre, H; Maslanka, P; Faure, P; Mourah, S; Goldwirt, L

    2016-12-01

    A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP 8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Automated software system for checking the structure and format of ACM SIG documents

    NASA Astrophysics Data System (ADS)

    Mirza, Arsalan Rahman; Sah, Melike

    2017-04-01

    Microsoft (MS) Office Word is one of the most commonly used software tools for creating documents. MS Word 2007 and above uses XML to represent the structure of MS Word documents. Metadata about the documents are automatically created using Office Open XML (OOXML) syntax. We develop a new framework, which is called ADFCS (Automated Document Format Checking System) that takes the advantage of the OOXML metadata, in order to extract semantic information from MS Office Word documents. In particular, we develop a new ontology for Association for Computing Machinery (ACM) Special Interested Group (SIG) documents for representing the structure and format of these documents by using OWL (Web Ontology Language). Then, the metadata is extracted automatically in RDF (Resource Description Framework) according to this ontology using the developed software. Finally, we generate extensive rules in order to infer whether the documents are formatted according to ACM SIG standards. This paper, introduces ACM SIG ontology, metadata extraction process, inference engine, ADFCS online user interface, system evaluation and user study evaluations.

  6. Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm.

    PubMed

    Khotanlou, Hassan; Afrasiabi, Mahlagha

    2012-10-01

    This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.

  7. A Complete System for Automatic Extraction of Left Ventricular Myocardium From CT Images Using Shape Segmentation and Contour Evolution

    PubMed Central

    Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

    2014-01-01

    The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531

  8. Automatic identification of comparative effectiveness research from Medline citations to support clinicians’ treatment information needs

    PubMed Central

    Zhang, Mingyuan; Fiol, Guilherme Del; Grout, Randall W.; Jonnalagadda, Siddhartha; Medlin, Richard; Mishra, Rashmi; Weir, Charlene; Liu, Hongfang; Mostafa, Javed; Fiszman, Marcelo

    2014-01-01

    Online knowledge resources such as Medline can address most clinicians’ patient care information needs. Yet, significant barriers, notably lack of time, limit the use of these sources at the point of care. The most common information needs raised by clinicians are treatment-related. Comparative effectiveness studies allow clinicians to consider multiple treatment alternatives for a particular problem. Still, solutions are needed to enable efficient and effective consumption of comparative effectiveness research at the point of care. Objective Design and assess an algorithm for automatically identifying comparative effectiveness studies and extracting the interventions investigated in these studies. Methods The algorithm combines semantic natural language processing, Medline citation metadata, and machine learning techniques. We assessed the algorithm in a case study of treatment alternatives for depression. Results Both precision and recall for identifying comparative studies was 0.83. A total of 86% of the interventions extracted perfectly or partially matched the gold standard. Conclusion Overall, the algorithm achieved reasonable performance. The method provides building blocks for the automatic summarization of comparative effectiveness research to inform point of care decision-making. PMID:23920677

  9. Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts.

    PubMed

    Ng; Wong

    1999-01-01

    We are entering a new era of research where the latest scientific discoveries are often first reported online and are readily accessible by scientists worldwide. This rapid electronic dissemination of research breakthroughs has greatly accelerated the current pace in genomics and proteomics research. The race to the discovery of a gene or a drug has now become increasingly dependent on how quickly a scientist can scan through voluminous amount of information available online to construct the relevant picture (such as protein-protein interaction pathways) as it takes shape amongst the rapidly expanding pool of globally accessible biological data (e.g. GENBANK) and scientific literature (e.g. MEDLINE). We describe a prototype system for automatic pathway discovery from on-line text abstracts, combining technologies that (1) retrieve research abstracts from online sources, (2) extract relevant information from the free texts, and (3) present the extracted information graphically and intuitively. Our work demonstrates that this framework allows us to routinely scan online scientific literature for automatic discovery of knowledge, giving modern scientists the necessary competitive edge in managing the information explosion in this electronic age.

  10. Processing of Crawled Urban Imagery for Building Use Classification

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Haala, N.

    2017-05-01

    Recent years have shown a shift from pure geometric 3D city models to data with semantics. This is induced by new applications (e.g. Virtual/Augmented Reality) and also a requirement for concepts like Smart Cities. However, essential urban semantic data like building use categories is often not available. We present a first step in bridging this gap by proposing a pipeline to use crawled urban imagery and link it with ground truth cadastral data as an input for automatic building use classification. We aim to extract this city-relevant semantic information automatically from Street View (SV) imagery. Convolutional Neural Networks (CNNs) proved to be extremely successful for image interpretation, however, require a huge amount of training data. Main contribution of the paper is the automatic provision of such training datasets by linking semantic information as already available from databases provided from national mapping agencies or city administrations to the corresponding façade images extracted from SV. Finally, we present first investigations with a CNN and an alternative classifier as a proof of concept.

