Science.gov

Sample records for automating groundwater sampling

  1. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    SciTech Connect

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the

  2. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    SciTech Connect

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  3. Automated Groundwater Screening

    SciTech Connect

    Taylor, Glenn A.; Collard, Leonard, B.

    2005-10-31

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application.

  4. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    PubMed Central

    Burge, Scott R.; Hoffman, Dave A.; Hartman, Mary J.; Venedam, Richard J.

    2005-01-01

    The capabilities of a “universal platform” for the deployment of analytical sensors in the field for long-term monitoring of environmental contaminants were expanded in this investigation. The platform was previously used to monitor trichloroethene in monitoring wells and at groundwater treatment systems (1,2). The platform was interfaced with chromium (VI) and conductivity analytical systems to monitor shallow wells installed adjacent to the Columbia River at the 100-D Area of the Hanford Site, Washington. A groundwater plume of hexavalent chromium is discharging into the Columbia River through the gravels beds used by spawning salmon. The sampling/analytical platform was deployed for the purpose of collecting data on subsurface hexavalent chromium concentrations at more frequent intervals than was possible with the previous sampling and analysis methods employed a the Site.

  5. Automated sample preparation for monitoring groundwater pollution by carbamate insecticides and their transformation products.

    PubMed

    Chiron, S; Valverde, A; Fernandez-Alba, A; Barceló, D

    1995-01-01

    We investigated automated on-line solid-phase extraction (SPE) followed by liquid chromatographic (LC) techniques for monitoring carbamates and their transformation products. Analytical determinations were performed by LC with UV or postcolumn fluorescence detection (U.S. Environmental Protection Agency Method 531.1 for carbamate insecticides) after preconcentration with on-line SPE using C18 Empore extraction disks. On-line SPE/LC/thermospray mass spectrometry with time-scheduled selected-ion monitoring was used as confirmatory method. The method was used to determine pesticide traces in well waters of a typical aquifer in the Almeria area (Andalucia, south of Spain) from March 1993 to February 1994. The major pollutants, found in highest amounts, were carbofuran, methiocarb, and methomyl, at levels of 0.32, 0.3, and 0.8 micrograms/L, respectively. According to results of seasonal variation studies, pollution by carbamate insecticides is sporadic and exceeds the limit of 0.5 micrograms/L for total pesticides allowed by the European Economic Community Drinking Water Directive only twice a year. 3-Hydroxycarbofuran and methiocarb sulfone also were detected, showing the importance of including the main toxic break-down products of carbamate insecticides in future monitoring programs.

  6. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  7. Groundwater sampling: Chapter 5

    USGS Publications Warehouse

    Wang, Qingren; Munoz-Carpena, Rafael; Foster, Adam; Migliaccio, Kati W.; Li, Yuncong; Migliaccio, Kati

    2011-01-01

    Discussing an array of water quality topics, from water quality regulations and criteria, to project planning and sampling activities, this book outlines a framework for improving water quality programs. Using this framework, you can easily put the proper training and tools in place for better management of water resources.

  8. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  9. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  10. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  11. Colloid characterization and quantification in groundwater samples

    SciTech Connect

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  12. Continuous Monitoring, Automated Analyses, and Sampling Procedures.

    ERIC Educational Resources Information Center

    Hensley, C. P.; And Others

    1978-01-01

    Presents water analysis literature, covering publications of 1976-77. This series covers: (1) monitoring strategies and sampling protocols; (2) continuous monitoring applications; (3) biological monitoring systems; and (4) automated analysis. A list of 57 references is also presented. (HM)

  13. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    SciTech Connect

    Burge, Scott R.; O'Hara, Matthew J.

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  14. Automated microorganism Sample Collection Module

    NASA Technical Reports Server (NTRS)

    Gall, L. S.; Graham, M. D.; Umbreit, W.

    1969-01-01

    Modified Gelman Sampler obtains representative sample of microorganism population. Proposed Sample Collection Module is based on direct inoculation of selected solid growth media encased in a cartridge at all times except during inoculation. Cartridge can be handled with no danger of contamination to sample or operator.

  15. Automated sample preparation for CE-SDS.

    PubMed

    Le, M Eleanor; Vizel, Alona; Hutterer, Katariina M

    2013-05-01

    Traditionally, CE with SDS (CE-SDS) places many restrictions on sample composition. Requirements include low salt content, known initial sample concentration, and a narrow window of final sample concentration. As these restrictions require buffer exchange for many sample types, sample preparation is often tedious and yields poor sample recoveries. To improve capacity and streamline sample preparation, an automated robotic platform was developed using the PhyNexus Micro-Extractor Automated Instrument (MEA) for both the reduced and nonreduced CE-SDS assays. This automated sample preparation normalizes sample concentration, removes salts and other contaminants, and adds the required CE-SDS reagents, essentially eliminating manual steps during sample preparation. Fc-fusion proteins and monoclonal antibodies were used in this work to demonstrate benefits of this approach when compared to the manual method. With optimized conditions, this application has demonstrated decreased analyst "hands on" time and reduced total assay time. Sample recovery greater than 90% can be achieved, regardless of initial composition and concentration of analyte.

  16. Designing an enhanced groundwater sample collection system

    SciTech Connect

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples.

  17. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  18. Automated storm water sampling on small watersheds

    USGS Publications Warehouse

    Harmel, R.D.; King, K.W.; Slade, R.M.

    2003-01-01

    Few guidelines are currently available to assist in designing appropriate automated storm water sampling strategies for small watersheds. Therefore, guidance is needed to develop strategies that achieve an appropriate balance between accurate characterization of storm water quality and loads and limitations of budget, equipment, and personnel. In this article, we explore the important sampling strategy components (minimum flow threshold, sampling interval, and discrete versus composite sampling) and project-specific considerations (sampling goal, sampling and analysis resources, and watershed characteristics) based on personal experiences and pertinent field and analytical studies. These components and considerations are important in achieving the balance between sampling goals and limitations because they determine how and when samples are taken and the potential sampling error. Several general recommendations are made, including: setting low minimum flow thresholds, using flow-interval or variable time-interval sampling, and using composite sampling to limit the number of samples collected. Guidelines are presented to aid in selection of an appropriate sampling strategy based on user's project-specific considerations. Our experiences suggest these recommendations should allow implementation of a successful sampling strategy for most small watershed sampling projects with common sampling goals.

  19. Automated Sample Deoxygenation for Improved Luminescence Measurements.

    DTIC Science & Technology

    1986-11-25

    fET-AY4 732 AUTOMATED SAMPLE DEOXYGENATION FOR IMPROVED LUMINESCENCE MEASUREMENTS U) EMORY UNIV RTLANTA GA DEPT OF CHEMISTRY M E ROLLIE ET AL 25 NOV... Deoxygenation for Improved Luminescence Measurements 12 PERSONAL AUTHOR(S) | ,Rollie, M.E.; Patonay, Gabor; and Warner, Isiah M. A .3a. TYPE OF REPORT...GROUP ISU*GRO P ,,,uminescence Spectroscopy; Fluorescence Analysis,* Room *f Temperature Phosphorescence; Deoxygenation ; Quenching ISTRACT (Continue on

  20. Precise and automated microfluidic sample preparation.

    SciTech Connect

    Crocker, Robert W.; Patel, Kamlesh D.; Mosier, Bruce P.; Harnett, Cindy K.

    2004-07-01

    Autonomous bio-chemical agent detectors require sample preparation involving multiplex fluid control. We have developed a portable microfluidic pump array for metering sub-microliter volumes at flowrates of 1-100 {micro}L/min. Each pump is composed of an electrokinetic (EK) pump and high-voltage power supply with 15-Hz feedback from flow sensors. The combination of high pump fluid impedance and active control results in precise fluid metering with nanoliter accuracy. Automated sample preparation will be demonstrated by labeling proteins with fluorescamine and subsequent injection to a capillary gel electrophoresis (CGE) chip.

  1. Automated Monitoring System for Waste Disposal Sites and Groundwater

    SciTech Connect

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  2. Testing a groundwater sampling tool: Are the samples representative?

    SciTech Connect

    Kaback, D.S.; Bergren, C.L.; Carlson, C.A.; Carlson, C.L.

    1989-12-31

    A ground water sampling tool, the HydroPunch{trademark}, was tested at the Department of Energy`s Savannah River Site in South Carolina to determine if representative ground water samples could be obtained without installing monitoring wells. Chemical analyses of ground water samples collected with the HydroPunch {trademark} from various depths within a borehole were compared with chemical analyses of ground water from nearby monitoring wells. The site selected for the test was in the vicinity of a large coal storage pile and a coal pile runoff basin that was constructed to collect the runoff from the coal storage pile. Existing monitoring wells in the area indicate the presence of a ground water contaminant plume that: (1) contains elevated concentrations of trace metals; (2) has an extremely low pH; and (3) contains elevated concentrations of major cations and anions. Ground water samples collected with the HydroPunch{trademark} provide in excellent estimate of ground water quality at discrete depths. Groundwater chemical data collected from various depths using the HydroPunch{trademark} can be averaged to simulate what a screen zone in a monitoring well would sample. The averaged depth-discrete data compared favorably with the data obtained from the nearby monitoring wells.

  3. Testing a groundwater sampling tool: Are the samples representative

    SciTech Connect

    Kaback, D.S.; Bergren, C.L. ); Carlson, C.A.; Carlson, C.L. )

    1989-01-01

    A ground water sampling tool, the HydroPunch{trademark}, was tested at the Department of Energy's Savannah River Site in South Carolina to determine if representative ground water samples could be obtained without installing monitoring wells. Chemical analyses of ground water samples collected with the HydroPunch {trademark} from various depths within a borehole were compared with chemical analyses of ground water from nearby monitoring wells. The site selected for the test was in the vicinity of a large coal storage pile and a coal pile runoff basin that was constructed to collect the runoff from the coal storage pile. Existing monitoring wells in the area indicate the presence of a ground water contaminant plume that: (1) contains elevated concentrations of trace metals; (2) has an extremely low pH; and (3) contains elevated concentrations of major cations and anions. Ground water samples collected with the HydroPunch{trademark} provide in excellent estimate of ground water quality at discrete depths. Groundwater chemical data collected from various depths using the HydroPunch{trademark} can be averaged to simulate what a screen zone in a monitoring well would sample. The averaged depth-discrete data compared favorably with the data obtained from the nearby monitoring wells.

  4. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    SciTech Connect

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L.; Brown, W.L.; Hildebrand, R. Douglas

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to eliminating the need to print out

  5. Design and performance of an automated radionuclide separator: its application on the determination of ⁹⁹Tc in groundwater.

    PubMed

    Chung, Kun Ho; Choi, Sang Do; Choi, Geun Sik; Kang, Mun Ja

    2013-11-01

    A modular automated radionuclide separator for (99)Tc (MARS Tc-99) has been developed for the rapid and reproducible separation of technetium in groundwater samples. The control software of MARS Tc-99 was developed in the LabView programming language. An automated radiochemical method for separating (99)Tc was developed and validated by the purification of (99m)Tc tracer solution eluted from a commercial (99)Mo/(99m)Tc generator. The chemical recovery and analytical time for this radiochemical method were found to be 96 ± 2% and 81 min, respectively.

  6. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2009

    SciTech Connect

    R.L. Weiss, B.L. Lawrence, D.W. Woolery

    2010-07-08

    This document reports the findings of the groundwater and leachate monitoring and sampling at the Environmental restoration Disposal Facility for calendar year 2009. The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

  7. HITTING THE BULL'S-EYE IN GROUNDWATER SAMPLING

    EPA Science Inventory

    Many of the commonly-used groundwater sampling techniques and procedures have resulted from methods developed for water supply investigations. These methods have persisted, even though the monitoring goals may have changed from water supply development to contaminant source and ...

  8. HITTING THE BULL'S-EYE IN GROUNDWATER SAMPLING

    EPA Science Inventory

    Many of the commonly-used groundwater sampling techniques and procedures have resulted from methods developed for water supply investigations. These methods have persisted, even though the monitoring goals may have changed from water supply development to contaminant source and ...

  9. Integrated sampling and analytical approach for common groundwater dissolved gases.

    PubMed

    McLeish, Kimberley; Ryan, M Cathryn; Chu, Angus

    2007-12-15

    A novel passive gas diffusion sampler (PGDS) combines sampling, storage and direct injection into a single gas chromatograph (GC). The sampler has a 4.5 mL internal volume when deployed, is easy to operate, and eliminates sample-partitioning. The associated GC method analyzes for a large, dynamic sampling range from a single, small volume injection. Dissolved gases were separated on parallel Rt-Molsieve 5A and Rt-Q-PLOT columns and eluted solutes were quantified using a pulse discharge helium ionization detector (PD-HID). The combined sampling and analytical method appears to be less prone to systematic bias than conventional sampling and headspace partitioning and analysis. Total dissolved gas pressure used in tandem with the PGDS improved the accuracy of dissolved gas concentrations. The incorporation of routine measurements of dissolved biogeochemical and permanent gases into groundwater investigations will provide increased insight into chemical and biological processes in groundwater and improve chemical mass balance accuracy.

  10. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  11. Bias in groundwater samples caused by wellbore flow

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1989-01-01

    Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.

  12. Expediting Groundwater Sampling at Hanford and Making It Safer

    SciTech Connect

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-22

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwatermonitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons.

  13. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  14. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  15. Microbial groundwater sampling protocol for fecal-rich environments.

    PubMed

    Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William

    2014-09-01

    Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon(®) tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  16. Automated collection and processing of environmental samples

    DOEpatents

    Troyer, Gary L.; McNeece, Susan G.; Brayton, Darryl D.; Panesar, Amardip K.

    1997-01-01

    For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.

  17. Rapid assessment of soil and groundwater tritium by vegetation sampling

    SciTech Connect

    Murphy, C.E. Jr.

    1995-09-01

    A rapid and relatively inexpensive technique for defining the extent of groundwater contamination by tritium has been investigated. The technique uses existing vegetation to sample the groundwater. Water taken up by deep rooted trees is collected by enclosing tree branches in clear plastic bags. Water evaporated from the leaves condenses on the inner surface of the bag. The water is removed from the bag with a syringe. The bags can be sampled many times. Tritium in the water is detected by liquid scintillation counting. The water collected in the bags has no color and counts as well as distilled water reference samples. The technique was used in an area of known tritium contamination and proved to be useful in defining the extent of tritium contamination.

  18. Rapid Automated Sample Preparation for Biological Assays

    SciTech Connect

    Shusteff, M

    2011-03-04

    Our technology utilizes acoustic, thermal, and electric fields to separate out contaminants such as debris or pollen from environmental samples, lyse open cells, and extract the DNA from the lysate. The objective of the project is to optimize the system described for a forensic sample, and demonstrate its performance for integration with downstream assay platforms (e.g. MIT-LL's ANDE). We intend to increase the quantity of DNA recovered from the sample beyond the current {approx}80% achieved using solid phase extraction methods. Task 1: Develop and test an acoustic filter for cell extraction. Task 2: Develop and test lysis chip. Task 3: Develop and test DNA extraction chip. All chips have been fabricated based on the designs laid out in last month's report.

  19. Automated Sample collection and Analysis unit

    SciTech Connect

    Latner, Norman; Sanderson, Colin G.; Negro, Vincent C.

    1999-03-31

    Autoramp is an atmospheric radionuclide collection and analysis unit designed for unattended operation. A large volume of air passes through one of 31 filter cartridges which is then moved from a sampling chamber and past a bar code reader, to a shielded enclosure. The collected dust-borne radionuclides are counted with a high resolution germanium gamma-ray detector. An analysis is made and the results are transmitted to a central station that can also remotely control the unit.

  20. SUBSURFACE MOBILE PLUTONIUM SPECIATION: SAMPLING ARTIFACTS FOR GROUNDWATER COLLOIDS

    SciTech Connect

    Kaplan, D.; Buesseler, K.

    2010-06-29

    A recent review found several conflicting conclusions regarding colloid-facilitated transport of radionuclides in groundwater and noted that colloids can both facilitate and retard transport. Given these contrasting conclusions and the profound implications even trace concentrations of plutonium (Pu) have on the calculated risk posed to human health, it is important that the methodology used to sample groundwater colloids be free of artifacts. The objective of this study was: (1) to conduct a field study and measure Pu speciation, ({sup 239}Pu and {sup 240}Pu for reduced-Pu{sub aq}, oxidized-Pu{sub aq}, reduced-Pu{sub colloid}, and oxidized-Pu{sub colloid}), in a Savannah River Site (SRS) aquifer along a pH gradient in F-Area, (2) to determine the impact of pumping rate on Pu concentration, Pu speciation, and Pu isotopic ratios, (3) determine the impact of delayed sample processing (as opposed to processing directly from the well).

  1. Automated biowaste sampling system feces monitoring system

    NASA Technical Reports Server (NTRS)

    Hunt, S. R.; Glanfield, E. J.

    1979-01-01

    The Feces Monitoring System (FMS) Program designed, fabricated, assembled and tested an engineering model waste collector system (WCS) to be used in support of life science and medical experiments related to Shuttle missions. The FMS design was patterned closely after the Shuttle WCS, including: interface provisions; mounting; configuration; and operating procedures. These similarities make it possible to eventually substitute an FMS for the Shuttle WCS of Orbiter. In addition, several advanced waste collection features, including the capability of real-time inertial fecal separation and fecal mass measurement and sampling were incorporated into the FMS design.

  2. Microbial Groundwater Sampling Protocol for Fecal-Rich Environments

    PubMed Central

    Harter, Thomas; Watanabe, Naoko; Li, Xunde; Atwill, Edward R; Samuels, William

    2014-01-01

    Inherently, confined animal farming operations (CAFOs) and other intense fecal-rich environments are potential sources of groundwater contamination by enteric pathogens. The ubiquity of microbial matter poses unique technical challenges in addition to economic constraints when sampling wells in such environments. In this paper, we evaluate a groundwater sampling protocol that relies on extended purging with a portable submersible stainless steel pump and Teflon® tubing as an alternative to equipment sterilization. The protocol allows for collecting a large number of samples quickly, relatively inexpensively, and under field conditions with limited access to capacity for sterilizing equipment. The protocol is tested on CAFO monitoring wells and considers three cross-contamination sources: equipment, wellbore, and ambient air. For the assessment, we use Enterococcus, a ubiquitous fecal indicator bacterium (FIB), in laboratory and field tests with spiked and blank samples, and in an extensive, multi-year field sampling campaign on 17 wells within 2 CAFOs. The assessment shows that extended purging can successfully control for equipment cross-contamination, but also controls for significant contamination of the well-head, within the well casing and within the immediate aquifer vicinity of the well-screen. Importantly, our tests further indicate that Enterococcus is frequently entrained in water samples when exposed to ambient air at a CAFO during sample collection. Wellbore and air contamination pose separate challenges in the design of groundwater monitoring strategies on CAFOs that are not addressed by equipment sterilization, but require adequate QA/QC procedures and can be addressed by the proposed sampling strategy. PMID:24903186

  3. Quantifying Groundwater Flow to a Subtropical Spring-fed River Using Automated 222Rn Measurement

    NASA Astrophysics Data System (ADS)

    Khadka, M. B.; Martin, J. B.

    2014-12-01

    The magnitude of groundwater discharge to streams can alter stream water chemistry, thereby affecting riverine ecosystems and surface water quality. Point groundwater discharge to streams can be measured using a variety of techniques; however, integrating point and diffuse discharge is difficult over large stream reaches. We applied an automated radon-in-water technique for continuous measurements of 222Rn activities along a 5 km length of the spring-fed Ichetucknee River in north-central Florida. Integration of longitudinal 222Rn distribution, measured on three separate occasions, with groundwater and spring water end members in a mass balance equation allowed temporal and spatial assessment of groundwater flow to the stream. The 222Rn activities indicate groundwater fluxes are higher in the upper reach of the river, which has a narrow flood plain, than in the lower reach, with a wide flood plain. A wide flood plain enhances evapotranspiration, which may cause the observed difference in groundwater seepage. Groundwater flow to the upper reach increases following rain events as diffuse recharge within the catchment increases hydraulic gradients toward the river. Groundwater recharge to the lower reach is smaller and less variable than the upper reach regardless of the river flow. The lower reach can back flood when the Santa Fe River, the receiving stream, floods because of the low gradient of the Ichetucknee River (<2 m/km). Back flooding reduces flow, increases water level and inundates the floodplain, reducing the hydraulic head gradient and groundwater inflow. Based on the 222Rn mass balance, cumulative groundwater inflow is estimated to be 2.5 ± 1 m3/s (±SD) during low flow and 3.2 ± 1.5 m3/s during high flow. The estimated ground water inflows to the Ichetucknee River from the 222Rn mass balance are about twice the estimates of 1.2 m3/s and 1.5 m3/s obtained from dye tracer and ionic chemical tracer methods, respectively. The estimated higher fluxes from

  4. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  5. Modular Automated Processing System (MAPS) for analysis of biological samples.

    SciTech Connect

    Gil, Geun-Cheol; Chirica, Gabriela S.; Fruetel, Julia A.; VanderNoot, Victoria A.; Branda, Steven S.; Schoeniger, Joseph S.; Throckmorton, Daniel J.; Brennan, James S.; Renzi, Ronald F.

    2010-10-01

    We have developed a novel modular automated processing system (MAPS) that enables reliable, high-throughput analysis as well as sample-customized processing. This system is comprised of a set of independent modules that carry out individual sample processing functions: cell lysis, protein concentration (based on hydrophobic, ion-exchange and affinity interactions), interferent depletion, buffer exchange, and enzymatic digestion of proteins of interest. Taking advantage of its unique capacity for enclosed processing of intact bioparticulates (viruses, spores) and complex serum samples, we have used MAPS for analysis of BSL1 and BSL2 samples to identify specific protein markers through integration with the portable microChemLab{trademark} and MALDI.

  6. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling

  7. Influence of vertical flows in wells on groundwater sampling.

    PubMed

    McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen

    2014-11-15

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  8. An Automated Home Made Low Cost Vibrating Sample Magnetometer

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Nath, T. K.

    2011-07-01

    The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10-2 emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software.

  9. Automated DNA extraction for large numbers of plant samples.

    PubMed

    Mehle, Nataša; Nikolić, Petra; Rupar, Matevž; Boben, Jana; Ravnikar, Maja; Dermastia, Marina

    2013-01-01

    The method described here is a rapid, total DNA extraction procedure applicable to a large number of plant samples requiring pathogen detection. The procedure combines a simple and quick homogenization step of crude extracts with DNA extraction based upon the binding of DNA to magnetic beads. DNA is purified in an automated process in which the magnetic beads are transferred through a series of washing buffers. The eluted DNA is suitable for efficient amplification in PCR reactions.

  10. Automated sample area definition for high-throughput microscopy.

    PubMed

    Zeder, M; Ellrott, A; Amann, R

    2011-04-01

    High-throughput screening platforms based on epifluorescence microscopy are powerful tools in a variety of scientific fields. Although some applications are based on imaging geometrically defined samples such as microtiter plates, multiwell slides, or spotted gene arrays, others need to cope with inhomogeneously located samples on glass slides. The analysis of microbial communities in aquatic systems by sample filtration on membrane filters followed by multiple fluorescent staining, or the investigation of tissue sections are examples. Therefore, we developed a strategy for flexible and fast definition of sample locations by the acquisition of whole slide overview images and automated sample recognition by image analysis. Our approach was tested on different microscopes and the computer programs are freely available (http://www.technobiology.ch). Copyright © 2011 International Society for Advancement of Cytometry.

  11. Gas-driven pump for ground-water samples

    USGS Publications Warehouse

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  12. Drug discovery from Nature: automated high-quality sample preparation

    PubMed Central

    Thiericke, Ralf

    2000-01-01

    Secondary metabolites from plants, animals and microorganisms have been proven to be an outstanding source for new and innovative drugs and show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds:: often generated in time consuming and for the most part manual processes. As quality and quantity of the provided samples play a pivotal role in the success of high-throughput screening programs this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of a modified Zymark RapidTrace® SPE workstation an easy-to-handle and effective fractionation method has been developed which allows the generation of highquality samples from natural origin, fulfilling the requirements of an integration into high-throughput screening programs. PMID:18924703

  13. Influence of piezometer construction on groundwater sampling in fractured rock.

    PubMed

    Kozuskanich, J; Novakowski, K S; Anderson, B C

    2012-01-01

    A numerical model for groundwater flow and solute transport was employed to examine the influence of the screen and sandpack on the collection of a representative geochemical sample from a piezometer monitoring well installation in a discretely fractured bedrock aquifer. The optimization of screen and sandpack combinations was explored for the potential to reduce purging times and volumes in practice. Simulations accounted for the location of the fractures along the well screen, fracture aperture, screen length, and the pumping rate. The variability in the required purging times (t(99)-the time required to achieve 99% fractional contribution from the formation to pump discharge) can be explained by: (1) the relative hydraulic conductivities of the components of the system (fracture, sandpack, and screen), (2) the truncation of the flow field from the fracture to the screen by the upper and/or lower boundary of the sandpack of the flow field from another fracture, and (3) time-dependent drawdown. During pumping, only a portion of the sandpack may actually become hydraulically active. The optimal configuration (shortest purging time) is achieved when the ratios of the screen, sandpack, and fracture hydraulic conductivities are close to 1:1:1. More importantly, the role of the fracture hydraulic conductivity in the ratios is not as crucial to reducing t(99) as having the hydraulic conductivities of the screen and sandpack as similar as possible. This study provides a better understanding of well dynamics during pumping for the purpose of obtaining representative groundwater samples. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  14. Influence of thermal treatments on radiocarbon dating of groundwater samples

    NASA Astrophysics Data System (ADS)

    Stanciu, Iuliana Madalina; Sava, Tiberiu Bogdan; Pacesila, Doru Gheorghe; Gaza, Oana; Simion, Corina Anca; Stefan, Bianca Maria; Sava, Gabriela Odilia; Ghita, Dan Gabriel; Mosu, Vasile

    2017-06-01

    Radiocarbon measurements of dissolved inorganic carbon (DIC) in water provides information about the formation of oceanic circulation of the water volumes, the hydrogeological systems, and also valuable information can be gained about the aquifer storage and the degree of containment relative to the surface waters. Radiocarbon dating refers to the determination of small quantities of the naturally occurring carbon 14 in the water, which can be integrated in the groundwater mass through the gaseous CO2, carbonaceous deposits dissolved by water and organic remains. The aim of this study is to investigate the influence of the temperature and pressure over the amount of each isotope of carbon during the sample preparation stage. The first step was to evaporate several underground water samples at 65°C under different conditions until the carbonates were obtained, then the CO2 was extracted with orto-phosphoric acid and transformed to graphite. The second step was to obtain graphite from an untreated water sample. Finally, the samples were measured with the 1MV Cockcroft-Walton Tandetron Accelerator by Accelerator Mass Spectrometry.

  15. Components for automated microfluidics sample preparation and analysis

    NASA Astrophysics Data System (ADS)

    Archer, M.; Erickson, J. S.; Hilliard, L. R.; Howell, P. B., Jr.; Stenger, D. A.; Ligler, F. S.; Lin, B.

    2008-02-01

    The increasing demand for portable devices to detect and identify pathogens represents an interdisciplinary effort between engineering, materials science, and molecular biology. Automation of both sample preparation and analysis is critical for performing multiplexed analyses on real world samples. This paper selects two possible components for such automated portable analyzers: modified silicon structures for use in the isolation of nucleic acids and a sheath flow system suitable for automated microflow cytometry. Any detection platform that relies on the genetic content (RNA and DNA) present in complex matrices requires careful extraction and isolation of the nucleic acids in order to ensure their integrity throughout the process. This sample pre-treatment step is commonly performed using commercially available solid phases along with various molecular biology techniques that require multiple manual steps and dedicated laboratory space. Regardless of the detection scheme, a major challenge in the integration of total analysis systems is the development of platforms compatible with current isolation techniques that will ensure the same quality of nucleic acids. Silicon is an ideal candidate for solid phase separations since it can be tailored structurally and chemically to mimic the conditions used in the laboratory. For analytical purposes, we have developed passive structures that can be used to fully ensheath one flow stream with another. As opposed to traditional flow focusing methods, our sheath flow profile is truly two dimensional, making it an ideal candidate for integration into a microfluidic flow cytometer. Such a microflow cytometer could be used to measure targets captured on either antibody- or DNA-coated beads.

  16. Digital microfluidic hub for automated nucleic acid sample preparation.

    SciTech Connect

    He, Jim; Bartsch, Michael S.; Patel, Kamlesh D.; Kittlaus, Eric A.; Remillared, Erin M.; Pezzola, Genevieve L.; Renzi, Ronald F.; Kim, Hanyoup

    2010-07-01

    We have designed, fabricated, and characterized a digital microfluidic (DMF) platform to function as a central hub for interfacing multiple lab-on-a-chip sample processing modules towards automating the preparation of clinically-derived DNA samples for ultrahigh throughput sequencing (UHTS). The platform enables plug-and-play installation of a two-plate DMF device with consistent spacing, offers flexible connectivity for transferring samples between modules, and uses an intuitive programmable interface to control droplet/electrode actuations. Additionally, the hub platform uses transparent indium-tin oxide (ITO) electrodes to allow complete top and bottom optical access to the droplets on the DMF array, providing additional flexibility for various detection schemes.

  17. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010

    SciTech Connect

    Weiss, R. L.; Lawrence, B. L.

    2011-06-09

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.

  18. Automated acoustic matrix deposition for MALDI sample preparation.

    PubMed

    Aerni, Hans-Rudolf; Cornett, Dale S; Caprioli, Richard M

    2006-02-01

    Novel high-throughput sample preparation strategies for MALDI imaging mass spectrometry (IMS) and profiling are presented. An acoustic reagent multispotter was developed to provide improved reproducibility for depositing matrix onto a sample surface, for example, such as a tissue section. The unique design of the acoustic droplet ejector and its optimization for depositing matrix solution are discussed. Since it does not contain a capillary or nozzle for fluid ejection, issues with clogging of these orifices are avoided. Automated matrix deposition provides better control of conditions affecting protein extraction and matrix crystallization with the ability to deposit matrix accurately onto small surface features. For tissue sections, matrix spots of 180-200 microm in diameter were obtained and a procedure is described for generating coordinate files readable by a mass spectrometer to permit automated profile acquisition. Mass spectral quality and reproducibility was found to be better than that obtained with manual pipet spotting. The instrument can also deposit matrix spots in a dense array pattern so that, after analysis in a mass spectrometer, two-dimensional ion images may be constructed. Example ion images from a mouse brain are presented.

  19. Improved helium exchange gas cryostat and sample tube designs for automated gas sampling and cryopumping

    NASA Astrophysics Data System (ADS)

    Buerki, P. R.; Jackson, Brian C.; Schilling, Tim; Rufer, Terry; Severinghaus, Jeffrey P.

    2006-10-01

    In order to eliminate the use of liquid helium for the extraction of atmospheric gases from polar ice cores, two units of a redesigned top load helium exchange gas cryostat were built and tested. The cryostats feature the shortest and largest diameter sample wells built to date, a base temperature below 7 Kelvin, and a sample well without baffles. The cryostats allowed shortening the length and thus increasing the gas pressure inside our sample tubes by 58% and increasing the amount of sample ending up in the mass spectrometer by 4.4%. The cryostats can either be used as mobile stand-alone units for manual gas processing lines or integrated into a fully automated vacuum extraction and gas analysis line. For the latter application the cryostat was equipped with a custom-designed automated changeover system.

  20. Automated, differentially pumped, mass-spectrometer sampling system

    NASA Astrophysics Data System (ADS)

    Little, Jon C.; Gordon, Lloyd B.

    1991-02-01

    The design, construction, and testing of an automated gas sampling system for a quadrupole mass spectrometer on a process chamber with a wide pressure range is described. A set of two parallel stepper-activated vacuum valves are used to vary the amount of gas admitted into the mass spectrometer chamber. The computer-controlled sampling system automatically adjusts the position of the valves to provide the proper leak rate so that the mass spectrometer can continuously monitor a process chamber with a time varying pressure between 760 and 0.00002 torr. This provides a constant pressure at the mass spectrometer sensing head, despite the varying process chamber pressure. No commercially-available mass spectrometer system was found which was able to automatically monitor the gas composition in a proces chamber with such time varying pressures. The principles of operation are presented along with calculations of the gas flow and the control equations.

  1. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  2. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  3. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2002.

    SciTech Connect

    2001-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2002 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2002 will be in accordance with the following requirements of DOE Order 5400.1: to evaluate and maintain surveillance of existing and potential groundwater contamination sources; to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; to identify and characterize long-term trends in groundwater quality at Y-12; and to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2002 will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2002 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  4. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2003

    SciTech Connect

    2002-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2003 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2003 will be in accordance with the following requirements of DOE Order 5400.1: (1) to evaluate and maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2003 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2003 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  5. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2005

    SciTech Connect

    2004-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  6. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2004

    SciTech Connect

    Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee

    2003-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.

  7. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    SciTech Connect

    Elvado Environmental LLC

    2008-12-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  8. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2008

    SciTech Connect

    R. L. Weiss; D. W. Woolery

    2009-09-03

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF, to report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.

  9. COLLOIDAL CONSIDERATIONS IN GROUNDWATER SAMPLING AND CONTAMINANT TRANSPORT PREDICTIONS

    EPA Science Inventory

    The association of contaminants with suspended colloidal material in groundwater is a possible transport mechanism and a complicating factor for accurate estimations of the aqueous geochemistry of subsurface systems. esearch to date indicates colloidal facilitated transport of co...

  10. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2006

    SciTech Connect

    R. L. Weiss

    2007-05-30

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and to report leachate results in fulfillment of the requirements specified in the ERDF ROD.

  11. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2006

    SciTech Connect

    R. L. Weiss

    2007-12-05

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and to report leachate results in fulfillment of the requirements specified in the ERDF ROD.

  12. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    SciTech Connect

    Johnson, Dick; Tsosie, Bernadette

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  13. A downhole passive sampling system to avoid bias and error from groundwater sample handling.

    PubMed

    Britt, Sanford L; Parker, Beth L; Cherry, John A

    2010-07-01

    A new downhole groundwater sampler reduces bias and error due to sample handling and exposure while introducing minimal disturbance to natural flow conditions in the formation and well. This "In Situ Sealed", "ISS", or "Snap" sampling device includes removable/lab-ready sample bottles, a sampler device to hold double end-opening sample bottles in an open position, and a line for lowering the sampler system and triggering closure of the bottles downhole. Before deployment, each bottle is set open at both ends to allow flow-through during installation and equilibration downhole. Bottles are triggered to close downhole without well purging; the method is therefore "passive" or "nonpurge". The sample is retrieved in a sealed condition and remains unexposed until analysis. Data from six field studies comparing ISS sampling with traditional methods indicate ISS samples typically yield higher volatile organic compound (VOC) concentrations; in one case, significant chemical-specific differentials between sampling methods were discernible. For arsenic, filtered and unfiltered purge results were negatively and positively biased, respectively, compared to ISS results. Inorganic constituents showed parity with traditional methods. Overall, the ISS is versatile, avoids low VOC recovery bias, and enhances reproducibility while avoiding sampling complexity and purge water disposal.

  14. Current advances and strategies towards fully automated sample preparation for regulated LC-MS/MS bioanalysis.

    PubMed

    Zheng, Naiyu; Jiang, Hao; Zeng, Jianing

    2014-09-01

    Robotic liquid handlers (RLHs) have been widely used in automated sample preparation for liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalysis. Automated sample preparation for regulated bioanalysis offers significantly higher assay efficiency, better data quality and potential bioanalytical cost-savings. For RLHs that are used for regulated bioanalysis, there are additional requirements, including 21 CFR Part 11 compliance, software validation, system qualification, calibration verification and proper maintenance. This article reviews recent advances in automated sample preparation for regulated bioanalysis in the last 5 years. Specifically, it covers the following aspects: regulated bioanalysis requirements, recent advances in automation hardware and software development, sample extraction workflow simplification, strategies towards fully automated sample extraction, and best practices in automated sample preparation for regulated bioanalysis.

  15. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    SciTech Connect

    N /A

    2006-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of

  16. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2007

    SciTech Connect

    2006-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2007 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2007 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2007 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  17. Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2007

    SciTech Connect

    R. L. Weiss; T. A. Lee

    2008-06-25

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the Environmental Restoration Disposal Facility and to report leachate results in fulfillment of the requirements specified in the ERDF Record of Decision and the ERDF Amended Record of Decision.

  18. Automation of high-frequency sampling of environmental waters for reactive species

    NASA Astrophysics Data System (ADS)

    Kim, H.; Bishop, J. K.; Wood, T.; Fung, I.; Fong, M.

    2011-12-01

    Trace metals, particularly iron and manganese, play a critical role in some ecosystems as a limiting factor to determine primary productivity, in geochemistry, especially redox chemistry as important electron donors and acceptors, and in aquatic environments as carriers of contaminant transport. Dynamics of trace metals are closely related to various hydrologic events such as rainfall. Storm flow triggers dramatic changes of both dissolved and particulate trace metals concentrations and affects other important environmental parameters linked to trace metal behavior such as dissolved organic carbon (DOC). To improve our understanding of behaviors of trace metals and underlying processes, water chemistry information must be collected for an adequately long period of time at higher frequency than conventional manual sampling (e.g. weekly, biweekly). In this study, we developed an automated sampling system to document the dynamics of trace metals, focusing on Fe and Mn, and DOC for a multiple-year high-frequency geochemistry time series in a small catchment, called Rivendell located at Angelo Coast Range Reserve, California. We are sampling ground and streamwater using the automated sampling system in daily-frequency and the condition of the site is substantially variable from season to season. The ranges of pH of ground and streamwater are pH 5 - 7 and pH 7.8 - 8.3, respectively. DOC is usually sub-ppm, but during rain events, it increases by an order of magnitude. The automated sampling system focuses on two aspects- 1) a modified design of sampler to improve sample integrity for trace metals and DOC and 2) remote controlling system to update sampling volume and timing according to hydrological conditions. To maintain sample integrity, the developed method employed gravity filtering using large volume syringes (140mL) and syringe filters connected to a set of polypropylene bottles and a borosilicate bottle via Teflon tubing. Without filtration, in a few days, the

  19. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements

    USGS Publications Warehouse

    Mwashote, B.M.; Burnett, W.C.; Chanton, J.; Santos, I.R.; Dimova, N.; Swarzenski, P.W.