  11. Statistical Evaluation of Biometric Evidence in Forensic Automatic Speaker Recognition

    NASA Astrophysics Data System (ADS)

    Drygajlo, Andrzej

    Forensic speaker recognition is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). This paper aims at presenting forensic automatic speaker recognition (FASR) methods that provide a coherent way of quantifying and presenting recorded voice as biometric evidence. In such methods, the biometric evidence consists of the quantified degree of similarity between speaker-dependent features extracted from the trace and speaker-dependent features extracted from recorded speech of a suspect. The interpretation of recorded voice as evidence in the forensic context presents particular challenges, including within-speaker (within-source) variability and between-speakers (between-sources) variability. Consequently, FASR methods must provide a statistical evaluation which gives the court an indication of the strength of the evidence given the estimated within-source and between-sources variabilities. This paper reports on the first ENFSI evaluation campaign through a fake case, organized by the Netherlands Forensic Institute (NFI), as an example, where an automatic method using the Gaussian mixture models (GMMs) and the Bayesian interpretation (BI) framework were implemented for the forensic speaker recognition task.

  12. Automatic exudate detection by fusing multiple active contours and regionwise classification.

    PubMed

    Harangi, Balazs; Hajdu, Andras

    2014-11-01

    In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naïve-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. BeeSpace Navigator: exploratory analysis of gene function using semantic indexing of biological literature.

    PubMed

    Sen Sarma, Moushumi; Arcoleo, David; Khetani, Radhika S; Chee, Brant; Ling, Xu; He, Xin; Jiang, Jing; Mei, Qiaozhu; Zhai, ChengXiang; Schatz, Bruce

    2011-07-01

    With the rapid decrease in cost of genome sequencing, the classification of gene function is becoming a primary problem. Such classification has been performed by human curators who read biological literature to extract evidence. BeeSpace Navigator is a prototype software for exploratory analysis of gene function using biological literature. The software supports an automatic analogue of the curator process to extract functions, with a simple interface intended for all biologists. Since extraction is done on selected collections that are semantically indexed into conceptual spaces, the curation can be task specific. Biological literature containing references to gene lists from expression experiments can be analyzed to extract concepts that are computational equivalents of a classification such as Gene Ontology, yielding discriminating concepts that differentiate gene mentions from other mentions. The functions of individual genes can be summarized from sentences in biological literature, to produce results resembling a model organism database entry that is automatically computed. Statistical frequency analysis based on literature phrase extraction generates offline semantic indexes to support these gene function services. The website with BeeSpace Navigator is free and open to all; there is no login requirement at www.beespace.illinois.edu for version 4. Materials from the 2010 BeeSpace Software Training Workshop are available at www.beespace.illinois.edu/bstwmaterials.php.

  14. Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging

    PubMed Central

    Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.

    2013-01-01

    A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321

  15. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    NASA Astrophysics Data System (ADS)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  16. Automatic grade classification of Barretts Esophagus through feature enhancement

    NASA Astrophysics Data System (ADS)

    Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid

    2017-03-01

    Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.

  17. PDF text classification to leverage information extraction from publication reports.

    PubMed

    Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha

    2016-06-01

    Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Motor automaticity in Parkinson’s disease

    PubMed Central

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  19. High Accuracy 3D Processing of Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Gruen, A.; Zhang, L.; Kocaman, S.

    2007-01-01

    Automatic DSM/DTM generation reproduces not only general features, but also detailed features of the terrain relief. Height accuracy of around 1 pixel in cooperative terrain. RMSE values of 1.3-1.5 m (1.0-2.0 pixels) for IKONOS and RMSE values of 2.9-4.6 m (0.5-1.0 pixels) for SPOT5 HRS. For 3D city modeling, the manual and semi-automatic feature extraction capability of SAT-PP provides a good basis. The tools of SAT-PP allowed the stereo-measurements of points on the roofs in order to generate a 3D city model with CCM The results show that building models with main roof structures can be successfully extracted by HRSI. As expected, with Quickbird more details are visible.

  20. In vivo classification of human skin burns using machine learning and quantitative features captured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip

    2018-02-01

    We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.

  1. Determination of pesticides in waters by automatic on-line solid-phase extraction-capillary electrophoresis.

    PubMed

    Hinsmann, P; Arce, L; Ríos, A; Valcárcel, M

    2000-01-07

    The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.

  2. FEX: A Knowledge-Based System For Planimetric Feature Extraction

    NASA Astrophysics Data System (ADS)

    Zelek, John S.

    1988-10-01

    Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.

  3. Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

    PubMed Central

    2014-01-01

    Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614

  4. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks

    PubMed Central

    Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni

    2015-01-01

    Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient’s response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a “radiomics” approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298

  5. Infrared machine vision system for the automatic detection of olive fruit quality.

    PubMed

    Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A

    2013-11-15

    External quality is an important factor in the extraction of olive oil and the marketing of olive fruits. The appearance and presence of external damage are factors that influence the quality of the oil extracted and the perception of consumers, determining the level of acceptance prior to purchase in the case of table olives. The aim of this paper is to report on artificial vision techniques developed for the online estimation of olive quality and to assess the effectiveness of these techniques in evaluating quality based on detecting external defects. This method of classifying olives according to the presence of defects is based on an infrared (IR) vision system. Images of defects were acquired using a digital monochrome camera with band-pass filters on near-infrared (NIR). The original images were processed using segmentation algorithms, edge detection and pixel value intensity to classify the whole fruit. The detection of the defect involved a pixel classification procedure based on nonparametric models of the healthy and defective areas of olives. Classification tests were performed on olives to assess the effectiveness of the proposed method. This research showed that the IR vision system is a useful technology for the automatic assessment of olives that has the potential for use in offline inspection and for online sorting for defects and the presence of surface damage, easily distinguishing those that do not meet minimum quality requirements. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  6. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Liu, Shanjun; Zhang, Peina; Wu, Lixin; Zhou, Wenhui; Yu, Yinan

    2017-06-01

    Obtaining accurate information on rock mass discontinuities for deformation analysis and the evaluation of rock mass stability is important. Obtaining measurements for high and steep zones with the traditional compass method is difficult. Photogrammetry, three-dimensional (3D) laser scanning and other remote sensing methods have gradually become mainstream methods. In this study, a method that is based on a 3D point cloud is proposed to semi-automatically extract rock mass structural plane information. The original data are pre-treated prior to segmentation by removing outlier points. The next step is to segment the point cloud into different point subsets. Various parameters, such as the normal, dip/direction and dip, can be calculated for each point subset after obtaining the equation of the best fit plane for the relevant point subset. A cluster analysis (a point subset that satisfies some conditions and thus forms a cluster) is performed based on the normal vectors by introducing the firefly algorithm (FA) and the fuzzy c-means (FCM) algorithm. Finally, clusters that belong to the same discontinuity sets are merged and coloured for visualization purposes. A prototype system is developed based on this method to extract the points of the rock discontinuity from a 3D point cloud. A comparison with existing software shows that this method is feasible. This method can provide a reference for rock mechanics, 3D geological modelling and other related fields.

  7. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Intergration of LiDAR Data with Aerial Imagery for Estimating Rooftop Solar Photovoltaic Potentials in City of Cape Town

    NASA Astrophysics Data System (ADS)

    Adeleke, A. K.; Smit, J. L.

    2016-06-01

    Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1) automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its' outline and areal coverage; and (2) estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  9. Chemical name extraction based on automatic training data generation and rich feature set.

    PubMed

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  10. Automatic Rooftop Extraction in Stereo Imagery Using Distance and Building Shape Regularized Level Set Evolution

    NASA Astrophysics Data System (ADS)

    Tian, J.; Krauß, T.; d'Angelo, P.

    2017-05-01

    Automatic rooftop extraction is one of the most challenging problems in remote sensing image analysis. Classical 2D image processing techniques are expensive due to the high amount of features required to locate buildings. This problem can be avoided when 3D information is available. In this paper, we show how to fuse the spectral and height information of stereo imagery to achieve an efficient and robust rooftop extraction. In the first step, the digital terrain model (DTM) and in turn the normalized digital surface model (nDSM) is generated by using a newly step-edge approach. In the second step, the initial building locations and rooftop boundaries are derived by removing the low-level pixels and high-level pixels with higher probability to be trees and shadows. This boundary is then served as the initial level set function, which is further refined to fit the best possible boundaries through distance regularized level-set curve evolution. During the fitting procedure, the edge-based active contour model is adopted and implemented by using the edges indicators extracted from panchromatic image. The performance of the proposed approach is tested by using the WorldView-2 satellite data captured over Munich.

  11. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. CMS-2 Reverse Engineering and ENCORE/MODEL Integration

    DTIC Science & Technology

    1992-05-01

    Automated extraction of design information from an existing software system written in CMS-2 can be used to document that system as-built, and that I The...extracted information is provided by a commer- dally available CASE tool. * Information describing software system design is automatically extracted...the displays in Figures 1, 2, and 3. T achiev ths GE 11 b iuo w as rjcs CM-2t Aa nsltr(M2da 1 n Joia Reverse EwngiernTcnlg 5RT [2GRE] . Two xampe fD

  13. Place in Perspective: Extracting Online Information about Points of Interest

    NASA Astrophysics Data System (ADS)

    Alves, Ana O.; Pereira, Francisco C.; Rodrigues, Filipe; Oliveirinha, João

    During the last few years, the amount of online descriptive information about places has reached reasonable dimensions for many cities in the world. Being such information mostly in Natural Language text, Information Extraction techniques are needed for obtaining the meaning of places that underlies these massive amounts of commonsense and user made sources. In this article, we show how we automatically label places using Information Extraction techniques applied to online resources such as Wikipedia, Yellow Pages and Yahoo!.

  14. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  15. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format.

    PubMed

    Ahmed, Zeeshan; Dandekar, Thomas

    2015-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool 'Mining Scientific Literature (MSL)', which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system's output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format.

  16. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  17. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    NASA Astrophysics Data System (ADS)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  18. Linguistically informed digital fingerprints for text

    NASA Astrophysics Data System (ADS)

    Uzuner, Özlem

    2006-02-01

    Digital fingerprinting, watermarking, and tracking technologies have gained importance in the recent years in response to growing problems such as digital copyright infringement. While fingerprints and watermarks can be generated in many different ways, use of natural language processing for these purposes has so far been limited. Measuring similarity of literary works for automatic copyright infringement detection requires identifying and comparing creative expression of content in documents. In this paper, we present a linguistic approach to automatically fingerprinting novels based on their expression of content. We use natural language processing techniques to generate "expression fingerprints". These fingerprints consist of both syntactic and semantic elements of language, i.e., syntactic and semantic elements of expression. Our experiments indicate that syntactic and semantic elements of expression enable accurate identification of novels and their paraphrases, providing a significant improvement over techniques used in text classification literature for automatic copy recognition. We show that these elements of expression can be used to fingerprint, label, or watermark works; they represent features that are essential to the character of works and that remain fairly consistent in the works even when works are paraphrased. These features can be directly extracted from the contents of the works on demand and can be used to recognize works that would not be correctly identified either in the absence of pre-existing labels or by verbatim-copy detectors.