    2010-01-01

    Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (???3 ??C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day-1 or cm3 cm-2 day-1) an analog flowmeter overestimated flow rates by ???7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter. ?? 2009 Elsevier Ltd.

  20. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2008

    SciTech Connect

    Elvado Environmental LLC

    2007-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2008 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2008 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2008 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  1. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011

    SciTech Connect

    Elvado Environmental LLC

    2010-12-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  2. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010

    SciTech Connect

    Elvado Environmental LLC

    2009-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan

  3. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    SciTech Connect

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding

  4. Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy.

    PubMed

    Charalambous, Chrystalla; Aletrari, Maria; Piera, Panagiota; Nicolaidou-Kanari, Popi; Efstathiou, Maria; Pashalidis, Ioannis

    2013-02-01

    The uranium concentration and the isotopic ratio (238)U/(234)U have been determined in Cypriot groundwater samples by ICP-MS after ultrafiltration and acidification of the samples and α-spectroscopy after pre-concentration and separation of uranium by cation-exchange (Chelex 100 resin) and electro-deposition on stainless steel discs. The uranium concentration in the groundwater samples varies strongly between 0.1 and 40 μg l(-1). The highest uranium concentrations are found in groundwater samples associated with sedimentary rock formations and the obtained isotopic ratio (238)U/(234)U varies between 0.95 and 1.2 indicating basically the presence of natural uranium in the studied samples. The pH of the groundwater samples is neutral to weak alkaline (7 < pH < 8) and this is attributed to the carbonaceous content of the sedimentary rocks and the ophiolitic origin of the igneous rocks, which form the background geology in Cyprus. Generally, in groundwaters uranium concentration in solution increases with decreasing pH (7 < pH < 8) and this is attributed to the fact that at lower pH dissolution of soil minerals occurs, and uranium, which is adsorbed or forms solid solution with the geological matrix enters the aqueous phase. This is also corroborated by the strong correlation between the uranium concentration and the electrical conductivity (e.g. dissolved solids) measured in the groundwaters under investigation.

  5. Automated Force Volume Image Processing for Biological Samples

    PubMed Central

    Duan, Junbo; Duval, Jérôme F. L.; Brie, David; Francius, Grégory

    2011-01-01

    Atomic force microscopy (AFM) has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature) which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image. PMID:21559483

  6. Manual versus automated blood sampling: impact of repeated blood sampling on stress parameters and behavior in male NMRI mice.

    PubMed

    Teilmann, A C; Kalliokoski, Otto; Sørensen, Dorte B; Hau, Jann; Abelson, Klas S P

    2014-10-01

    Facial vein (cheek blood) and caudal vein (tail blood) phlebotomy are two commonly used techniques for obtaining blood samples from laboratory mice, while automated blood sampling through a permanent catheter is a relatively new technique in mice. The present study compared physiological parameters, glucocorticoid dynamics as well as the behavior of mice sampled repeatedly for 24 h by cheek blood, tail blood or automated blood sampling from the carotid artery. Mice subjected to cheek blood sampling lost significantly more body weight, had elevated levels of plasma corticosterone, excreted more fecal corticosterone metabolites, and expressed more anxious behavior than did the mice of the other groups. Plasma corticosterone levels of mice subjected to tail blood sampling were also elevated, although less significantly. Mice subjected to automated blood sampling were less affected with regard to the parameters measured, and expressed less anxious behavior. We conclude that repeated blood sampling by automated blood sampling and from the tail vein is less stressful than cheek blood sampling. The choice between automated blood sampling and tail blood sampling should be based on the study requirements, the resources of the laboratory and skills of the staff. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Manual versus automated blood sampling: impact of repeated blood sampling on stress parameters and behavior in male NMRI mice

    PubMed Central

    Kalliokoski, Otto; Sørensen, Dorte B; Hau, Jann; Abelson, Klas S P

    2014-01-01

    Facial vein (cheek blood) and caudal vein (tail blood) phlebotomy are two commonly used techniques for obtaining blood samples from laboratory mice, while automated blood sampling through a permanent catheter is a relatively new technique in mice. The present study compared physiological parameters, glucocorticoid dynamics as well as the behavior of mice sampled repeatedly for 24 h by cheek blood, tail blood or automated blood sampling from the carotid artery. Mice subjected to cheek blood sampling lost significantly more body weight, had elevated levels of plasma corticosterone, excreted more fecal corticosterone metabolites, and expressed more anxious behavior than did the mice of the other groups. Plasma corticosterone levels of mice subjected to tail blood sampling were also elevated, although less significantly. Mice subjected to automated blood sampling were less affected with regard to the parameters measured, and expressed less anxious behavior. We conclude that repeated blood sampling by automated blood sampling and from the tail vein is less stressful than cheek blood sampling. The choice between automated blood sampling and tail blood sampling should be based on the study requirements, the resources of the laboratory and skills of the staff. PMID:24958546

  8. Interpretation of stable isotope, denitrification, and groundwater age data for samples collected from Sandia National Laboratories /New Mexico (SNL/NM) Burn Site Groundwater Area of Concern

    SciTech Connect

    Madrid, V.; Singleton, M. J.; Visser, A.; Esser, B.

    2016-06-02

    This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regional hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.

  9. Automated biowaste sampling system improved feces collection, mass measurement and sampling. [by use of a breadboard model

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Young, R.

    1974-01-01

    The capability of the basic automated Biowaste Sampling System (ABSS) hardware was extended and improved through the design, fabrication and test of breadboard hardware. A preliminary system design effort established the feasibility of integrating the breadboard concepts into the ABSS.

  10. Automated Aqueous Sample Concentration Methods for in situ Astrobiological Instrumentation

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Grunthaner, F. J.

    2009-12-01

    The era of wet chemical experiments for in situ planetary science investigations is upon us, as evidenced by recent results from the surface of Mars by Phoenix’s microscopy, electrochemistry, and conductivity analyzer, MECA [1]. Studies suggest that traditional thermal volatilization methods for planetary science in situ investigations induce organic degradation during sample processing [2], an effect that is enhanced in the presence of oxidants [3]. Recent developments have trended towards adaptation of non-destructive aqueous extraction and analytical methods for future astrobiological instrumentation. Wet chemical extraction techniques under investigation include subcritical water extraction, SCWE [4], aqueous microwave assisted extraction, MAE, and organic solvent extraction [5]. Similarly, development of miniaturized analytical space flight instruments that require aqueous extracts include microfluidic capillary electrophoresis chips, μCE [6], liquid-chromatography mass-spectrometrometers, LC-MS [7], and life marker chips, LMC [8]. If organics are present on the surface of Mars, they are expected to be present at extremely low concentrations (parts-per-billion), orders of magnitude below the sensitivities of most flight instrument technologies. Therefore, it becomes necessary to develop and integrate concentration mechanisms for in situ sample processing before delivery to analytical flight instrumentation. We present preliminary results of automated solid-phase-extraction (SPE) sample purification and concentration methods for the treatment of highly saline aqueous soil extracts. These methods take advantage of the affinity of low molecular weight organic compounds with natural and synthetic scavenger materials. These interactions allow for the separation of target organic analytes from unfavorable background species (i.e. salts) during inline treatment, and a clever method for selective desorption is utilized to obtain concentrated solutions on the order

  11. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes

  12. January 2011 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    SciTech Connect

    2011-11-01

    Annual sampling was conducted January 19, 2011, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1.Water levels were measured in the monitoring wells onsite.

  13. The Savannah River Site`s groundwater monitoring program: 1990 sampling schedule

    SciTech Connect

    Rogers, C.D.

    1991-02-07

    This schedule provides a final record of the 1990 sampling schedule for the SRS groundwater monitoring program conducted by the Environmental Protection Department/Environmental Section (EPD/EMS). It includes all the wells monitored by EPD/EMS at SRS during 1990 and identifies the constituents sampled, the sampling frequency, and the reasons for sampling. Sampling requests are incorporated into the schedule throughout the year. Drafts of the schedule are produced and revised quarterly.

  14. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    PubMed

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  15. A modular approach for automated sample preparation and chemical analysis

    NASA Technical Reports Server (NTRS)

    Clark, Michael L.; Turner, Terry D.; Klingler, Kerry M.; Pacetti, Randolph

    1994-01-01

    Changes in international relations, especially within the past several years, have dramatically affected the programmatic thrusts of the U.S. Department of Energy (DOE). The DOE now is addressing the environmental cleanup required as a result of 50 years of nuclear arms research and production. One major obstacle in the remediation of these areas is the chemical determination of potentially contaminated material using currently acceptable practices. Process bottlenecks and exposure to hazardous conditions pose problems for the DOE. One proposed solution is the application of modular automated chemistry using Standard Laboratory Modules (SLM) to perform Standard Analysis Methods (SAM). The Contaminant Analysis Automation (CAA) Program has developed standards and prototype equipment that will accelerate the development of modular chemistry technology and is transferring this technology to private industry.

  16. Estimates of Radionuclide Loading to Cochiti Lake from Los Alamos Canyon Using Manual and Automated Sampling

    SciTech Connect

    McLean, Christopher T.

    2000-07-01

    Los Alamos National Laboratory has a long-standing program of sampling storm water runoff inside the Laboratory boundaries. In 1995, the Laboratory started collecting the samples using automated storm water sampling stations; prior to this time the samples were collected manually. The Laboratory has also been periodically collecting sediment samples from Cochiti Lake. This paper presents the data for Pu-238 and Pu-239 bound to the sediments for Los Alamos Canyon storm water runoff and compares the sampling types by mass loading and as a percentage of the sediment deposition to Cochiti Lake. The data for both manual and automated sampling are used to calculate mass loads from Los Alamos Canyon on a yearly basis. The automated samples show mass loading 200- 500 percent greater for Pu-238 and 300-700 percent greater for Pu-239 than the manual samples. Using the mean manual flow volume for mass loading calculations, the automated samples are over 900 percent greater for Pu-238 and over 1800 percent greater for Pu-239. Evaluating the Pu-238 and Pu-239 activities as a percentage of deposition to Cochiti Lake indicates that the automated samples are 700-1300 percent greater for Pu- 238 and 200-500 percent greater for Pu-239. The variance was calculated by two methods. The first method calculates the variance for each sample event. The second method calculates the variances by the total volume of water discharged in Los Alamos Canyon for the year.

  17. Alkylphenol Polyethoxylate Derivatives in Groundwater and Blood Samples Collected from Pig Herds in Taiwan

    PubMed Central

    CHIU, Tai-Shun; HSIEH, Chi-Ying; MIAW, Chang-Ling; LIN, Chao-Nan; CHANG, Tsung-Chou; YEN, Chia-Hung; CHIOU, Ming-Tang

    2014-01-01

    ABSTRACT Alkylphenol polyethoxylate (APEO) derivatives, such as nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), nonylphenol (NP) and octylphenol (OP), have been detected in the surface water, sediment, food and groundwater of numerous countries. Because groundwater is the main source of water for pig herds, the aim of this study was to measure the concentrations of APEO derivatives in groundwater and blood samples that were collected from pig herds raised near the Wuluo River in Southern Taiwan. The mean concentrations of NP, OP, NP1EO and NP2EO in the groundwater supply for 10 pig herds were 0.04 µg/l, 0.26 ± 0.23 µg/l, 0.74 ± 0.69 µg/l and 0.17 ± 0.22 µg/l, respectively. NP was detected in all blood samples collected from 5 of the 10 pig herds. The highest concentrations detected in the blood samples collected from six-week-old piglets and sows were 12.00 µg/l and 56.94 µg/l, respectively. Blood samples from 4 of the 5 herds showed OP contamination. The highest OP concentrations detected in 6-week-old piglets and sows were 275.58 µg/l and 566.32 µg/l, respectively. These results indicate that APEO derivatives accumulated in the groundwater supply and the bloodstreams of the pigs. PMID:24694943

  18. Alkylphenol polyethoxylate derivatives in groundwater and blood samples collected from pig herds in Taiwan.

    PubMed

    Chiu, Tai-Shun; Hsieh, Chi-Ying; Miaw, Chang-Ling; Lin, Chao-Nan; Chang, Tsung-Chou; Yen, Chia-Hung; Chiou, Ming-Tang

    2014-07-01

    Alkylphenol polyethoxylate (APEO) derivatives, such as nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), nonylphenol (NP) and octylphenol (OP), have been detected in the surface water, sediment, food and groundwater of numerous countries. Because groundwater is the main source of water for pig herds, the aim of this study was to measure the concentrations of APEO derivatives in groundwater and blood samples that were collected from pig herds raised near the Wuluo River in Southern Taiwan. The mean concentrations of NP, OP, NP1EO and NP2EO in the groundwater supply for 10 pig herds were 0.04 µg/l, 0.26 ± 0.23 µg/l, 0.74 ± 0.69 µg/l and 0.17 ± 0.22 µg/l, respectively. NP was detected in all blood samples collected from 5 of the 10 pig herds. The highest concentrations detected in the blood samples collected from six-week-old piglets and sows were 12.00 µg/l and 56.94 µg/l, respectively. Blood samples from 4 of the 5 herds showed OP contamination. The highest OP concentrations detected in 6-week-old piglets and sows were 275.58 µg/l and 566.32 µg/l, respectively. These results indicate that APEO derivatives accumulated in the groundwater supply and the bloodstreams of the pigs.

  19. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    SciTech Connect

    1999-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  20. Evaluation of the measurement uncertainty in automated long-term sampling of PCDD/PCDFs.

    PubMed

    Vicaretti, M; D'Emilia, G; Mosca, S; Guerriero, E; Rotatori, M

    2013-12-01

    Since the publication of the first version of European standard EN-1948 in 1996, long-term sampling equipment has been improved to a high standard for the sampling and analysis of polychlorodibenzo-p-dioxin (PCDD)/polychlorodibenzofuran (PCDF) emissions from industrial sources. The current automated PCDD/PCDF sampling systems enable to extend the measurement time from 6-8 h to 15-30 days in order to have data values better representative of the real pollutant emission of the plant in the long period. EN-1948:2006 is still the European technical reference standard for the determination of PCDD/PCDF from stationary source emissions. In this paper, a methodology to estimate the measurement uncertainty of long-term automated sampling is presented. The methodology has been tested on a set of high concentration sampling data resulting from a specific experience; it is proposed with the intent that it is to be applied on further similar studies and generalized. A comparison between short-term sampling data resulting from manual and automated parallel measurements has been considered also in order to verify the feasibility and usefulness of automated systems and to establish correlations between results of the two methods to use a manual method for calibration of automatic long-term one. The uncertainty components of the manual method are analyzed, following the requirements of EN-1948-3:2006, allowing to have a preliminary evaluation of the corresponding uncertainty components of the automated system. Then, a comparison between experimental data coming from parallel sampling campaigns carried out in short- and long-term sampling periods is realized. Long-term sampling is more reliable to monitor PCDD/PCDF emissions than occasional short-term sampling. Automated sampling systems can assure very useful emission data both in short and long sampling periods. Despite this, due to the different application of the long-term sampling systems, the automated results could not be

  1. Using alternative groundwater sampling techniques in New Jersey

    SciTech Connect

    Van Sciver, C.

    1994-12-31

    Some of the topics that will be presented include the advantages and disadvantages of using alternative ground water sampling techniques. Mr. Van Sciver will also outline the table of contents of a new NJDEP guidance document released entitled, ``Alternative Ground Water Sampling Techniques Guide``. The Guide includes the discussion of the installation and sampling procedures of six methods for collecting ground water samples along with the requirements of each procedure. Van Sciver attributes New Jersey`s acceptance of the new sampling technology to past experiences that have demonstrated the shortcomings of conventional site assessment methodology. When applied within their limitations, he believes the new techniques are an efficient method for obtaining representative samples. If combined with field analytical methods, site assessments can be performed quickly and reduce costs in all phases of the site remediation process.

  2. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model

    NASA Astrophysics Data System (ADS)

    Qi, Shengqi; Hou, Deyi; Luo, Jian

    2017-09-01

    This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.

  3. Optimized method for dissolved hydrogen sampling in groundwater.

    PubMed

    Alter, Marcus D; Steiof, Martin

    2005-06-01

    Dissolved hydrogen concentrations are used to characterize redox conditions of contaminated aquifers. The currently accepted and recommended bubble strip method for hydrogen sampling (Wiedemeier et al., 1998) requires relatively long sampling times and immediate field analysis. In this study we present methods for optimized sampling and for sample storage. The bubble strip sampling method was examined for various flow rates, bubble sizes (headspace volume in the sampling bulb) and two different H2 concentrations. The results were compared to a theoretical equilibration model. Turbulent flow in the sampling bulb was optimized for gas transfer by reducing the inlet diameter. Extraction with a 5 mL headspace volume and flow rates higher than 100 mL/min resulted in 95-100% equilibrium within 10-15 min. In order to investigate the storage of samples from the gas sampling bulb gas samples were kept in headspace vials for varying periods. Hydrogen samples (4.5 ppmv, corresponding to 3.5 nM in liquid phase) could be stored up to 48 h and 72 h with a recovery rate of 100.1+/-2.6% and 94.6+/-3.2%, respectively. These results are promising and prove the possibility of storage for 2-3 days before laboratory analysis. The optimized method was tested at a field site contaminated with chlorinated solvents. Duplicate gas samples were stored in headspace vials and analyzed after 24 h. Concentrations were measured in the range of 2.5-8.0 nM corresponding to known concentrations in reduced aquifers.

  4. Groundwater Monitoring and Field Sampling Plan for Operable Unit 10-08

    SciTech Connect

    M. S. Roddy

    2007-05-01

    This plan describes the groundwater sampling and water level monitoring that will be conducted to evaluate contaminations in the Snake River Plain Aquifer entering and leaving the Idaho National Laboratory. The sampling and monitoring locations were selected to meet the data quality objectives detailed in this plan. Data for the Snake River Plain Aquifer obtained under this plan will be evaluated in the Operable Unit 10-08 Remedial Investigation/Feasibility Study report and will be used to support the Operable Unit 10-08 Sitewide groundwater model.

  5. Vertical Sampling in Recharge Areas Versus Lateral Sampling in Discharge Areas: Assessing the Agricultural Nitrogen Legacy in Groundwater

    NASA Astrophysics Data System (ADS)

    Gilmore, T. E.; Genereux, D. P.; Solomon, D. K.; Mitasova, H.; Burnette, M.

    2014-12-01

    Agricultural nitrogen (N) is a legacy contaminant often found in shallow groundwater systems. This legacy has commonly been observed using well nests (vertical sampling) in recharge areas, but may also be observed by sampling at points in/beneath a streambed using pushable probes along transects across a channel (lateral sampling). We compared results from two different streambed point sampling approaches and from wells in the recharge area to assess whether the different approaches give fundamentally different pictures of (1) the magnitude of N contamination, (2) historic trends in N contamination, and (3) the extent to which denitrification attenuates nitrate transport through the surficial aquifer. Two different arrangements of streambed points (SP) were used to sample groundwater discharging into a coastal plain stream in North Carolina. In July 2012, a 58 m reach was sampled using closely-spaced lateral transects of SP, revealing high average [NO3-] (808 μM, n=39). In March 2013, transects of SP were widely distributed through a 2.7 km reach that contained the 58 m reach and suggested overall lower [NO3-] (210 μM, n=30), possibly due to variation in land use along the longer study reach. Mean [NO3-] from vertical sampling (2 well nests with 3 wells each) was 296 μM. Groundwater apparent ages from SP in the 58 m and 2.7 km reaches suggested lower recharge [NO3-] (observed [NO3-] plus modeled excess N2) in 0-10 year-old water (1250 μM and 525 μM, respectively), compared to higher recharge [NO3-] from 10-30 years ago (about 1600 μM and 900 μM, respectively). In the wells, [NO3-] was highest (835 μM) in groundwater with apparent age of 12-15 years and declined as apparent age increased, a trend that was consistent with SP in the 2.7 km reach. The 58 m reach suggested elevated recharge [NO3-] (>1100 μM) over a 50-year period. Excess N2 from wells suggested that about 62% of nitrate had been removed via denitrification since recharge, versus 51% and 78

  6. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 ??g-As/L for arsenite and 1080 ??g-As/L for arsenate, and acid mine drainage samples reached 13 000 ??g-As/L for arsenite and 3700 ??g-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.

  7. Automated calculation of the evapotranspiration and crop coefficients for a large number of peatland sites using diurnal groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Maurer, Eike; Bechtold, Michel; Dettmann, Ullrich; Tiemeyer, Bärbel

    2014-05-01

    Evapotranspiration is one of the main processes controlling peatland hydrology. Greenhouse gas (GHG) emissions from peatlands are in turn strongly controlled by the groundwater table. Through the increasing political and scientific interest to reduce GHG emissions, monitoring and modelling strategies to optimize re-wetting strategies and to quantify GHG emissions are needed. To achieve these aims, an accurate determination of the evapotranspiration as an essential part of the water balance is required. Many different approaches are known to determine the evapotranspiration. They are mostly either expensive or hard to parameterize. Plant specific crop coefficients (Kc-values) are an option to calculate plant-specific evapotranspiration but due to the lack of Kc-values for typical peatland vegetation types more data on evapotranspiration from peatlands in the temperate zone are required. Furthermore, simple methods to estimate evapotranspiration are needed especially for monitoring projects. Diurnal groundwater table fluctuations caused by root water uptake and groundwater inflow can be used to calculate daily evapotranspiration rates. This approach was first described by White (1932) who compared groundwater recovery rates at night to the decline during daytime. Besides the groundwater table data only the specific yield (Sy) is needed to calculate evapotranspiration. However, the method has some limitations because not all days can be evaluated which leads to data gaps during rainy and very dry or very wet periods. This study presents an automated method to calculate the specific yield, evapotranspiration and crop coefficients for a large number of sites covering all major peatland types and their typical land uses in Germany. As an input for our method, only groundwater level, precipitation and grass reference evapotranspiration (ET0) data is required. In a first step, the groundwater level data was smoothed by a LOESS function. In a second step, site-specific SY

  8. Effect of the extent of well purging on laboratory parameters of groundwater samples

    NASA Astrophysics Data System (ADS)

    Reka Mathe, Agnes; Kohler, Artur; Kovacs, Jozsef

    2017-04-01

    Chemicals reaching groundwater cause water quality deterioration. Reconnaissance and remediation demands high financial and human resources. Groundwater samples are important sources of information. Representativity of these samples is fundamental to decision making. According to relevant literature the way of sampling and the sampling equipment can affect laboratory concentrations measured in samples. Detailed and systematic research on this field is missing from even international literature. Groundwater sampling procedures are regulated worldwide. Regulations describe how to sample a groundwater monitoring well. The most common element in these regulations is well purging prior to sampling. The aim of purging the well is to avoid taking the sample from the stagnant water instead of from formation water. The stagnant water forms inside and around the well because the well casing provides direct contact with the atmosphere, changing the physico-chemical composition of the well water. Sample from the stagnant water is not representative of the formation water. Regulations regarding the extent of the purging are different. Purging is mostly defined as multiply (3-5) well volumes, and/or reaching stabilization of some purged water parameters (pH, specific conductivity, etc.). There are hints for sampling without purging. To define the necessary extent of the purging repeated pumping is conducted, triplicate samples are taken at the beginning of purging, at one, two and three times well volumes and at parameter stabilization. Triplicate samples are the means to account for laboratory errors. The subsurface is not static, the test is repeated 10 times. Up to now three tests were completed.

  9. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  10. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    SciTech Connect

    Beardsley, C.C.

    1999-04-27

    As part of the demonstration testing of the Purge Water Management System (PWMS) technology at the Savannah River Site (SRS), four wells were equipped with PWMS units in 1997 and a series of sampling events were conducted at each during 1997-1998. Three of the wells were located in A/M Area while the fourth was located at the Old Radioactive Waste Burial Ground in the General Separations Area.The PWMS is a ''closed-loop'', non-contact, system used to collect and return purge water to the originating aquifer after a sampling event without having significantly altered the water quality. One of the primary concerns as to its applicability at SRS, and elsewhere, is whether the PWMS might resample groundwater that is returned to the aquifer during the previous sampling event. The purpose of the present investigation was to compare groundwater chemical analysis data collected at the four test wells using the PWMS vs. historical data collected using the standard monitoring program methodology to determine if the PWMS provides representative monitoring samples.The analysis of the groundwater chemical concentrations indicates that the PWMS sampling methodology acquired representative groundwater samples at monitoring wells ABP-1A, ABP-4, ARP-3 and BGO-33C. Representative groundwater samples are achieved if the PWMS does not resample groundwater that has been purged and returned during a previous sampling event. Initial screening calculations, conducted prior to the selection of these four wells, indicated that groundwater velocities were high enough under the ambient hydraulic gradients to preclude resampling from occurring at the time intervals that were used at each well. Corroborating evidence included a tracer test that was conducted at BGO-33C, the high degree of similarity between analyte concentrations derived from the PWMS samples and those obtained from historical protocol sampling, as well as the fact that PWMS data extend all previously existing concentration

  11. First LC/MS determination of cyanazine amide, cyanazine acid, and cyanazine in groundwater samples

    USGS Publications Warehouse

    Ferrer, Imma; Thurman, E.M.; Barceló, Damià

    2000-01-01

    Cyanazine and two of its major metabolites, cyanazine amide and cyanazine acid, were measured at trace levels in groundwater using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). Solid-phase extraction was carried out by passing 20 mL of groundwater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 99 to 108% (n = 5). Using LC/MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of these compounds in groundwater samples with low sample volumes. The fragmentation of the amide, carboxylic acid, and cyano group was observed for both metabolites and cyanazine, respectively, leading to a diagnostic ion at m/z 214. Method detection limits were in the range of 0.002−0.005 μg/L for the three compounds. Finally, the newly developed method was evaluated for the analysis of groundwater samples from New York containing the compounds under study and presents evidence that the metabolites, cyanazine acid, and cyanazine amide may leach to groundwater and serve as sources for deisopropylatrazine. The combination of on-line SPE and LC/APCI/MS represents an important advance in environmental analysis of herbicide metabolites in groundwater since it demonstrates that trace amounts of polar metabolites may be determined rapidly. Furthermore, the presence of both cyanazine amide and cyanazine acid indicate that another degradation product, deisopropylatrazine, may be occurring at depth because of the subsequent degradation of cyanazine.

  12. Passive sampling and analyses of common dissolved fixed gases in groundwater

    SciTech Connect

    Spalding, Brian Patrick; Watson, David B

    2008-01-01

    An in situ passive sampler and gas chromatographic protocol for analysis of the major and several minor fixed gases in groundwater was developed. A gas-tight syringe, mated to a short length of silicone tubing, was equilibrated with dissolved gases in groundwater by immersing in monitoring wells and was used to transport and to inject a 0.5 mL gas sample into a gas chromatograph. Using Ar carrier gas, a HaySep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors allowed good sensitivity for He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O. Within 4 days of immersion in groundwater, samplers initially filled with either He or air attained the same and constant gas composition at an Oak Ridge, Tennessee, site heavily impacted by uranium, acidity, and nitrate. Between June 2006 and July 2007, 12 permanent groundwater wells were used to test the passive samplers in groundwater contaminated by a group of four closed radioactive wastewater seepage ponds; over a thousand passive gas samples from these wells averaged 56% CO2, 32.4% N2, 2.5% O2, 2.5% N2O, 0.20% CH4, 0.096% H2, and 0.023% CO with an average recovery of 95 14% of the injected gas volume.

  13. A New Automated Method and Sample Data Flow for Analysis of Volatile Nitrosamines in Human Urine*

    PubMed Central

    Hodgson, James A.; Seyler, Tiffany H.; McGahee, Ernest; Arnstein, Stephen; Wang, Lanqing

    2016-01-01

    Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and sidestream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR™ and Caliper Staccato™ workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle. PMID:26949569

  14. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  15. Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate

    EPA Science Inventory

    In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...

  16. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... statistical procedures determined pursuant to paragraph (g) of this section. The sampling procedures shall be... record one of the following statistical methods to be used in evaluating ground-water monitoring data for each hazardous constituent. The statistical test chosen shall be conducted separately for each...

  17. Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate

    EPA Science Inventory

    In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...

  18. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  19. Data Validation Package May 2016 Groundwater Sampling at the Lakeview, Oregon, Processing Site August 2016

    SciTech Connect

    Linard, Joshua; Hall, Steve

    2016-08-01

    This biennial event includes sampling five groundwater locations (four monitoring wells and one domestic well) at the Lakeview, Oregon, Processing Site. For this event, the domestic well (location 0543) could not be sampled because no one was in residence during the sampling event (Note: notification was provided to the resident prior to the event). Per Appendix A of the Groundwater Compliance Action Plan, sampling is conducted to monitor groundwater quality on a voluntary basis. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). One duplicate sample was collected from location 0505. Water levels were measured at each sampled monitoring well. The constituents monitored at the Lakeview site are manganese and sulfate. Monitoring locations that exceeded the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels for these constituents are listed in Table 1. Review of time-concentration graphs included in this report indicate that manganese and sulfate concentrations are consistent with historical measurements.

  20. Results of groundwater monitoring and vegetation sampling at Everest, Kansas, in 2009 .

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2010-05-13

    In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been

  1. Automation of a Surface Sampling Probe/Electrospray Mass Spectrometry System

    SciTech Connect

    Kertesz, Vilmos; Ford, Michael J; Van Berkel, Gary J

    2005-01-01

    An image analysis automation concept and the associated software (HandsFree TLC/MS) were developed to control the surface sampling probe-to-surface distance during operation of a surface sampling electrospray system. This automation system enables both 'hands-free' formation of the liquid microjunction used to sample material from the surface and hands-free reoptimization of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system. The image analysis concept and the practical implementation of the monitoring and automated adjustment of the sampling probe-to-surface distance (i.e., liquid microjunction thickness) are presented. The added capabilities for the preexisting surface sampling electrospray system afforded through this software control are illustrated by an example of automated scanning of multiple development lanes on a reversed-phase C8 TLC plate and by imaging inked lettering on a paper surface. The post data acquisition processing and data display aspects of the software package are also discussed.

  2. An automated sample preparation for detection of 72 doping-related substances.

    PubMed

    Cuervo, Darío; Díaz-Rodríguez, Pablo; Muñoz-Guerra, Jesús

    2014-06-01

    Automation of sample preparation procedures in a doping control laboratory is of great interest due to the large number of samples that have to be analyzed, especially in large events where a high throughput protocol is required to process samples over 24 h. The automation of such protocols requires specific equipment capable of carrying out the diverse mechanical tasks required for accomplishing these analytical methodologies, which include pipetting, shaking, heating, or crimping. An automated sample preparation procedure for the determination of doping-related substances by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis, including enzymatic hydrolysis, liquid-phase extraction and derivatization steps, was developed by using an automated liquid handling system. This paper presents a description of the equipment, together with the validation data for 72 doping-related compounds including extraction efficiency, evaluation of carry-over, interferences, and robustness. Validation was approached as a comparison between the results obtained using the manual protocol and the transferred automated one. The described methodology can be applied for sample preparation in routine anti-doping analysis with high sample throughput and suitable performance. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Automated versus manual sample inoculations in routine clinical microbiology: a performance evaluation of the fully automated InoqulA instrument.

    PubMed

    Froment, P; Marchandin, H; Vande Perre, P; Lamy, B

    2014-03-01

    The process of plate streaking has been automated to improve the culture readings, isolation quality, and workflow of microbiology laboratories. However, instruments have not been well evaluated under routine conditions. We aimed to evaluate the performance of the fully automated InoqulA instrument (BD Kiestra B.V., The Netherlands) in the automated seeding of liquid specimens and samples collected using swabs with transport medium. We compared manual and automated methods according to the (i) within-run reproducibility using Escherichia coli-calibrated suspensions, (ii) intersample contamination using a series of alternating sterile broths and broths with >10(5) CFU/ml of either E. coli or Proteus mirabilis, (iii) isolation quality with standardized mixed bacterial suspensions of diverse complexity and a 4-category standardized scale (very poor, poor, fair to good, or excellent), and (iv) agreement of the results obtained from 244 clinical specimens. By involving 15 technicians in the latter part of the comparative study, we estimated the variability in the culture quality at the level of the laboratory team. The instrument produced satisfactory reproducibility with no sample cross-contamination, and it performed better than the manual method, with more colony types recovered and isolated (up to 11% and 17%, respectively). Finally, we showed that the instrument did not shorten the seeding time over short periods of work compared to that for the manual method. Altogether, the instrument improved the quality and standardization of the isolation, thereby contributing to a better overall workflow, shortened the time to results, and provided more accurate results for polymicrobial specimens.

  4. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  5. January 2012 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted January 18, 2012, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1 and water levels were measured in the monitoring wells onsite.

  6. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    SciTech Connect

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2007-01-19

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype of a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs.

  7. The Stanford Automated Mounter: pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    PubMed Central

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; Cohen, Aina E.

    2016-01-01

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. Sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade. PMID:27047309

  8. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    SciTech Connect

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; Cohen, Aina E.

    2016-02-24

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  9. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    DOE PAGES

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; ...

    2016-02-24

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  10. Report on the audit of the Savannah River Site`s quality control program for groundwater sampling

    SciTech Connect

    1997-05-20

    The Savannah River Site`s groundwater remediation program was managed by the Department of Energy`s (Department) management and operating contractor for the site, Westinghouse Savannah River Company (Westinghouse). One component of the remediation program was the quality control program. The goal of the groundwater quality control program was to ensure that the results of laboratory analyses of groundwater samples were accurate and precise so that they could be relied upon for making remediation decisions. The objective of this audit was to determine whether Westinghouse acquired the minimal number of laboratory analyses required to ensure that groundwater sampling results met this criteria.

  11. Data Validation Package, December 2015, Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    SciTech Connect

    Tsosie, Bernadette; Johnson, Richard

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location HMC-951. Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known as the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit (San Andres aquifer) and are identified by the suffix (SG). Wells HMC-951 and OBS-3 are also completed in the San Andres aquifer. The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to characterize the site aquifers and to support a regional groundwater investigation being conducted by the New Mexico Environment Department.

  12. A Permanent Multilevel Monitoring and Sampling System in the Coastal Groundwater Mixing Zones.

    PubMed

    Luo, Xin; Kwok, King Lun; Liu, Yi; Jiao, Jimmy

    2017-07-01

    To study the spatial and temporal variability of water dynamics and chemical reactions within the coastal groundwater mixing zones (CGMZs), high-resolution periodical and spatial groundwater sampling within CGMZs is needed. However, current samplers and sampling systems may require heavy driving machines to install. There is also possible contamination from the metal materials for current samplers and sampling systems. Here, a permanent multilevel sampling system is designed to sample coastal groundwater within CGMZs. This cost-effective system consists of metal-free materials and can be installed easily. The system is tested in Po Sam Pai and Tingkok, Tolo Harbor and Hong Kong. Major ions, nutrients, stable isotopes and radium and radon isotopes were analyzed and the data provided scientific information to study the fresh-saltwater interface fluctuations, and temporal variations and spatial heterogeneity of geochemical processes occurred within CGMZs. The reliable spatial and temporal data from the sampling system demonstrate that the system functions well and can provide scientific data for coastal aquifer studies. © 2017, National Ground Water Association.

  13. Power punch: A new system for sampling and remediating groundwater

    SciTech Connect

    Cordry, K.

    1994-12-31

    In 1994, a rugged, low cost direct push tool that provides short term or permanent access to the formation was designed and field tested. The tool has the unique capacity to seal itself in position, solving many of the problems associated with permanent installation of direct push sampling devices. The tool is pushed or driven into position using standard, drilling or penetrometer rod. Once in place, inexpensive PVC pipe is used to connect the screen section to the surface. The drive rods are disconnected from the tool and removed, leaving the screen sealed in the formation by the body of the tool and connected to the surface via PVC pipe. The body of the tool provides an excellent annular seal, replacing the traditional bentonite seal. Grouting is often unnecessary. The screen interval can also be adjusted from a few inches to over 20 feet, after the tool is pushed into position. The tool provides a new system for installing/long term monitoring, soil vapor extraction and air sparging wells using direct push methods. It has the added advantage of being adaptable to almost any drilling or direct push system.

  14. Automated biowaste sampling system, solids subsystem operating model, part 2

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Stauffer, R. E.

    1973-01-01

    The detail design and fabrication of the Solids Subsystem were implemented. The system's capacity for the collection, storage or sampling of feces and vomitus from six subjects was tested and verified.

  15. An automated atmospheric sampling system operating on 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P.; Gustafsson, U. R. C.

    1975-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.

  16. Development and Evaluation of a Pilot Prototype Automated Online Sampling System

    SciTech Connect

    Whitaker, M.J.

    2000-07-27

    An automated online sampling system has been developed for the BNFL-Hanford Technetium Monitoring Program. The system was designed to be flexible and allows for the collection and delivery of samples to a variety of detection devices that may be used.

  17. Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater

    NASA Astrophysics Data System (ADS)

    Yokochi, Reika

    2016-09-01

    Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.