  19. Automatic detection and classification of artifacts in single-channel EEG.

    PubMed

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W; Sorensen, Helge B D

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.

  20. Semi-automatic segmentation of brain tumors using population and individual information.

    PubMed

    Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan

    2013-08-01

    Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.

  1. Semi-automatic delineation of the spino-laminar junction curve on lateral x-ray radiographs of the cervical spine

    NASA Astrophysics Data System (ADS)

    Narang, Benjamin; Phillips, Michael; Knapp, Karen; Appelboam, Andy; Reuben, Adam; Slabaugh, Greg

    2015-03-01

    Assessment of the cervical spine using x-ray radiography is an important task when providing emergency room care to trauma patients suspected of a cervical spine injury. In routine clinical practice, a physician will inspect the alignment of the cervical spine vertebrae by mentally tracing three alignment curves along the anterior and posterior sides of the cervical vertebral bodies, as well as one along the spinolaminar junction. In this paper, we propose an algorithm to semi-automatically delineate the spinolaminar junction curve, given a single reference point and the corners of each vertebral body. From the reference point, our method extracts a region of interest, and performs template matching using normalized cross-correlation to find matching regions along the spinolaminar junction. Matching points are then fit to a third order spline, producing an interpolating curve. Experimental results demonstrate promising results, on average producing a modified Hausdorff distance of 1.8 mm, validated on a dataset consisting of 29 patients including those with degenerative change, retrolisthesis, and fracture.

  2. MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images

    PubMed Central

    Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2018-01-01

    The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections. PMID:29875639

  3. MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images.

    PubMed

    Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2018-01-01

    The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections.

  4. bcgTree: automatized phylogenetic tree building from bacterial core genomes.

    PubMed

    Ankenbrand, Markus J; Keller, Alexander

    2016-10-01

    The need for multi-gene analyses in scientific fields such as phylogenetics and DNA barcoding has increased in recent years. In particular, these approaches are increasingly important for differentiating bacterial species, where reliance on the standard 16S rDNA marker can result in poor resolution. Additionally, the assembly of bacterial genomes has become a standard task due to advances in next-generation sequencing technologies. We created a bioinformatic pipeline, bcgTree, which uses assembled bacterial genomes either from databases or own sequencing results from the user to reconstruct their phylogenetic history. The pipeline automatically extracts 107 essential single-copy core genes, found in a majority of bacteria, using hidden Markov models and performs a partitioned maximum-likelihood analysis. Here, we describe the workflow of bcgTree and, as a proof-of-concept, its usefulness in resolving the phylogeny of 293 publically available bacterial strains of the genus Lactobacillus. We also evaluate its performance in both low- and high-level taxonomy test sets. The tool is freely available at github ( https://github.com/iimog/bcgTree ) and our institutional homepage ( http://www.dna-analytics.biozentrum.uni-wuerzburg.de ).

  5. Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo

    2016-03-01

    An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

  6. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    PubMed

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  7. Automated control of robotic camera tacheometers for measurements of industrial large scale objects

    NASA Astrophysics Data System (ADS)

    Heimonen, Teuvo; Leinonen, Jukka; Sipola, Jani

    2013-04-01

    The modern robotic tacheometers equipped with digital cameras (called also imaging total stations) and capable to measure reflectorless offer new possibilities to gather 3d data. In this paper an automated approach for the tacheometer measurements needed in the dimensional control of industrial large scale objects is proposed. There are two new contributions in the approach: the automated extraction of the vital points (i.e. the points to be measured) and the automated fine aiming of the tacheometer. The proposed approach proceeds through the following steps: First the coordinates of the vital points are automatically extracted from the computer aided design (CAD) data. The extracted design coordinates are then used to aim the tacheometer to point out to the designed location of the points, one after another. However, due to the deviations between the designed and the actual location of the points, the aiming need to be adjusted. An automated dynamic image-based look-and-move type servoing architecture is proposed to be used for this task. After a successful fine aiming, the actual coordinates of the point in question can be automatically measured by using the measuring functionalities of the tacheometer. The approach was validated experimentally and noted to be feasible. On average 97 % of the points actually measured in four different shipbuilding measurement cases were indeed proposed to be vital points by the automated extraction algorithm. The accuracy of the results obtained with the automatic control method of the tachoemeter were comparable to the results obtained with the manual control, and also the reliability of the image processing step of the method was found to be high in the laboratory experiments.

  8. An efficient scheme for automatic web pages categorization using the support vector machine

    NASA Astrophysics Data System (ADS)

    Bhalla, Vinod Kumar; Kumar, Neeraj

    2016-07-01

    In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.

  9. MiDas: Automatic Extraction of a Common Domain of Discourse in Sleep Medicine for Multi-center Data Integration

    PubMed Central

    Sahoo, Satya S.; Ogbuji, Chimezie; Luo, Lingyun; Dong, Xiao; Cui, Licong; Redline, Susan S.; Zhang, Guo-Qiang

    2011-01-01

    Clinical studies often use data dictionaries with controlled sets of terms to facilitate data collection, limited interoperability and sharing at a local site. Multi-center retrospective clinical studies require that these data dictionaries, originating from individual participating centers, be harmonized in preparation for the integration of the corresponding clinical research data. Domain ontologies are often used to facilitate multi-center data integration by modeling terms from data dictionaries in a logic-based language, but interoperability among domain ontologies (using automated techniques) is an unresolved issue. Although many upper-level reference ontologies have been proposed to address this challenge, our experience in integrating multi-center sleep medicine data highlights the need for an upper level ontology that models a common set of terms at multiple-levels of abstraction, which is not covered by the existing upper-level ontologies. We introduce a methodology underpinned by a Minimal Domain of Discourse (MiDas) algorithm to automatically extract a minimal common domain of discourse (upper-domain ontology) from an existing domain ontology. Using the Multi-Modality, Multi-Resource Environment for Physiological and Clinical Research (Physio-MIMI) multi-center project in sleep medicine as a use case, we demonstrate the use of MiDas in extracting a minimal domain of discourse for sleep medicine, from Physio-MIMI’s Sleep Domain Ontology (SDO). We then extend the resulting domain of discourse with terms from the data dictionary of the Sleep Heart and Health Study (SHHS) to validate MiDas. To illustrate the wider applicability of MiDas, we automatically extract the respective domains of discourse from 6 sample domain ontologies from the National Center for Biomedical Ontologies (NCBO) and the OBO Foundry. PMID:22195180

  10. MiDas: automatic extraction of a common domain of discourse in sleep medicine for multi-center data integration.

    PubMed

    Sahoo, Satya S; Ogbuji, Chimezie; Luo, Lingyun; Dong, Xiao; Cui, Licong; Redline, Susan S; Zhang, Guo-Qiang

    2011-01-01

    Clinical studies often use data dictionaries with controlled sets of terms to facilitate data collection, limited interoperability and sharing at a local site. Multi-center retrospective clinical studies require that these data dictionaries, originating from individual participating centers, be harmonized in preparation for the integration of the corresponding clinical research data. Domain ontologies are often used to facilitate multi-center data integration by modeling terms from data dictionaries in a logic-based language, but interoperability among domain ontologies (using automated techniques) is an unresolved issue. Although many upper-level reference ontologies have been proposed to address this challenge, our experience in integrating multi-center sleep medicine data highlights the need for an upper level ontology that models a common set of terms at multiple-levels of abstraction, which is not covered by the existing upper-level ontologies. We introduce a methodology underpinned by a Minimal Domain of Discourse (MiDas) algorithm to automatically extract a minimal common domain of discourse (upper-domain ontology) from an existing domain ontology. Using the Multi-Modality, Multi-Resource Environment for Physiological and Clinical Research (Physio-MIMI) multi-center project in sleep medicine as a use case, we demonstrate the use of MiDas in extracting a minimal domain of discourse for sleep medicine, from Physio-MIMI's Sleep Domain Ontology (SDO). We then extend the resulting domain of discourse with terms from the data dictionary of the Sleep Heart and Health Study (SHHS) to validate MiDas. To illustrate the wider applicability of MiDas, we automatically extract the respective domains of discourse from 6 sample domain ontologies from the National Center for Biomedical Ontologies (NCBO) and the OBO Foundry.

  11. Clinical Named Entity Recognition Using Deep Learning Models.

    PubMed

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER.

  12. Clinical Named Entity Recognition Using Deep Learning Models

    PubMed Central

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER. PMID:29854252

  13. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination.

    PubMed

    Joosen, Ronny V L; Kodde, Jan; Willems, Leo A J; Ligterink, Wilco; van der Plas, Linus H W; Hilhorst, Henk W M

    2010-04-01

    Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve-fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. Germinator is a low-cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.

  14. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2015-02-01

    Anticancer drug-associated side effect knowledge often exists in multiple heterogeneous and complementary data sources. A comprehensive anticancer drug-side effect (drug-SE) relationship knowledge base is important for computation-based drug target discovery, drug toxicity predication and drug repositioning. In this study, we present a two-step approach by combining table classification and relationship extraction to extract drug-SE pairs from a large number of high-profile oncological full-text articles. The data consists of 31,255 tables downloaded from the Journal of Oncology (JCO). We first trained a statistical classifier to classify tables into SE-related and -unrelated categories. We then extracted drug-SE pairs from SE-related tables. We compared drug side effect knowledge extracted from JCO tables to that derived from FDA drug labels. Finally, we systematically analyzed relationships between anti-cancer drug-associated side effects and drug-associated gene targets, metabolism genes, and disease indications. The statistical table classifier is effective in classifying tables into SE-related and -unrelated (precision: 0.711; recall: 0.941; F1: 0.810). We extracted a total of 26,918 drug-SE pairs from SE-related tables with a precision of 0.605, a recall of 0.460, and a F1 of 0.520. Drug-SE pairs extracted from JCO tables is largely complementary to those derived from FDA drug labels; as many as 84.7% of the pairs extracted from JCO tables have not been included a side effect database constructed from FDA drug labels. Side effects associated with anticancer drugs positively correlate with drug target genes, drug metabolism genes, and disease indications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Figure Text Extraction in Biomedical Literature

    PubMed Central

    Kim, Daehyun; Yu, Hong

    2011-01-01

    Background Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. Methodology We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. Results/Conclusions The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search. PMID:21249186

  16. Figure text extraction in biomedical literature.

    PubMed

    Kim, Daehyun; Yu, Hong

    2011-01-13

    Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search.