  18. Passive sampling as a tool for identifying micro-organic compounds in groundwater.

    PubMed

    Mali, N; Cerar, S; Koroša, A; Auersperger, P

    2017-09-01

    The paper presents the use of a simple and cost efficient passive sampling device with integrated active carbon with which to test the possibility of determining the presence of micro-organic compounds (MOs) in groundwater and identifying the potential source of pollution as well as the seasonal variability of contamination. Advantage of the passive sampler is to cover a long sampling period by integrating the pollutant concentration over time, and the consequently analytical costs over the monitoring period can be reduced substantially. Passive samplers were installed in 15 boreholes in the Maribor City area in Slovenia, with two sampling campaigns covered a period about one year. At all sampling sites in the first series a total of 103 compounds were detected, and 144 in the second series. Of all detected compounds the 53 most frequently detected were selected for further analysis. These were classified into eight groups based on the type of their source: Pesticides, Halogenated solvents, Non-halogenated solvents, Domestic and personal, Plasticizers and additives, Other industrial, Sterols and Natural compounds. The most frequently detected MO compounds in groundwater were tetrachloroethene and trichloroethene from the Halogenated solvents group. The most frequently detected among the compound's groups were pesticides. Analysis of frequency also showed significant differences between the two sampling series, with less frequent detections in the summer series. For the analysis to determine the origin of contamination three groups of compounds were determined according to type of use: agriculture, urban and industry. Frequency of detection indicates mixed land use in the recharge areas of sampling sites, which makes it difficult to specify the dominant origin of the compound. Passive sampling has proved to be useful tool with which to identify MOs in groundwater and for assessing groundwater quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The stability of chlorofluorocarbons (CFCs) in ground-water samples archived in borosilicate ampoules

    USGS Publications Warehouse

    Shapiro, Stephanie Dunkle; Busenberg, Eurybiades; Plummer, L. Niel

    2005-01-01

    The U.S. Geological Survey (USGS) Chlorofluorocarbon (CFC) Laboratory in Reston, Va., has been measuring concentrations of CFCs in ground-water samples since 1989 to estimate the year that a water sample was recharged to a ground-water flow system. The water samples have been collected in flame-sealed borosilicate ampoules. Typically for each site, three samples were analyzed within days to a few months after collection, and additional samples were archived for extended periods of time (up to four years). The stability of CFC concentrations in the archived water samples from the USGS CFC Laboratory was investigated by analyzing the CFC concentrations in archived water samples and comparing them with the CFC concentrations that were obtained soon after the samples were collected. The archived samples selected for analysis were chosen from sites with a wide variety of hydrogeologic and geochemical conditions. For CFC-11 and CFC-12 concentrations, approximately 14% and 10.5%, respectively, of the archived samples were statistically different (both higher and lower) from the concentrations obtained from analyses conducted soon after the sample collection. Most of the extraneous values were attributed to natural variability of CFC concentrations originally in the water discharged from wells, rather than to microbial degradation within the ampoule on storage.

  20. MARS: bringing the automation of small-molecule bioanalytical sample preparations to a new frontier.

    PubMed

    Li, Ming; Chou, Judy; Jing, Jing; Xu, Hui; Costa, Aldo; Caputo, Robin; Mikkilineni, Rajesh; Flannelly-King, Shane; Rohde, Ellen; Gan, Lawrence; Klunk, Lewis; Yang, Liyu

    2012-06-01

    In recent years, there has been a growing interest in automating small-molecule bioanalytical sample preparations specifically using the Hamilton MicroLab(®) STAR liquid-handling platform. In the most extensive work reported thus far, multiple small-molecule sample preparation assay types (protein precipitation extraction, SPE and liquid-liquid extraction) have been integrated into a suite that is composed of graphical user interfaces and Hamilton scripts. Using that suite, bioanalytical scientists have been able to automate various sample preparation methods to a great extent. However, there are still areas that could benefit from further automation, specifically, the full integration of analytical standard and QC sample preparation with study sample extraction in one continuous run, real-time 2D barcode scanning on the Hamilton deck and direct Laboratory Information Management System database connectivity. We developed a new small-molecule sample-preparation automation system that improves in all of the aforementioned areas. The improved system presented herein further streamlines the bioanalytical workflow, simplifies batch run design, reduces analyst intervention and eliminates sample-handling error.

  1. Automated Blood Sample Preparation Unit (ABSPU) for Portable Microfluidic Flow Cytometry.

    PubMed

    Chaturvedi, Akhil; Gorthi, Sai Siva

    2017-02-01

    Portable microfluidic diagnostic devices, including flow cytometers, are being developed for point-of-care settings, especially in conjunction with inexpensive imaging devices such as mobile phone cameras. However, two pervasive drawbacks of these have been the lack of automated sample preparation processes and cells settling out of sample suspensions, leading to inaccurate results. We report an automated blood sample preparation unit (ABSPU) to prevent blood samples from settling in a reservoir during loading of samples in flow cytometers. This apparatus automates the preanalytical steps of dilution and staining of blood cells prior to microfluidic loading. It employs an assembly with a miniature vibration motor to drive turbulence in a sample reservoir. To validate performance of this system, we present experimental evidence demonstrating prevention of blood cell settling, cell integrity, and staining of cells prior to flow cytometric analysis. This setup is further integrated with a microfluidic imaging flow cytometer to investigate cell count variability. With no need for prior sample preparation, a drop of whole blood can be directly introduced to the setup without premixing with buffers manually. Our results show that integration of this assembly with microfluidic analysis provides a competent automation tool for low-cost point-of-care blood-based diagnostics.

  2. Plan for Using Solar-Powered Jack Pumps to Sample Groundwater at the Nevada Test Site

    SciTech Connect

    David Hudson, Charles Lohrstorfer, Bruce Hurley

    2007-05-03

    Groundwater is sampled from 39 monitoring wells on the Nevada Test Site (NTS) as part of the Routine Radiological Environmental Monitoring Program. Many of these wells were not designed or constructed for long-term groundwater monitoring. Some have extensive completion zones and others have obstructions such as pumps and tubing. The high-volume submersible pumps in some wells are unsuitable for long-term monitoring and result in large volumes of water that may have to be contained and characterized before subsequent disposition. The configuration of most wells requires sampling stagnant well water with a wireline bailer. Although bailer sampling allows for the collection of depth-discrete samples, the collected samples may not be representative of local groundwater because no well purging is done. Low-maintenance, solar-powered jack pumps will be deployed in nine of these onsite monitoring wells to improve sample quality. These pumps provide the lift capacity to produce groundwater from the deep aquifers encountered in the arid environment of the NTS. The water depths in these wells range from 700 to 2,340 ft below ground surface. The considerable labor and electrical power requirements of electric submersible pumps are eliminated once these pumps are installed. Access tubing will be installed concurrent with the installation of the pump string to provide downhole access for water-level measurements or other wireline instruments. Micro-purge techniques with low pump rates will be used to minimize purge volumes and reduce hydraulic gradients. The set depths of the pumps will be determined by the borehole characteristics and screened interval.

  3. Automated biowaste sampling system urine subsystem operating model, part 1

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Rosen, F.

    1973-01-01

    The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.

  4. An Automated Sample Divider for Farmers Stock Peanuts

    USDA-ARS?s Scientific Manuscript database

    In-shell peanuts are harvested, loaded into drying trailers, and delivered to a central facility where they are dried to a moisture content safe for long term storage, sampled, graded, then unloaded into bulk storage. Drying trailers have capacities ranging from five to twenty-five tons of dry farme...

  5. An Automated Sample Divider for Farmers Stock Peanuts

    USDA-ARS?s Scientific Manuscript database

    In-shell peanuts are harvested, loaded into drying trailers, and delivered to a central facility where they are dried to a moisture content safe for long term storage, sampled, graded, then unloaded into bulk storage. Drying trailers have capacities ranging from five to twenty-five tons of dry farme...

  6. The Impact of Sampling Approach on Population Invariance in Automated Scoring of Essays. Research Report. ETS RR-13-18

    ERIC Educational Resources Information Center

    Zhang, Mo

    2013-01-01

    Many testing programs use automated scoring to grade essays. One issue in automated essay scoring that has not been examined adequately is population invariance and its causes. The primary purpose of this study was to investigate the impact of sampling in model calibration on population invariance of automated scores. This study analyzed scores…

  7. An automated method of sample preparation of biofluids using pierceable caps to eliminate the uncapping of the sample tubes during sample transfer.

    PubMed

    Teitz, D S; Khan, S; Powell, M L; Jemal, M

    2000-09-11

    Biological samples are normally collected and stored frozen in capped tubes until analysis. To obtain aliquots of biological samples for analysis, the sample tubes have to be thawed, uncapped, samples removed and then recapped for further storage. In this paper, we report an automated method of sample transfer devised to eliminate the uncapping and recapping process. This sampling method was incorporated into an automated liquid-liquid extraction procedure of plasma samples. Using a robotic system, the plasma samples were transferred directly from pierceable capped tubes into microtubes contained in a 96-position block. The aliquoted samples were extracted with methyl-tert-butyl ether in the same microtubes. The supernatant organic layers were transferred to a 96-well collection plate and evaporated to dryness. The dried extracts were reconstituted and injected from the same plate for analysis by liquid chromatography with tandem mass spectrometry.

  8. Development of an automated sample preparation module for environmental monitoring of biowarfare agents.

    PubMed

    Hindson, Benjamin J; Brown, Steve B; Marshall, Graham D; McBride, Mary T; Makarewicz, Anthony J; Gutierrez, Dora M; Wolcott, Duane K; Metz, Thomas R; Madabhushi, Ramakrishna S; Dzenitis, John M; Colston, Billy W

    2004-07-01

    An automated sample preparation module, based upon sequential injection analysis (SIA), has been developed for use within an autonomous pathogen detection system. The SIA system interfaced aerosol sampling with multiplexed microsphere immunoassay-flow cytometric detection. Metering and sequestering of microspheres using SIA was found to be reproducible and reliable, over 24-h periods of autonomous operation. Four inbuilt immunoassay controls showed excellent immunoassay and system stability over five days of unattended continuous operation. Titration curves for two biological warfare agents, Bacillus anthracis and Yersinia pestis, obtained using the automated SIA procedure were shown to be similar to those generated using a manual microtiter plate procedure.

  9. Standardised Methods for Sampling by Drilling and Excavation and for Groundwater Measurements

    NASA Astrophysics Data System (ADS)

    Stölben, Ferdinand; Eitner, Volker

    The Technical Committees of the European Committee for Standardisation (CEN) and the International Organisation for Standardisation (ISO) on geotechnical investigation and testing prepare among others several common standards that deal with the direct investigation of soil, rock and groundwater as subsoil and construction materials as part o f the geotechnical investigation services. EN ISO 22475-1 defines concepts and specifies requirements relating to exploration by excavation, drilling and sampling as well as groundwater measurements. EN ISO 22475-2 specifies the technical qualification criteria for an enterprise and personnel performing drilling and sampling services in order that both have the appropriate experience, knowledge and qualifications as well as the correct drilling and sampling equipment for the task to be carried out according to EN ISO 22475-2. EN ISO 22475-3 applies for the conformity assessment of enterprises and personnel for ground investigation drilling and sampling and groundwater measurements according to EN ISO 22475-1 that comply with the technical qualification criteria according to EN ISO 22475-3.

  10. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    SciTech Connect

    Surovchak, Scott; Miller, Michele

    2016-08-01

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysis were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.

  11. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014

    SciTech Connect

    2013-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

  12. Automated syringe sampler. [remote sampling of air and water

    NASA Technical Reports Server (NTRS)

    Purgold, G. C. (Inventor)

    1981-01-01

    A number of sampling services are disposed in a rack which slides into a housing. In response to a signal from an antenna, the circutry elements are activated which provide power individually, collectively, or selectively to a servomechanism thereby moving an actuator arm and the attached jawed bracket supporting an evaculated tube towards a stationary needle. One open end of the needle extends through the side wall of a conduit to the interior and the other open end is maintained within the protective sleeve, supported by a bifurcated bracket. A septum in punctured by the end of the needle within the sleeve and a sample of the fluid medium in the conduit flows through the needle and is transferred to a tube. The signal to the servo is then reversed and the actuator arm moves the tube back to its original position permitting the septum to expand and seal the hole made by the needle. The jawed bracket is attached by pivot to the actuator to facilitate tube replacement.

  13. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    NASA Astrophysics Data System (ADS)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  14. Automated Protein Biomarker Analysis: on-line extraction of clinical samples by Molecularly Imprinted Polymers

    PubMed Central

    Rossetti, Cecilia; Świtnicka-Plak, Magdalena A.; Grønhaug Halvorsen, Trine; Cormack, Peter A.G.; Sellergren, Börje; Reubsaet, Léon

    2017-01-01

    Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting. PMID:28303910

  15. Automated Protein Biomarker Analysis: on-line extraction of clinical samples by Molecularly Imprinted Polymers

    NASA Astrophysics Data System (ADS)

    Rossetti, Cecilia; Świtnicka-Plak, Magdalena A.; Grønhaug Halvorsen, Trine; Cormack, Peter A. G.; Sellergren, Börje; Reubsaet, Léon

    2017-03-01

    Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting.

  16. Analysis of volatile organic compounds in groundwater samples by gas chromatography-mass spectrometry

    SciTech Connect

    Bernhardt, J.

    1995-08-23

    The Savannah River Site contains approximately 1500 monitoring wells from which groundwater samples are collected. Many of these samples are sent off-site for various analyses, including the determination of trace volatile organic compounds (VOCs). This report describes accomplishments that have been made during the past year which will ultimately allow VOC analysis to be performed on-site using gas chromatography-mass spectrometry. Through the use of the on-site approach, it is expected that there will be a substantial cost savings. This approach will also provide split-sample analysis capability which can serve as a quality control measure for off-site analysis.

  17. High-throughput sample processing and sample management; the functional evolution of classical cytogenetic assay towards automation.

    PubMed

    Ramakumar, Adarsh; Subramanian, Uma; Prasanna, Pataje G S

    2015-11-01

    High-throughput individual diagnostic dose assessment is essential for medical management of radiation-exposed subjects after a mass casualty. Cytogenetic assays such as the Dicentric Chromosome Assay (DCA) are recognized as the gold standard by international regulatory authorities. DCA is a multi-step and multi-day bioassay. DCA, as described in the IAEA manual, can be used to assess dose up to 4-6 weeks post-exposure quite accurately but throughput is still a major issue and automation is very essential. The throughput is limited, both in terms of sample preparation as well as analysis of chromosome aberrations. Thus, there is a need to design and develop novel solutions that could utilize extensive laboratory automation for sample preparation, and bioinformatics approaches for chromosome-aberration analysis to overcome throughput issues. We have transitioned the bench-based cytogenetic DCA to a coherent process performing high-throughput automated biodosimetry for individual dose assessment ensuring quality control (QC) and quality assurance (QA) aspects in accordance with international harmonized protocols. A Laboratory Information Management System (LIMS) is designed, implemented and adapted to manage increased sample processing capacity, develop and maintain standard operating procedures (SOP) for robotic instruments, avoid data transcription errors during processing, and automate analysis of chromosome-aberrations using an image analysis platform. Our efforts described in this paper intend to bridge the current technological gaps and enhance the potential application of DCA for a dose-based stratification of subjects following a mass casualty. This paper describes one such potential integrated automated laboratory system and functional evolution of the classical DCA towards increasing critically needed throughput.

  18. An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples

    PubMed Central

    Nie, Shuai; Henley, W. Hampton; Miller, Scott E.; Zhang, Huaibin; Mayer, Kathryn M.; Dennis, Patty J.; Oblath, Emily A.; Alarie, Jean Pierre; Wu, Yue; Oppenheim, Frank G.; Little, Frédéric F.; Uluer, Ahmet Z.; Wang, Peidong; Ramsey, J. Michael

    2014-01-01

    During the last decade, saliva has emerged as a potentially ideal diagnostic biofluid for noninvasive testing. In this paper, we present an automated, integrated platform useable by minimally trained personnel in the field for the diagnosis of respiratory diseases using human saliva as a sample specimen. In this platform, a saliva sample is loaded onto a disposable microfluidic chip containing all the necessary reagents and components required for saliva analysis. The chip is then inserted into the automated analyzer, the SDReader, where multiple potential protein biomarkers for respiratory diseases are measured simultaneously using a microsphere-based array via fluorescence sandwich immunoassays. The results are read optically, and the images are analyzed by a custom-designed algorithm. The fully automated assay requires as little as 10 μL of saliva sample, and the results are reported in 70 min. The performance of the platform was characterized by testing protein standard solutions, and the results were comparable to those from the 3.5-h lab bench assay that we have previously reported. The device was also deployed in two clinical environments where 273 human saliva samples collected from different subjects were successfully tested, demonstrating the device’s potential to assist clinicians with the diagnosis of respiratory diseases by providing timely protein biomarker profiling information. This platform, which combines non-invasive sample collection and fully automated analysis, can also be utilized in point-of-care diagnostics. PMID:24448498

  19. Fully automated open access platform for rapid, combined serial evaporation and sample reformatting.

    PubMed

    Benali, Otman; Davies, Gary; Deal, Martyn; Farrant, Elizabeth; Guthrie, Duncan; Holden, John; Wheeler, Rob

    2008-01-01

    This paper reports a novel evaporator and its integration with an automated sample handling system to create a high throughput evaporation platform. The Vaportec V-10 evaporator uses a high speed rotation motor ( approximately 6000 rpm) to spin the vial containing a sample, creating a thin film of solvent which can be readily evaporated by the application of heat to the vial, while the consequent centrifugal force prevents "bumping". An intelligent algorithm controls pressure and temperature for optimum solvent removal conditions and end of run detection, critical for automation. The system allows the option of evaporation directly from a sample source vial, or alternatively, integrated liquid handling facilities provide the capability of transferring samples portionwise from a (large) source vial or bottle to a (small) daughter container, enabling efficient sample reformatting, with minimum user intervention. The open access system makes significant advances over current vacuum centrifugal evaporators in terms of evaporation rate and ease of automation. The evaporator's main features, the integration of robotics to provide automation, and examples of evaporation rates of a wide range of solvents from a variety of containers are described.

  20. An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples.

    PubMed

    Nie, Shuai; Henley, W Hampton; Miller, Scott E; Zhang, Huaibin; Mayer, Kathryn M; Dennis, Patty J; Oblath, Emily A; Alarie, Jean Pierre; Wu, Yue; Oppenheim, Frank G; Little, Frédéric F; Uluer, Ahmet Z; Wang, Peidong; Ramsey, J Michael; Walt, David R

    2014-03-21

    During the last decade, saliva has emerged as a potentially ideal diagnostic biofluid for noninvasive testing. In this paper, we present an automated, integrated platform useable by minimally trained personnel in the field for the diagnosis of respiratory diseases using human saliva as a sample specimen. In this platform, a saliva sample is loaded onto a disposable microfluidic chip containing all the necessary reagents and components required for saliva analysis. The chip is then inserted into the automated analyzer, the SDReader, where multiple potential protein biomarkers for respiratory diseases are measured simultaneously using a microsphere-based array via fluorescence sandwich immunoassays. The results are read optically, and the images are analyzed by a custom-designed algorithm. The fully automated assay requires as little as 10 μL of saliva sample, and the results are reported in 70 min. The performance of the platform was characterized by testing protein standard solutions, and the results were comparable to those from the 3.5 h lab bench assay that we have previously reported. The device was also deployed in two clinical environments where 273 human saliva samples collected from different subjects were successfully tested, demonstrating the device's potential to assist clinicians with the diagnosis of respiratory diseases by providing timely protein biomarker profiling information. This platform, which combines noninvasive sample collection and fully automated analysis, can also be utilized in point-of-care diagnostics.

  1. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    SciTech Connect

    Jasso, Tashina; Widdop, Michael

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  2. Automated system for monitoring groundwater levels at an experimental low-level waste disposal site

    SciTech Connect

    Newbold, J.D.; Bogle, M.A.

    1984-06-01

    One of the major problems with disposing of low-level solid wastes in the eastern United States is the potential for water-waste interactions and leachate migration. To monitor groundwater fluctuations and the frequency with which groundwater comes into contact with a group of experimental trenches, work at Oak Ridge National Laboratory's Engineered Test Facility (ETF) has employed a network of water level recorders that feed information from 15 on-site wells to a centralized data recording system. The purpose of this report is to describe the monitoring system being used and to document the computer programs that have been developed to process the data. Included in this report are data based on more than 2 years of water level information for ETF wells 1 through 12 and more than 6 months of data from all 15 wells. The data thus reflect both long-term trends as well as a large number of short-term responses to individual storm events. The system was designed to meet the specific needs of the ETF, but the hardware and computer routines have generic application to a variety of groundwater monitoring situations. 5 references.

  3. Investigation of Automated Sampling Techniques to Measure Total Mercury in Stream- Water During Storm-Events

    NASA Astrophysics Data System (ADS)

    Riscassi, A. L.; Scanlon, T. M.

    2008-12-01

    High-flow events (storms and snowmelt) are a dominant transport mechanism for total mercury (HgT) from the terrestrial to the aqueous environment. High-gradient headwater catchments are a primary source of downstream contamination because they store large pools of Hg in soils and sediments. Consistent, high- frequency event-sampling of headwater streams is rare, however, because of the unpredictability of high flows, remoteness of sites, and the difficulties associated with the ultra-clean sampling procedures. The use of automated sampling techniques with an ISCO® sampler has been demonstrated in several studies for trace metals, but their use for collection of HgT samples has not been systematically evaluated in the literature. Even with clean equipment at deployment, subsequent contamination and loss by evasion are possible considering the bottles, as currently designed, are open to the atmosphere before sampling and until retrieval. Field tests are conducted using an ISCO® sampler retrofitted with pre- cleaned Teflon® sampling lines and glass bottles to determine the relative errors associated with the automated sampling method for a variety of HgT concentrations and preservation techniques. Differences between quality assurance and quality control results for automated and manual sampling are also investigated. Sample containers are filled with known standards of HgT solution and left in the ISCO® containers at the field site and each day (up to 7 days) are capped and returned for analysis. During a storm event, manual samples are taken from the middle of the water column concurrently with the ISCO® at hourly intervals using "clean hands" procedures. Evaluations of results are used to establish quality assurance guidelines for future field campaigns using automated techniques for HgT sampling.

  4. Passive sampling and analyses of common dissolved fixed gases in groundwater.

    PubMed

    Spalding, Brian P; Watson, David B

    2008-05-15

    An in situ passive sampling and gas chromatographic protocol was developed for analysis of the major and several minor fixed gases (He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O) in groundwater. Using argon carrier gas, a HayeSep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors, the protocol achieved sufficient separation and sensitivity to measure the mixing ratio of all these gases in a single 0.5 mL gas sample collected in situ, stored, transported, and injected using a gastight syringe. Within 4 days of immersion in groundwater, the simple passive in situ sampler, whether initially filled with He or air, attained an equivalent and constant mixing ratio for five of the seven detected gases. The abundant mixing ratio of N2O, averaging 2.6%, indicated that significant denitrification is likely ongoing within groundwater contaminated with uranium, acidity, nitrate, and organic carbon from a group of four closed radioactive wastewater seepage ponds at the Oak Ridge Field Research Center. Over 1000 passive gas samples from 12 monitoring wells averaged 56% CO2, 32.4% N2, 2.6% O2, 2.6% N2O, 0.21% CH4, 0.093% H2, and 0.025% CO with an average recovery of 95 +/- 14% of the injected gas volume.

  5. Enumeration of Clostridium perfringens spores in groundwater samples: comparison of six culture media.

    PubMed

    Araujo, M; Sueiro, R A; Gómez, M J; Garrido, M J

    2004-05-01

    In order to investigate the ability of Fluorocult-supplemented TSC agar (TSCF (Fluorocult supplemented TSC-agar): prepared from Tryptose Sulfite Cycloserine Agar Base (Merck), D-cycloserine (Fluka Chemika, USA), and fluorocult TSC-Agar supplement (Merck)) for detecting spores of Clostridium perfringens in water, we analyzed groundwater samples, pretreated by heating to 80 degrees C/5 min, using this fluorogenic medium together with five other media: mCP agar (Panreac; Cultimed), TSC agar (Merck, Germany), TSN agar (Merck), and SPS agar (BBL, USA) by the membrane filtration technique, and Wilson-Blair agar (WB) following the still-in-force Spanish official method. Variance analysis of the data obtained shows statistically significant differences in the counts obtained between media employed in this work. The C. perfringens spore counts on mCP agar were significantly lower (P<0.05) than the corresponding values of TSC, TSCF, SPS, and WB media. No statistically significant differences were found between C. perfringens spore counts on TSCF compared with those of other methods used. On the other hand, the identification of typical and atypical colonies isolated from all media demonstrated that fluorogenic TSC agar was the most specific medium for C. perfringens spore recovery in groundwater samples. Additionally, the results obtained indicate that mCP agar, which is the reference method in the European Union, is not suitable medium for recovering C. perfringens spores from groundwater samples.

  6. Automated laboratory based X-ray beamline with multi-capillary sample chamber

    SciTech Connect

    Purushothaman, S.; Gauthé, B. L. L. E.; Brooks, N. J.; Templer, R. H.; Ces, O.

    2013-08-15

    An automated laboratory based X-ray beamline with a multi-capillary sample chamber capable of undertaking small angle X-ray scattering measurements on a maximum of 104 samples at a time as a function of temperature between 5 and 85 °C has been developed. The modular format of the system enables the user to simultaneously equilibrate samples at eight different temperatures with an accuracy of ±0.005 °C. This system couples a rotating anode generator and 2D optoelectronic detector with Franks X-ray optics, leading to typical exposure times of less than 5 min for lyotropic liquid crystalline samples. Beamline control including sample exchange and data acquisition has been fully automated via a custom designed LabVIEW framework.

  7. An automated system for global atmospheric sampling using B-747 airliners

    NASA Technical Reports Server (NTRS)

    Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.

    1981-01-01

    The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.

  8. [Groundwater].

    PubMed

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  9. A comparison of low flow pumping and bailing for VOC groundwater sampling at landfills

    SciTech Connect

    Svavarsson, G.; Connelly, J.; Kuehling, H.

    1995-12-31

    The state of Wisconsin has more than 10,000 groundwater monitoring wells that will continue to be sampled into the future. Most samplers in this state use a bailer to purge and sample these wells. The EPA has questioned the use of a bailer for volatile organic compound (VOC) sampling because of the potential to increase sample aeration and cause significantly more turbidity than using a low flow pumping method. A total of nine monitoring wells that had a history of VOC contamination were sampled at three landfills. The wells were sampled using both a low flow pump and bailer in the summer of 1994 and again in the following winter. Generally, only small differences were found between the VOC results collected using the low flow pumping and the bailing techniques. In addition, the method resulting in higher recovery of organic compounds differed, depending on the particular well, season, and compound.

  10. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  11. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect

    Schalla, Ronald; Webber, William D; Smith, Ronald M

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurges) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  12. An experiment in representative ground-water sampling for water- quality analysis

    USGS Publications Warehouse

    Huntzinger, T.L.; Stullken, L.E.

    1988-01-01

    Obtaining a sample of groundwater that accurately represents the concentration of a chemical constituent in an aquifer is an important aspect of groundwater-quality studies. Varying aquifer and constituent properties may cause chemical constituents to move within selectively separate parts of the aquifer. An experiment was conducted in an agricultural region in south-central Kansas to address questions related to representative sample collection. Concentrations of selected constituents in samples taken from observation wells completed in the upper part of the aquifer were compared to concentrations in samples taken from irrigation wells to determine if there was a significant difference. Water in all wells sampled was a calcium bicarbonate type with more than 200 mg/L hardness and about 200 mg/L alkalinity. Sodium concentrations were also quite large (about 40 mg/L). There was a significant difference in the nitrite-plus-nitrate concentrations between samples from observation and irrigation wells. The median concentration of nitrite plus nitrate in water from observation wells was 5.7 mg/L compared to 3.4 mg/L in water from irrigation wells. The differences in concentrations of calcium, magnesium, and sodium (larger in water from irrigation wells) were significant at the 78% confidence level but not at the 97% confidence level. Concentrations of the herbicide, atrazine, were less than the detection limit of 0.1 micrograms/L in all but one well. (USGS)

  13. Application of bar codes to the automation of analytical sample data collection

    SciTech Connect

    Jurgensen, H A

    1986-01-01

    The Health Protection Department at the Savannah River Plant collects 500 urine samples per day for tritium analyses. Prior to automation, all sample information was compiled manually. Bar code technology was chosen for automating this program because it provides a more accurate, efficient, and inexpensive method for data entry. The system has three major functions: sample labeling is accomplished at remote bar code label stations composed of an Intermec 8220 (Intermec Corp.) interfaced to an IBM-PC, data collection is done on a central VAX 11/730 (Digital Equipment Corp.). Bar code readers are used to log-in samples to be analyzed on liquid scintillation counters. The VAX 11/730 processes the data and generates reports, data storage is on the VAX 11/730 and backed up on the plant's central computer. A brief description of several other bar code applications at the Savannah River Plant is also presented.

  14. Sample Tracking in an Automated Cytogenetic Biodosimetry Laboratory for Radiation Mass Casualties.

    PubMed

    Martin, P R; Berdychevski, R E; Subramanian, U; Blakely, W F; Prasanna, P G S

    2007-07-01

    Chromosome aberration-based dicentric assay is expected to be used after mass casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput.This paper focuses on our efforts to eliminate data transcription errors, increase efficiency, and maintain samples' positive chain-of-custody by sample tracking during sample processing and data analysis. This sample tracking system represents a "beta" version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and medical

  15. Characteristics of a new automated blood sampling system for positron emission tomography

    SciTech Connect

    Eriksson, L.; Ingvar, M.; Rosenqvist, G.; Ekdahl, T.; Kappel, P.

    1995-08-01

    A new commercially available automated blood sampling system (ABSS) for positron emission tomography has been evaluated. The system uses a single BGO crystal and detects with high efficiency the annihilation radiation from tracers, labelled with positron emitting isotopes, in arterial blood. In addition the possibilities to use the ABSS as a detector in the analysis of the plasma samples with liquid chromatography techniques under flow conditions has been explored.

  16. Using sample entropy for automated sign language recognition on sEMG and accelerometer data.

    PubMed

    Kosmidou, Vasiliki E; Hadjileontiadis, Leontios I

    2010-03-01

    Communication using sign language (SL) provides alternative means for information transmission among the deaf. Automated gesture recognition involved in SL, however, could further expand this communication channel to the world of hearers. In this study, data from five-channel surface electromyogram and three-dimensional accelerometer from signers' dominant hand were subjected to a feature extraction process. The latter consisted of sample entropy (SampEn)-based analysis, whereas time-frequency feature (TFF) analysis was also performed as a baseline method for the automated recognition of 60-word lexicon Greek SL (GSL) isolated signs. Experimental results have shown a 66 and 92% mean classification accuracy threshold using TFF and SampEn, respectively. These results justify the superiority of SampEn against conventional methods, such as TFF, to provide with high recognition hit-ratios, combined with feature vector dimension reduction, toward a fast and reliable automated GSL gesture recognition.

  17. Feasibility of automated speech sample collection with stuttering children using interactive voice response (IVR) technology.

    PubMed

    Vogel, Adam P; Block, Susan; Kefalianos, Elaina; Onslow, Mark; Eadie, Patricia; Barth, Ben; Conway, Laura; Mundt, James C; Reilly, Sheena

    2015-04-01

    To investigate the feasibility of adopting automated interactive voice response (IVR) technology for remotely capturing standardized speech samples from stuttering children. Participants were 10 6-year-old stuttering children. Their parents called a toll-free number from their homes and were prompted to elicit speech from their children using a standard protocol involving conversation, picture description and games. The automated IVR system was implemented using an off-the-shelf telephony software program and delivered by a standard desktop computer. The software infrastructure utilizes voice over internet protocol. Speech samples were automatically recorded during the calls. Video recordings were simultaneously acquired in the home at the time of the call to evaluate the fidelity of the telephone collected samples. Key outcome measures included syllables spoken, percentage of syllables stuttered and an overall rating of stuttering severity using a 10-point scale. Data revealed a high level of relative reliability in terms of intra-class correlation between the video and telephone acquired samples on all outcome measures during the conversation task. Findings were less consistent for speech samples during picture description and games. Results suggest that IVR technology can be used successfully to automate remote capture of child speech samples.

  18. Sample Tracking in an Automated Cytogenetic Biodosimetry Laboratory for Radiation Mass Casualties

    PubMed Central

    Martin, P.R.; Berdychevski, R.E.; Subramanian, U.; Blakely, W.F.; Prasanna, P.G.S.

    2007-01-01

    Chromosome aberration-based dicentric assay is expected to be used after mass casualty life-threatening radiation exposures to assess radiation dose to individuals. This will require processing of a large number of samples for individual dose assessment and clinical triage to aid treatment decisions. We have established an automated, high-throughput, cytogenetic biodosimetry laboratory to process a large number of samples for conducting the dicentric assay using peripheral blood from exposed individuals according to internationally accepted laboratory protocols (i.e., within days following radiation exposures). The components of an automated cytogenetic biodosimetry laboratory include blood collection kits for sample shipment, a cell viability analyzer, a robotic liquid handler, an automated metaphase harvester, a metaphase spreader, high-throughput slide stainer and coverslipper, a high-throughput metaphase finder, multiple satellite chromosome-aberration analysis systems, and a computerized sample tracking system. Laboratory automation using commercially available, off-the-shelf technologies, customized technology integration, and implementation of a laboratory information management system (LIMS) for cytogenetic analysis will significantly increase throughput. This paper focuses on our efforts to eliminate data transcription errors, increase efficiency, and maintain samples’ positive chain-of-custody by sample tracking during sample processing and data analysis. This sample tracking system represents a “beta” version, which can be modeled elsewhere in a cytogenetic biodosimetry laboratory, and includes a customized LIMS with a central server, personal computer workstations, barcode printers, fixed station and wireless hand-held devices to scan barcodes at various critical steps, and data transmission over a private intra-laboratory computer network. Our studies will improve diagnostic biodosimetry response, aid confirmation of clinical triage, and medical

  19. Evaluation of automated streamwater sampling during storm events for total mercury analysis.

    PubMed

    Riscassi, Ami L; Converse, Amber D; Hokanson, Kelly J; Scanlon, Todd M

    2010-10-06

    Understanding the processes by which mercury is mobilized from soil to stream is currently limited by a lack of observations during high-flow events, when the majority of this transport occurs. An automated technique to collect stream water for unfiltered total mercury (HgT) analysis was systematically evaluated in a series of laboratory experiments. Potential sources of error investigated were 1) carry-over effects associated with sequential sampling, 2) deposition of HgT into empty bottles prior to sampling, and 3) deposition to or evasion from samples prior to retrieval. Contamination from carry-over effects was minimal (<2%) and HgT deposition to open bottles was negligible. Potentially greater errors are associated with evasive losses of HgT from uncapped samples, with higher temperatures leading to greater evasion. These evasive losses were found to take place primarily within the first eight hours. HgT associated with particulate material is much less prone to evasion than HgT in dissolved form. A field test conducted during a high-flow event confirmed unfiltered HgT concentrations sampled with an automated system were comparable to those taken manually, as the mean absolute difference between automated and manual samples (10%) was similar to the mean difference between duplicate grab samples (9%). Results from this study have demonstrated that a standard automated sampler, retrofitted with appropriately cleaned fluoropolymer tubing and glass bottles, can effectively be used for collection of streamwater during high-flow events for low-level mercury analysis.

  20. An investigative comparison of purging and non-purging groundwater sampling methods in Karoo aquifer monitoring wells

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Vermeulen, D.

    2015-03-01

    An investigation was conducted to statistically compare the influence of non-purging and purging groundwater sampling methods on analysed inorganic chemistry parameters and calculated saturation indices. Groundwater samples were collected from 15 monitoring wells drilled in Karoo aquifers before and after purging for the comparative study. For the non-purging method, samples were collected from groundwater flow zones located in the wells using electrical conductivity (EC) profiling. The two data sets of non-purged and purged groundwater samples were analysed for inorganic chemistry parameters at the Institute of Groundwater Studies (IGS) laboratory of the Free University in South Africa. Saturation indices for mineral phases that were found in the data base of PHREEQC hydrogeochemical model were calculated for each data set. Four one-way ANOVA tests were conducted using Microsoft excel 2007 to investigate if there is any statistically significant difference between: (1) all inorganic chemistry parameters measured in the non-purged and purged groundwater samples per each specific well, (2) all mineral saturation indices calculated for the non-purged and purged groundwater samples per each specific well, (3) individual inorganic chemistry parameters measured in the non-purged and purged groundwater samples across all wells and (4) Individual mineral saturation indices calculated for non-purged and purged groundwater samples across all wells. For all the ANOVA tests conducted, the calculated alpha values (p) are greater than 0.05 (significance level) and test statistic (F) is less than the critical value (Fcrit) (F < Fcrit). The results imply that there was no statistically significant difference between the two data sets. With a 95% confidence, it was therefore concluded that the variance between groups was rather due to random chance and not to the influence of the sampling methods (tested factor). It is therefore be possible that in some hydrogeologic conditions

  1. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    PubMed

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  2. Current status and future prospects of an automated sample exchange system PAM for protein crystallography

    NASA Astrophysics Data System (ADS)

    Hiraki, M.; Yamada, Y.; Chavas, L. M. G.; Matsugaki, N.; Igarashi, N.; Wakatsuki, S.

    2013-03-01

    To achieve fully-automated and/or remote data collection in high-throughput X-ray experiments, the Structural Biology Research Centre at the Photon Factory (PF) has installed PF automated mounting system (PAM) for sample exchange robots at PF macromolecular crystallography beamlines BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. We are upgrading the experimental systems, including the PAM for stable and efficient operation. To prevent human error in automated data collection, we installed a two-dimensional barcode reader for identification of the cassettes and sample pins. Because no liquid nitrogen pipeline in the PF experimental hutch is installed, the users commonly add liquid nitrogen using a small Dewar. To address this issue, an automated liquid nitrogen filling system that links a 100-liter tank to the robot Dewar has been installed on the PF macromolecular beamline. Here we describe this new implementation, as well as future prospects.

  3. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems.

    PubMed

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C

    2017-01-19

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.

  4. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    PubMed Central

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys. PMID:28102290

  5. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    NASA Astrophysics Data System (ADS)

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.

  6. Data Validation Package May 2016 Groundwater Sampling at the Sherwood, Washington, Disposal Site August 2016

    SciTech Connect

    Kreie, Ken; Traub, David

    2016-08-04

    The 2001 Long-Term Surveillance Plan (LTSP) for the US. Department of Energy Sherwood Project (UMI'RCA Title II) Reclamation Cell, Wellpinit, Washington, does not require groundwater compliance monitoring at the Sherwood site. However, the LTSP stipulates limited groundwater monitoring for chloride and sulfate (designated indicator parameters) and total dissolved solids (TDS) as a best management practice. Samples were collected from the background well, MW-2B, and the two downgradient wells, MW-4 and MW-10, in accordance with the LTSP. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Water levels were measured in all wells prior to sampling and in four piezometers completed in the tailings dam. Time-concentration graphs included in this report indicate that the chloride, sulfate, and TDS concentrations are consistent with historical measurements. The concentrations of chloride and sulfate are well below the State of Washington water quality criteria value of 250 milligrams per liter (mg/L) for both parameters.

  7. Validation of the dual pumping technique for level-determined groundwater sampling in a contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Thullner, M.; Höhener, P.; Kinzelbach, W.; Zeyer, J.

    2000-08-01

    The dual pumping technique (DPT) was introduced recently as a new and inexpensive technique to measure the level-determined solute concentrations in groundwater. Using two pumps, one placed near the groundwater table and one placed near the bottom of a fully screened well, this technique allows to determine vertical concentration profiles for solutes in groundwater given that additional information about the influx distribution into the well is known. Until now, however, the DPT was applied only in an aquifer with a thickness of about 40 m and the validation was weakened by the lack of a reliable reference system. The present study aims to investigate the applicability of the DPT for shallow (thickness <10 m) and unconfined aquifers and to validate the results of the DPT with a better reference system. For this purpose the DPT was applied in Menziken, Switzerland to a gravel aquifer contaminated with petroleum hydrocarbons. Solute concentrations measured at that site with an established drive point sampling technique (Ram technique) were taken as a reference to demonstrate the applicability of the DPT. Results for eight different solutes showed a reasonable agreement between both techniques. An algorithm was developed that allowed the computation of a single solute concentration profile incorporating measured data from both pumps. It was possible to demonstrate that this alternative algorithm can improve the quality of the solute concentration profiles obtained by the DPT. This indicates that the DPT is a useful tool for determining the vertical concentration profiles in groundwater for conditions similar to those in Menziken (unconfined gravel aquifer, screen length less than 10 m).

  8. A fully automated plasma protein precipitation sample preparation method for LC-MS/MS bioanalysis.

    PubMed

    Ma, Ji; Shi, Jianxia; Le, Hoa; Cho, Robert; Huang, Judy Chi-jou; Miao, Shichang; Wong, Bradley K

    2008-02-01

    This report describes the development and validation of a robust robotic system that fully integrates all peripheral devices needed for the automated preparation of plasma samples by protein precipitation. The liquid handling system consisted of a Tecan Freedom EVO 200 liquid handling platform equipped with an 8-channel liquid handling arm, two robotic plate-handling arms, and two plate shakers. Important additional components integrated into the platform were a robotic temperature-controlled centrifuge, a plate sealer, and a plate seal piercing station. These enabled unattended operation starting from a stock solution of the test compound, a set of test plasma samples and associated reagents. The stock solution of the test compound was used to prepare plasma calibration and quality control samples. Once calibration and quality control samples were prepared, precipitation of plasma proteins was achieved by addition of three volumes of acetonitrile. Integration of the peripheral devices allowed automated sequential completion of the centrifugation, plate sealing, piercing and supernatant transferral steps. The method produced a sealed, injection-ready 96-well plate of plasma extracts. Accuracy and precision of the automated system were satisfactory for the intended use: intra-day and the inter-day precision were excellent (C.V.<5%), while the intra-day and inter-day accuracies were acceptable (relative error<8%). The flexibility of the platform was sufficient to accommodate pharmacokinetic studies of different numbers of animals and time points. To the best of our knowledge, this represents the first complete automation of the protein precipitation method for plasma sample analysis.

  9. January 2015 Groundwater Sampling at the Gnome-Coach, New Mexico, Site

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    Annual sampling was conducted January 27, 2015, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. Samples were collected from wells USGS-1, USGS-4, and USGS-8 during this monitoring event. The sampling was performed as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from well USGS-8 and water levels were measured in all the monitoring wells onsite. Refer to the sample location map for well locations. Samples were analyzed by GEL Laboratories in Charleston, South Carolina. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, strontium-90, and tritium. The sample from well USGS-1 was analyzed for tritium using the enrichment method to achieve a lower minimum detectable concentration (MDC). Radionuclide contaminants were detected in wells USGS-4 and USGS-8. The detection of radionuclides in these wells was expected because the U.S. Geological Survey conducted a tracer test between these wells in 1963 using the dissolved radionuclides tritium, strontium-90, and cesium-137 as tracers. Radionuclide time-concentration graphs are included in this report for these wells. Analytical data obtained from this and past sampling events are also available in electronic format on the U.S. Department of Energy Office of Legacy Management Geospatial Environmental Mapping System website at http://gems.lm.doe.gov/#site=GNO.

  10. Automated semiquantitative direct-current-arc spectrographic analysis of eight argonne premium coal ash samples

    USGS Publications Warehouse

    Skeen, C.J.; Libby, B.J.; Crandell, W.B.

    1990-01-01

    The automated semiquantitative direct-current-arc spectre-graphic method was used to analyze 62 elements in eight Argonne Premium Coal Ash samples. All eight coal ash samples were analyzed in triplicate to verify precision and accuracy of the method. The precision for most elements was within ??10%. The accuracy of this method is limited to +50% or -33% because of the nature of the standard curves for each of the elements. Adjustments to the computer program were implemented to account for unique matrix interferences in these particular coal ash samples.

  11. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    PubMed

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries.

  12. Automated sampling system for the analysis of amino acids using microfluidic capillary electrophoresis.

    PubMed

    Xu, Zhang-Run; Lan, Yue; Fan, Xiao-Feng; Li, Qi

    2009-04-30

    An improved automated continuous sample introduction system for microfluidic capillary electrophoresis (CE) is described. A sample plate was designed into gear-shaped and was fixed onto the shaft of a step motor. Twenty slotted reservoirs for containing samples and working electrolytes were fabricated on the "gear tooth" of the plate. A single 7.5-cm long Teflon AF-coated silica capillary serves as separation channel, sampling probe, as well as liquid-core waveguide (LCW) for light transmission. Platinum layer deposited on the capillary tip serves as the electrode. Automated continuous sample introduction was achieved by scanning the capillary tip through the slots of reservoirs. The sample was introduced into capillary and separated immediately in the capillary with only about 2-nL gross sample consumption. The laser-induced fluorescence (LIF) method with LCW technique was used for detecting fluorescein isothiocyanate (FITC)-labeled amino acids. With electric-field strength of 320 V/cm for injection and separation, and 1.0-s sample injection time, a mixture of FITC-labeled arginine and leucine was separated with a throughput of 60/h and a carryover of 2.7%.

  13. Development of a Miniature Mass Spectrometer and an Automated Detector for Sampling Explosive Materials

    PubMed Central

    Hashimoto, Yuichiro

    2017-01-01

    The development of a robust ionization source using the counter-flow APCI, miniature mass spectrometer, and an automated sampling system for detecting explosives are described. These development efforts using mass spectrometry were made in order to improve the efficiencies of on-site detection in areas such as security, environmental, and industrial applications. A development team, including the author, has struggled for nearly 20 years to enhance the robustness and reduce the size of mass spectrometers to meet the requirements needed for on-site applications. This article focuses on the recent results related to the detection of explosive materials where automated particle sampling using a cyclone concentrator permitted the inspection time to be successfully reduced to 3 s. PMID:28337396

  14. Development of a Miniature Mass Spectrometer and an Automated Detector for Sampling Explosive Materials.

    PubMed

    Hashimoto, Yuichiro

    2017-01-01

    The development of a robust ionization source using the counter-flow APCI, miniature mass spectrometer, and an automated sampling system for detecting explosives are described. These development efforts using mass spectrometry were made in order to improve the efficiencies of on-site detection in areas such as security, environmental, and industrial applications. A development team, including the author, has struggled for nearly 20 years to enhance the robustness and reduce the size of mass spectrometers to meet the requirements needed for on-site applications. This article focuses on the recent results related to the detection of explosive materials where automated particle sampling using a cyclone concentrator permitted the inspection time to be successfully reduced to 3 s.

  15. Comparison of manual and automated nucleic acid extraction from whole-blood samples.

    PubMed

    Riemann, Kathrin; Adamzik, Michael; Frauenrath, Stefan; Egensperger, Rupert; Schmid, Kurt W; Brockmeyer, Norbert H; Siffert, Winfried

    2007-01-01

    Nucleic acid extraction and purification from whole blood is a routine application in many laboratories. Automation of this procedure promises standardized sample treatment, a low error rate, and avoidance of contamination. The performance of the BioRobot M48 (Qiagen) and the manual QIAmp DNA Blood Mini Kit (Qiagen) was compared for the extraction of DNA from whole blood. The concentration and purity of the extracted DNAs were determined by spectrophotometry. Analytical sensitivity was assessed by common PCR and genotyping techniques. The quantity and quality of the generated DNAs were slightly higher using the manual extraction method. The results of downstream applications were comparable to each other. Amplification of high-molecular-weight PCR fragments, genotyping by restriction digest, and pyrosequencing were successful for all samples. No cross-contamination could be detected. While automated DNA extraction requires significantly less hands-on time, it is slightly more expensive than the manual extraction method.

  16. Non-uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination

    PubMed Central

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-01-01

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [1H,1H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. PMID:26227870

  17. Apparatus and method for time-integrated, active sampling of contaminants in fluids demonstrated by monitoring of hexavalent chromium in groundwater.

    PubMed

    Roll, Isaac B; Driver, Erin M; Halden, Rolf U

    2016-06-15

    Annual U.S. expenditures of $2B for site characterization invite the development of new technologies to improve data quality while reducing costs and minimizing uncertainty in groundwater monitoring. This work presents a new instrument for time-integrated sampling of environmental fluids using in situ solid-phase extraction (SPE). The In Situ Sampler (IS2) is an automated submersible device capable of extracting dissolved contaminants from water (100s-1000smL) over extended periods (hours to weeks), retaining the analytes, and rejecting the processed fluid. A field demonstration of the IS2 revealed 28-day average concentration of hexavalent chromium in a shallow aquifer affected by tidal stresses via sampling of groundwater as both liquid and sorbed composite samples, each obtained in triplicate. In situ SPE exhibited 75±6% recovery and an 8-fold improvement in reporting limit. Relative to use of conventional methods (100%), beneficial characteristics of the device and method included minimal hazardous material generation (2%), transportation cost (10%), and associated carbon footprint (2%). The IS2 is compatible with commercial SPE resins and standard extraction methods, and has been certified for more general use (i.e., inorganics and organics) by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Apparatus and Method for Time-integrated, Active Sampling of Contaminants in Fluids Demonstrated by Monitoring of Hexavalent Chromium in Groundwater

    PubMed Central

    Roll, Isaac B.; Driver, Erin M.; Halden, Rolf U.

    2016-01-01

    Annual U.S. expenditures of $2B for site characterization invite the development of new technologies to improve data quality while reducing costs and minimizing uncertainty in groundwater monitoring. This work presents a new instrument for time-integrated sampling of environmental fluids using in situ solid-phase extraction (SPE). The In Situ Sampler (IS2) is an automated submersible device capable of extracting dissolved contaminants from water (100s – 1000s mL) over extended periods (hours to weeks), retaining the analytes, and rejecting the processed fluid. A field demonstration of the IS2 revealed 28-day average concentration of hexavalent chromium in a shallow aquifer affected by tidal stresses via sampling of groundwater as both liquid and sorbed composite samples, each obtained in triplicate. In situ SPE exhibited 75 ± 6% recovery and an 8-fold improvement in reporting limit. Relative to use of conventional methods (100%), beneficial characteristics of the device and method included minimal hazardous material generation (2%), transportation cost (10%), and associated carbon footprint (2%). The IS2 is compatible with commercial SPE resins and standard extraction methods, and has been certified for more general use (i.e., inorganics and organics) by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense. PMID:26971208

  19. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    NASA Astrophysics Data System (ADS)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  20. The toxicity of Rio Blanco Tract C-a groundwater samples before and after the pumpdown of retort 1

    SciTech Connect

    Hill, S.L.

    1986-09-01

    In 1984, the Rio Blanco Oil Shale Company received permission from the US Bureau of Land Management/Oil Shale Projects Office to proceed with retort abandonment activities at its Tract C-a modified in situ retort site. One of the first abandonment activities undertaken was to flood the retort with groundwater to dissolve soluble contaminants associated with the retorting operation. Saline water was then pumped from the retort into evaporation ponds during two pumpdown operations in May of 1985 and June of 1986. The principal objective of the pumpdown operations was to remove contaminated groundwater from the retort area and to prevent the migration of contaminants beyond the retort. A toxicological evaluation of groundwaters collected from within the retort and outside the retort is currently in progress. Acute and chronic toxicity tests have been performed using the freshwater invertebrate Ceriodaphnia affinis/dubia with groundwater samples collected before and after the first pumpdown of the retort. The objectives of these tests have been to evaluate the success of the pumpdown operation, to assess the effect of the pumping operations on groundwater quality both within and outside the retort, and to evaluate the toxicity of groundwater within the retort relative to local groundwater that has not been affected by the retorting operation. This report presents the results of toxicity tests performed before and after the first pumpdown operation. Additional toxicity tests are planned for samples collected after the second pumpdown operation. 15 refs., 2 figs., 9 tabs.

  1. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  2. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  3. Purification and Detection of 39Ar in Groundwater Samples via Low-Level Counting

    NASA Astrophysics Data System (ADS)

    Mace, E. K.; Aalseth, C.; Brandenberger, J. M.; Humble, P.; Panisko, M.; Seifert, A.; Williams, R. M.

    2015-12-01

    Argon-39 can be used as a radiotracer to age-date groundwater aquifers to study recharge rates and to better understand the mean residence time, or age distributions, of groundwater. Argon-39 (with a half-life of 269 years) is created in the atmosphere by cosmic rays interacting with argon in the air (primarily 40Ar). The use of 39Ar as a radiotracer fills a gap in the age dating range which is currently covered by 3H/3He or 85Kr (< 50 years) and 14C (>1000 years); 39Ar fills the intermediate time scale range from 50-1000 years where the previously established radiotracers are not adequate. We will introduce the process for purifying and detecting 39Ar in ground water using ultra-low-background proportional counters (ULBPCs) at the shallow underground laboratory at Pacific Northwest National Laboratory. Argon-39 is detected through direct beta counting using ULBPCs loaded with a mixture of geologic argon (extracted from a carbon dioxide well with no measureable 39Ar activity) and methane, which enhances the sensitivity for 39Ar measurements. The ULBPCs have been shown to have a background count rate of 148 counts per day (cpd) in the energy range 3-400 keV when filled with 10 atm of P-10 counting gas (90% geologic Ar, 10% CH4). Initial demonstration samples were collected from groundwater aquifers in Fresno, California supported by the United States Geological Survey (USGS). A discussion of the sampling technique to degas the water from these wells and to then purify it for counting will be presented. In order to quantify the 39Ar contribution in the groundwater samples, the ULBPCs were characterized to determine two components: 1) the detector efficiency to modern levels of 39Ar, and 2) the remaining detector background (using geologic sourced argon which is free from 39Ar - no measureable 39Ar activity). These characterization results will be presented along with a discussion of the quantification of the 39Ar age of the demonstration measurements.

  4. Development of automated preparation system for isotopocule analysis of N2O in various air samples

    NASA Astrophysics Data System (ADS)

    Toyoda, Sakae; Yoshida, Naohiro

    2016-05-01

    Nitrous oxide (N2O), an increasingly abundant greenhouse gas in the atmosphere, is the most important stratospheric ozone-depleting gas of this century. Natural abundance ratios of isotopocules of N2O, NNO molecules substituted with stable isotopes of nitrogen and oxygen, are a promising index of various sources or production pathways of N2O and of its sink or decomposition pathways. Several automated methods have been reported to improve the analytical precision for the isotopocule ratio of atmospheric N2O and to reduce the labor necessary for complicated sample preparation procedures related to mass spectrometric analysis. However, no method accommodates flask samples with limited volume or pressure. Here we present an automated preconcentration system which offers flexibility with respect to the available gas volume, pressure, and N2O concentration. The shortest processing time for a single analysis of typical atmospheric sample is 40 min. Precision values of isotopocule ratio analysis are < 0.1 ‰ for δ15Nbulk (average abundances of 14N15N16O and 15N14N16O relative to 14N14N16O), < 0.2 ‰ for δ18O (relative abundance of 14N14N18O), and < 0.5 ‰ for site preference (SP; difference between relative abundance of 14N15N16O and 15N14N16O). This precision is comparable to that of other automated systems, but better than that of our previously reported manual measurement system.

  5. Sampling and analysis plan for the characterization of groundwater quality in two monitoring wells near Pavillion, Wyoming

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming to study groundwater quality. The U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, designed a plan to collect groundwater data from these monitoring wells. This sampling and analysis plan describes the sampling equipment that will be used, well purging strategy, purge water disposal, sample collection and processing, field and laboratory sample analysis, equipment decontamination, and quality-assurance and quality-control procedures.

  6. An instrument for automated purification of nucleic acids from contaminated forensic samples.

    PubMed

    Broemeling, David J; Pel, Joel; Gunn, Dylan C; Mai, Laura; Thompson, Jason D; Poon, Hiron; Marziali, Andre

    2008-02-01

    Forensic crime scene sample analysis, by its nature, often deals with samples in which there are low amounts of nucleic acids, on substrates that often lead to inhibition of subsequent enzymatic reactions such as PCR amplification for STR profiling. Common substrates include denim from blue jeans, which yields indigo dye as a PCR inhibitor, and soil, which yields humic substances as inhibitors. These inhibitors frequently co-extract with nucleic acids in standard column or bead-based preps, leading to frequent failure of STR profiling. We present a novel instrument for DNA purification of forensic samples that is capable of highly effective concentration of nucleic acids from soil particulates, fabric, and other complex samples including solid components. The novel concentration process, known as SCODA, is inherently selective for long charged polymers such as DNA, and therefore is able to effectively reject known contaminants. We present an automated sample preparation instrument based on this process, and preliminary results based on mock forensic samples.

  7. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    SciTech Connect

    Linard, Joshua; Campbell, Sam

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  8. Preliminary results from exploratory sampling of wells for the California oil, gas, and groundwater program, 2014–15

    USGS Publications Warehouse

    McMahon, Peter B.; Kulongoski, Justin T.; Wright, Michael T.; Land, Michael T.; Landon, Matthew K.; Cozzarelli, Isabelle M.; Vengosh, Avner; Aiken, George R.

    2016-08-03

    This report evaluates the utility of the chemical, isotopic, and groundwater-age tracers for assessing sources of salinity, methane, and petroleum hydrocarbons in groundwater overlying or near several California oil fields. Tracers of dissolved organic carbon inoil-field-formation water are also discussed. Tracer data for samples collected from 51 water wells and 4 oil wells are examined.

  9. A Tube Seepage Meter for In Situ Measurement of Seepage Rate and Groundwater Sampling.

    PubMed

    Solder, John E; Gilmore, Troy E; Genereux, David P; Solomon, D Kip

    2016-07-01

    We designed and evaluated a "tube seepage meter" for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.

  10. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    PubMed

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  11. RoboDiff: combining a sample changer and goniometer for highly automated macromolecular crystallography experiments

    PubMed Central

    Nurizzo, Didier; Bowler, Matthew W.; Caserotto, Hugo; Dobias, Fabien; Giraud, Thierry; Surr, John; Guichard, Nicolas; Papp, Gergely; Guijarro, Matias; Mueller-Dieckmann, Christoph; Flot, David; McSweeney, Sean; Cipriani, Florent; Theveneau, Pascal; Leonard, Gordon A.

    2016-01-01

    Automation of the mounting of cryocooled samples is now a feature of the majority of beamlines dedicated to macromolecular crystallography (MX). Robotic sample changers have been developed over many years, with the latest designs increasing capacity, reliability and speed. Here, the development of a new sample changer deployed at the ESRF beamline MASSIF-1 (ID30A-1), based on an industrial six-axis robot, is described. The device, named RoboDiff, includes a high-capacity dewar, acts as both a sample changer and a high-accuracy goniometer, and has been designed for completely unattended sample mounting and diffraction data collection. This aim has been achieved using a high level of diagnostics at all steps of the process from mounting and characterization to data collection. The RoboDiff has been in service on the fully automated endstation MASSIF-1 at the ESRF since September 2014 and, at the time of writing, has processed more than 20 000 samples completely automatically. PMID:27487827

  12. Electrochemical pesticide detection with AutoDip--a portable platform for automation of crude sample analyses.

    PubMed

    Drechsel, Lisa; Schulz, Martin; von Stetten, Felix; Moldovan, Carmen; Zengerle, Roland; Paust, Nils

    2015-02-07

    Lab-on-a-chip devices hold promise for automation of complex workflows from sample to answer with minimal consumption of reagents in portable devices. However, complex, inhomogeneous samples as they occur in environmental or food analysis may block microchannels and thus often cause malfunction of the system. Here we present the novel AutoDip platform which is based on the movement of a solid phase through the reagents and sample instead of transporting a sequence of reagents through a fixed solid phase. A ball-pen mechanism operated by an external actuator automates unit operations such as incubation and washing by consecutively dipping the solid phase into the corresponding liquids. The platform is applied to electrochemical detection of organophosphorus pesticides in real food samples using an acetylcholinesterase (AChE) biosensor. Minimal sample preparation and an integrated reagent pre-storage module hold promise for easy handling of the assay. Detection of the pesticide chlorpyrifos-oxon (CPO) spiked into apple samples at concentrations of 10(-7) M has been demonstrated. This concentration is below the maximum residue level for chlorpyrifos in apples defined by the European Commission.

  13. Effective detection of CO2 leakage: a comparison of groundwater sampling and pressure monitoring

    DOE PAGES

    Keating, Elizabeth; Dai, Zhenxue; Dempsey, David; ...

    2014-12-31

    Shallow aquifer monitoring is likely to be a required aspect to any geologic CO2 sequestration operation. Collecting groundwater samples and analyzing for geochemical parameters such as pH, alkalinity, total dissolved carbon, and trace metals has been suggested by a number of authors as a possible strategy to detect CO2 leakage. The effectiveness of this approach, however, will depend on the hydrodynamics of the leak-induced CO2 plume and the spatial distribution of the monitoring wells relative to the origin of the leak. To our knowledge, the expected effectiveness of groundwater sampling to detect CO2 leakage has not yet been quantitatively assessed.more » In this study we query hundreds of simulations developed for the National Risk Assessment Project (US DOE) to estimate risks to drinking water resources associated with CO2 leaks. The ensemble of simulations represent transient, 3-D multi-phase reactive transport of CO2 and brine leaked from a sequestration reservoir, via a leaky wellbore, into an unconfined aquifer. Key characteristics of the aquifer, including thickness, mean permeability, background hydraulic gradient, and geostatistical measures of aquifer heterogeneity, were all considered uncertain parameters. Complex temporally-varying CO2 and brine leak rate scenarios were simulated using a heuristic scheme with ten uncertain parameters. The simulations collectively predict the spatial and temporal evolution of CO2 and brine plumes over 200 years in a shallow aquifer under a wide range of leakage scenarios and aquifer characteristics. Using spatial data from an existing network of shallow drinking water wells in the Edwards Aquifer, TX, as one illustrative example, we calculated the likelihood of leakage detection by groundwater sampling. In this monitoring example, there are 128 wells available for sampling, with a density of about 2.6 wells per square kilometer. If the location of the leak is unknown a priori, a reasonable assumption in many cases

  14. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range.

    PubMed

    van Duijn, Esther; Sandman, Hugo; Grossouw, Dimitri; Mocking, Johannes A J; Coulier, Leon; Vaes, Wouter H J

    2014-08-05

    The increasing role of accelerator mass spectrometry (AMS) in biomedical research necessitates modernization of the traditional sample handling process. AMS was originally developed and used for carbon dating, therefore focusing on a very high precision but with a comparably low sample throughput. Here, we describe the combination of automated sample combustion with an elemental analyzer (EA) online coupled to an AMS via a dedicated interface. This setup allows direct radiocarbon measurements for over 70 samples daily by AMS. No sample processing is required apart from the pipetting of the sample into a tin foil cup, which is placed in the carousel of the EA. In our system, up to 200 AMS analyses are performed automatically without the need for manual interventions. We present results on the direct total (14)C count measurements in <2 μL human plasma samples. The method shows linearity over a range of 0.65-821 mBq/mL, with a lower limit of quantification of 0.65 mBq/mL (corresponding to 0.67 amol for acetaminophen). At these extremely low levels of activity, it becomes important to quantify plasma specific carbon percentages. This carbon percentage is automatically generated upon combustion of a sample on the EA. Apparent advantages of the present approach include complete omission of sample preparation (reduced hands-on time) and fully automated sample analysis. These improvements clearly stimulate the standard incorporation of microtracer research in the drug development process. In combination with the particularly low sample volumes required and extreme sensitivity, AMS strongly improves its position as a bioanalysis method.

  15. Dynamic groundwater monitoring networks: a manageable method for reviewing sampling frequency.

    PubMed

    Moreau-Fournier, Magali F; Daughney, Christopher J

    2012-12-01

    Optimization of a water quality network through a change in sampling frequency is the only way to increase cost-efficiency without any reduction in the robustness of the data. Existing techniques define optimal sampling frequency based on analysis of historical data from the monitoring network under investigation. Their application to a large network comprised of many sites and many monitored parameters is both technical and challenging. This paper presents a simple non-parametric method for reviewing sampling frequency that is consistent with highly censored environmental data and oriented towards reduction of sampling frequency as a cost-saving measure. Based on simple descriptive statistics, the method is applicable to large networks with long time series and many monitored parameters. The method also provides metrics for interpretation of newly collected data, which enables identification of sites for which a future change in sampling frequency may be necessary, ensuring that the monitoring network is both current and adaptive. Application of this method to the New Zealand National Groundwater Monitoring Programme indicates that reduction of sampling frequency at any site would result in a significant loss of information. This paper also discusses the potential for reducing analysis frequency as an alternative to reduction of sampling frequency.

  16. Automated sample preparation and LC-MS for high-throughput ADME quantification.

    PubMed

    O'Connor, Desmond

    2002-01-01

    Bioanalytical groups in the pharmaceutical industry provide quantitative data to support all stages of drug discovery. The increased use of 96-well plates and robotic liquid handling systems, the availability of robust triple quadruple mass spectrometers, and developments in chromatographic and samples preparation techniques, have all increased the rate at which this data can be generated. This review describes currently used methods and emerging technologies for automation of high-throughput quantitative bioanalysis. The focus is on recent applications of sample preparation and chromatography techniques compatible with detection by triple quadruple mass spectrometers.

  17. Development of an automated data processing method for sample to sample comparison of seized methamphetamines.

    PubMed

    Choe, Sanggil; Lee, Jaesin; Choi, Hyeyoung; Park, Yujin; Lee, Heesang; Pyo, Jaesung; Jo, Jiyeong; Park, Yonghoon; Choi, Hwakyung; Kim, Suncheun

    2012-11-30

    The information about the sources of supply, trafficking routes, distribution patterns and conspiracy links can be obtained from methamphetamine profiling. The precursor and synthetic method for the clandestine manufacture can be estimated from the analysis of minor impurities contained in methamphetamine. Also, the similarity between samples can be evaluated using the peaks that appear in chromatograms. In South Korea, methamphetamine was the most popular drug but the total seized amount of methamphetamine whole through the country was very small. Therefore, it would be more important to find the links between samples than the other uses of methamphetamine profiling. Many Asian countries including Japan and South Korea have been using the method developed by National Research Institute of Police Science of Japan. The method used gas chromatography-flame ionization detector (GC-FID), DB-5 column and four internal standards. It was developed to increase the amount of impurities and minimize the amount of methamphetamine. After GC-FID analysis, the raw data have to be processed. The data processing steps are very complex and require a lot of time and effort. In this study, Microsoft Visual Basic Application (VBA) modules were developed to handle these data processing steps. This module collected the results from the data into an Excel file and then corrected the retention time shift and response deviation generated from the sample preparation and instruments analysis. The developed modules were tested for their performance using 10 samples from 5 different cases. The processed results were analyzed with Pearson correlation coefficient for similarity assessment and the correlation coefficient of the two samples from the same case was more than 0.99. When the modules were applied to 131 seized methamphetamine samples, four samples from two different cases were found to have the common origin and the chromatograms of the four samples were appeared visually identical

  18. Automated sample preparation facilitated by PhyNexus MEA purification system for oligosaccharide mapping of glycoproteins.

    PubMed

    Prater, Bradley D; Anumula, Kalyan R; Hutchins, Jeff T

    2007-10-15

    A reproducible high-throughput sample cleanup method for fluorescent oligosaccharide mapping of glycoproteins is described. Oligosaccharides are released from glycoproteins using PNGase F and labeled with 2-aminobenzoic acid (anthranilic acid, AA). A PhyNexus MEA system was adapted for automated isolation of the fluorescently labeled oligosaccharides from the reaction mixture prior to mapping by HPLC. The oligosaccharide purification uses a normal-phase polyamide resin (DPA-6S) in custom-made pipette tips. The resin volume, wash, and elution steps involved were optimized to obtain high recovery of oligosaccharides with the least amount of contaminating free fluorescent dye in the shortest amount of time. The automated protocol for sample cleanup eliminated all manual manipulations with a recycle time of 23 min. We have reduced the amount of excess AA by 150-fold, allowing quantitative oligosaccharide mapping from as little as 500 ng digested recombinant immunoglobulin G (rIgG). This low sample requirement allows early selection of a cell line with desired characteristics (e.g., oligosaccharide profile and high specific productivity) for the production of glycoprotein drugs. In addition, the use of Tecan or another robotic platform in conjunction with this method should allow the cleanup of 96 samples in 23 min, a significant decrease in the amount of time currently required to process such a large number of samples.

  19. Automated liver sampling using a gradient dual-echo Dixon-based technique.

    PubMed

    Bashir, Mustafa R; Dale, Brian M; Merkle, Elmar M; Boll, Daniel T

    2012-05-01

    Magnetic resonance spectroscopy of the liver requires input from a physicist or physician at the time of acquisition to insure proper voxel selection, while in multiecho chemical shift imaging, numerous regions of interest must be manually selected in order to ensure analysis of a representative portion of the liver parenchyma. A fully automated technique could improve workflow by selecting representative portions of the liver prior to human analysis. Complete volumes from three-dimensional gradient dual-echo acquisitions with two-point Dixon reconstruction acquired at 1.5 and 3 T were analyzed in 100 subjects, using an automated liver sampling algorithm, based on ratio pairs calculated from signal intensity image data as fat-only/water-only and log(in-phase/opposed-phase) on a voxel-by-voxel basis. Using different gridding variations of the algorithm, the average correct liver volume samples ranged from 527 to 733 mL. The average percentage of sample located within the liver ranged from 95.4 to 97.1%, whereas the average incorrect volume selected was 16.5-35.4 mL (2.9-4.6%). Average run time was 19.7-79.0 s. The algorithm consistently selected large samples of the hepatic parenchyma with small amounts of erroneous extrahepatic sampling, and run times were feasible for execution on an MRI system console during exam acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  20. Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip

    NASA Technical Reports Server (NTRS)

    Mora, Maria F.; Stockton, Amanda M.; Willis, Peter A.

    2013-01-01

    There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given

  1. The quantification of hydrogen and methane in contaminated groundwater: validation of robust procedures for sampling and quantification.

    PubMed

    Dorgerloh, Ute; Becker, Roland; Theissen, Hubert; Nehls, Irene

    2010-10-06

    A number of currently recommended sampling techniques for the determination of hydrogen in contaminated groundwater were compared regarding the practical proficiency in field campaigns. Key characteristics of appropriate sampling procedures are reproducibility of results, robustness against varying field conditions such as hydrostatic pressure, aquifer flow, and biological activity. Laboratory set-ups were used to investigate the most promising techniques. Bubble stripping with gas sampling bulbs yielded reproducible recovery of hydrogen and methane which could be verified for groundwater sampled in two field campaigns. The methane content of the groundwater was confirmed by analysis of directly pumped samples thus supporting the trueness of the stripping results. Laboratory set-ups and field campaigns revealed that bubble stripping of hydrogen may be restricted to the type of used pump. Concentrations of dissolved hydrogen after bubble stripping with an electrically driven submersible pump were about one order of magnitude higher than those obtained from diffusion sampling. The gas chromatographic determination for hydrogen and methane requires manual injection of gas samples and detection by a pulsed discharge detector (PDD) and allows limits of quantification of 3 nM dissolved hydrogen and 1 µg L⁻¹ dissolved methane in groundwater. The combined standard uncertainty of the bubble stripping and GC/PDD quantification of hydrogen in field samples was 7% at 7.8 nM and 18% for 78 nM.

  2. Direct determination of selenium in serum by electrothermal atomic absorption spectrometry using automated ultrasonic slurry sampling

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Kang; Yen, Cheng-Chieh; Wei, Bai-Luh; Hu, Chao-Chin; Yu, Jya-Jyun; Chung, Chien; Kuo, Sheng-Chu

    1998-01-01

    Selenium concentration in body fluids is a good index to establish human selenium status. This work discusses the determination of selenium in serum by ETAAS using longitudinal Zeeman-effect background correction and combining the use of automated slurry sampling. The standard reference materials bovine serum (NIST, SRM 1598) and second-generation biological freeze-dried human serum are analyzed to verify the accuracy and precision of this technique. The direct method proposed in this study is used for the determination of selenium in human serum collected from healthy people of 19-25 years. The average accuracy values of certified reference serum samples and the recovery values of spiked samples indicate this method to be an efficient and rapid technique for determining selenium in biological samples.

  3. Device and method for automated separation of a sample of whole blood into aliquots

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.

    1989-01-01

    A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.

  4. Application of existing technology to meet increasing demands for automated sample handling.

    PubMed

    Chow, A T; Kegelman, J E; Kohli, C; McCabe, D D; Moore, J F

    1990-09-01

    As the clinical laboratory advances toward total automation, the marketplace is now demanding more-efficient sample-handling systems. These demands have arisen over a relatively short period of time, in part because of heightened concern over laboratory safety and the resulting manpower shortages. Adding sample-handling capabilities to existing instrumentation is often a challenge, because usually mechanical or system constraints are present that interfere. This challenge has been overcome in the DuPont Sample Management System (SMS), a second-generation general chemistry analyzer that incorporates the latest barcode and computer-interfacing technology. The development of the SMS system relies heavily on recent advances in technology, e.g., software modeling and computer-aided design. The SMS system includes a barcode scanner based on "charge-coupled device" technology, a random-access sample wheel, and new software that oversees the various functions.

  5. Rain and aerosol chemical composition obtained with newly developed automated sampling systems

    SciTech Connect

    Stevens, R.K.; Paur, R.J.; Baumgardner, R.E.; Kronmiller, K.; Ellenson, W.

    1986-04-01

    Rain and aerosol samples were collected concurrently for a number of rain events in the Research Triangle Park, NC recently with a newly developed automated rain sampler and an annular denuder system. The rain sampler collects sequential 0.3 mm aliquots of each rain event and simultaneously 1) measures and records the pH, conductivity and 2) stores the balance of the rain sample at sub-ambient conditions (NH/sub 3/ free conditions) for subsequent chemical analysis. Ambient concentrations of SO/sub 2/, HNO/sub 3/, HONO nitrates and sulfates are also collected concurrently over 12-hour intervals with an automated annular denuder method (ADM) recently developed by scientists at CNR and the USEPA. Data collected with the ADM will be correlated with the composition of the rain samples to examine the relationships between the rain chemistry and ambient pollutant concentrations. A previous study performed at the University of Virginia showed a high correlation (r/sup 2/ = 0.67) between the sulfate and acidity in the fine particles and the acidity and sulfate in the rain samples. This paper examines the relationship of HNO/sub 3/, HNO/sub 2/, and SO/sub 2/ in the ambient air to the sulfate and nitrate in the aliquots of rain collected.

  6. Automated Device for Asynchronous Extraction of RNA, DNA, or Protein Biomarkers from Surrogate Patient Samples.

    PubMed

    Bitting, Anna L; Bordelon, Hali; Baglia, Mark L; Davis, Keersten M; Creecy, Amy E; Short, Philip A; Albert, Laura E; Karhade, Aditya V; Wright, David W; Haselton, Frederick R; Adams, Nicholas M

    2016-12-01

    Many biomarker-based diagnostic methods are inhibited by nontarget molecules in patient samples, necessitating biomarker extraction before detection. We have developed a simple device that purifies RNA, DNA, or protein biomarkers from complex biological samples without robotics or fluid pumping. The device design is based on functionalized magnetic beads, which capture biomarkers and remove background biomolecules by magnetically transferring the beads through processing solutions arrayed within small-diameter tubing. The process was automated by wrapping the tubing around a disc-like cassette and rotating it past a magnet using a programmable motor. This device recovered biomarkers at ~80% of the operator-dependent extraction method published previously. The device was validated by extracting biomarkers from a panel of surrogate patient samples containing clinically relevant concentrations of (1) influenza A RNA in nasal swabs, (2) Escherichia coli DNA in urine, (3) Mycobacterium tuberculosis DNA in sputum, and (4) Plasmodium falciparum protein and DNA in blood. The device successfully extracted each biomarker type from samples representing low levels of clinically relevant infectivity (i.e., 7.3 copies/µL of influenza A RNA, 405 copies/µL of E. coli DNA, 0.22 copies/µL of TB DNA, 167 copies/µL of malaria parasite DNA, and 2.7 pM of malaria parasite protein). © 2015 Society for Laboratory Automation and Screening.

  7. Nutrient sampling slam: high resolution surface-water sampling in streams reveals patterns in groundwater chemistry and flow paths

    EPA Science Inventory

    The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...

  8. Nutrient sampling slam: high resolution surface-water sampling in streams reveals patterns in groundwater chemistry and flow paths

    EPA Science Inventory

    The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...