  17. BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses.

    PubMed

    Spinelli, Lionel; Carpentier, Sabrina; Montañana Sanchis, Frédéric; Dalod, Marc; Vu Manh, Thien-Phong

    2015-10-19

    Recent advances in the analysis of high-throughput expression data have led to the development of tools that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis (GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes between pairs of experimental conditions. This considerably improves extraction of information from high-throughput gene expression data. However, although many gene sets covering a large panel of biological fields are available in public databases, the ability to generate home-made gene sets relevant to one's biological question is crucial but remains a substantial challenge to most biologists lacking statistic or bioinformatic expertise. This is all the more the case when attempting to define a gene set specific of one condition compared to many other ones. Thus, there is a crucial need for an easy-to-use software for generation of relevant home-made gene sets from complex datasets, their use in GSEA, and the correction of the results when applied to multiple comparisons of many experimental conditions. We developed BubbleGUM (GSEA Unlimited Map), a tool that allows to automatically extract molecular signatures from transcriptomic data and perform exhaustive GSEA with multiple testing correction. One original feature of BubbleGUM notably resides in its capacity to integrate and compare numerous GSEA results into an easy-to-grasp graphical representation. We applied our method to generate transcriptomic fingerprints for murine cell types and to assess their enrichments in human cell types. This analysis allowed us to confirm homologies between mouse and human immunocytes. BubbleGUM is an open-source software that allows to automatically generate molecular signatures out of complex expression datasets and to assess directly their enrichment by GSEA on independent datasets. Enrichments are displayed in a graphical output that helps interpreting the results. This innovative methodology has recently been used to answer important questions in functional genomics, such as the degree of similarities between microarray datasets from different laboratories or with different experimental models or clinical cohorts. BubbleGUM is executable through an intuitive interface so that both bioinformaticians and biologists can use it. It is available at http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html .

  18. Extraction of Protein-Protein Interaction from Scientific Articles by Predicting Dominant Keywords.

    PubMed

    Koyabu, Shun; Phan, Thi Thanh Thuy; Ohkawa, Takenao

    2015-01-01

    For the automatic extraction of protein-protein interaction information from scientific articles, a machine learning approach is useful. The classifier is generated from training data represented using several features to decide whether a protein pair in each sentence has an interaction. Such a specific keyword that is directly related to interaction as "bind" or "interact" plays an important role for training classifiers. We call it a dominant keyword that affects the capability of the classifier. Although it is important to identify the dominant keywords, whether a keyword is dominant depends on the context in which it occurs. Therefore, we propose a method for predicting whether a keyword is dominant for each instance. In this method, a keyword that derives imbalanced classification results is tentatively assumed to be a dominant keyword initially. Then the classifiers are separately trained from the instance with and without the assumed dominant keywords. The validity of the assumed dominant keyword is evaluated based on the classification results of the generated classifiers. The assumption is updated by the evaluation result. Repeating this process increases the prediction accuracy of the dominant keyword. Our experimental results using five corpora show the effectiveness of our proposed method with dominant keyword prediction.

  19. Automatic Clustering Using FSDE-Forced Strategy Differential Evolution

    NASA Astrophysics Data System (ADS)

    Yasid, A.

    2018-01-01

    Clustering analysis is important in datamining for unsupervised data, cause no adequate prior knowledge. One of the important tasks is defining the number of clusters without user involvement that is known as automatic clustering. This study intends on acquiring cluster number automatically utilizing forced strategy differential evolution (AC-FSDE). Two mutation parameters, namely: constant parameter and variable parameter are employed to boost differential evolution performance. Four well-known benchmark datasets were used to evaluate the algorithm. Moreover, the result is compared with other state of the art automatic clustering methods. The experiment results evidence that AC-FSDE is better or competitive with other existing automatic clustering algorithm.

  20. [DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].

    PubMed

    Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying

    2013-04-01

    To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.

  1. Automatic three-dimensional rib centerline extraction from CT scans for enhanced visualization and anatomical context

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Sowmya; Alvino, Christopher; Grady, Leo; Kiraly, Atilla

    2011-03-01

    We present a complete automatic system to extract 3D centerlines of ribs from thoracic CT scans. Our rib centerline system determines the positional information for the rib cage consisting of extracted rib centerlines, spinal canal centerline, pairing and labeling of ribs. We show an application of this output to produce an enhanced visualization of the rib cage by the method of Kiraly et al., in which the ribs are digitally unfolded along their centerlines. The centerline extraction consists of three stages: (a) pre-trace processing for rib localization, (b) rib centerline tracing, and (c) post-trace processing to merge the rib traces. Then we classify ribs from non-ribs and determine anatomical rib labeling. Our novel centerline tracing technique uses the Random Walker algorithm to segment the structural boundary of the rib in successive 2D cross sections orthogonal to the longitudinal direction of the ribs. Then the rib centerline is progressively traced along the rib using a 3D Kalman filter. The rib centerline extraction framework was evaluated on 149 CT datasets with varying slice spacing, dose, and under a variety of reconstruction kernels. The results of the evaluation are presented. The extraction takes approximately 20 seconds on a modern radiology workstation and performs robustly even in the presence of partial volume effects or rib pathologies such as bone metastases or fractures, making the system suitable for assisting clinicians in expediting routine rib reading for oncology and trauma applications.