  9. Threshold for diagnosing hypertension by automated office blood pressure using random sample population data.

    PubMed

    Wohlfahrt, Peter; Cífková, Renata; Movsisyan, Narine; Kunzová, Šárka; Lešovský, Jiří; Homolka, Martin; Soška, Vladimír; Bauerová, Hana; Lopez-Jimenez, Francisco; Sochor, Ondřej

    2016-11-01

    Manual office blood pressure (BP) is still recommended for diagnosing hypertension. However, its predictive value is decreased by errors in measurement technique and the white-coat effect. The errors can be eliminated by automated office BP (AOBP) measurement taking multiple readings with the participant resting quietly alone. Therefore, use of AOBP in clinical practice requires a threshold value for hypertension diagnosis. The aim of the present study was to determine an AOBP threshold corresponding to the 140/90 mmHg manual office BP using data from a large random population sample. In 2145 participants (mean age 47.3 ± 11.3 years) randomly selected from a Brno population aged 25-64 years, BP was measured using manual mercury and automated office sphygmomanometers. Manual SBP (mean difference 6.39 ± 9.76 mmHg) and DBP (mean difference 2.50 ± 6.54 mmHg) were higher than the automated BP. According to polynomial regression, automated systole of 131.06 (95% confidence interval 130.43-131.70) and diastole of 85.43 (95% confidence interval 85.03-85.82) corresponded to the manual BP of 140/90 mmHg. Using this cut-off, the white-coat hypertension was present in 24% of participants with elevated manual BP, whereas 10% had masked hypertension and 11% masked uncontrolled hypertension. In individuals with masked uncontrolled hypertension, only AOBP was associated with the urinary albumin-creatinine ratio, whereas there was no association with manual BP. AOBP of 131/85 mmHg corresponds to the manual BP of 140/90 mmHg. This value may be used as a threshold for diagnosing hypertension using AOBP. However, outcome-driven studies are required to confirm this threshold.

  10. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Doughty, David C.; Hill, Steven C.

    2017-02-01

    Raman spectroscopy (RS) is useful in characterizing atmospheric aerosol. It is not commonly used in studying ambient particles partly because automated instrumentation for aerosol RS has not been available. Battelle (Columbus, Ohio, USA) has developed the Resource Effective Bioidentification System (REBS) for automated detection of airborne bioagents based on RS. We use a version of the REBS that measures Raman spectra of one set of particles while the next set of particles is collected from air, then moves the newly collected particles to the analysis region and repeats. Here we investigate the use of the REBS as the core of a general-purpose automated Aerosol Raman Spectrometer (ARS) for atmospheric applications. This REBS-based ARS can be operated as a line-scanning Raman imaging spectrometer. Spectra measured by this ARS for single particles made of polystyrene, black carbon, and several other materials are clearly distinguishable. Raman spectra from a 15 min ambient sample (approximately 35-50 particles, 158 spectra) were analyzed using a hierarchical clustering method to find that the cluster spectra are consistent with soot, inorganic aerosol, and other organic compounds. The ARS ran unattended, collecting atmospheric aerosol and measuring spectra for a 7 hr period at 15-min intervals. A total of 32,718 spectra were measured; 5892 exceeded a threshold and were clustered during this time. The number of particles exhibiting the D-G bands of amorphous carbon plotted vs time (at 15-min intervals) increases during the morning commute, then decreases. This data illustrates the potential of the ARS to measure thousands of time resolved aerosol Raman spectra in the ambient atmosphere over the course of several hours. The capability of this ARS for automated measurements of Raman spectra should lead to more extensive RS-based studies of atmospheric aerosols.

  11. Data Validation Package May 2015, Groundwater Sampling at the Shoal, Nevada, Site

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2016-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Shoal, Nevada, Site (Shoal) in May 2015. Groundwater samples were collected from wells MV-1, MV-2, MV-3, MV-4, MV-5, H-3, HC-1, HC-2d, HC-3, HC-4, HC-5, HC-6, HC-7, HC-8, and HS-1. Sampling was conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy­ office-legacy-management-sites). Monitoring wells MV-1, MV-2, MV-3, MV-4, MV-5, HC-2d, HC-4, HC-5, HC-7, HC-8, and HS-1 were purged prior to sampling using dedicated submersible pumps. At least one well casing volume was removed, and field parameters (temperature, pH, and specific conductance) were allowed to stabilize before samples were collected. Samples were collected from wells H-3, HC-1, HC-3, and HC-6 using a depth-specific bailer because these wells are not completed with dedicated submersible pumps. Samples were submitted under Requisition Index Number (RIN) 15057042 to ALS Laboratory Group in Fort Collins, Colorado, for the determination of bromide, gross alpha, gross beta, tritium, uranium isotopes, and total uranium (by mass); and under RIN 15057043 to the University of Arizona for the determination of carbon-14 and iodine-129. A duplicate sample from location MV-2 was included with RIN 15057042. The laboratory results from the 2015 sampling event are consistent with those of previous years with the exception of sample results from well HC-4. This well continues to be the only well with tritium concentrations above the laboratory’s minimum detectable concentration which is attributed to the wells proximity to the nuclear detonation. The tritium concentration (731 picocuries per liter [pCi/L]) is consistent with past results and is below the U.S. Environmental Protection Agency's (EPA) maximum contaminant level (MCL) of 20,000 p

  12. Real-time Automated Sampling of Electronic Medical Records Predicts Hospital Mortality

    PubMed Central

    Khurana, Hargobind S.; Groves, Robert H.; Simons, Michael P.; Martin, Mary; Stoffer, Brenda; Kou, Sherri; Gerkin, Richard; Reiman, Eric; Parthasarathy, Sairam

    2016-01-01

    Background Real-time automated continuous sampling of electronic medical record data may expeditiously identify patients at risk for death and enable prompt life-saving interventions. We hypothesized that a real-time electronic medical record-based alert could identify hospitalized patients at risk for mortality. Methods An automated alert was developed and implemented to continuously sample electronic medical record data and trigger when at least two of four systemic inflammatory response syndrome criteria plus at least one of 14 acute organ dysfunction parameters was detected. The SIRS/OD alert was applied real-time to 312,214 patients in 24 hospitals and analyzed in two phases: training and validation datasets. Results In the training phase, 29,317 (18.8%) triggered the alert and 5.2% of such patients died whereas only 0.2% without the alert died (unadjusted odds ratio 30.1; 95% confidence interval [95%CI] 26.1, 34.5; P<0.0001). In the validation phase, the sensitivity, specificity, area under curve (AUC), positive and negative likelihood ratios for predicting mortality were 0.86, 0.82, 0.84, 4.9, and 0.16, respectively. Multivariate Cox-proportional hazard regression model revealed greater hospital mortality when the alert was triggered (adjusted Hazards Ratio 4.0; 95%CI 3.3, 4.9; P<0.0001). Triggering the alert was associated with additional hospitalization days (+3.0 days) and ventilator days (+1.6 days; P<0.0001). Conclusion An automated alert system that continuously samples electronic medical record-data can be implemented, has excellent test characteristics, and can assist in the real-time identification of hospitalized patients at risk for death. PMID:27019043

  13. Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers.

    PubMed

    Yuan, Lijuan; Pang, Zhonghe; Huang, Tianming

    2012-12-01

    By employing chemical and isotopic tracers ((15)N and (18)O in NO(3)(-)), we investigated the main processes controlling nitrate distribution in the unsaturated zone and aquifer. Soil water was extracted from two soil cores drilled in a typical agricultural cropping area of the North China Plain (NCP), where groundwater was also sampled. The results indicate that evaporation and denitrification are the two major causes of the distribution of nitrate in soil water extracts in the unsaturated zone. Evaporation from unsaturated zone is evidenced by a positive correlation between chloride and nitrate, and denitrification by a strong linear relationship between [Formula: see text] and ln(NO(3)(-)/Cl). The latter is estimated to account for up to 50% of the nitrate loss from soil drainage. In the saturated zone, nitrate is reduced at varying extents (100 mg/L and 10 mg/L at two sites, respectively), largely by dilution of the aquifer water.

  14. Automated sample exchange and tracking system for neutron research at cryogenic temperatures.

    PubMed

    Rix, J E; Weber, J K R; Santodonato, L J; Hill, B; Walker, L M; McPherson, R; Wenzel, J; Hammons, S E; Hodges, J; Rennich, M; Volin, K J

    2007-01-01

    An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10 mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of approximately 25 K, after several minutes, it was moved onto a "landing pad" at approximately 10 K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2 min. The time to cool the sample from ambient temperature to approximately 10 K was approximately 7 min including precooling time. The cooling time increases to approximately 12 min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to approximately 350 K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to approximately 10 K after it has been heated to approximately 240 K was approximately 20 min.

  15. Mechanical Alteration And Contamination Issues In Automated Subsurface Sample Acquisition And Handling

    NASA Astrophysics Data System (ADS)

    Glass, B. J.; Cannon, H.; Bonaccorsi, R.; Zacny, K.

    2006-12-01

    The Drilling Automation for Mars Exploration (DAME) project's purpose is to develop and field-test drilling automation and robotics technologies for projected use in missions in the 2011-15 period. DAME includes control of the drilling hardware, and state estimation of both the hardware and the lithography being drilled and the state of the hole. A sister drill was constructed for the Mars Analog Río Tinto Experiment (MARTE) project and demonstrated automated core handling and string changeout in 2005 drilling tests at Rio Tinto, Spain. DAME focused instead on the problem of drill control while actively drilling while not getting stuck. Together, the DAME and MARTE projects demonstrate a fully automated robotic drilling capability, including hands-off drilling, adjustment to different strata and downhole conditions, recovery from drilling faults (binding, choking, etc.), drill string changeouts, core acquisition and removal, and sample handling and conveyance to in-situ instruments. The 2006 top-level goal of DAME drilling in-situ tests was to verify and demonstrate a capability for hands-off automated drilling, at an Arctic Mars-analog site. There were three sets of 2006 test goals, all of which were exceeded during the July 2006 field season. The first was to demonstrate the recognition, while drilling, of at least three of the six known major fault modes for the DAME planetary-prototype drill, and to employ the correct recovery or safing procedure in response. The second set of 2006 goals was to operate for three or more hours autonomously, hands-off. And the third 2006 goal was to exceed 3m depth into the frozen breccia and permafrost with the DAME drill (it had not gone further than 2.2m previously). Five of six faults were detected and corrected, there were 43 hours of hands-off drilling (including a 4 hour sequence with no human presence nearby), and 3.2m was the total depth. And ground truth drilling used small commercial drilling equipment in parallel in

  16. Automated cell counts on CSF samples: A multicenter performance evaluation of the GloCyte system.

    PubMed

    Hod, E A; Brugnara, C; Pilichowska, M; Sandhaus, L M; Luu, H S; Forest, S K; Netterwald, J C; Reynafarje, G M; Kratz, A

    2017-09-07

    Automated cell counters have replaced manual enumeration of cells in blood and most body fluids. However, due to the unreliability of automated methods at very low cell counts, most laboratories continue to perform labor-intensive manual counts on many or all cerebrospinal fluid (CSF) samples. This multicenter clinical trial investigated if the GloCyte System (Advanced Instruments, Norwood, MA), a recently FDA-approved automated cell counter, which concentrates and enumerates red blood cells (RBCs) and total nucleated cells (TNCs), is sufficiently accurate and precise at very low cell counts to replace all manual CSF counts. The GloCyte System concentrates CSF and stains RBCs with fluorochrome-labeled antibodies and TNCs with nucleic acid dyes. RBCs and TNCs are then counted by digital image analysis. Residual adult and pediatric CSF samples obtained for clinical analysis at five different medical centers were used for the study. Cell counts were performed by the manual hemocytometer method and with the GloCyte System following the same protocol at all sites. The limits of the blank, detection, and quantitation, as well as precision and accuracy of the GloCyte, were determined. The GloCyte detected as few as 1 TNC/μL and 1 RBC/μL, and reliably counted as low as 3 TNCs/μL and 2 RBCs/μL. The total coefficient of variation was less than 20%. Comparison with cell counts obtained with a hemocytometer showed good correlation (>97%) between the GloCyte and the hemocytometer, including at very low cell counts. The GloCyte instrument is a precise, accurate, and stable system to obtain red cell and nucleated cell counts in CSF samples. It allows for the automated enumeration of even very low cell numbers, which is crucial for CSF analysis. These results suggest that GloCyte is an acceptable alternative to the manual method for all CSF samples, including those with normal cell counts. © 2017 John Wiley & Sons Ltd.

  17. Improved method for the storage of groundwater samples containing volatile organic analytes

    PubMed

    Kovacs; Kampbell

    1999-04-01

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear aromatic, and two chloroethenes. Both laboratory prepared test mix solutions and petroleum contaminated groundwater from three field sites were tested. A rapid loss of n-alkane and isoalkane concentrations (>10%) was observed within 24 h when stored at room temperature. Aliphatic losses were also observed (>10%) over a 21-day holding period when samples were held at 4 degrees C. Loss of the less sorptive analytes was demonstrated by exposing analyte solutions to greater Teflon surface areas. The demonstrated sorption of aliphatics from water samples by Teflon-lined septa indicates that the accuracy of volatile petroleum hydrocarbon determinations may be reduced by the traditional storage method. An alternative storage protocol is reported combining a lead foil septum surface and 1% (w/w) tribasic sodium phosphate dodecahydrate (Na3PO4. 12H2O) preservative. This method prevented loss of the test analytes, including alkanes and isoalkanes for at least 21 days at room temperature.

  18. Ground-water quality in east-central New Jersey and a plan for sampling networks

    SciTech Connect

    Harriman, D.A.; Sargent, B.P.

    1985-01-01

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Iron (Fe) and manganese (Mn) concentrations exceed US EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. 76 refs., 36 figs., 12 tabs.

  19. SAMPL4 & DOCK3.7: Lessons for automated docking procedures

    PubMed Central

    Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.

    2014-01-01

    The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: 1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, 2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, 3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed. PMID:24515818

  20. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    PubMed

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.

  1. Accelerating in vitro studies on circadian clock systems using an automated sampling device

    PubMed Central

    Furuike, Yoshihiko; Abe, Jun; Mukaiyama, Atsushi; Akiyama, Shuji

    2016-01-01

    KaiC, a core protein of the cyanobacterial circadian clock, is rhythmically autophosphorylated and autodephosphorylated with a period of approximately 24 h in the presence of two other Kai proteins, KaiA and KaiB. In vitro experiments to investigate the KaiC phosphorylation cycle consume considerable time and effort. To automate the fractionation, quantification, and evaluation steps, we developed a suite consisting of an automated sampling device equipped with an 8-channel temperature controller and accompanying analysis software. Eight sample tables can be controlled independently at different temperatures within a fluctuation of ±0.01°C, enabling investigation of the temperature dependency of clock activities simultaneously in a single experiment. The suite includes an independent software that helps users intuitively conduct a densitometric analysis of gel images in a short time with improved reliability. Multiple lanes on a gel can be detected quasi-automatically through an auto-detection procedure implemented in the software, with or without correction for lane ‘smiling.’ To demonstrate the performance of the suite, robustness of the period against temperature variations was evaluated using 32 datasets of the KaiC phosphorylation cycle. By using the software, the time required for the analysis was reduced by approximately 65% relative to the conventional method, with reasonable reproducibility and quality. The suite is potentially applicable to other clock or clock-related systems in higher organisms, relieving users from having to repeat multiple manual sampling and analytical steps. PMID:27924279

  2. Design of a light-oil piezomanometer for measurement of hydraulic head differences and collection of groundwater samples

    NASA Astrophysics Data System (ADS)

    Kennedy, Casey D.; Genereux, David P.; Corbett, D. Reide; Mitasova, Helena

    2007-09-01

    This paper describes a device ("piezomanometer") that combines three components (an oil-water manometer, a pushable screened PVC probe, and a system for groundwater sample collection) into a single inexpensive ($130), easily built, reliable tool for rapid collection of shallow groundwater from a streambed or lake bed and accurate measurement of even very small head differences between this groundwater and overlying surface water. The piezomanometer has been tested with excellent results both in the lab and in a stream shallow enough for wading; in principle, it could be adapted for use in deeper water where work is done from a dock, boat, or other platform. The problem of gas bubbles collecting in the groundwater line (a common drawback of field manometers) was nearly eliminated by use of a three-way valve at a local elevation maximum in the groundwater line (gas bubbles in the groundwater line can be purged through this valve). Field application is illustrated here with data from a 2-day study using four piezomanometers in a North Carolina stream.

  3. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  4. Evaluation of an automated protocol for efficient and reliable DNA extraction of dietary samples.

    PubMed

    Wallinger, Corinna; Staudacher, Karin; Sint, Daniela; Thalinger, Bettina; Oehm, Johannes; Juen, Anita; Traugott, Michael

    2017-08-01

    Molecular techniques have become an important tool to empirically assess feeding interactions. The increased usage of next-generation sequencing approaches has stressed the need of fast DNA extraction that does not compromise DNA quality. Dietary samples here pose a particular challenge, as these demand high-quality DNA extraction procedures for obtaining the minute quantities of short-fragmented food DNA. Automatic high-throughput procedures significantly decrease time and costs and allow for standardization of extracting total DNA. However, these approaches have not yet been evaluated for dietary samples. We tested the efficiency of an automatic DNA extraction platform and a traditional CTAB protocol, employing a variety of dietary samples including invertebrate whole-body extracts as well as invertebrate and vertebrate gut content samples and feces. Extraction efficacy was quantified using the proportions of successful PCR amplifications of both total and prey DNA, and cost was estimated in terms of time and material expense. For extraction of total DNA, the automated platform performed better for both invertebrate and vertebrate samples. This was also true for prey detection in vertebrate samples. For the dietary analysis in invertebrates, there is still room for improvement when using the high-throughput system for optimal DNA yields. Overall, the automated DNA extraction system turned out as a promising alternative to labor-intensive, low-throughput manual extraction methods such as CTAB. It is opening up the opportunity for an extensive use of this cost-efficient and innovative methodology at low contamination risk also in trophic ecology.

  5. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    SciTech Connect

    Tyrrell, Evan; Denny, Angelita

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  6. Microbiological analysis of multi-level borehole samples from a contaminated groundwater system

    NASA Astrophysics Data System (ADS)

    Pickup, R. W.; Rhodes, G.; Alamillo, M. L.; Mallinson, H. E. H.; Thornton, S. F.; Lerner, D. N.

    2001-12-01

    A range of bacteriological, geochemical process-related and molecular techniques have been used to assess the microbial biodegradative potential in groundwater contaminated with phenol and other tar acids. The contaminant plume has travelled 500 m from the pollutant source over several decades. Samples were obtained from the plume using a multi-level sampler (MLS) positioned in two boreholes (boreholes 59 and 60) which vertically transected two areas of the plume. Activity of the microbial community, as represented by phenol degradation potential and ability to utilise a range of substrates, was found to be influenced by the plume. Phenol degradation potential appeared to be influenced more by the concentration of the contaminants than the total bacterial cell numbers. However, in the areas of highest phenol concentration, the depression of cell numbers clearly had an effect. The types of bacteria present were assessed by culture and DNA amplification by polymerase chain reaction (PCR). Bacterial groups or processes associated with major geochemical processes, such as methanogenesis, sulphate reduction and denitrification, that have the potential to drive contaminant degradation, were detected at various borehole levels. A comparative molecular analysis of the microbial community between samples obtained from the MLS revealed the microbial community was diverse. The examination of microbial activity complemented those results obtained through chemical analysis, and when combined with hydrological data, showed that MLS samples provided a realistic profile of plume effects and could be related to the potential for natural attenuation of the site.

  7. Performance verification of the Maxwell 16 Instrument and DNA IQ Reference Sample Kit for automated DNA extraction of known reference samples.

    PubMed

    Krnajski, Z; Geering, S; Steadman, S

    2007-12-01

    Advances in automation have been made for a number of processes conducted in the forensic DNA laboratory. However, because most robotic systems are designed for high-throughput laboratories batching large numbers of samples, smaller laboratories are left with a limited number of cost-effective options for employing automation. The Maxwell 16 Instrument and DNA IQ Reference Sample Kit marketed by Promega are designed for rapid, automated purification of DNA extracts from sample sets consisting of sixteen or fewer samples. Because the system is based on DNA capture by paramagnetic particles with maximum binding capacity, it is designed to generate extracts with yield consistency. The studies herein enabled evaluation of STR profile concordance, consistency of yield, and cross-contamination performance for the Maxwell 16 Instrument. Results indicate that the system performs suitably for streamlining the process of extracting known reference samples generally used for forensic DNA analysis and has many advantages in a small or moderate-sized laboratory environment.

  8. An automated method for 'clumped-isotope' measurements on small carbonate samples.

    PubMed

    Schmid, Thomas W; Bernasconi, Stefano M

    2010-07-30

    Clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of earth sciences. Clumped-isotope thermometry allows reconstructing the temperature of formation of carbonate minerals without knowing the isotopic composition of the water from which they were formed. This feature enables new approaches in paleothermometry. The currently published method is, however, limited by sample weight requirements of 10-15 mg and because measurements are performed manually. In this paper we present a new method using an automated sample preparation device coupled to an isotope ratio mass spectrometer. The method is based on the repeated analysis (n = 6-8) of 200 microg aliquots of sample material and completely automated measurements. In addition, we propose to use precisely calibrated carbonates spanning a wide range in Delta(47) instead of heated gases to correct for isotope effects caused by the source of the mass spectrometer, following the principle of equal treatment of the samples and standards. We present data for international standards (NBS 19 and LSVEC) and different carbonates formed at temperatures exceeding 600 degrees C to show that precisions in the range of 10 to 15 ppm (1 SE) can be reached for repeated analyses of a single sample. Finally, we discuss and validate the correction procedure based on high-temperature carbonates instead of heated gases.

  9. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  10. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies

    USGS Publications Warehouse

    Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.

    1991-01-01

    Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume

  11. Automated 3-D Printed Arrays to Evaluate Genotoxic Chemistry: E-Cigarettes and Water Samples.

    PubMed

    Kadimisetty, Karteek; Malla, Spundana; Rusling, James F

    2017-05-26

    A novel, automated, low cost, three-dimensional (3-D) printed microfluidic array was developed to detect DNA damage from metabolites of chemicals in environmental samples. The electrochemiluminescent (ECL) detection platform incorporates layer-by-layer (LbL) assembled films of microsomal enzymes, DNA and an ECL-emitting ruthenium metallopolymer in ∼10 nm deep microwells. Liquid samples are introduced into the array, metabolized by the human enzymes, products react with DNA if possible, and DNA damage is detected by ECL with a camera. Measurements of relative DNA damage by the array assess the genotoxic potential of the samples. The array analyzes three samples simultaneously in 5 min. Measurement of cigarette and e-cigarette smoke extracts and polluted water samples was used to establish proof of concept. Potentially genotoxic reactions from e-cigarette vapor similar to smoke from conventional cigarettes were demonstrated. Untreated wastewater showed a high genotoxic potential compared to negligible values for treated wastewater from a pollution control treatment plant. Reactivity of chemicals known to produce high rates of metabolite-related DNA damage were measured, and array results for environmental samples were expressed in terms of equivalent responses from these standards to assess severity of possible DNA damage. Genotoxic assessment of wastewater samples during processing also highlighted future on-site monitoring applications.

  12. Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification

    NASA Astrophysics Data System (ADS)

    Baudron, Paul; Alonso-Sarría, Francisco; García-Aróstegui, José Luís; Cánovas-García, Fulgencio; Martínez-Vicente, David; Moreno-Brotóns, Jesús

    2013-08-01

    Accurate identification of the origin of groundwater samples is not always possible in complex multilayered aquifers. This poses a major difficulty for a reliable interpretation of geochemical results. The problem is especially severe when the information on the tubewells design is hard to obtain. This paper shows a supervised classification method based on the Random Forest (RF) machine learning technique to identify the layer from where groundwater samples were extracted. The classification rules were based on the major ion composition of the samples. We applied this method to the Campo de Cartagena multi-layer aquifer system, in southeastern Spain. A large amount of hydrogeochemical data was available, but only a limited fraction of the sampled tubewells included a reliable determination of the borehole design and, consequently, of the aquifer layer being exploited. Added difficulty was the very similar compositions of water samples extracted from different aquifer layers. Moreover, not all groundwater samples included the same geochemical variables. Despite of the difficulty of such a background, the Random Forest classification reached accuracies over 90%. These results were much better than the Linear Discriminant Analysis (LDA) and Decision Trees (CART) supervised classification methods. From a total of 1549 samples, 805 proceeded from one unique identified aquifer, 409 proceeded from a possible blend of waters from several aquifers and 335 were of unknown origin. Only 468 of the 805 unique-aquifer samples included all the chemical variables needed to calibrate and validate the models. Finally, 107 of the groundwater samples of unknown origin could be classified. Most unclassified samples did not feature a complete dataset. The uncertainty on the identification of training samples was taken in account to enhance the model. Most of the samples that could not be identified had an incomplete dataset.

  13. Data from exploratory sampling of groundwater in selected oil and gas areas of coastal Los Angeles County and Kern and Kings Counties in southern San Joaquin Valley, 2014–15: California oil, gas, and groundwater project

    USGS Publications Warehouse

    Dillon, David B.; Davis, Tracy A.; Landon, Matthew K.; Land, Michael T.; Wright, Michael T.; Kulongoski, Justin T.

    2016-12-09

    Exploratory sampling of groundwater in coastal Los Angeles County and Kern and Kings Counties of the southern San Joaquin Valley was done by the U.S. Geological Survey from September 2014 through January 2015 as part of the California State Water Resources Control Board’s Water Quality in Areas of Oil and Gas Production Regional Groundwater Monitoring Program. The Regional Groundwater Monitoring Program was established in response to the California Senate Bill 4 of 2013 mandating that the California State Water Resources Control Board design and implement a groundwater-monitoring program to assess potential effects of well-stimulation treatments on groundwater resources in California. The U.S. Geological Survey is in cooperation with the California State Water Resources Control Board to collaboratively implement the Regional Groundwater Monitoring Program through the California Oil, Gas, and Groundwater Project.Many researchers have documented the utility of different suites of chemical tracers for evaluating the effects of oil and gas development on groundwater quality. The purpose of this exploratory sampling effort was to determine whether tracers reported in the literature could be used effectively in California. This reconnaissance effort was not designed to assess the effects of oil and gas on groundwater quality in the sampled areas. A suite of water-quality indicators and geochemical tracers were sampled at groundwater sites in selected areas that have extensive oil and gas development. Groundwater samples were collected from a total of 51 wells, including 37 monitoring wells at 17 multiple-well monitoring sites in coastal Los Angeles County and 5 monitoring wells and 9 water-production wells in southern San Joaquin Valley, primarily in Kern and Kings Counties.Groundwater samples were analyzed for field water-quality indicators; organic constituents, including volatile and semi-volatile organic compounds and dissolved organic carbon indicators; naturally

  14. Automated high-throughput in vitro screening of the acetylcholine esterase inhibiting potential of environmental samples, mixtures and single compounds.

    PubMed

    Froment, Jean; Thomas, Kevin V; Tollefsen, Knut Erik

    2016-08-01

    A high-throughput and automated assay for testing the presence of acetylcholine esterase (AChE) inhibiting compounds was developed, validated and applied to screen different types of environmental samples. Automation involved using the assay in 96-well plates and adapting it for the use with an automated workstation. Validation was performed by comparing the results of the automated assay with that of a previously validated and standardised assay for two known AChE inhibitors (paraoxon and dichlorvos). The results show that the assay provides similar concentration-response curves (CRCs) when run according to the manual and automated protocol. Automation of the assay resulted in a reduction in assay run time as well as in intra- and inter-assay variations. High-quality CRCs were obtained for both of the model AChE inhibitors (dichlorvos IC50=120µM and paraoxon IC50=0.56µM) when tested alone. The effect of co-exposure of an equipotent binary mixture of the two chemicals were consistent with predictions of additivity and best described by the concentration addition model for combined toxicity. Extracts of different environmental samples (landfill leachate, wastewater treatment plant effluent, and road tunnel construction run-off) were then screened for AChE inhibiting activity using the automated bioassay, with only landfill leachate shown to contain potential AChE inhibitors. Potential uses and limitations of the assay were discussed based on the present results.

  15. Evaluation of micropurging versus traditional groundwater sampling at the Department of Energy`s Kansas City Plant

    SciTech Connect

    Stites, M.E.; Baker, J.L.; Kearl, P.M.

    1995-08-01

    A field trial comparing the micropurge and the traditional purge and sample method of groundwater sampling was conducted at the U.S. Department of Energy (DOE), Kansas City Plant (KCP) in 1993 and 1994. Duplicate groundwater samples were collected using traditional and micropurge methods, analyzed for selected organic and inorganic constituents, and the results compared statistically. Evaluation of the data using the Wilcoxon Sign Rank test indicates that within a 95% confidence interval, there was no significant difference between the two methods for the site contaminants and the majority of naturally occurring analytes. These analytical results were supported by visual observations with the colloidal borescope, which demonstrated impacts on the flow system in the well when using traditional sampling methods. Under selected circumstances, the results suggest replacing traditional sampling with micropurging based on reliability, cost, and waste minimization.

  16. An instrument for automated purification of nucleic acids from contaminated forensic samples

    PubMed Central

    Broemeling, David J; Pel, Joel; Gunn, Dylan C; Mai, Laura; Thompson, Jason D; Poon, Hiron; Marziali, Andre

    2008-01-01

    Forensic crime scene sample analysis, by its nature, often deals with samples in which there are low amounts of nucleic acids, on substrates that often lead to inhibition of subsequent enzymatic reactions such as PCR amplification for STR profiling. Common substrates include denim from blue jeans, which yields indigo dye as a PCR inhibitor, and soil, which yields humic substances as inhibitors. These inhibitors frequently co-extract with nucleic acids in standard column or bead-based preps, leading to frequent failure of STR profiling. We present a novel instrument for DNA purification of forensic samples that is capable of highly effective concentration of nucleic acids from soil particulates, fabric, and other complex samples including solid components. The novel concentration process, known as SCODA, is inherently selective for long charged polymers such as DNA, and therefore is able to effectively reject known contaminants. We present an automated sample preparation instrument based on this process, and preliminary results based on mock forensic samples. PMID:18438455

  17. Data Validation Package December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016

    SciTech Connect

    Tsosie, Bernadette; Johnson, Dick

    2016-03-01

    The Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site does not require groundwater monitoring because groundwater in the uppermost aquifer is of limited use, and supplemental standards have been applied to the aquifer. However, at the request of the New Mexico Environment Department, the U.S. Department of Energy conducts annual monitoring at three locations: monitoring wells 0409, 0675, and 0678. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Monitoring Well 0409 was not sampled during this event because it was dry. Water levels were measured at each sampled well. One duplicate sample was collected from location 0675. Groundwater samples from the two sampled wells were analyzed for the constituents listed in Table 1. Time-concentration graphs for selected analytes are included in this report. At well 0675, the duplicate results for total dissolved solids and for most metals (magnesium, molybdenum, potassium, selenium, sodium, and uranium) were outside acceptance criteria, which may indicate non-homogeneous conditions at this location. November 2014 results for molybdenum and uranium at well 0675 also were outside acceptance criteria. The well condition will be evaluated prior to the next sampling event.

  18. Determination of vanadium in groundwater samples with an improved kinetic spectrophotometric method.

    PubMed

    Bağda, Esra

    2014-01-01

    A kinetic catalytic method has been developed for the determination of vanadium based on its catalytic effect on the redox reaction of azorubin S and bromate in the presence of a sulphuric and nitric acid mixture. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the reaction mixture at 515 nm. The fixed-time method was used for 0.5-5 min. Optimization of the reaction conditions regarding concentrations of acids, dye, oxidant, masking agent, etc. was investigated. The rate of decrease in absorbance of azorubin S was proportional to the concentration of vanadium in the range of 2.0-1.05 x 10(3) ng mL(-1). 3Sb/m was 0.0129 ng mL(-1) and 10 Sb/m was 0.0432 ng mL(-1). The catalytic method based on the oxidation reaction of azorubin S and bromate shows a good selectivity for vanadium over a wide variety of interference cations and anions. The proposed method was successfully applied to the determination of vanadium in groundwater samples and spiked-water samples.

  19. Evaluation of fluorogenic TSC agar for recovering Clostridium perfringens in groundwater samples.

    PubMed

    Araujo, M; Sueiro, R A; Gómez, M J; Garrido, M J

    2001-01-01

    Clostridium perfringens is widely recognised as a reliable water pollution indicator. Since several media can be employed for the membrane filtration enumeration of this microorganism, the main aim of this work was to investigate the ability of fluorocult-supplemented TSC-agar (Merck) for recovering Cl. perfringens from public springs used for direct human consumption. Cl. perfringens recovery was also performed on mCP agar (Cultimed) according to Directive 98/83 as well as on TSC-Agar (Merck), TSN-Agar (Merck) and SPS-Agar (BBL) media. Variance analysis of data obtained showed no statistically significant differences in the counts obtained among all media employed in this work. However, the Cl. perfringens recovery efficiencies with TSC and fluorogenic TSC agars were significantly greater (P = < 0.05) than the corresponding values of mCP and TSN media. On the other hand, the identification of typical and atypical colonies isolated from all media demonstrated that fluorogenic TSC agar was the most specific medium for Cl. perfringens recovery in groundwater samples (85.3% of typical colonies and 82.8% of atypical colonies confirmed). In summary, the membrane filtration technique with fluorogenic TSC agar showed the best performance characteristics of all the media tested as judged by their recovery efficiency and specificity in these water samples.

  20. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    PubMed

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  1. Ground-water quality in east-central New Jersey, and a plan for sampling networks

    USGS Publications Warehouse

    Harriman, D.A.; Sargent, B.P.

    1985-01-01

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Generally, water in the confined aquifers is of satisfactory quality for human consumption and most other uses. Iron (Fe) and manganese (Mn) concentrations exceed U.S. EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system (the water table aquifer) was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. The results of chi-square tests of constituent distributions based on analyses from 158 wells in the water table aquifer indicate that calcium is higher in industrial and commercial areas; and Mg, chloride, and nitrate-plus-nitrite is higher in residential areas. (Author 's abstract)

  2. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Van Berkel, Gary J

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  3. Microbiological monitoring and automated event sampling at karst springs using LEO-satellites.

    PubMed

    Stadler, H; Skritek, P; Sommer, R; Mach, R L; Zerobin, W; Farnleitner, A H

    2008-01-01

    Data communication via Low-Earth-Orbit (LEO) Satellites between portable hydrometeorological measuring stations is the backbone of our system. This networking allows automated event sampling with short time increments also for E. coli field analysis. All activities of the course of the event-sampling can be observed on an internet platform based on a Linux-Server. Conventionally taken samples compared with the auto-sampling procedure revealed corresponding results and were in agreement with the ISO 9308-1 reference method. E. coli concentrations were individually corrected by event specific inactivation coefficients (0.10-0.14 day(-1)), compensating losses due to sample storage at spring temperature in the auto sampler.Two large summer events in 2005/2006 at an important alpine karst spring (LKAS2) were monitored including detailed analysis of E. coli dynamics (n = 271) together with comprehensive hydrological characterisations. High-resolution time series demonstrated a sudden increase of E. coli concentrations in spring water (approximately 2 log10 units) with a specific time delay after the beginning of the event. Statistical analysis suggested the spectral absorption coefficient measured at 254 nm (SAC254) as an early warning surrogate for real time monitoring of faecal input. Together with the LEO-satellite based system it is a helpful tool for early-warning systems in the field of drinking water protection. Copyright IWA Publishing 2008.

  4. MICROBIOLOGICAL MONITORING AND AUTOMATED EVENT SAMPLING AT KARST SPRINGS USING LEO-SATELLITES

    PubMed Central

    Stadler, Hermann; Skritek, Paul; Sommer, Regina; Mach, Robert L.; Zerobin, Wolfgang; Farnleitner, Andreas H.

    2010-01-01

    Data communication via Low-Earth-Orbit Satellites between portable hydro-meteorological measuring stations is the backbone of our system. This networking allows automated event sampling with short time increments also for E.coli field analysis. All activities of the course of the event-sampling can be observed on an internet platform based on a Linux-Server. Conventionally taken samples by hand compared with the auto-sampling procedure revealed corresponding results and were in agreement to the ISO 9308-1 reference method. E.coli concentrations were individually corrected by event specific die-off rates (0.10–0.14 day−1) compensating losses due to sample storage at spring temperature in the auto sampler. Two large summer events 2005/2006 at a large alpine karst spring (LKAS2) were monitored including detailed analysis of E.coli dynamics (n = 271) together with comprehensive hydrological characterisations. High resolution time series demonstrated a sudden increase of E.coli concentrations in spring water (approx. 2 log10 units) with a specific time delay after the beginning of the event. Statistical analysis suggested the spectral absorbent coefficient measured at 254nm (SAC254) as an early warning surrogate for real time monitoring of faecal input. Together with the LEO-Satellite based system it is a helpful tool for Early-Warning-Systems in the field of drinking water protection. PMID:18776628

  5. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  6. Automated MALDI matrix coating system for multiple tissue samples for imaging mass spectrometry.

    PubMed

    Mounfield, William P; Garrett, Timothy J

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  7. Artificial Neural Network for Total Laboratory Automation to Improve the Management of Sample Dilution.

    PubMed

    Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio

    2017-02-01

    Diluting a sample to obtain a measure within the analytical range is a common task in clinical laboratories. However, for urgent samples, it can cause delays in test reporting, which can put patients' safety at risk. The aim of this work is to show a simple artificial neural network that can be used to make it unnecessary to predilute a sample using the information available through the laboratory information system. Particularly, the Multilayer Perceptron neural network built on a data set of 16,106 cardiac troponin I test records produced a correct inference rate of 100% for samples not requiring predilution and 86.2% for those requiring predilution. With respect to the inference reliability, the most relevant inputs were the presence of a cardiac event or surgery and the result of the previous assay. Therefore, such an artificial neural network can be easily implemented into a total automation framework to sensibly reduce the turnaround time of critical orders delayed by the operation required to retrieve, dilute, and retest the sample.

  8. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    SciTech Connect

    Frazier, William; Price, Jeffrey

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  9. A modifiable microarray-based universal sensor: providing sample-to-results automation.

    PubMed

    Yasmin, Rubina; Zhu, Hui; Chen, Zongyuan; Montagna, Richard A

    2016-10-01

    A microfluidic system consisting of generic single use cartridges which interface with a workstation allows the automatic performance of all necessary sample preparation, PCR analysis and interpretation of multiplex PCR assays. The cartridges contain a DNA array with 20 different 16mer DNA "universal" probes immobilized at defined locations. PCR amplicons can be detected via hybridization of user-defined "reporter" probes that are complementary at their 3' termini to one or more of the universal probes and complementary to the target amplicons at their 5' termini. The system was able to detect single-plex and multiplex PCR amplicons from various infectious agents as well as wild type and mutant alleles of single nucleotide polymorphisms. The system's ease of use was further demonstrated by converting a published PCR assay for the detection of Mycobacterium genitalium in a fully automated manner. Excellent correlation between traditional manual methods and the automated analysis performed by the workstation suggests that the system can provide a means to easily design and implement a variety of customized PCR-based assays. The system will be useful to researchers or clinical investigators seeking to develop their own user defined assays. As the U.S. FDA continues to pursue regulatory oversight of LDTs, the system would also allow labs to continue to develop compliant assays.

  10. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    SciTech Connect

    Visser, Ate; Bibby, Richard K.; Moran, Jean E.; Singleton, Michael J.; Esser, Bradley K.

    2015-06-01

    A capability for the analysis of krypton-85 (85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm3Kr sample size is 11% of the present day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program (35S, 3H/3He, 14C and radiogenic helium). 85Kr can replace 3H/3He in settings where 3H/3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.

  11. The Dual Pumping Technique (DPT) for level-determined sampling in fully screened groundwater wells

    NASA Astrophysics Data System (ADS)

    Rapp, M. C.; Fulda, C.; Schäfer, W.; Kinzelbach, W.

    1998-06-01

    A new and inexpensive technique to obtain vertical hydrochemical profiles in aquifers is presented. The Dual Pumping Technique (DPT) is designed for use in fully-screened groundwater wells and represents an alternative to packer installations or similar sampling devices. Two pumps are placed at either end of the well screen. The ratio of their pumping rates is varied from 1 to 0. Depending on this ratio, the two pumps abstract variable portions of the influx distribution. A water divide develops in the well, separating the flow upward from the flow downward. A set of samples from the upper and lower pump are taken for different pumping rate ratios. Measured solute concentrations in these samples, together with the influx distribution determined by flow logging, are used to reconstruct vertical concentration profiles. The measured data are evaluated with a simple, robust algorithm, which is derived in the text and exemplified in the Appendix. The DPT was used to determine vertical concentration distributions of chlorinated hydrocarbon solvents (CHS) and tritium in a contaminated aquifer near Heidelberg, Germany. Comparison of the concentration profile obtained with the DPT with CHS and tritium data from a 50-m distant multilevel well showed the principal applicability of the new technique. The pattern of the vertical concentration distributions was successfully identified with the DPT, but the absolute CHS concentration values were one order of magnitude higher in the multilevel well, due to the fact that the multilevel well is probably closer to the centre of the plume than the well used for the DPT. The 3H values could be compared directly and showed an excellent agreement. Further evaluation of the DPT in a situation where a multilevel reference well is in closer vicinity to the test well is planned.

  12. Data Validation Package February 2016 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April 2016

    SciTech Connect

    Bush, Richard; Lemke, Peter

    2016-04-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  13. Data Validation Package August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015

    SciTech Connect

    Bush, Richard; Lemke, Peter

    2015-11-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells and extraction wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  14. Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy.

    PubMed

    Ries, Jonas; Bayer, Mathias; Csúcs, Gábor; Dirkx, Ronald; Solimena, Michele; Ewers, Helge; Schwille, Petra

    2010-05-24

    Fluorescence Correlation Spectroscopy (FCS) in cells often suffers from artifacts caused by bright aggregates or vesicles, depletion of fluorophores or bleaching of a fluorescent background. The common practice of manually discarding distorted curves is time consuming and subjective. Here we demonstrate the feasibility of automated FCS data analysis with efficient rejection of corrupted parts of the signal. As test systems we use a solution of fluorescent molecules, contaminated with bright fluorescent beads, as well as cells expressing a fluorescent protein (ICA512-EGFP), which partitions into bright secretory granules. This approach improves the accuracy of FCS measurements in biological samples, extends its applicability to especially challenging systems and greatly simplifies and accelerates the data analysis.

  15. Automated Three-Dimensional Microbial Sensing and Recognition Using Digital Holography and Statistical Sampling

    PubMed Central

    Moon, Inkyu; Yi, Faliu; Javidi, Bahram

    2010-01-01

    We overview an approach to providing automated three-dimensional (3D) sensing and recognition of biological micro/nanoorganisms integrating Gabor digital holographic microscopy and statistical sampling methods. For 3D data acquisition of biological specimens, a coherent beam propagates through the specimen and its transversely and longitudinally magnified diffraction pattern observed by the microscope objective is optically recorded with an image sensor array interfaced with a computer. 3D visualization of the biological specimen from the magnified diffraction pattern is accomplished by using the computational Fresnel propagation algorithm. For 3D recognition of the biological specimen, a watershed image segmentation algorithm is applied to automatically remove the unnecessary background parts in the reconstructed holographic image. Statistical estimation and inference algorithms are developed to the automatically segmented holographic image. Overviews of preliminary experimental results illustrate how the holographic image reconstructed from the Gabor digital hologram of biological specimen contains important information for microbial recognition. PMID:22163664

  16. Automated three-dimensional microbial sensing and recognition using digital holography and statistical sampling.

    PubMed

    Moon, Inkyu; Yi, Faliu; Javidi, Bahram

    2010-01-01

    We overview an approach to providing automated three-dimensional (3D) sensing and recognition of biological micro/nanoorganisms integrating Gabor digital holographic microscopy and statistical sampling methods. For 3D data acquisition of biological specimens, a coherent beam propagates through the specimen and its transversely and longitudinally magnified diffraction pattern observed by the microscope objective is optically recorded with an image sensor array interfaced with a computer. 3D visualization of the biological specimen from the magnified diffraction pattern is accomplished by using the computational Fresnel propagation algorithm. For 3D recognition of the biological specimen, a watershed image segmentation algorithm is applied to automatically remove the unnecessary background parts in the reconstructed holographic image. Statistical estimation and inference algorithms are developed to the automatically segmented holographic image. Overviews of preliminary experimental results illustrate how the holographic image reconstructed from the Gabor digital hologram of biological specimen contains important information for microbial recognition.

  17. An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Brown de Colstoun, Eric; Wolfe, Robert E.; Tilton, James C.; Huang, Chengquan; Smith, Sarah E.

    2012-01-01

    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to

  18. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    SciTech Connect

    Chapman, Jenny; Lyles, Brad; Cooper, Clay; Hershey, Ron; Healey, John

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is “Closure in Place with Modeling, Monitoring, and Institutional Controls.” The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each

  19. Design and Development of a Robot-Based Automation System for Cryogenic Crystal Sample Mounting at the Advanced Photon Source

    SciTech Connect

    Shu, D.; Preissner, C.; Nocher, D.; Han, Y.; Barraza, J.; Lee, P.; Lee, W.-K.; Cai, Z.; Ginell, S.; Alkire, R.; Lazarski, K.; Schuessler, R.; Joachimiak, A.

    2004-05-12

    X-ray crystallography is the primary method to determine the 3D structures of complex macromolecules at high resolution. In the years to come, the Advanced Photon Source (APS) and similar 3rd-generation synchrotron sources elsewhere will become the most powerful tools for studying atomic structures of biological molecules. One of the major bottlenecks in the x-ray data collection process is the constant need to change and realign the crystal sample. This is a very time- and manpower-consuming task. An automated sample mounting system will help to solve this bottleneck problem. We have developed a novel robot-based automation system for cryogenic crystal sample mounting at the APS. Design of the robot-based automation system, as well as its on-line test results at the Argonne Structural Biology Center (SBC) 19-BM experimental station, are presented in this paper.

  20. Groundwater and Leachate Monitoring and Sampling at the Environmental Restoration Disposal Facility, Calendar Year 2005

    SciTech Connect

    D.A. St. John, R.L. Weiss

    2006-05-04

    The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and to report leachate results in accordance with the requirements specified in the ERDF ROD.

  1. Automation of sample preparation for mass cytometry barcoding in support of clinical research: protocol optimization.

    PubMed

    Nassar, Ala F; Wisnewski, Adam V; Raddassi, Khadir

    2017-03-01

    Analysis of multiplexed assays is highly important for clinical diagnostics and other analytical applications. Mass cytometry enables multi-dimensional, single-cell analysis of cell type and state. In mass cytometry, the rare earth metals used as reporters on antibodies allow determination of marker expression in individual cells. Barcode-based bioassays for CyTOF are able to encode and decode for different experimental conditions or samples within the same experiment, facilitating progress in producing straightforward and consistent results. Herein, an integrated protocol for automated sample preparation for barcoding used in conjunction with mass cytometry for clinical bioanalysis samples is described; we offer results of our work with barcoding protocol optimization. In addition, we present some points to be considered in order to minimize the variability of quantitative mass cytometry measurements. For example, we discuss the importance of having multiple populations during titration of the antibodies and effect of storage and shipping of labelled samples on the stability of staining for purposes of CyTOF analysis. Data quality is not affected when labelled samples are stored either frozen or at 4 °C and used within 10 days; we observed that cell loss is greater if cells are washed with deionized water prior to shipment or are shipped in lower concentration. Once the labelled samples for CyTOF are suspended in deionized water, the analysis should be performed expeditiously, preferably within the first hour. Damage can be minimized if the cells are resuspended in phosphate-buffered saline (PBS) rather than deionized water while waiting for data acquisition.

  2. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    PubMed

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Drug Discovery Testing Compounds in Patient Samples by Automated Flow Cytometry

    PubMed Central

    Hernández, Pilar; Gorrochategui, Julián; Primo, Daniel; Robles, Alicia; Rojas, José Luis; Espinosa, Ana Belén; Gómez, Cristina; Martínez-López, Joaquín; Bennett, Teresa A.; Ballesteros, Joan

    2017-01-01

    Functional ex vivo assays that predict a patient’s clinical response to anticancer drugs for guiding cancer treatment have long been a goal, but few have yet proved to be reliable. To address this, we have developed an automated flow cytometry platform for drug screening that evaluates multiple endpoints with a robust data analysis system that can capture the complex mechanisms of action across different compounds. This system, called PharmaFlow, is used to test peripheral blood or bone marrow samples from patients diagnosed with hematological malignancies. Functional assays that use the whole sample, retaining all the microenvironmental components contained in the sample, offer an approach to ex vivo testing that may give results that are clinically relevant. This new approach can help to predict the patients’ response to existing treatments or to drugs under development, for hematological malignancies or other tumors. In addition, relevant biomarkers can be identified that determine the patient’s sensitivity, resistance, or toxicity to a given treatment. We propose that this approach, which better recapitulates the human microenvironment, constitutes a more predictive assay for personalized medicine and preclinical drug discovery. PMID:28340541

  4. Drug Discovery Testing Compounds in Patient Samples by Automated Flow Cytometry.

    PubMed

    Hernández, Pilar; Gorrochategui, Julián; Primo, Daniel; Robles, Alicia; Rojas, José Luis; Espinosa, Ana Belén; Gómez, Cristina; Martínez-López, Joaquín; Bennett, Teresa A; Ballesteros, Joan

    2017-06-01

    Functional ex vivo assays that predict a patient's clinical response to anticancer drugs for guiding cancer treatment have long been a goal, but few have yet proved to be reliable. To address this, we have developed an automated flow cytometry platform for drug screening that evaluates multiple endpoints with a robust data analysis system that can capture the complex mechanisms of action across different compounds. This system, called PharmaFlow, is used to test peripheral blood or bone marrow samples from patients diagnosed with hematological malignancies. Functional assays that use the whole sample, retaining all the microenvironmental components contained in the sample, offer an approach to ex vivo testing that may give results that are clinically relevant. This new approach can help to predict the patients' response to existing treatments or to drugs under development, for hematological malignancies or other tumors. In addition, relevant biomarkers can be identified that determine the patient's sensitivity, resistance, or toxicity to a given treatment. We propose that this approach, which better recapitulates the human microenvironment, constitutes a more predictive assay for personalized medicine and preclinical drug discovery.

  5. Automated measurement and quantification of heterotrophic bacteria in water samples based on the MPN method.

    PubMed

    Fuchsluger, C; Preims, M; Fritz, I

    2011-01-01

    Quantification of heterotrophic bacteria is a widely used measure for water analysis. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive, including quality criteria and detection limits. The quantification procedure presented in this study is based on the most probable number (MPN) method, which was adapted to comply with the need for a quick and easy screening tool for different kinds of water samples as well as varying microbial loads. Replacing tubes with 24-well titer plates for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Automated photometric measurement of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation by operators. Definition of a threshold ensures definite and user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the US Food and Drug Administration (FDA). For evaluation of the method, real water samples of different origins as well as pure cultures of bacteria were analyzed in parallel with the conventional plating methods. Thus, the procedure described requires less preparation time, reduces costs and ensures both stable and reliable results for water samples.

  6. From Sample Changer to the Robotic Rheometer: Automation and High Throughput Screening in Rotational Rheometry

    NASA Astrophysics Data System (ADS)

    Läuger, Jörg; Krenn, Michael

    2008-07-01

    A fully automated, robotically operated rheometer was developed. The full functionality, modularity and accuracy of the rotational rheometer are available, which means the modern principles of high-throughput screening are brought to full function on the rheometer. The basic rheometer setup remains as modular as before including the ability to run all test modes the rheometer offers with the difference that the high-throughput rheometer now performs all measuring steps automatically. In addition, the standard and proven environmental chambers of the rheometer are available. The rheometer itself runs by the standard rheometer software and the measurement data and analysis results can be transferred to a monitoring database. The sample loading and the cleaning of the geometries is assisted by a sample preparation unit and a cleaning station, respectively. The sample throughput is further maximized by the use of multiple geometries allowing the simultaneous rheological measurement by the rheometer and the cleaning of the geometries at the cleaning station by the robot. The High-Throughput Rheometer (HTR) and its special adaptation to different applications like dispersions and polymer melts are described.

  7. Automated system for sampling, counting, and biological analysis of rotifer populations.

    PubMed

    Stelzer, Claus-Peter

    2009-12-01

    Zooplankton organisms with short generation times, such as rotifers, are ideal models to study general ecological and evolutionary questions on the population level, because meaningful experiments can often be completed within a couple of weeks. Yet biological analysis of such populations is often extremely time consuming, owing to abundance estimation by counting, measuring body size, or determining the investment into sexual versus asexual reproduction. An automated system for sampling and analyzing experimental rotifer populations is described. It relies on image analysis of digital photographs taken from subsamples of the culture. The system works completely autonomously for up to several weeks and can sample up to 12 cultures at time intervals down to a few hours. It allows quantitative analysis of female population density at a precision equivalent to that of conventional methods (i.e., manual counts of samples fixed in Lugol solution), and it can also recognize males, which allows detecting temporal variation of sexual reproduction in such cultures. Another parameter that can be automatically measured with the image analysis system is female body size. This feature may be useful for studies of population productivity and/or in competition experiments with clones of different body size. In this article, I describe the basic setup of the system and tests on the efficiency of data collection, and show some example data sets on the population dynamics of different strains of the rotifer Brachionus calyciflorus.

  8. Automated system for sampling, counting, and biological analysis of rotifer populations

    PubMed Central

    Stelzer, Claus-Peter

    2010-01-01

    Zooplankton organisms with short generation times, such as rotifers, are ideal models to study general ecological and evolutionary questions on the population level, because meaningful experiments can often be completed within a couple of weeks. Yet biological analysis of such populations is often extremely time consuming, owing to abundance estimation by counting, measuring body size, or determining the investment into sexual versus asexual reproduction. An automated system for sampling and analyzing experimental rotifer populations is described. It relies on image analysis of digital photographs taken from subsamples of the culture. The system works completely autonomously for up to several weeks and can sample up to 12 cultures at time intervals down to a few hours. It allows quantitative analysis of female population density at a precision equivalent to that of conventional methods (i.e., manual counts of samples fixed in Lugol solution), and it can also recognize males, which allows detecting temporal variation of sexual reproduction in such cultures. Another parameter that can be automatically measured with the image analysis system is female body size. This feature may be useful for studies of population productivity and/or in competition experiments with clones of different body size. In this article, I describe the basic setup of the system and tests on the efficiency of data collection, and show some example data sets on the population dynamics of different strains of the rotifer Brachionus calyciflorus. PMID:21151824

  9. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications.

    PubMed

    Stewart, Cameron J; McClean, Megan N

    2017-02-19

    Optogenetic systems utilize genetically-encoded proteins that change conformation in response to specific wavelengths of light to alter cellular processes. There is a need for culturing and measuring systems that incorporate programmed illumination and stimulation of optogenetic systems. We present a protocol for building and using a continuous culturing apparatus to illuminate microbial cells with programmed doses of light, and automatically acquire and analyze images of cells in the effluent. The operation of this apparatus as a chemostat allows the growth rate and the cellular environment to be tightly controlled. The effluent of the continuous cell culture is regularly sampled and the cells are imaged by multi-channel microscopy. The culturing, sampling, imaging, and image analysis are fully automated so that dynamic responses in the fluorescence intensity and cellular morphology of cells sampled from the culture effluent are measured over multiple days without user input. We demonstrate the utility of this culturing apparatus by dynamically inducing protein production in a strain of Saccharomyces cerevisiae engineered with an optogenetic system that activates transcription.

  10. Erratum to: Automated Sample Preparation Method for Suspension Arrays using Renewable Surface Separations with Multiplexed Flow Cytometry Fluorescence Detection

    SciTech Connect

    Grate, Jay W.; Bruckner-Lea, Cindy J.; Jarrell, Ann E.; Chandler, Darrell P.

    2003-04-10

    In this paper we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions.

  11. Invention and validation of an automated camera system that uses optical character recognition to identify patient name mislabeled samples.

    PubMed

    Hawker, Charles D; McCarthy, William; Cleveland, David; Messinger, Bonnie L

    2014-03-01

    Mislabeled samples are a serious problem in most clinical laboratories. Published error rates range from 0.39/1000 to as high as 1.12%. Standardization of bar codes and label formats has not yet achieved the needed improvement. The mislabel rate in our laboratory, although low compared with published rates, prompted us to seek a solution to achieve zero errors. To reduce or eliminate our mislabeled samples, we invented an automated device using 4 cameras to photograph the outside of a sample tube. The system uses optical character recognition (OCR) to look for discrepancies between the patient name in our laboratory information system (LIS) vs the patient name on the customer label. All discrepancies detected by the system's software then require human inspection. The system was installed on our automated track and validated with production samples. We obtained 1 009 830 images during the validation period, and every image was reviewed. OCR passed approximately 75% of the samples, and no mislabeled samples were passed. The 25% failed by the system included 121 samples actually mislabeled by patient name and 148 samples with spelling discrepancies between the patient name on the customer label and the patient name in our LIS. Only 71 of the 121 mislabeled samples detected by OCR were found through our normal quality assurance process. We have invented an automated camera system that uses OCR technology to identify potential mislabeled samples. We have validated this system using samples transported on our automated track. Full implementation of this technology offers the possibility of zero mislabeled samples in the preanalytic stage.

  12. Data Validation Package - April and July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site

    SciTech Connect

    Linard, Joshua; Campbell, Sam

    2016-02-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Domestic wells 0476 and 0477 were sampled in July because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0113, 0248, and 0477. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. No issues were identified during the data validation process that requires additional action or follow-up.

  13. Comparison of manual and automated DNA purification for measuring TREC in dried blood spot (DBS) samples with qPCR.

    PubMed

    Lang, Pierre-Olivier; Govind, Sheila; Dramé, Moustapha; Aspinall, Richard

    2012-10-31

    Automated nucleic acid extractions from dried blood spot (DBS) samples promises standardized sample treatment, low error rates, avoidance of contamination and requirement of less hands-on time. In the present study, non-automated and automated column based extraction processes using the QIAamp Investigator procedure were compared for the extraction of DNA from DBS samples. The concentration and the purity of DNA generated were determined by optical density readings. Furthermore qPCR downstream applications using the nucleic acids extracted with the two processes and albumin and T-cell receptor excision circles (TREC) copy numbers were measured and compared. The influence of the time of storage was also investigated by analyzing samples freshly dried and stored up to 11weeks at -20°C from the same individual. Finally, we provide arguments of preferentially choosing the automated procedure for extracting DNAs from DBS samples when downstream qPCR applications are required. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Investigation of Total and Hexavalent Chromium in Filtered and Unfiltered Groundwater Samples at the Tucson International Airport Superfund Site.

    PubMed

    Tillman, Fred D; McCleskey, R Blaine; Hermosillo, Edyth

    2016-10-01

    Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.

  15. Investigation of total and hexavalent chromium in filtered and unfiltered groundwater samples at the Tucson International Airport Superfund Site

    USGS Publications Warehouse

    Tillman, Fred; McCleskey, R. Blaine; Hermosillo, Edyth

    2016-01-01

    Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.

  16. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    SciTech Connect

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  17. Analysis of zearalenone in cereal and Swine feed samples using an automated flow-through immunosensor.

    PubMed

    Urraca, Javier L; Benito-Peña, Elena; Pérez-Conde, Concepción; Moreno-Bondi, María C; Pestka, James J

    2005-05-04

    The development of a sensitive flow-though immunosensor for the analysis of the mycotoxin zearalenone in cereal samples is described. The sensor was completely automated and was based on a direct competitive immunosorbent assay and fluorescence detection. The mycotoxin competes with a horseradish-peroxidase-labeled derivative for the binding sites of a rabbit polyclonal antibody. Control pore glass covalently bound to Prot A was used for the oriented immobilization of the antibody-antigen immunocomplexes. The immunosensor shows an IC(50) value of 0.087 ng mL(-1) (RSD = 2.8%, n = 6) and a dynamic range from 0.019 to 0.422 ng mL(-1). The limit of detection (90% of blank signal) of 0.007 ng mL(-1) (RSD = 3.9%, n = 3) is lower than previously published methods. Corn, wheat, and swine feed samples have been analyzed with the device after extraction of the analyte using accelerated solvent extraction (ASE). The immunosensor has been validated using a corn certificate reference material and HPLC with fluorescence detection.

  18. Measurement of airborne carbonyls using an automated sampling and analysis system.

    PubMed

    Aiello, Mauro; McLaren, Robert

    2009-12-01

    Based upon the well established method of derivitization with 2,4-dinitrophenylhydrazine, an instrument was developed for ambient measurement of carbonyls with significantly improved temporal resolution and detection limits through automation, direct injection, and continuous use of a single microsilica DNPH cartridge. Kinetic experiments indicate that the derivitization reaction on the cartridge is fast enough for continuous measurements with 50 min air sampling. Reaction efficiencies measured on the cartridge were 100% for the carbonyls tested, including formaldehyde, acetaldehyde, propanal, acetone, and benzaldehyde. Transmission of the carbonyls through an ozone scrubber (KI) were in the range of 97-101%. Blank levels and detection limits were lower than those obtainable with conventional DNPH methods by an order of magnitude or greater. Mixing ratio detection limits of carbonyls in ambient air were 38-73 ppt for a 50 min air sample (2.5 L). The instrument made continuous measurements of carbonyls on a 2 h cycle over a period of 10 days during a field study in southwestern Ontario. Median mixing ratios were 0.58 ppb formaldehyde; 0.29 ppb acetaldehyde; 1.14 ppb acetone; and 0.45 ppb glyoxal. Glyoxal shows a significant correlation with ozone and zero intercept, consistent with a secondary source and minor direct source to the atmosphere. The method should easily be extendable to the detection of other low molecular weight carbonyls that have been previously reported using the DNPH technique.

  19. A user-friendly robotic sample preparation program for fully automated biological sample pipetting and dilution to benefit the regulated bioanalysis.

    PubMed

    Jiang, Hao; Ouyang, Zheng; Zeng, Jianing; Yuan, Long; Zheng, Naiyu; Jemal, Mohammed; Arnold, Mark E

    2012-06-01

    Biological sample dilution is a rate-limiting step in bioanalytical sample preparation when the concentrations of samples are beyond standard curve ranges, especially when multiple dilution factors are needed in an analytical run. We have developed and validated a Microsoft Excel-based robotic sample preparation program (RSPP) that automatically transforms Watson worklist sample information (identification, sequence and dilution factor) to comma-separated value (CSV) files. The Freedom EVO liquid handler software imports and transforms the CSV files to executable worklists (.gwl files), allowing the robot to perform sample dilutions at variable dilution factors. The dynamic dilution range is 1- to 1000-fold and divided into three dilution steps: 1- to 10-, 11- to 100-, and 101- to 1000-fold. The whole process, including pipetting samples, diluting samples, and adding internal standard(s), is accomplished within 1 h for two racks of samples (96 samples/rack). This platform also supports online sample extraction (liquid-liquid extraction, solid-phase extraction, protein precipitation, etc.) using 96 multichannel arms. This fully automated and validated sample dilution and preparation process has been applied to several drug development programs. The results demonstrate that application of the RSPP for fully automated sample processing is efficient and rugged. The RSPP not only saved more than 50% of the time in sample pipetting and dilution but also reduced human errors. The generated bioanalytical data are accurate and precise; therefore, this application can be used in regulated bioanalysis.

  20. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  1. Plasma cortisol and norepinephrine concentrations in pigs: automated sampling of freely moving pigs housed in the PigTurn versus manually sampled and restrained pigs

    USDA-ARS?s Scientific Manuscript database

    Minimizing effects of restraint and human interaction on the endocrine physiology of animals is essential for collection of accurate physiological measurements. Our objective was to compare stress-induced cortisol (CORT) and norepinephrine (NE) responses in automated versus manual blood sampling. A ...

  2. Plasma cortisol and noradrenalin concentrations in pigs: automated sampling of freely moving pigs housed in PigTurn versus manually sampled and restrained pigs

    USDA-ARS?s Scientific Manuscript database

    Minimizing the effects of restraint and human interaction on the endocrine physiology of animals is essential for collection of accurate physiological measurements. Our objective was to compare stress-induced cortisol (CORT) and noradrenalin (NorA) responses in automated versus manual blood sampling...

  3. Influence of acid mine drainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Jaisoo; Koo, So-Yeon; Kim, Ji-Young; Lee, Eun-Hee; Lee, Sang-Don; Ko, Kyung-Seok; Ko, Dong-Chan; Cho, Kyung-Suk

    2009-10-01

    The effects of acid mine drainage (AMD) in a stream and groundwater near an abandoned copper mine were characterized by physicochemical properties, bacterial community structure using denaturing gel gradient electrophoresis (DGGE), and microbial activity/diversity using Ecoplate technique. Based on DGGE fingerprints, the eubacterial community structures grouped into the stream water (GRS1, GRS2 and GRS3) and groundwater samples (GW1 and GW2), apparently based on differences in water temperature and the concentrations of dissolved oxygen, nitrate and sulfate. The most highly AMD-contaminated sample (GRS1) had additional α-Proteobacteria whereas the groundwater samples included additional β-Proteobacteria, suggesting the development of populations resistant to AMD toxicity under aerobic and anaerobic conditions, respectively. Community level physiological activities on the 31 Ecoplate substrates suggested that the activities decreased with increasing concentrations of sulfate and heavy metals derived from AMD. The Shannon index showed that microbial diversity was greatest in GRS2, and lowest in GRS1, and was probably related to the level of AMD.

  4. Development of an automated multiple-target mask CD disposition system to enable new sampling strategy

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Farnsworth, Jeff; Bassist, Larry; Cui, Ying; Mammen, Bobby; Padmanaban, Ramaswamy; Nadamuni, Venkatesh; Kamath, Muralidhar; Buckmann, Ken; Neff, Julie; Freiberger, Phil

    2006-03-01

    Traditional mask critical dimension (CD) disposition systems with only one or two targets is being challenged by the new requirements from mask-users as the wafer process control becomes more complicated in the newer generation of technologies. Historically, the mask shop does not necessarily measure and disposition off the same kind of CD structures that wafer fabs do. Mask disposition specifications and structures come from the frame-design and the tapeout, while wafer-level CD dispositions are mainly based on the historical process window established per CD-skew experiments and EOL (end of line) yield. In the current high volume manufacturing environment, the mask CDs are mainly dispositioned off their mean-to-target (MTT) and uniformity (6sigma) on one or two types of pre-determined structures. The disposition specification is set to ensure the printed mask will meet the design requirements and to ensure minimum deviation from them. The CD data are also used to adjust the dose of the mask exposure tools to control CD MTT. As a result, the mask CD disposition automation system was built to allow only one or two kinds of targets at most. In contrast, wafer-fabs measure a fairly wide range of different structures to ensure their process is on target and in control. The number of such structures that are considered critical is increasing due the growing complexity of the technology. To fully comprehend the wafer-level requirements, it is highly desirable to align the mask CD sample site and disposition to be the same as that of the wafer-fabs, to measure the OPC (optical proximity correction) structures or equivalent whenever possible, and to establish the true correlation between mask CD measurements vs. wafer CD measurement. In this paper, the development of an automated multiple-target mask CD disposition system with the goal of enabling new sampling strategy is presented. The pros and cons of its implementation are discussed. The new system has been inserted in

  5. High-resolution laboratory lysimeter for automated sampling of tracers through a 0.5 m soil block

    PubMed Central

    Johnson, A.; Mathews, T. J.; Patel, D.; Worsfold, P. J.; Andrew, K. N.

    2003-01-01

    A computer-controlled, automated sample collection from a 0.5-m lysimeter, designed to give superior temporal and spatial resolution for monitoring the movement of chemical tracers through a large undisturbed soil block, is described. The soil block, 0.520.520.5 m, was monitored for saturation using eight time domain reflectometry probes. Rainfall was applied at approximately 1600 ml hm1 using a 12212 array of 23-gauge (0.318 mm internal diameter) hypodermic needles. Soil leachates were collected at the base of the soil block using a machined aluminium collection plate with a 10210 grid of funnels that passed leachates to sample collection palettes. Sample collection was automated using a personal computer equipped with National Instruments LabVIEW™ software and linked to sensors for palette tracking. The automation of the lysimeter allowed sample collection and storage over a user-defined period with no human interaction. As an example of the use of the automated lysimeter, results show the distribution of phosphate within the soil. The eluted phosphate showed an initial and secondary peak, and only emerged from preferential flow channels. PMID:18924715

  6. AST: an automated sequence-sampling method for improving the taxonomic diversity of gene phylogenetic trees.

    PubMed

    Zhou, Chan; Mao, Fenglou; Yin, Yanbin; Huang, Jinling; Gogarten, Johann Peter; Xu, Ying

    2014-01-01

    A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php.

  7. AST: An Automated Sequence-Sampling Method for Improving the Taxonomic Diversity of Gene Phylogenetic Trees

    PubMed Central

    Zhou, Chan; Mao, Fenglou; Yin, Yanbin; Huang, Jinling; Gogarten, Johann Peter; Xu, Ying

    2014-01-01

    A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php. PMID:24892935

  8. Manual and automated enrichment procedures for biological samples using lipophilic gels.

    PubMed

    Uusijärvi, J; Egestad, B; Sjövall, J

    1989-03-17

    Aspects of the use of lipophilic gels in manual sample preparation procedures are reviewed. Neutral gels with a controlled hydrophobicity are used for sorbent extraction of non-polar and medium polarity compounds from biological fluids. Acidic amphiphilic compounds can be extracted as ion-pairs with decyltrimethylammonium ions. Solvent or detergent extracts of tissues or faeces can be mixed with hydrophobic gels for transfer of analytes from a solvent to a gel phase, permitting subsequent sample preparation in gel bed systems. Hydrophobic gels, alkyl-bonded silica and polystyrene matrices can be used in series for extraction of compounds with a wide range of polarities. Group fractionations are performed on neutral and ion-exchanging lipophilic gels to yield fractions of neutral, basic and acidic metabolites within selected polarity ranges. Selective isolation of phenolic acids on a strong anion exchanger, of ethynylic steroids on a strong cation exchanger in silver form and of oximes of ketonic steroids on a strong cation exchanger in hydrogen form is possible. A computerized system for automatic sample preparation is also described. It consists of an extraction bed, a cation-exchange column and an anion-exchange column. The pumps and switching valves are arranged so that the columns can operate in series or parallel for isolation of neutral, basic and acidic metabolites of amphiphilic compounds and for regeneration of the column beds. Fractions can be collected, or the effluent from the column beds can be diluted with water to permit sorption on a solid phase. The applicability of the automated method to the analysis of bile acids and metabolites of mono(2-ethylhexyl) phthalate is demonstrated.

  9. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers

    NASA Astrophysics Data System (ADS)

    Wolff-Boenisch, Domenik; Evans, Katy

    2014-05-01

    Sampling fluids from deep wells and subsequent sample treatment prior to gas and liquid analysis requires special equipment and sampling techniques to account for the relatively high temperatures, pressures, and potential gas content present at depth. This paper reviews five major sampling methodologies, ranging from different in situ wireline samplers to producing pumps and the U-tube and discusses their advantages and drawbacks in the light of three principal applications, deep groundwater research, unconventional geothermal exploration, and carbon storage. Geochemical modelling is used to investigate the probability of decarbonation and concomitant carbonate scaling during sampling in geothermal and carbon sequestration applications. The two principal sample recovery techniques associated with the fluid samplers are also presented.

  10. Computerized Analytical Data Management System and Automated Analytical Sample Transfer System at the COGEMA Reprocessing Plants in La Hague

    SciTech Connect

    Flament, T.; Goasmat, F.; Poilane, F.

    2002-02-25

    Managing the operation of large commercial spent nuclear fuel reprocessing plants, such as UP3 and UP2-800 in La Hague, France, requires an extensive analytical program and the shortest possible analysis response times. COGEMA, together with its engineering subsidiary SGN, decided to build high-performance laboratories to support operations in its plants. These laboratories feature automated equipment, safe environments for operators, and short response times, all in centralized installations. Implementation of a computerized analytical data management system and a fully automated pneumatic system for the transfer of radioactive samples was a key factor contributing to the successful operation of the laboratories and plants.

  11. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  12. Synoptic estimates of diffuse groundwater seepage to a spring-fed karst river at high spatial resolution using an automated radon measurement technique

    NASA Astrophysics Data System (ADS)

    Khadka, Mitra B.; Martin, Jonathan B.; Kurz, Marie J.

    2017-01-01

    Groundwater (GW) seepage can provide a major source of water, solutes, and contaminants to rivers, but identifying magnitudes, directions and locations of seepage is complicated by its diffuse and heterogeneous distributions. However, such information is necessary to develop programs and policies for protecting ecosystems and managing water resources. Here, we assess GW seepage to the Ichetucknee River, a spring-fed, low gradient, gaining stream in north-central Florida, through automated longitudinal surveys of radon (222Rn) activities at three different flow conditions. A 222Rn mass balance model, which integrates groundwater and spring water end member 222Rn activities and longitudinal 222Rn distributions in river water, shows that diffuse groundwater seepage represents about 16% of the total river baseflow, consistent with previous results obtained from ion (Ca2+, Cl-, SRP and Fe) mass balances and dye tracer methods. During high river stage, the contribution from seepage increases to 18-23% of the river flow. The spatial distribution of GW seepage is more variable in the upper 2.2-km reach of the river than the lower 2.8-km reach, regardless of river flow conditions. The upper reach has a narrower flood plain than the lower reach, which limits evapotranspiration and increases hydraulic gradients toward the river following storm events. Seepage in the lower reach is also limited by hydrologic damming by the receiving river, which inundates the floodplain during high flow conditions, and reduces the hydraulic head gradient. These results demonstrate the variable nature of seepage to a gaining river in both time and space and indicate that multiple synoptic analyses of GW seepage are required to assess seepage rates, determine time-averaged solute fluxes, and develop optimal management policies for riverine ecosystems.

  13. Automated sample preparation techniques for the determination of drug enantiomers in biological fluids using liquid chromatography with chiral stationary phases.

    PubMed

    Ceccato, A; Toussaint, B; Chiap, P; Hubert, P; Crommen, J

    1999-01-01

    The determination of drug enantiomers has become of prime importance in the field of pharmaceutical and biomedical analysis. Liquid chromatography (LC) is one of the most frequently used techniques for achieving the separation and quantitation of the enantiomers of drug compounds. In the bioanalytical field, the integrated systems present an interesting alternative to time-consuming sample preparation techniques such as liquid-liquid extraction. Solid phase extraction (SPE) on disposable cartridges, dialysis or column switching are sample preparation techniques that can be fully automated and applied to enantioselective analysis in biological fluids. The selection of the most appropriate LC mode and chiral stationary phase for enantioseparations in bioanalysis is discussed and some aspects of these automated sample preparation procedures are compared, such as selectivity, detectability, elution of the analytes from the extraction sorbent, sample volume and analyte stability.

  14. Methods to characterize environmental settings of stream and groundwater sampling sites for National Water-Quality Assessment

    USGS Publications Warehouse

    Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.

    2012-01-01

    Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.

  15. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... frequency must be protective of human health and the environment. (d) Ground-water elevations must be... procedure is used, the Type I experiment wise error rate for each testing period shall be no less than 0.05... chart and its associated parameter values shall be protective of human health and the environment....

  16. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... frequency must be protective of human health and the environment. (d) Ground-water elevations must be... procedure is used, the Type I experiment wise error rate for each testing period shall be no less than 0.05... chart and its associated parameter values shall be protective of human health and the environment....

  17. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... frequency must be protective of human health and the environment. (d) Ground-water elevations must be... procedure is used, the Type I experiment wise error rate for each testing period shall be no less than 0.05... chart and its associated parameter values shall be protective of human health and the environment....