  2. Automated dynamic hollow fiber liquid-liquid-liquid microextraction combined with capillary electrophoresis for speciation of mercury in biological and environmental samples.

    PubMed

    Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin

    2015-10-09

    A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Extracting the exponential behaviors in the market data

    NASA Astrophysics Data System (ADS)

    Watanabe, Kota; Takayasu, Hideki; Takayasu, Misako

    2007-08-01

    We introduce a mathematical criterion defining the bubbles or the crashes in financial market price fluctuations by considering exponential fitting of the given data. By applying this criterion we can automatically extract the periods in which bubbles and crashes are identified. From stock market data of so-called the Internet bubbles it is found that the characteristic length of bubble period is about 100 days.

  4. Overview of machine vision methods in x-ray imaging and microtomography

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Zolotov, Denis; Chukalina, Marina; Nikolaev, Dmitry; Gladkov, Andrey; Ingacheva, Anastasia; Yakimchuk, Ivan; Asadchikov, Victor

    2018-04-01

    Digital X-ray imaging became widely used in science, medicine, non-destructive testing. This allows using modern digital images analysis for automatic information extraction and interpretation. We give short review of scientific applications of machine vision in scientific X-ray imaging and microtomography, including image processing, feature detection and extraction, images compression to increase camera throughput, microtomography reconstruction, visualization and setup adjustment.

  5. A man-made object detection for underwater TV

    NASA Astrophysics Data System (ADS)

    Cheng, Binbin; Wang, Wenwu; Chen, Yao

    2018-03-01

    It is a great challenging task to complete an automatic search of objects underwater. Usually the forward looking sonar is used to find the target, and then the initial identification of the target is completed by the side-scan sonar, and finally the confirmation of the target is accomplished by underwater TV. This paper presents an efficient method for automatic extraction of man-made sensitive targets in underwater TV. Firstly, the image of underwater TV is simplified with taking full advantage of the prior knowledge of the target and the background; then template matching technology is used for target detection; finally the target is confirmed by extracting parallel lines on the target contour. The algorithm is formulated for real-time execution on limited-memory commercial-of-the-shelf platforms and is capable of detection objects in underwater TV.

  6. Efficient video-equipped fire detection approach for automatic fire alarm systems

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon

    2013-01-01

    This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.

  7. Automatic Brain Portion Segmentation From Magnetic Resonance Images of Head Scans Using Gray Scale Transformation and Morphological Operations.

    PubMed

    Somasundaram, Karuppanagounder; Ezhilarasan, Kamalanathan

    2015-01-01

    To develop an automatic skull stripping method for magnetic resonance imaging (MRI) of human head scans. The proposed method is based on gray scale transformation and morphological operations. The proposed method has been tested with 20 volumes of normal T1-weighted images taken from Internet Brain Segmentation Repository. Experimental results show that the proposed method gives better results than the popular skull stripping methods Brain Extraction Tool and Brain Surface Extractor. The average value of Jaccard and Dice coefficients are 0.93 and 0.962 respectively. In this article, we have proposed a novel skull stripping method using intensity transformation and morphological operations. This is a low computational complexity method but gives competitive or better results than that of the popular skull stripping methods Brain Surface Extractor and Brain Extraction Tool.

  8. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    NASA Astrophysics Data System (ADS)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  9. Template-based automatic extraction of the joint space of foot bones from CT scan

    NASA Astrophysics Data System (ADS)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  10. Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains

    PubMed Central

    Souza, Junior Silva; da Silva, Gercina Gonçalves

    2016-01-01

    The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology and melissopalynology. This paper presents the first annotated image dataset for the Brazilian Savannah pollen types that can be used to train and test computer vision based automatic pollen classifiers. A first baseline human and computer performance for this dataset has been established using 805 pollen images of 23 pollen types. In order to access the computer performance, a combination of three feature extractors and four machine learning techniques has been implemented, fine tuned and tested. The results of these tests are also presented in this paper. PMID:27276196

  11. Collaborative Manufacturing Management in Networked Supply Chains

    NASA Astrophysics Data System (ADS)

    Pouly, Michel; Naciri, Souleiman; Berthold, Sébastien

    ERP systems provide information management and analysis to industrial companies and support their planning activities. They are currently mostly based on theoretical values (averages) of parameters and not on the actual, real shop floor data, leading to disturbance of the planning algorithms. On the other hand, sharing data between manufacturers, suppliers and customers becomes very important to ensure reactivity towards markets variability. This paper proposes software solutions to address these requirements and methods to automatically capture the necessary corresponding shop floor information. In order to share data produced by different legacy systems along the collaborative networked supply chain, we propose to use the Generic Product Model developed by Hitachi to extract, translate and store heterogeneous ERP data.