  18. High-Throughput Serum 25-Hydroxy Vitamin D Testing with Automated Sample Preparation.

    PubMed

    Stone, Judy

    2016-01-01

    Serum from bar-coded tubes, and then internal standard, are pipetted to 96-well plates with an 8-channel automated liquid handler (ALH). The first precipitation reagent (methanol:ZnSO4) is added and mixed with the 8-channel ALH. A second protein precipitating agent, 1 % formic acid in acetonitrile, is added and mixed with a 96-channel ALH. After a 4-min delay for larger precipitates to settle to the bottom of the plate, the upper 36 % of the precipitate/supernatant mix is transferred with the 96-channel ALH to a Sigma Hybrid SPE(®) plate and vacuumed through for removal of phospholipids and precipitated proteins. The filtrate is collected in a second 96-well plate (collection plate) which is foil-sealed, placed in the autosampler (ALS), and injected into a multiplexed LC-MS/MS system running AB Sciex Cliquid(®) and MPX(®) software. Two Shimadzu LC stacks, with multiplex timing controlled by MPX(®) software, inject alternately to one AB Sciex API-5000 MS/MS using positive atmospheric pressure chemical ionization (APCI) and a 1.87 min water/acetonitrile LC gradient with a 2.1 × 20 mm, 2.7 μm, C18 fused core particle column (Sigma Ascentis Express). LC-MS/MS through put is ~44 samples/h/LC-MS/MS system with dual-LC channel multiplexing. Plate maps are transferred electronically from the ALH and reformatted into LC-MS/MS sample table format using the Data Innovations LLC (DI) Instrument Manager middleware application. Before collection plates are loaded into the ALS, the plate bar code is manually scanned to download the sample table from the DI middleware to the LC-MS/MS. After acquisition-LC-MS/MS data is analyzed with AB Sciex Multiquant(®) software using customized queries, and then results are transferred electronically via a DI interface to the LIS. 2500 samples/day can be extracted by two analysts using four ALHs in 4-6 h. LC-MS/MS analysis of those samples on three dual-channel LC multiplexed LC-MS/MS systems requires 19-21 h and data analysis can be

  19. A survey sampling approach for pesticide monitoring of community water systems using groundwater as a drinking water source.

    PubMed

    Whitmore, Roy W; Chen, Wenlin

    2013-12-04

    The ability to infer human exposure to substances from drinking water using monitoring data helps determine and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the most robust basis for making inferences from the sample to target population.

  20. Groundwater quality

    SciTech Connect

    Ward, C.H.; Giger, W.; McCarty, P.L.

    1985-01-01

    This book is a collection of 28 selected papers presented at the First International Conference on Groundwater Quality Research, at Rice University in October 1981. Several studies provide an overview of chemical and microbial contamination. Local groundwater pollution problems in the Netherlands and metals motility in New Zealand are described. In addition, the effects to groundwater quality due to the discharge of treated wastewaters in the Netherlands, Great Britain, and Houston, Texas are described. Mathematical models are presented that can be used to simulate and predict the transport of contaminants in a saturated groundwater system. Studies describing the sorption of halogenated hydrocarbons, the survival and transport of pathogenic bacteria, the biodegradation of contaminants, and anaerobic transformation in subsurface environments are included. Other topics of discussion include methods for obtaining representative groundwater samples, methods for assessing groundwater problems, methods for designing and constructing microcosms and the microbial characterization of subsurface systems.

  1. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016

    SciTech Connect

    Nguyen, Jason; Smith, Fred

    2016-08-01

    This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.

  2. Radon monitoring in groundwater samples from some areas of northern Rajasthan, India, using a RAD7 detector.

    PubMed

    Rani, Asha; Mehra, Rohit; Duggal, Vikas

    2013-01-01

    Radon monitoring has been increasingly conducted worldwide because of the hazardous effects of radon on the health of human beings. In the present research, groundwater samples were taken from hand pumps at different areas of the districts of SriGanganagar, Hanumangarh, Sikar and Churu in northern Rajasthan. RAD7, an electronic radon detector (Durridge co., USA), was used to estimate the radon concentration in groundwater used for drinking. Radon concentration in the groundwater ranged from 0.5 ± 0.3 Bq l(-1) (Chimanpura) to 85.7±4.9 Bq l(-1)(Khandela) with an average value of 9.03±1.03 Bq l(-1). In 89 % of the samples, radon concentration is well below the allowed maximum contamination level (MCL) of radon concentration in water of 11 Bq l(-1), proposed by US Environmental Protection Agency (USEPA). Only in 11 % of the samples, the recorded values were found to be higher than MCL proposed by USEPA and only in 5 % of the samples, the recorded values were found to be higher than the values between 4 and 40 Bq l(-1) suggested for radon concentration in water for human consumption by the United Nations Scientific Committee on the effect of Atomic Radiation (UNSCEAR). The annual effective dose in stomach and lungs per person was also evaluated in this research. The estimated total annual effective dose of adults ranged from 1.34 to 229.68 µSv y(-1). The total annual effective dose from three locations of the studied area was found to be greater than the safe limit (0.1 mSv y(-1)) recommended by World Health Organization and EU Council.

  3. Sampling and analysis plan for groundwater and surface water monitoring at the Y-12 Plant during calendar year 1996

    SciTech Connect

    1995-10-01

    This plan provides a description of the groundwater and surface-water quality monitoring activities planned for calendar year (CY) 1996 at the Department of Energy (DOE) Y-12 Plant. Included in this plan are the monitoring activities managed by the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Other groundwater and surface water monitoring activities, such as selected Environmental Restoration Program activities, and National Pollution Discharge Elimination System monitoring, not managed through the Y-12 Plant GWPP are not addressed in this report. The requirements of several monitoring drivers will be implemented in one comprehensive monitoring program during CY 1996. These drivers may be regulatory DOE Orders, or best-management practices. The CY 1996 monitoring program will encompass three hydrogeologic regimes: The Bear Creek Hydrogeologic Regime, the Upper East Fork Poplar Creek Hydrogeologic Regime, and the Chestnut Ridge Hydrogeologic Regime. The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. For various reasons, modifications to the CY 1996 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected wells, or wells could be added to or deleted from the monitoring network. Al] modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  4. Sampling and analysis plan for groundwater and surface water monitoring at the Y-12 Plant during calendar year 1995

    SciTech Connect

    1994-10-01

    This plan provides a description of the groundwater and surface-water quality monitoring activities planned for calendar year (CY) 1995 at the Department of Energy Y-12 Plant. Included in this plan are the monitoring activities managed by the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Other groundwater and surface water monitoring activities (e.g. selected Environmental Restoration Program activities, National Pollution Discharge Elimination System (NPDES) monitoring) not managed through the Y-12 Plant GWPP are not addressed in this report. Several monitoring programs will be implemented in three hydrogeologic regimes: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. For various reasons, modifications to the 1995 monitoring programs may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected wells, or wells could be added to or deleted from the monitoring network. All modifications to the monitoring programs will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  5. Data Validation Package October 2015 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January 2016

    SciTech Connect

    Nguyen, Jason; Smith, Fred

    2016-01-21

    Sampling Period: October 12–14, 2015. This semiannual event includes sampling groundwater and surface water at the Monticello Mill Tailings Site. Sampling and analyses were conducted as specified in the 2004 Monticello Mill Tailings Site Operable Unit III Post-Record of Decision Monitoring Plan, Draft Final and Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Samples were collected from 52 of 61 planned locations (15 of 17 former mill site wells, 17 of 18 downgradient wells, 9 of 9 downgradient permeable reactive barrier wells, 2 of 7 seeps and wetlands, and 9 of 10 surface water locations). Locations MW00-07, Seep 1, Seep 2, Seep 3, Seep 5, Seep 6, SW00-01, T01-13, and T01-19 were not sampled because of insufficient water availability. All samples were filtered as specified in the monitoring plan. Duplicate samples were collected from surface water location W3-04 and from monitoring wells 82-08, 92-09, and 92-10. Water levels were measured at all but one sampled well and an additional set of wells. The contaminants of concern (COCs) for the Monticello Mill Tailings Site are arsenic, manganese, molybdenum, nitrate + nitrite as nitrogen (nitrate + nitrite as N), selenium, uranium, and vanadium. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in this report. Locations with COCs that exceeded remediation goals are listed.

  6. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    SciTech Connect

    Linard, Joshua; Price, Jeffrey

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green River location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.

  7. Fully automated decomposition of Raman spectra into individual Pearson's type VII distributions applied to biological and biomedical samples.

    PubMed

    Schulze, H Georg; Atkins, Chad G; Devine, Dana V; Blades, Michael W; Turner, Robin F B

    2015-01-01

    Rapid technological advances have made the acquisition of large numbers of spectra not only feasible, but also routine. As a result, a significant research effort is focused on semi-automated and fully automated spectral processing techniques. However, the need to provide initial estimates of the number of peaks, their band shapes, and the initial parameters of these bands presents an obstacle to the full automation of peak fitting and its incorporation into fully automated spectral-preprocessing workflows. Moreover, the sensitivity of peak-fit routines to initial parameter settings and the resultant variations in solution quality further impede user-free operation. We have developed a technique to perform fully automated peak fitting on fully automated preconditioned spectra-specifically, baseline-corrected and smoothed spectra that are free of cosmic-ray-induced spikes. Briefly, the tallest peak in a spectrum is located and a Gaussian peak-fit is performed. The fitted peak is then subtracted from the spectrum, and the procedure is repeated until the entire spectrum has been processed. In second and third passes, all the peaks in the spectrum are fitted concurrently, but are fitted to a Pearson Type VII model using the parameters for the model established in the prior pass. The technique is applied to a synthetic spectrum with several peaks, some of which have substantial overlap, to test the ability of the method to recover the correct number of peaks, their true shape, and their appropriate parameters. Finally the method is tested on measured Raman spectra collected from human embryonic stem cells and samples of red blood cells.

  8. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  9. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    SciTech Connect

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  10. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    SciTech Connect

    Johnson, Dick; Tsosie, Bernadette

    2015-08-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  11. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, Philip T.; Flanagan, Sarah M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.

  12. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, P.T.; Flanagan, S.M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.

  13. Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples

    NASA Technical Reports Server (NTRS)

    Sundaram, Shivshankar; Prabhakarpandian, Balabhaskar; Pant, Kapil; Wang, Yi

    2014-01-01

    RNA isolation is a ubiquitous need, driven by current emphasis on microarrays and miniaturization. With commercial systems requiring 100,000 to 1,000,000 cells for successful isolation, there is a growing need for a small-footprint, easy-to-use device that can harvest nucleic acids from much smaller cell samples (1,000 to 10,000 cells). The process of extraction of RNA from cell cultures is a complex, multi-step one, and requires timed, asynchronous operations with multiple reagents/buffers. An added complexity is the fragility of RNA (subject to degradation) and its reactivity to surface. A novel, microfluidics-based, integrated cartridge has been developed that can fully automate the complex process of RNA isolation (lyse, capture, and elute RNA) from small cell culture samples. On-cartridge cell lysis is achieved using either reagents or high-strength electric fields made possible by the miniaturized format. Traditionally, silica-based, porous-membrane formats have been used for RNA capture, requiring slow perfusion for effective capture. In this design, high efficiency capture/elution are achieved using a microsphere-based "microfluidized" format. Electrokinetic phenomena are harnessed to actively mix microspheres with the cell lysate and capture/elution buffer, providing important advantages in extraction efficiency, processing time, and operational flexibility. Successful RNA isolation was demonstrated using both suspension (HL-60) and adherent (BHK-21) cells. Novel features associated with this development are twofold. First, novel designs that execute needed processes with improved speed and efficiency were developed. These primarily encompass electric-field-driven lysis of cells. The configurations include electrode-containing constructs, or an "electrode-less" chip design, which is easy to fabricate and mitigates fouling at the electrode surface; and the "fluidized" extraction format based on electrokinetically assisted mixing and contacting of microbeads

  14. Automated sample preparation coupled to sequential injection chromatography: on-line filtration and dilution protocols prior to separation.

    PubMed

    Zacharis, Constantinos K; Verdoukas, Aspasia; Tzanavaras, Paraskevas D; Themelis, Demetrius G

    2009-04-05

    Sequential injection chromatography (SIC) is a valuable tool in analytical chemistry as it can combine the automation capabilities of low pressure continuous flow techniques and the separation power of HPLC into a single instrumental configuration. The present study reports an automated SI setup allowing on-line filtration and dilution of the samples before separation through a short monolithic column. The applicability of the procedure was evaluated by studying the behavior of acyclovir formulations under forced degradation conditions. Minimal sample preparation is required prior to analysis. Thorough validation of the on-line dilution SIC assay was carried out and proved its validity in terms of critical parameters such as precision, accuracy and robustness. The results were evaluated by parallel experiments and analysis using the procedure recommended by the USP based on conventional HPLC using particulate-based column.

  15. Iodine-129 Analysis of NTS Near-Field Groundwater Samples on the Multi-Collector ICP-MS

    SciTech Connect

    Williams, R; Ramon, E; Moran, J E; Rose, T P

    2005-02-01

    Iodine was chemically separated from NTS near-field groundwater samples and analyzed for its {sup 129}I/{sup 129}I ratio on a Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). The measured ratios were then compared to {sup 129}I/{sup 129}I ratios for identical samples run on the Accelerator Mass Spectrometer (AMS). The MC-ICPMS results in some cases differed from the AMS values by more than an order of magnitude. The disparity in the results is due to isobaric interferences at mass 129 from polyatomic species and {sup 129}Xe in the MC-ICPMS plasma gas. It is anticipated that the interferences can be largely eliminated by (1) improving the molybdenum separation chemistry using a {sup 92}Mo-spike precipitation method, and (2) introducing O{sub 2} to the plasma gas to reduce the {sup 129}Xe interference. The MC-ICPMS detection limit for {sup 129}I/{sup 127}I (measured on reference standards) is on the order of 1E-6 or slightly lower. Most near-field groundwater samples have {sup 129}I/{sup 127}I ratios >1E-6, and should be measurable on the MC-ICPMS once the isobaric interference issues are resolved.

  16. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP

    SciTech Connect

    Swanson, Juliet S.; Reed, Donald T.; Ams, David A.; Norden, Diana; Simmons, Karen A.

    2012-07-10

    This report summarizes the progress made in the ongoing task of characterizing the microbial community structures within the WIPP repository and in surrounding groundwaters. Through cultivation and DNA-based identification, the potential activity of these organisms is being inferred, thus leading to a better understanding of their impact on WIPP performance. Members of the three biological domains - Bacteria, Archaea, and Eukarya (in this case, Fungi) - that are associated with WIPP halite have been identified. Thus far, their activity has been limited to aerobic respiration; anaerobic incubations are underway. WIPP halite constitutes the near-field microbial environment. We expect that microbial activity in this setting will proceed from aerobic respiration, through nitrate reduction to focus on sulfate reduction. This is also the current WIPP performance assessment (PA) position. Sulfate reduction can occur at extremely high ionic strengths, and sulfate is available in WIPP brines and in the anhydrite interbeds. The role of methanogenesis in the WIPP remains unclear, due to both energetic constraints imposed by a high-salt environment and substrate selectivity, and it is no longer considered in PA. Archaea identified in WIPP halite thus far fall exclusively within the family Halobacteriaceae. These include Halobacterium noricense, cultivated from both low- and high-salt media, and a Halorubrum-like species. The former has also been detected in other salt mines worldwide; the latter likely constitutes a new species. Little is known of its function, but it was prevalent in experiments investigating the biodegradation of organic complexing agents in WIPP brines. Bacterial signatures associated with WIPP halite include members of the phylum Proteobacteria - Halomonas, Pelomonas, Limnobacter, and Chromohalobacter - but only the latter has been isolated. Also detected and cultivated were Salinicoccus and Nesterenkonia spp. Fungi were also isolated from halite. Although

  17. Comparison of Automated and Manual DNA Isolation Methods for DNA Methylation Analysis of Biopsy, Fresh Frozen, and Formalin-Fixed, Paraffin-Embedded Colorectal Cancer Samples.

    PubMed

    Kalmár, Alexandra; Péterfia, Bálint; Wichmann, Barnabás; Patai, Árpád V; Barták, Barbara K; Nagy, Zsófia B; Furi, István; Tulassay, Zsolt; Molnár, Béla

    2015-12-01

    Automated DNA isolation can decrease hands-on time in routine pathology. Our aim was to apply automated DNA isolation and perform DNA methylation analyses. DNA isolation was performed manually from fresh frozen (CRC = 10, normal = 10) specimens and colonic biopsies (CRC = 10, healthy = 10) with QIAamp DNA Mini Kit and from FFPE blocks (CRC = 10, normal = 10) with QIAamp DNA FFPET Kit. Automated DNA isolation was performed with MagNA Pure DNA and Viral NA SV kit on MagNA Pure 96 system. DNA methylation of MAL, SFRP1, and SFRP2 were analyzed with methylation-specific high-resolution melting analysis. Yield of automatically isolated samples was equal in fresh frozens and significantly lower compared to manually isolated biopsy and FFPE samples. OD260/280 of fresh frozen and biopsy samples were similar after both isolations, automated isolation resulted in lower purity in FFPE samples. Both protocols resulted in similar OD260/230 from fresh frozens, automated isolation method was superior in biopsies and manual protocol in FFPE samples. DNA methylation of biopsies, fresh frozen samples were highly similar after both methods, results of automatically and manually isolated FFPE samples were different. Automated DNA isolation from fresh frozen samples can be suitable for high-throughput laboratories. © 2015 Society for Laboratory Automation and Screening.

  18. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    SciTech Connect

    Linard, Joshua; Price, Jeffrey

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  19. Task summary for cone penetrating testing sounding and soil and groundwater sampling Salmon Site, Lamar County, Mississippi

    SciTech Connect

    Not Available

    1994-10-01

    The Salmon Site (SS), located in Mississippi, was the site of two nuclear and two gas explosion testes conducted deep underground in the Tatum Salt Dome between 1964 and 1970. As a consequence radionuclides generated during the testing were released into the salt dome. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. US DOE is conducting a series of investigations as a part of the Remedial Investigation and Feasibility Study (under CERCLA) This report summarizes the cone penetrometer testing (CPT) and sampling program conducted in fall 1993, providing a description of the activities and a discussion of the results. The objectives of the CPT program were to determine subsurface conditions and stratification; determine the depth to the potentiometric surface; obtain soil samples from predetermined depths; obtain groundwater samples at predetermined depths.

  20. Groundwater Sampling and Soil Gas Data Analysis, Distler Brickyard Superfund Site, Hardin County, Kentucky -- June - August 2000

    SciTech Connect

    Martin, Jennifer Pauline; Peterson, Lance Nutting; Taylor, C. J.

    2000-11-01

    This report describes the results of groundwater and soil gas sampling conducted at the Distler Brickyard Site, Hardin County, Kentucky, June-August, 2000. The purpose of the sampling activities was to address remaining data gaps regarding the feasibility of monitored natural attenuation (MNA) for remediation of chloroethene/ane contamination. Specifically, data gaps fall into four categories: 1) effect of seasonal recharge on contaminant concentrations, 2) geochemical conditions in the Fine Grained Alluvium (FGA), 3) conditions along the flowpath between Wells GW-11 and MW-3, and 4) the extent of aerobic degradation in the Coarse Grained Alluvium (CGA). A data collection strategy composed of both groundwater sampling and passive soil vapor sampling devices (Gore-Sorbers?) was used. The Gore-Sorber? technology was used to collect data from the FGA, which because of its low hydraulic conductivity and variable saturation makes collection of groundwater samples problematic. Gore-Sorbers were deployed in 15 wells, most of them being in the FGA, and groundwater samples were collected in 17 wells, which were mostly in the CGA. Both sampling methods were utilized in a subset of wells (7) in order to determine the general comparability of results obtained from each method. Results indicate that water levels in both the FGA and CGA were higher in June-August 2000 than in October 1999, likely due to increased infiltration of precipitation through the FGA during the wetter months. Redox conditions in the FGA and downgradient CGA were iron-reducing, less reducing than in October-1999. In general, concentrations of chloroethenes/anes were higher in June-August 2000 than October 1999. Trichloroethene (TCE) was present at concentrations as high as 65 µg/L in the FGA and 19 µg/L in the CGA. This is substantially higher than the maximum concentration in October 1999 of 11 µg/L. The following conclusions were drawn from these data collection activities: 1) two potential

  1. Distribution of U and REE on colloids in granitic groundwater and quality-controlled sampling at the Mizunami underground research laboratory

    NASA Astrophysics Data System (ADS)

    Munemoto, Takashi; Ohmori, Kazuaki; Iwatsuki, Teruki

    2014-12-01

    Colloids and their association with analogue elements, uranium, and rare earth elements (REEs), in deep granitic groundwater were investigated at the Mizunami Underground Research Laboratory (MIU). Groundwater was sampled from underground boreholes and gallery walls, and the colloids were separated by size-fractionated ultrafiltration (pore sizes, 0.2 μm, 10 kDa, and 1 kDa). For the groundwater sampled from fractures in excavation walls, the size-fractionated concentrations of the colloid-forming elements were approximately constant relative to different size fractions (0.2 μm, 200 kDa, 50 kDa, and 10 kDa). The contamination of Fe- and Al-bearing materials was insignificant in the filtered groundwater from fracture seepages. Changes in the concentrations of U in the groundwater sampled from boreholes and excavation walls were associated with the Al-bearing colloids, Fe-bearing colloids, and organic matter. The REE-bearing material(s) that were >0.2 μm in size were mobile in the deep granitic groundwater, rather than occurring in association with Al-bearing, Fe-bearing colloids, and organic matter. It is suggested that sampling from water-conducting fractures in host rock and colloid elimination in borehole are important components of water quality control in geochemical investigations.

  2. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography

    DTIC Science & Technology

    1980-03-01

    interpreting/smoothing data containing a significant percentage of gross errors, and thus is ideally suited for applications in automated image ... analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of the paper describes the application of

  3. ARAM: an automated image analysis software to determine rosetting parameters and parasitaemia in Plasmodium samples.

    PubMed

    Kudella, Patrick Wolfgang; Moll, Kirsten; Wahlgren, Mats; Wixforth, Achim; Westerhausen, Christoph

    2016-04-18

    Rosetting is associated with severe malaria and a primary cause of death in Plasmodium falciparum infections. Detailed understanding of this adhesive phenomenon may enable the development of new therapies interfering with rosette formation. For this, it is crucial to determine parameters such as rosetting and parasitaemia of laboratory strains or patient isolates, a bottleneck in malaria research due to the time consuming and error prone manual analysis of specimens. Here, the automated, free, stand-alone analysis software automated rosetting analyzer for micrographs (ARAM) to determine rosetting rate, rosette size distribution as well as parasitaemia with a convenient graphical user interface is presented. Automated rosetting analyzer for micrographs is an executable with two operation modes for automated identification of objects on images. The default mode detects red blood cells and fluorescently labelled parasitized red blood cells by combining an intensity-gradient with a threshold filter. The second mode determines object location and size distribution from a single contrast method. The obtained results are compared with standardized manual analysis. Automated rosetting analyzer for micrographs calculates statistical confidence probabilities for rosetting rate and parasitaemia. Automated rosetting analyzer for micrographs analyses 25 cell objects per second reliably delivering identical results compared to manual analysis. For the first time rosette size distribution is determined in a precise and quantitative manner employing ARAM in combination with established inhibition tests. Additionally ARAM measures the essential observables parasitaemia, rosetting rate and size as well as location of all detected objects and provides confidence intervals for the determined observables. No other existing software solution offers this range of function. The second, non-malaria specific, analysis mode of ARAM offers the functionality to detect arbitrary objects

  4. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    USGS Publications Warehouse

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  5. Automated Gel Size Selection to Improve the Quality of Next-generation Sequencing Libraries Prepared from Environmental Water Samples.

    PubMed

    Uyaguari-Diaz, Miguel I; Slobodan, Jared R; Nesbitt, Matthew J; Croxen, Matthew A; Isaac-Renton, Judith; Prystajecky, Natalie A; Tang, Patrick

    2015-04-17

    Next-generation sequencing of environmental samples can be challenging because of the variable DNA quantity and quality in these samples. High quality DNA libraries are needed for optimal results from next-generation sequencing. Environmental samples such as water may have low quality and quantities of DNA as well as contaminants that co-precipitate with DNA. The mechanical and enzymatic processes involved in extraction and library preparation may further damage the DNA. Gel size selection enables purification and recovery of DNA fragments of a defined size for sequencing applications. Nevertheless, this task is one of the most time-consuming steps in the DNA library preparation workflow. The protocol described here enables complete automation of agarose gel loading, electrophoretic analysis, and recovery of targeted DNA fragments. In this study, we describe a high-throughput approach to prepare high quality DNA libraries from freshwater samples that can be applied also to other environmental samples. We used an indirect approach to concentrate bacterial cells from environmental freshwater samples; DNA was extracted using a commercially available DNA extraction kit, and DNA libraries were prepared using a commercial transposon-based protocol. DNA fragments of 500 to 800 bp were gel size selected using Ranger Technology, an automated electrophoresis workstation. Sequencing of the size-selected DNA libraries demonstrated significant improvements to read length and quality of the sequencing reads.

  6. AutoMate Express™ forensic DNA extraction system for the extraction of genomic DNA from biological samples.

    PubMed

    Liu, Jason Y; Zhong, Chang; Holt, Allison; Lagace, Robert; Harrold, Michael; Dixon, Alan B; Brevnov, Maxim G; Shewale, Jaiprakash G; Hennessy, Lori K

    2012-07-01

    The AutoMate Express™ Forensic DNA Extraction System was developed for automatic isolation of DNA from a variety of forensic biological samples. The performance of the system was investigated using a wide range of biological samples. Depending on the sample type, either PrepFiler™ lysis buffer or PrepFiler BTA™ lysis buffer was used to lyse the samples. After lysis and removal of the substrate using LySep™ column, the lysate in the sample tubes were loaded onto AutoMate Express™ instrument and DNA was extracted using one of the two instrument extraction protocols. Our study showed that DNA was recovered from as little as 0.025 μL of blood. DNA extracted from casework-type samples was free of detectable PCR inhibitors and the short tandem repeat profiles were complete, conclusive, and devoid of any PCR artifacts. The system also showed consistent performance from day-to-day operation. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  7. Effective detection of CO2 leakage: a comparison of groundwater sampling and pressure monitoring

    SciTech Connect

    Keating, Elizabeth; Dai, Zhenxue; Dempsey, David; Pawar, Rajesh

    2014-12-31

    Shallow aquifer monitoring is likely to be a required aspect to any geologic CO2 sequestration operation. Collecting groundwater samples and analyzing for geochemical parameters such as pH, alkalinity, total dissolved carbon, and trace metals has been suggested by a number of authors as a possible strategy to detect CO2 leakage. The effectiveness of this approach, however, will depend on the hydrodynamics of the leak-induced CO2 plume and the spatial distribution of the monitoring wells relative to the origin of the leak. To our knowledge, the expected effectiveness of groundwater sampling to detect CO2 leakage has not yet been quantitatively assessed. In this study we query hundreds of simulations developed for the National Risk Assessment Project (US DOE) to estimate risks to drinking water resources associated with CO2 leaks. The ensemble of simulations represent transient, 3-D multi-phase reactive transport of CO2 and brine leaked from a sequestration reservoir, via a leaky wellbore, into an unconfined aquifer. Key characteristics of the aquifer, including thickness, mean permeability, background hydraulic gradient, and geostatistical measures of aquifer heterogeneity, were all considered uncertain parameters. Complex temporally-varying CO2 and brine leak rate scenarios were simulated using a heuristic scheme with ten uncertain parameters. The simulations collectively predict the spatial and temporal evolution of CO2 and brine plumes over 200 years in a shallow aquifer under a wide range of leakage scenarios and aquifer characteristics. Using spatial data from an existing network of shallow drinking water wells in the Edwards Aquifer, TX, as one illustrative example, we calculated the likelihood of leakage detection by groundwater sampling. In this monitoring example, there are 128 wells available for sampling, with a density of about 2.6 wells per square kilometer. If the

  8. Automation impact study of Army training management 2: Extension of sampling and collection of installation resource data

    SciTech Connect

    Sanquist, T.F.; McCallum, M.C.; Hunt, P.S.; Slavich, A.L.; Underwood, J.A.; Toquam, J.L.; Seaver, D.A.

    1989-05-01

    This automation impact study of Army training management (TM) was performed for the Army Development and Employment Agency (ADEA) and the Combined Arms Training Activity (CATA) by the Battelle Human Affairs Research Centers and the Pacific Northwest Laboratory. The primary objective of the study was to provide the Army with information concerning the potential costs and savings associated with automating the TM process. This study expands the sample of units surveyed in Phase I of the automation impact effort (Sanquist et al., 1988), and presents data concerning installation resource management in relation to TM. The structured interview employed in Phase I was adapted to a self-administered survey. The data collected were compatible with that of Phase I, and both were combined for analysis. Three US sites, one reserve division, one National Guard division, and one unit in the active component outside the continental US (OCONUS) (referred to in this report as forward deployed) were surveyed. The total sample size was 459, of which 337 respondents contributed the most detailed data. 20 figs., 62 tabs.

  9. A device for automated direct sampling and quantitation from solid-phase sorbent extraction cards by electrospray tandem mass spectrometry.

    PubMed

    Wachs, Timothy; Henion, Jack

    2003-04-01

    A new solid-phase extraction (SPE) device in the 96-well format (SPE Card) has been employed for automated off-line sample preparation of low-volume urine samples. On-line automated analyte elution via SPE and direct quantitation by micro ion spray mass spectrometry is reported. This sample preparation device has the format of a microtiter plate and is molded in a plastic frame which houses 96 separate sandwiched 3M Empore sorbents (0.5-mm-thickness, 8-microm particles) covered on both sides by a microfiber support material. Ninety-six discrete SPE zones, each 7 mm in diameter, are imbedded into the sheet in the conventional 9-mm pitch (spacing) of a 96-well microtiter plate. In this study one-quarter of an SPE Card (24 individual zones) was used merely as a convenience. After automated off-line interference elution of applied human urine from 24 samples, a section of SPE Card is mounted vertically on a computer-controlled X, Y, Z positioner in front of a micro ion spray direct sampling tube equipped with a beveled tip. The beveled tip of this needle robotically penetrates each SPE elution zone (sorbent disk) or stationary phase in a serial fashion. The eluted analytes are sequentially transferred directly to a microelectrosprayer to obtain tandem mass spectrometric (MS/MS) analysis. This strategy precludes any HPLC separation and the associated method development. The quantitative determination of Ritalin (methylphenidate) from fortified human urine samples is demonstrated. A trideuterated internal standard of methylphenidate was used to obtain ion current response ratios between the parent drug and the internal standard. Human control urine samples fortified from 6.6 to 3300 ng/mL (normal therapeutic levels have been determined in other studies to be between 50 and 100 ng/mL urine) were analyzed and a linear calibration curve was obtained with a correlation coefficient of 0.9999, where the precision of the quality control (QC) samples ranged from 9.6% at the 24

  10. Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33.

    PubMed

    Round, A R; Franke, D; Moritz, S; Huchler, R; Fritsche, M; Malthan, D; Klaering, R; Svergun, D I; Roessle, M

    2008-10-01

    There is a rapidly increasing interest in the use of synchrotron small-angle X-ray scattering (SAXS) for large-scale studies of biological macromolecules in solution, and this requires an adequate means of automating the experiment. A prototype has been developed of an automated sample changer for solution SAXS, where the solutions are kept in thermostatically controlled well plates allowing for operation with up to 192 samples. The measuring protocol involves controlled loading of protein solutions and matching buffers, followed by cleaning and drying of the cell between measurements. The system was installed and tested at the X33 beamline of the EMBL, at the storage ring DORIS-III (DESY, Hamburg), where it was used by over 50 external groups during 2007. At X33, a throughput of approximately 12 samples per hour, with a failure rate of sample loading of less than 0.5%, was observed. The feedback from users indicates that the ease of use and reliability of the user operation at the beamline were greatly improved compared with the manual filling mode. The changer is controlled by a client-server-based network protocol, locally and remotely. During the testing phase, the changer was operated in an attended mode to assess its reliability and convenience. Full integration with the beamline control software, allowing for automated data collection of all samples loaded into the machine with remote control from the user, is presently being implemented. The approach reported is not limited to synchrotron-based SAXS but can also be used on laboratory and neutron sources.

  11. Automated high throughput nucleic acid purification from formalin-fixed paraffin-embedded tissue samples for next generation sequence analysis

    PubMed Central

    Haile, Simon; Pandoh, Pawan; McDonald, Helen; Corbett, Richard D.; Tsao, Philip; Kirk, Heather; MacLeod, Tina; Jones, Martin; Bilobram, Steve; Brooks, Denise; Smailus, Duane; Steidl, Christian; Scott, David W.; Bala, Miruna; Hirst, Martin; Miller, Diane; Moore, Richard A.; Mungall, Andrew J.; Coope, Robin J.; Ma, Yussanne; Zhao, Yongjun; Holt, Rob A.; Jones, Steven J.

    2017-01-01

    Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95–100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting. PMID:28570594

  12. Lab on valve-multisyringe flow injection system (LOV-MSFIA) for fully automated uranium determination in environmental samples.

    PubMed

    Avivar, Jessica; Ferrer, Laura; Casas, Montserrat; Cerdà, Víctor

    2011-06-15

    The hyphenation of lab-on-valve (LOV) and multisyringe flow analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell (LWCC), allows the spectrophotometric determination of uranium in different types of environmental sample matrices, without any manual pre-treatment, and achieving high selectivity and sensitivity levels. On-line separation and preconcentration of uranium is carried out by means of UTEVA resin. The potential of the LOV-MSFIA makes possible the fully automation of the system by the in-line regeneration of the column. After elution, uranium(VI) is spectrophotometrically detected after reaction with arsenazo-III. The determination of levels of uranium present in environmental samples is required in order to establish an environmental control. Thus, we propose a rapid, cheap and fully automated method to determine uranium(VI) in environmental samples. The limit of detection reached is 1.9 ηg of uranium and depending on the preconcentrated volume; it results in ppt levels (10.3 ηg L(-1)). Different water sample matrices (seawater, well water, freshwater, tap water and mineral water) and a phosphogypsum sample (with natural uranium content) were satisfactorily analyzed.

  13. Automated high throughput nucleic acid purification from formalin-fixed paraffin-embedded tissue samples for next generation sequence analysis.

    PubMed

    Haile, Simon; Pandoh, Pawan; McDonald, Helen; Corbett, Richard D; Tsao, Philip; Kirk, Heather; MacLeod, Tina; Jones, Martin; Bilobram, Steve; Brooks, Denise; Smailus, Duane; Steidl, Christian; Scott, David W; Bala, Miruna; Hirst, Martin; Miller, Diane; Moore, Richard A; Mungall, Andrew J; Coope, Robin J; Ma, Yussanne; Zhao, Yongjun; Holt, Rob A; Jones, Steven J; Marra, Marco A

    2017-01-01

    Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.

  14. Sampling design for groundwater solute transport: Tests of methods and analysis of Cape Cod tracer test data

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.

    1991-01-01

    Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five

  15. Microbiological Comparison of Core and Groundwater Samples Collected from a Fractured Basalt Aquifier with that of Dialysis Chamber Incubated in Situ

    SciTech Connect

    Lehman, R. Michael; O'Connell, Sean P.; Banta, Amy; Fredrickson, Jim K.; Reysenbach, Anna-Louis; Kieft, Thomas L.; Colwell, Frederick S.

    2004-04-01

    Microorganisms associated with fractured basalt core were compared to those suspended in groundwater pumped from the same well in the eastern Snake River Plain Aquifer (Idaho, USA). Two wells influenced to different degrees by a mixed-waste plume in the fractured basalt aquifer were examined. In one well, an array of dialysis cells filled with either deionized water or crushed basalt was equilibrated to compare the microorganisms collected in this fashion with those from core and groundwater samples collected in a traditional manner from the same well. Analyses were performed to characterize these samples and to provide a basis for comparison. These included total cell counts by microscopy; total biomass by phospholipid fatty acid analysis; enumerations of viable aerobic heterotrophs, groups of putative aerobic co-metabolic TCE-degraders and aerobic H2-oxidizing bacteria; mineralization of 14C- labeled acetate; and enrichments for dissimilatory iron-reducing bacteria. The 16S rDNA sequences associated with DNA directly extracted from the samples were determined in selected samples following either clonal analyses or separation of PCR products by denaturing gradient gel electrophoresis. The ground water well most influenced by the waste plume had higher populations of organisms in both the groundwater and core samples. In both wells, significant differences were found between bacteria associated with the basalt core and those suspended in the groundwater. Microbial parameters measured in core samples showed high variation throughout the depth profile. Higher populations were found in the basalt- and water-filled dialysis cells incubated in the open well compared with core and groundwater samples, respectively. For a given parameter, the variation among dialysis cells incubated at different depths was much less than that observed in the core samples. Given knowledge of cell physiological changes associated with attachment and potential differences between attached

  16. Field comparison of ground-water sampling devices for hazardous waste sites: an evaluation using volatile organic compounds. Summary report Jan 87-Sep 90

    SciTech Connect

    Pohlmann, K.F.; Blegen, R.P.; Hess, J.W.

    1991-05-01

    To determine whether ground-water contamination has occurred or remediation efforts have been effective, it is necessary to collect ground-water samples in such a way that the samples are representative of ground-water conditions. Unfortunately, formation of stagnant water within conventional monitoring wells requires that these wells be purged prior to sampling, a procedure that may introduce significant bias into the determination of concentrations of sensitive constituents such as volatile organic compounds (VOCs). The use of in situ ground-water sampling devices, which minimize or eliminate the need for well purging, may help alleviate some of the difficulties associated with sampling ground-water at hazardous waste sites. In the study, several ground-water sampling devices, including two in situ systems, were field-tested to determine their capability for yielding representative VOC data. Sampling devices included a bladder pump, a bladder pump below an inflatable packer, a bailer, a bailer with a bottom-emptying device, an in situ Westbay MP System, two in situ BAT devices, and a prototype BAT well probe. The devices were field-tested at a site contaminated by a VOC plume, and the comparison was based on the ability of the devices to recover representative concentrations of the VOCs. The results of the study indicate that the tested in situ devices may eliminate the need for well purging prior to sample collection and that the resulting samples are at least as representative as those collected with a bladder pump in a conventional monitoring well.

  17. Automated Multiple-Sample Tray Manipulation Designed and Fabricated for Atomic Oxygen Facility

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Dever, Joyce A.; Banks, Bruce A.; Rutledge, Sharon K.

    2000-01-01

    Extensive improvements to increase testing capacity and flexibility and to automate the in situ Reflectance Measurement System (RMS) are in progress at the Electro-Physics Branch s Atomic Oxygen (AO) beam facility of the NASA Glenn Research Center at Lewis Field. These improvements will triple the system s capacity while placing a significant portion of the testing cycle under computer control for added reliability, repeatability, and ease of use.