  12. Language from police body camera footage shows racial disparities in officer respect.

    PubMed

    Voigt, Rob; Camp, Nicholas P; Prabhakaran, Vinodkumar; Hamilton, William L; Hetey, Rebecca C; Griffiths, Camilla M; Jurgens, David; Jurafsky, Dan; Eberhardt, Jennifer L

    2017-06-20

    Using footage from body-worn cameras, we analyze the respectfulness of police officer language toward white and black community members during routine traffic stops. We develop computational linguistic methods that extract levels of respect automatically from transcripts, informed by a thin-slicing study of participant ratings of officer utterances. We find that officers speak with consistently less respect toward black versus white community members, even after controlling for the race of the officer, the severity of the infraction, the location of the stop, and the outcome of the stop. Such disparities in common, everyday interactions between police and the communities they serve have important implications for procedural justice and the building of police-community trust.

  13. Cross-beam coherence of infrasonic signals at local and regional ranges.

    PubMed

    Alberts, W C Kirkpatrick; Tenney, Stephen M

    2017-11-01

    Signals collected by infrasound arrays require continuous analysis by skilled personnel or by automatic algorithms in order to extract useable information. Typical pieces of information gained by analysis of infrasonic signals collected by multiple sensor arrays are arrival time, line of bearing, amplitude, and duration. These can all be used, often with significant accuracy, to locate sources. A very important part of this chain is associating collected signals across multiple arrays. Here, a pairwise, cross-beam coherence method of signal association is described that allows rapid signal association for high signal-to-noise ratio events captured by multiple infrasound arrays at ranges exceeding 150 km. Methods, test cases, and results are described.

  14. Visualization of suspicious lesions in breast MRI based on intelligent neural systems

    NASA Astrophysics Data System (ADS)

    Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke

    2006-05-01

    Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.

  15. An improved K-means clustering algorithm in agricultural image segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  16. Automatic extraction of property norm-like data from large text corpora.

    PubMed

    Kelly, Colin; Devereux, Barry; Korhonen, Anna

    2014-01-01

    Traditional methods for deriving property-based representations of concepts from text have focused on either extracting only a subset of possible relation types, such as hyponymy/hypernymy (e.g., car is-a vehicle) or meronymy/metonymy (e.g., car has wheels), or unspecified relations (e.g., car--petrol). We propose a system for the challenging task of automatic, large-scale acquisition of unconstrained, human-like property norms from large text corpora, and discuss the theoretical implications of such a system. We employ syntactic, semantic, and encyclopedic information to guide our extraction, yielding concept-relation-feature triples (e.g., car be fast, car require petrol, car cause pollution), which approximate property-based conceptual representations. Our novel method extracts candidate triples from parsed corpora (Wikipedia and the British National Corpus) using syntactically and grammatically motivated rules, then reweights triples with a linear combination of their frequency and four statistical metrics. We assess our system output in three ways: lexical comparison with norms derived from human-generated property norm data, direct evaluation by four human judges, and a semantic distance comparison with both WordNet similarity data and human-judged concept similarity ratings. Our system offers a viable and performant method of plausible triple extraction: Our lexical comparison shows comparable performance to the current state-of-the-art, while subsequent evaluations exhibit the human-like character of our generated properties.

  17. A novel automated device for rapid nucleic acid extraction utilizing a zigzag motion of magnetic silica beads.

    PubMed

    Yamaguchi, Akemi; Matsuda, Kazuyuki; Uehara, Masayuki; Honda, Takayuki; Saito, Yasunori

    2016-02-04

    We report a novel automated device for nucleic acid extraction, which consists of a mechanical control system and a disposable cassette. The cassette is composed of a bottle, a capillary tube, and a chamber. After sample injection in the bottle, the sample is lysed, and nucleic acids are adsorbed on the surface of magnetic silica beads. These magnetic beads are transported and are vibrated through the washing reagents in the capillary tube under the control of the mechanical control system, and thus, the nucleic acid is purified without centrifugation. The purified nucleic acid is automatically extracted in 3 min for the polymerase chain reaction (PCR). The nucleic acid extraction is dependent on the transport speed and the vibration frequency of the magnetic beads, and optimizing these two parameters provided better PCR efficiency than the conventional manual procedure. There was no difference between the detection limits of our novel device and that of the conventional manual procedure. We have already developed the droplet-PCR machine, which can amplify and detect specific nucleic acids rapidly and automatically. Connecting the droplet-PCR machine to our novel automated extraction device enables PCR analysis within 15 min, and this system can be made available as a point-of-care testing in clinics as well as general hospitals. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  19. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  20. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry.

    PubMed

    Rosende, María; Magalhães, Luis M; Segundo, Marcela A; Miró, Manuel

    2014-09-09

    A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400-800 mg), the extractant flow rate (0.5-1.5 mL min(-1)) and the extraction temperature (27-37°C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level between the summation of leached concentrations of TE in gastric juice plus the residual fraction and the total concentration of the overall assayed metals determined by microwave digestion. These results showed the reliability and lack of bias (trueness) of the automatic biomimetic extraction approach using digestive juices. Copyright © 2014 Elsevier B.V. All rights reserved.

Top