  18. Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.

    PubMed

    Peters, Carl N; Evans, Iain E J

    2016-12-01

    Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.

  19. Automated fluid analysis apparatus and techniques

    DOEpatents

    Szecsody, James E.

    2004-03-16

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  20. Automated Sampling and Imaging of Analytes Separated on Thin-Layer Chromatography Plates Using Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos

    2006-01-01

    Modest modifications to the atmospheric sampling capillary of a commercial electrospray mass spectrometer and upgrades to an in-house developed surface positioning control software package (HandsFree TLC/MS ) were used to enable the automated sampling and imaging of analytes on and/or within large area surface substrates using desorption electrospray ionization mass spectrometry. Sampling and imaging of rhodamine dyes separated on TLC plates were used to illustrate some of the practical applications of this system. Examples are shown for user-defined spot sampling from separated bands on a TLC plate (one or multiple spots), scanning of a complete development lane (one or multiple lanes), or imaging of analyte bands in a development lane (i.e. multiple lane scans with close spacing). The post data processing and data display aspects of the software system are also discussed.

  1. A compact tritium enrichment unit for large sample volumes with automated re-filling and higher enrichment factor.

    PubMed

    Kumar, B; Han, L-F; Wassenaar, L I; Klaus, P M; Kainz, G G; Hillegonds, D; Brummer, D; Ahmad, M; Belachew, D L; Araguás, L; Aggarwal, P

    2016-12-01

    Tritium ((3)H) in natural waters is a powerful tracer of hydrological processes, but its low concentrations require electrolytic enrichment before precise measurements can be made with a liquid scintillation counter. Here, we describe a newly developed, compact tritium enrichment unit which can be used to enrich up to 2L of a water sample. This allows a high enrichment factor (>100) for measuring low (3)H contents of <0.05TU. The TEU uses a small cell (250mL) with automated re-filling and a CO2 bubbling technique to neutralize the high alkalinity of enriched samples. The enriched residual sample is retrieved from the cell under vacuum by cryogenic distillation at -20°C and the tritium enrichment factor for each sample is accurately determined by measuring pre- and post- enrichment (2)H concentrations with laser spectrometry.

  2. Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program

    USGS Publications Warehouse

    Hardy, M.A.; Leahy, P.P.; Alley, W.M.

    1989-01-01

    Several pilot projects are being conducted as part of the National Water Quality Assessment (NAWQA) Program. The purpose of the pilot program is to test and refine concepts for a proposed full-scale program. Three of the pilot projects are specifically designed to assess groundwater. The purpose of this report is to describe the criteria that are being used in the NAWQA pilot projects for selecting and documenting wells, installing new wells, and sampling wells for different water quality constituents. Guidelines are presented for the selection of wells for sampling. Information needed to accurately document each well includes site characteristics related to the location of the well, land use near the well, and important well construction features. These guidelines ensure the consistency of the information collected and will provide comparable data for interpretive purposes. Guidelines for the installation of wells are presented and include procedures that need to be followed for preparations prior to drilling, the selection of the drilling technique and casing type, the grouting procedure, and the well-development technique. A major component of the protocols is related to water quality sampling. Tasks are identified that need to be completed prior to visiting the site for sampling. Guidelines are presented for purging the well prior t sampling, both in terms of the volume of water pumped and the chemical stability of field parameters. Guidelines are presented concerning sampler selection as related to both inorganic and organic constituents. Documentation needed to describe the measurements and observations related to sampling each well and treating and preserving the samples are also presented. Procedures are presented for the storage and shipping of water samples, equipment cleaning, and quality assurance. Quality assurance guidelines include the description of the general distribution of the various quality assurance samples (blanks, spikes, duplicates, and

  3. Data Validation Package, April and June 2016 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site, October 2016

    SciTech Connect

    Linard, Joshua; Campbell, Sam

    2016-10-01

    This event included annual sampling of groundwater and surface water locations at the Gunnison, Colorado, Processing Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 28 monitoring wells, three domestic wells, and six surface locations in April at the processing site as specified in the draft 2010 Ground Water Compliance Action Plan for the Gunnison, Colorado, Processing Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Domestic wells 0476 and 0477 were sampled in June because the homes were unoccupied in April, and the wells were not in use. Duplicate samples were collected from locations 0126, 0477, and 0780. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up. An assessment of anomalous data is included in Attachment 3. Interpretation and presentation of results, including an assessment ofthe natural flushing compliance strategy, will be reported in the upcoming 2016 Verification Monitoring Report. U.S.

  4. Pharmacological profiles of acute myeloid leukemia treatments in patient samples by automated flow cytometry: a bridge to individualized medicine.

    PubMed

    Bennett, Teresa A; Montesinos, Pau; Moscardo, Federico; Martinez-Cuadron, David; Martinez, Joaquin; Sierra, Jorge; García, Raimundo; de Oteyza, Jaime Perez; Fernandez, Pascual; Serrano, Josefina; Fernandez, Angeles; Herrera, Pilar; Gonzalez, Ataulfo; Bethancourt, Concepcion; Rodriguez-Macias, Gabriela; Alonso, Arancha; Vera, Juan A; Navas, Begoña; Lavilla, Esperanza; Lopez, Juan A; Jimenez, Santiago; Simiele, Adriana; Vidriales, Belen; Gonzalez, Bernardo J; Burgaleta, Carmen; Hernandez Rivas, Jose A; Mascuñano, Raul Cordoba; Bautista, Guiomar; Perez Simon, Jose A; Fuente, Adolfo de la; Rayón, Consolación; Troconiz, Iñaki F; Janda, Alvaro; Bosanquet, Andrew G; Hernandez-Campo, Pilar; Primo, Daniel; Lopez, Rocio; Liebana, Belen; Rojas, Jose L; Gorrochategui, Julian; Sanz, Miguel A; Ballesteros, Joan

    2014-08-01

    We have evaluated the ex vivo pharmacology of single drugs and drug combinations in malignant cells of bone marrow samples from 125 patients with acute myeloid leukemia using a novel automated flow cytometry-based platform (ExviTech). We have improved previous ex vivo drug testing with 4 innovations: identifying individual leukemic cells, using intact whole blood during the incubation, using an automated platform that escalates reliably data, and performing analyses pharmacodynamic population models. Samples were sent from 24 hospitals to a central laboratory and incubated for 48 hours in whole blood, after which drug activity was measured in terms of depletion of leukemic cells. The sensitivity of single drugs is assessed for standard efficacy (EMAX) and potency (EC50) variables, ranked as percentiles within the population. The sensitivity of drug-combination treatments is assessed for the synergism achieved in each patient sample. We found a large variability among patient samples in the dose-response curves to a single drug or combination treatment. We hypothesize that the use of the individual patient ex vivo pharmacological profiles may help to guide a personalized treatment selection. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Summary of chemical data from onsite and laboratory analyses of groundwater samples from the surficial aquifer, Las Vegas, Nevada, April and August 1993 and September 1994

    USGS Publications Warehouse

    Reddy, Michael M.; Gunther, Charmaine D.

    2012-01-01

    Samples were collected from groundwater wells in and about the city of Las Vegas, Nevada, and were analyzed for selected major, minor and trace constituents. Analyses of blank and reference samples are summarized as mean and standard deviation values for all positive results.

  6. April 2012 Groundwater and Surface Water Sampling at the Salmon, Mississippi, Site (Data Validation Package)

    SciTech Connect

    2012-10-12

    Sampling and analysis were conducted on April 16-19, 2012, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office Of Legacy Management Sites (LMS/PLN/S04351, continually updated). Duplicate samples were collected from locations SA1-1-H, HMH-5R, SA3-4-H, SA1-2-H, Pond W of GZ, and SA5-4-4. One trip blank was collected during this sampling event.

  7. GROUND WATER ISSUE: LOW-FLOW (MINIMAL DRAWDOWN) GROUND-WATER SAMPLING PROCEDURES

    EPA Science Inventory

    This paper is intended to provide background information on the development of low-flow sampling procedures and its application under a variety of hydrogeologic settings. The sampling methodology described in this paper assumes that the monitoring goal is to sample monitoring wel...

  8. GROUND WATER ISSUE: LOW-FLOW (MINIMAL DRAWDOWN) GROUND-WATER SAMPLING PROCEDURES

    EPA Science Inventory

    This paper is intended to provide background information on the development of low-flow sampling procedures and its application under a variety of hydrogeologic settings. The sampling methodology described in this paper assumes that the monitoring goal is to sample monitoring wel...

  9. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran.

    PubMed

    Esmaeili-Vardanjani, Mostafa; Rasa, Iraj; Amiri, Vahab; Yazdi, Mohammad; Pazand, Kaveh

    2015-02-01

    The chemical analysis of 129 groundwater samples in the Kadkan area, Khorasan-e-Razavi Province, NE of Iran was evaluated to determine the hydrochemical processes, assessment of groundwater quality for irrigation purposes, corrosiveness, and scaling potential of the groundwater. Accordingly, the suitability of groundwater for irrigation was evaluated based on the sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard, and US Salinity Laboratory hazard diagram. Based on the electrical conductivity and sodium adsorption ratio, the dominant classes are C3-S1, C3-S2, C2-S1, and C4-S2. According to the Wilcox plot, about 50 % of the samples fall in the "Excellent to Good" and "Good to Permissible" classes. Besides, the Langelier saturation index, Ryznar stability index (RSI), Larson-Skold index, and Puckorius scaling index were evaluated for assessing the corrosiveness and scaling potential of the groundwater. Corrosiveness and scaling indices stated that the majority of samples are classified into "Aggressive" and "Very Aggressive" category. In addition, chloride and sulfate interfere in 90 % of the samples. Assessment of hydrochemical characteristics indicates Na-Mg-Cl as the predominant hydrochemical type. Spatial distribution of hydrochemical parameters indicates that hydrochemical processes are influenced by geology and hydrogeology of Kadkan aquifer. The Gibbs plots gave an indication that groundwater chemistry in this area may have acquired the chemistry mainly from evaporation and mineral precipitation. Grouping the samples based on Q-mode hierarchical cluster analysis helped to more separation of similar samples. The R-mode HCA grouped analyzed parameters into two groups based on similarity of hydrochemical characteristics. As a result, the samples collected in northern and southern parts of the study area show the best quality (i.e., lowest salinity) for some purposes such as irrigation and drinking.

  10. Multi-element compound specific stable isotope analysis of volatile organic compounds at trace levels in groundwater samples

    NASA Astrophysics Data System (ADS)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias

    2013-04-01

    Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation

  11. A new automated sample transfer system for instrumental neutron activation analysis.

    PubMed

    Ismail, S S

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas.

  12. A New Automated Sample Transfer System for Instrumental Neutron Activation Analysis

    PubMed Central

    Ismail, S. S.

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas. PMID:20369063

  13. Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples.

    PubMed

    Marinova, Mariela; Artusi, Carlo; Brugnolo, Laura; Antonelli, Giorgia; Zaninotto, Martina; Plebani, Mario

    2013-11-01

    Although, due to its high specificity and sensitivity, LC-MS/MS is an efficient technique for the routine determination of immunosuppressants in whole blood, it involves time-consuming manual sample preparation. The aim of the present study was therefore to develop an automated sample-preparation protocol for the quantification of sirolimus, everolimus and tacrolimus by LC-MS/MS using a liquid handling platform. Six-level commercially available blood calibrators were used for assay development, while four quality control materials and three blood samples from patients under immunosuppressant treatment were employed for the evaluation of imprecision. Barcode reading, sample re-suspension, transfer of whole blood samples into 96-well plates, addition of internal standard solution, mixing, and protein precipitation were performed with a liquid handling platform. After plate filtration, the deproteinised supernatants were submitted for SPE on-line. The only manual steps in the entire process were de-capping of the tubes, and transfer of the well plates to the HPLC autosampler. Calibration curves were linear throughout the selected ranges. The imprecision and accuracy data for all analytes were highly satisfactory. The agreement between the results obtained with manual and those obtained with automated sample preparation was optimal (n=390, r=0.96). In daily routine (100 patient samples) the typical overall total turnaround time was less than 6h. Our findings indicate that the proposed analytical system is suitable for routine analysis, since it is straightforward and precise. Furthermore, it incurs less manual workload and less risk of error in the quantification of whole blood immunosuppressant concentrations than conventional methods. © 2013.

  14. Fully automated Liquid Extraction-Based Surface Sampling and Ionization Using a Chip-Based Robotic Nanoelectrospray Platform

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2010-01-01

    A fully automated liquid extraction-based surface sampling device utilizing an Advion NanoMate chip-based infusion nanoelectrospray ionization system is reported. Analyses were enabled for discrete spot sampling by using the Advanced User Interface of the current commercial control software. This software interface provided the parameter control necessary for the NanoMate robotic pipettor to both form and withdraw a liquid microjunction for sampling from a surface. The system was tested with three types of analytically important sample surface types, viz., spotted sample arrays on a MALDI plate, dried blood spots on paper, and whole-body thin tissue sections from drug dosed mice. The qualitative and quantitative data were consistent with previous studies employing other liquid extraction-based surface sampling techniques. The successful analyses performed here utilized the hardware and software elements already present in the NanoMate system developed to handle and analyze liquid samples. Implementation of an appropriate sample (surface) holder, a solvent reservoir, faster movement of the robotic arm, finer control over solvent flow rate when dispensing and retrieving the solution at the surface, and the ability to select any location on a surface to sample from would improve the analytical performance and utility of the platform.

  15. Validation of a fully automated robotic setup for preparation of whole blood samples for LC-MS toxicology analysis.

    PubMed

    Andersen, David; Rasmussen, Brian; Linnet, Kristian

    2012-05-01

    A fully automated setup was developed for preparing whole blood samples using a Tecan Evo workstation. By integrating several add-ons to the robotic platform, the flexible setup was able to prepare samples from sample tubes to a 96-well sample plate ready for injection on liquid chromatography-mass spectrometry using several preparation techniques, including protein precipitation, solid-phase extraction and centrifugation, without any manual intervention. Pipetting of a known aliquot of whole blood was achieved by integrating a balance and performing gravimetric measurements. The system was able to handle 1,073 of 1,092 (98.3%) samples of whole blood from forensic material, including postmortem samples, without any need for repeating sample preparation. Only three samples required special treatment such as dilution. The addition of internal and calibration standards were validated by pipetting a solution of Orange G and measuring the weight and absorbance. Internal standard (20 µL) was added in a multi-pipetting sequence with an accuracy of 99.9% and imprecision (coefficient of variation) of 1.6%. Calibration standards were added with high accuracy at volumes as low as 6.00 µL (±0.21 µL). The general setup of the offline sample preparation and key validation parameters of a quantitative analysis of Δ(9)-tetrahydrocannabinol is presented.

  16. High-frequency, long-duration water sampling in acid mine drainage studies: a short review of current methods and recent advances in automated water samplers

    USGS Publications Warehouse

    Chapin, Thomas

    2015-01-01

    Hand-collected grab samples are the most common water sampling method but using grab sampling to monitor temporally variable aquatic processes such as diel metal cycling or episodic events is rarely feasible or cost-effective. Currently available automated samplers are a proven, widely used technology and typically collect up to 24 samples during a deployment. However, these automated samplers are not well suited for long-term sampling in remote areas or in freezing conditions. There is a critical need for low-cost, long-duration, high-frequency water sampling technology to improve our understanding of the geochemical response to temporally variable processes. This review article will examine recent developments in automated water sampler technology and utilize selected field data from acid mine drainage studies to illustrate the utility of high-frequency, long-duration water sampling.

  17. Sensitivity testing of trypanosome detection by PCR from whole blood samples using manual and automated DNA extraction methods.

    PubMed

    Dunlop, J; Thompson, C K; Godfrey, S S; Thompson, R C A

    2014-11-01

    Automated extraction of DNA for testing of laboratory samples is an attractive alternative to labour-intensive manual methods when higher throughput is required. However, it is important to maintain the maximum detection sensitivity possible to reduce the occurrence of type II errors (false negatives; failure to detect the target when it is present), especially in the biomedical field, where PCR is used for diagnosis. We used blood infected with known concentrations of Trypanosoma copemani to test the impact of analysis techniques on trypanosome detection sensitivity by PCR. We compared combinations of a manual and an automated DNA extraction method and two different PCR primer sets to investigate the impact of each on detection levels. Both extraction techniques and specificity of primer sets had a significant impact on detection sensitivity. Samples extracted using the same DNA extraction technique performed substantially differently for each of the separate primer sets. Type I errors (false positives; detection of the target when it is not present), produced by contaminants, were avoided with both extraction methods. This study highlights the importance of testing laboratory techniques with known samples to optimise accuracy of test results.

  18. An automated procedure for the simultaneous determination of specific conductance and pH in natural water samples

    USGS Publications Warehouse

    Eradmann, D.E.; Taylor, H.E.

    1978-01-01

    An automated, continuous-flow system is utilized to determine specific conductance and pH simultaneously in natural waters. A direct electrometric procedure is used to determine values in the range pH 4-9. The specific conductance measurements are made with an electronically modified, commercially available conductivity meter interfaced to a separate module containing the readout control devices and printer. The system is designed to switch ranges automatically to accommodate optimum analysis of widely varying conductances ranging from a few ??mhos cm-1 to 15,000 ??mho cm-1. Thirty samples per hour can be analyzed. Comparison of manual and automated procedures for 40 samples showed that the average differences were 1.3% for specific conductance and 0.07 units for pH. The relative standard deviation for 25 replicate values for each of five samples was significantly less than 1% for the specific conductance determination; the standard deviation for the pH determination was ??? 0.06 pH units. ?? 1978.

  19. Plan for proposed aquifer hydraulic testing and groundwater sampling at Everest, Kansas, in January-February 2006.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2006-01-31

    On September 8-9, 2005, representatives of the Kansas Department of Health and Environment (KDHE), the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), and Argonne National Laboratory met at the KDHE's offices in Topeka to review the status of the CCC/USDA's environmental activities in Kansas. A key CCC/USDA goal for this meeting was to obtain KDHE input on the selection of possible remedial approaches to be examined as part of the Corrective Action Study (CAS) for this site. As a result of the September meeting, the KDHE recommended several additional activities for the Everest site, to further assist in selecting and evaluating remedial alternatives for the CAS. The requested actions included the following: (1) Construction of several additional interpretive cross sections to improve the depiction of the hydrogeologic characteristics affecting groundwater and contaminant movement along the apparent main plume migration pathway to the north-northwest of the former CCC/USDA facility, and in the vicinity of the Nigh property. (2) Identification of potential locations for several additional monitoring wells, to better constrain the apparent western and northwestern margins of the existing groundwater plume. (3) Development of technical recommendations for a stepwise pumping study of the Everest aquifer unit in the area near and to the north of the Nigh property. On October 21, 2005, Argonne issued a brief Cross Section Analysis (Argonne 2006a) addressing these concerns, on behalf of the CCC/USDA. This report includes the following: (1) Preliminary recommendations for the siting of three new monitoring wells, at locations identified by the KDHE. Argonne also suggested, however, that the installation and sampling of these wells be deferred until after completion of the CAS evaluation. (2) A proposed strategy for testing of the Everest aquifer unit near the Nigh property, involving initial test pumping of the former Nigh domestic well and

  20. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    SciTech Connect

    Frazier, William; Baur, Gary

    2015-11-03

    The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732 and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites.

  1. March 2010 Groundwater Sampling at the Project Shoal Site, Nevada (Data Validation Package)

    SciTech Connect

    Findlay, Rick

    2011-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Project Shoal Area (Shoal) in March 2010. Wells HC-4, HC-5, HC-7, HC-8, MV-1, MV-2 and MV-3 were sampled March 10-12, 2010, as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Wells HC-1, HC-2, HC-3, and HC-6 were sampled March 24, 2010, by Desert Research Institute personnel.

  2. Application of on-line HPLC-1H NMR to environmental samples: analysis of groundwater near former ammunition plants.

    PubMed

    Godejohann, M; Preiss, A; Mügge, C; Wünsch, G

    1997-09-15

    Coupling of HPLC to NMR was applied for the first time to the analysis of environmental samples, i.e., water samples from an ammunition hazardous waste site. Using the continuous flow mode at very low flow rates (< or = 0.017 mL/min) and large volume injection (400 microL), the confirmation of many nitroaromatic compounds could be achieved down to the microgram-per-liter level after solid phase extraction of a groundwater sample from a former ammunition production site. At a flow rate of 0.006 mL/min, it is possible to detect less than 29 nmol (5 micrograms) of 1,3-dinitrobenzene injected on a 75 mm x 4 mm reversed phase C-18 column (particle size, 5 microns). The results obtained by HPLC-NMR are compared to those obtained by HPLC-PDA (photodiode array) of the same sample, demonstrating that many more compounds can be identified by the former compared to the latter method as a result of coelution of major and minor components in the HPLC chromatogram.

  3. "Aged sample" software on automated routine hematology analyzer enables differentiation between pathological and non-pathological WBC flagging in aging samples.

    PubMed

    Ulset, Ragna Aaram; Petrasch, Eveline; Saker, Jarob; Linssen, Jo; Kimura, Konobu; Uchihashi, Kinya; Philipsen, Paul; Eide, Arne

    2014-01-01

    Storing K(x)EDTA-conjugated blood samples at room temperature or under insufficient cooling conditions results in various morphological changes such as swelling of the blood cells. These changes are reproducible and have already been described well. However, they can lead to incorrect flagging when using automated hematology analyzers for complete blood counts and white blood cell differentials. The aim of this study was to determine if those changes can be detected automatically and used to prevent false positive flagging. 150 blood samples were aged under controlled conditions and the impact on the "Aged sample" software was checked retrospectively. The results were verified in a second retrospective study including 6288 routine samples. When tested in a routine laboratory, the "Aged sample" software was able to reduce overall flagging by 23% without increasing false negative flagging. The "Aged sample" software of XN-Series analyzers does not only detect and flag samples that are aging or were stored under suboptimal conditions but also prevents false positive flagging.

  4. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti

    2015-04-01

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  5. A new automated system for the rapid analysis of atmospheric water vapor samples for stable isotope composition.

    NASA Astrophysics Data System (ADS)

    Strong, M.; Sharp, Z.; Gutzler, D.

    2004-12-01

    An automated technique for measuring the isotopic composition (δ D) of atmospheric water vapor is being developed at the University of New Mexico. Air is sampled using 12 mL glass vials with screw-on caps. Our analytical system flushes the sample vial with He, isolates the water vapor in a cold trap, and then reduces the water with carbon at 1300° C to form H2 and CO. Isotopic ratios are then measured in continuous flow using a Finnigan Delta plus XL mass spectrometer. With Albuquerque-area air, sample size is approximately 100 nanomoles of H2O. Our system is robotic and interfaces with a commercially available autosampler. This enables us to analyze ~100 air samples per day with little supervision. Standards are prepared by sampling water vapor in equilibrium with waters of known isotopic composition within a glovebox. The advantage of such a system is that it will allow us to analyze atmospheric water vapor at temporal and spatial resolutions not practical with more time-consuming traditional techniques. Sample vials are compact, inexpensive, and easy to use, enabling air samples to be acquired with little effort. One potential application for this technique includes problems requiring high temporal resolution (and a high number of samples) such as diurnal cycles of evapotranspiration. Other applications include studies of the three-dimensional spatial distribution of δ D in water vapor to assess water vapor transport pathways.

  6. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    SciTech Connect

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B.; Salim, Nazaratul Ashifa Bt. Abdullah; Ismail, Nadiah Binti

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  7. March 2011 Groundwater Sampling at the Project Shoal Site (Data Validation Package)

    SciTech Connect

    2011-07-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Project Shoal Area (Shoal) in March 2011. Wells HC-1, HC-2, HC-4, HC-5, HC-6, HC-7, MV-1, MV-2 and MV-3 were sampled as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Two extra tritium samples were collected from well HC-4, one sample (HC-4-400) was collected at about 1/3 of the purge volume (135 gallons), the second sample (HC-4-400) was collected at 2/3 of purge volume (270 gallons). These additional samples were collected prior to completing the well purging process to evaluate the effects well purging has on the analytical results. Samples were not collected from locations HC-3 and HC-8 at the direction of the S.M. Stoller Corporation site lead.

  8. Water quality and environmental isotopic analyses of ground-water samples collected from the Wasatch and Fort Union Formations in areas of coalbed methane development : implications to recharge and ground-water flow, eastern Powder River basin, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Ogle, Kathy Muller

    2002-01-01

    Chemical analyses of ground-water samples were evaluated as part of an investigation of lower Tertiary aquifers in the eastern Powder River Basin where coalbed methane is being developed. Ground-water samples were collected from two springs discharging from clinker, eight monitoring wells completed in the Wasatch aquifer, and 13 monitoring or coalbed methane production wells completed in coalbed aquifers. The ground-water samples were analyzed for major ions and environmental isotopes (tritium and stable isotopes of hydrogen and oxygen) to characterize the composition of waters in these aquifers, to relate these characteristics to geochemical processes, and to evaluate recharge and ground-water flow within and between these aquifers. This investigation was conducted in cooperation with the Wyoming State Engineer's Office and the Bureau of Land Management. Water quality in the different aquifers was characterized by major-ion composition. Samples collected from the two springs were classified as calcium-sulfate-type and calcium-bicarbonate-type waters. All ground-water samples from the coalbed aquifers were sodium-bicarbonate-type waters as were five of eight samples collected from the overlying Wasatch aquifer. Potential areal patterns in ionic composition were examined. Ground-water samples collected during this and another investigation suggest that dissolved-solids concentrations in the coalbed aquifers may be lower south of the Belle Fourche River (generally less than 600 milligrams per liter). As ground water in coalbed aquifers flows to the north and northwest away from an inferred source of recharge (clinker in the study area), dissolved-solids concentrations appear to increase. Variation in ionic composition in the vertical dimension was examined qualitatively and statistically within and between aquifers. A relationship between ionic composition and well depth was noted and corroborates similar observations by earlier investigators in the Powder River

  9. Method for Effective Calibration of Temperature Loggers with Automated Data Sampling and Evaluation

    NASA Astrophysics Data System (ADS)

    Ljungblad, S.; Josefson, L. E.; Holmsten, M.

    2011-12-01

    A highly automated calibration method for temperature loggers is presented. By using an automated procedure, a time- and cost-efficient calibration of temperature loggers is made possible. The method is directed at loggers that lack the function/property of direct reading from a display. This type of logger has to be connected to a computer for the setting-up of the measurement and again for collection of the measurement results. During the calibration, the loggers are offline. This method has been developed for temperature loggers from Gemini Data loggers, but the software and method could be modified to suit other types of loggers as well. Calibration is performed by comparison to a reference thermometer in liquid baths; and for loggers which have external sensors, only the sensor is normally placed in the bath. Loggers with internal sensors are protected from the liquid by placing them in an exterior plastic or metallic cover, and thereafter the entire loggers are placed in the bath. A digital thermometer measures the reference temperature of the bath and transmits it to a computer by way of Bluetooth. The developed calibration software, SPTempLogger, controls the logger software, and thus the communication protocol of the logger software does not need to be known. The previous method, with manual handling of the start and termination of every measuring sequence, evaluation of the resulting data and its corresponding uncertainty components, can be replaced by this automated method. Both the logger and reference measurement data are automatically downloaded once the logger has been connected to a computer after the calibration, and the calibration software started. The data are then evaluated automatically, and by statistical analysis of the confidence coefficient and standard deviation, the temperature plateaus that the calibration includes are identified. If a number of control parameters comply with the requirements, then the correction, resolution, and short

  10. May 2011 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    SciTech Connect

    Findlay, Rick

    2011-11-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on May 10-11, 2011, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the "Corrective Action Decision Document/Corrective Action Plan" completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  11. June 2012 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    SciTech Connect

    2013-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 26-27, 2012, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the "Corrective Action Decision Document/Corrective Action Plan" completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  12. May 2010 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    SciTech Connect

    2011-02-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 7-9, 2010, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  13. Non-destructive automated sampling of mycotoxins in bulk food and feed - A new tool for required harmonization.

    PubMed

    Spanjer, M; Stroka, J; Patel, S; Buechler, S; Pittet, A; Barel, S

    2001-06-01

    Mycotoxins contamination is highly non-uniformly distributed as is well recog-nized by the EC, by not only setting legal limits in a series of commodities, but also schedule a sampling plan that takes this heterogeneity into account. In practice however, it turns out that it is very difficult to carry out this sampling plan in a harmonised way. Applying the sampling plan to a container filled with pallets of bags (i.e. with nuts or coffee beans) varies from very laborious to almost impossible. The presented non-destructive automated method to sample bulk food could help to overcome these practical problems and to enforcing of EC directives. It is derived from a tested and approved technology for detection of illicit substances in security applications. It has capability to collect and iden-tify ultra trace contaminants, i.e. from a fingerprint of chemical substance in a bulk of goods, a cargo pallet load (~ 1000 kg) with boxes and commodities.The technology, patented for explosives detection, uses physical and chemistry processes for excitation and remote rapid enhanced release of contaminant residues, vapours and particulate, of the inner/outer surfaces of inspected bulk and collect them on selective probes. The process is automated, takes only 10 minutes, is non-destructive and the bulk itself remains unharmed. The system design is based on applicable international regulations for shipped cargo hand-ling and transportation by road, sea and air. After this process the pallet can be loaded on a truck, ship or plane. Analysis can be carried out before the cargo leaves the place of shipping. The potent application of this technology for myco-toxins detection, has been demonstrated by preliminary feasibility experiments. Aflatoxins were detected in pistachios and ochratoxin A in green coffee beans bulk. Both commodities were naturally contaminated, priory found and confirm-ed by common methods as used at routine inspections. Once the contaminants are extracted from a

  14. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    SciTech Connect

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  15. Variation in aluminum, iron, and particle concentrations in oxic groundwater samples collected by use of tangential-flow ultrafiltration with low-flow sampling

    NASA Astrophysics Data System (ADS)

    Szabo, Zoltan; Oden, Jeannette H.; Gibs, Jacob; Rice, Donald E.; Ding, Yuan

    2002-02-01

    Particulates that move with ground water and those that are artificially mobilized during well purging could be incorporated into water samples during collection and could cause trace-element concentrations to vary in unfiltered samples, and possibly in filtered samples (typically 0.45-um (micron) pore size) as well, depending on the particle-size fractions present. Therefore, measured concentrations may not be representative of those in the aquifer. Ground water may contain particles of various sizes and shapes that are broadly classified as colloids, which do not settle from water, and particulates, which do. In order to investigate variations in trace-element concentrations in ground-water samples as a function of particle concentrations and particle-size fractions, the U.S. Geological Survey, in cooperation with the U.S. Air Force, collected samples from five wells completed in the unconfined, oxic Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain. Samples were collected by purging with a portable pump at low flow (0.2-0.5 liters per minute and minimal drawdown, ideally less than 0.5 foot). Unfiltered samples were collected in the following sequence: (1) within the first few minutes of pumping, (2) after initial turbidity declined and about one to two casing volumes of water had been purged, and (3) after turbidity values had stabilized at less than 1 to 5 Nephelometric Turbidity Units. Filtered samples were split concurrently through (1) a 0.45-um pore size capsule filter, (2) a 0.45-um pore size capsule filter and a 0.0029-um pore size tangential-flow filter in sequence, and (3), in selected cases, a 0.45-um and a 0.05-um pore size capsule filter in sequence. Filtered samples were collected concurrently with the unfiltered sample that was collected when turbidity values stabilized. Quality-assurance samples consisted of sequential duplicates (about 25 percent) and equipment blanks. Concentrations of particles were determined by light scattering.

  16. MICROBIOLOGICAL FIELD SAMPLING AND INSTRUMENTATION IN THE ASSESSMENT OF SOIL AND GROUND-WATER POLLUTION

    EPA Science Inventory

    This chapter emphasizes the importance of microbiological sampling of soil and ground water with respect to human heath risks, laws and regulations dealing with safe drinking water, and more prevalent subsurface monitoring activities associated with chlorinated organic compounds,...

  17. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

    PubMed Central

    Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal

    2016-01-01

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016

  18. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater.

    PubMed

    Zahid, Erum; Hussain, Ijaz; Spöck, Gunter; Faisal, Muhammad; Shabbir, Javid; M AbdEl-Salam, Nasser; Hussain, Tajammal

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design.

  19. MICROBIOLOGICAL FIELD SAMPLING AND INSTRUMENTATION IN THE ASSESSMENT OF SOIL AND GROUND-WATER POLLUTION

    EPA Science Inventory

    This chapter emphasizes the importance of microbiological sampling of soil and ground water with respect to human heath risks, laws and regulations dealing with safe drinking water, and more prevalent subsurface monitoring activities associated with chlorinated organic compounds,...

  20. Determination of submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples by solid-phase extraction and liquid chromatography

    USGS Publications Warehouse

    Burkhardt, M.R.; Soliven, P.P.; Werner, S.L.; Vaught, D.G.

    1999-01-01

    A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 ??g/L. Mean recoveries and relative standard deviations were 93 ?? 13% for organicfree water samples fortified at 0.04 ??g/L and 84 ?? 4% for laboratory reagent spikes fortified at 0.5 ??g/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 ??g/L in surface water samples and from 0.01 to 0.08 ??g/L in groundwater samples.

  1. Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system.

    PubMed

    Wang, Yungang; Hopke, Philip K; Sun, Liping; Chalupa, David C; Utell, Mark J

    2011-01-01

    In this study, various laboratory and field tests were performed to develop an effective automated particle-bound ROS sampling-analysis system. The system uses 2' 7'-dichlorofluorescin (DCFH) fluorescence method as a nonspecific, general indicator of the particle-bound ROS. A sharp-cut cyclone and a particle-into-liquid sampler (PILS) were used to collect PM(2.5) atmospheric particles into slurry produced by a DCFH-HRP solution. The laboratory results show that the DCFH and H(2)O(2) standard solutions could be kept at room temperature for at least three and eight days, respectively. The field test in Rochester, NY, shows that the average ROS concentration was 8.3 ± 2.2 nmol of equivalent H(2)O(2) m(-3) of air. The ROS concentrations were observed to be greater after foggy conditions. This study demonstrates the first practical automated sampling-analysis system to measure this ambient particle component.

  2. Laboratory and Field Testing of an Automated Atmospheric Particle-Bound Reactive Oxygen Species Sampling-Analysis System

    PubMed Central

    Wang, Yungang; Hopke, Philip K.; Sun, Liping; Chalupa, David C.; Utell, Mark J.

    2011-01-01

    In this study, various laboratory and field tests were performed to develop an effective automated particle-bound ROS sampling-analysis system. The system uses 2′ 7′-dichlorofluorescin (DCFH) fluorescence method as a nonspecific, general indicator of the particle-bound ROS. A sharp-cut cyclone and a particle-into-liquid sampler (PILS) were used to collect PM2.5 atmospheric particles into slurry produced by a DCFH-HRP solution. The laboratory results show that the DCFH and H2O2 standard solutions could be kept at room temperature for at least three and eight days, respectively. The field test in Rochester, NY, shows that the average ROS concentration was 8.3 ± 2.2 nmol of equivalent H2O2 m−3 of air. The ROS concentrations were observed to be greater after foggy conditions. This study demonstrates the first practical automated sampling-analysis system to measure this ambient particle component. PMID:21577270

  3. Automated method for simultaneous lead and strontium isotopic analysis applied to rainwater samples and airborne particulate filters (PM10).

    PubMed

    Beltrán, Blanca; Avivar, Jessica; Mola, Montserrat; Ferrer, Laura; Cerdà, Víctor; Leal, Luz O

    2013-09-03

    A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate. The detection limits achieved were 0.04 ng for lead and 0.03 ng for strontium. Mass calibration curves were used since the proposed system allows the use of different sample volumes for preconcentration. Mass linear working ranges were between 0.13 and 50 ng and 0.1 and 50 ng for lead and strontium, respectively. The repeatability of the method, expressed as RSD, was 2.1% and 2.7% for Pb and Sr, respectively. Environmental samples such as rainwater and airborne particulate (PM10) filters as well as a certified reference material SLRS-4 (river water) were satisfactorily analyzed obtaining recoveries between 90 and 110% for both elements. The main features of the LOV-MSFIA-ICP-MS system proposed are the capability to renew solid phase extraction at will in a fully automated way, the remarkable stability of the column which can be reused up to 160 times, and the potential to perform isotopic analysis.

  4. An automated sample preparation system with mini-reactor to isolate and process submegabase fragments of bacterial DNA.

    PubMed

    Mollova, Emilia T; Patil, Vishal A; Protozanova, Ekaterina; Zhang, Meng; Gilmanshin, Rudolf

    2009-08-15

    Existing methods for extraction and processing of large fragments of bacterial genomic DNA are manual, time-consuming, and prone to variability in DNA quality and recovery. To solve these problems, we have designed and built an automated fluidic system with a mini-reactor. Balancing flows through and tangential to the ultrafiltration membrane in the reactor, cells and then released DNA can be immobilized and subjected to a series of consecutive processing steps. The steps may include enzymatic reactions, tag hybridization, buffer exchange, and selective removal of cell debris and by-products of the reactions. The system can produce long DNA fragments (up to 0.5 Mb) of bacterial genome restriction digest and perform DNA tagging with fluorescent sequence-specific probes. The DNA obtained is of high purity and floating free in solution, and it can be directly analyzed by pulsed-field gel electrophoresis (PFGE) or used in applications requiring submegabase DNA fragments. PFGE-ready samples of DNA restriction digests can be produced in as little as 2.1 h and require less than 10(8) cells. All fluidic operations are automated except for the injection of the sample and reagents.

  5. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    SciTech Connect

    Frazier, William; Baur, Gary

    2015-11-03

    Sampling Period: August 4, 2015. The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732, and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The water level was measured at each sampled well. The water level in well 0733, located in the disposal cell, is lower than water levels in adjacent wells 0731 and 0732, indicating a hydraulic gradient toward the disposal cell. Results from this sampling event were generally consistent with results from the past as shown in the attached concentration-versus-time graphs. There have been no large changes in contaminant concentration observed over the last several years with the following exception. The uranium concentration in well 0733 has been trending upward since 2003. High uranium concentrations are expected in this well because it is located in the disposal cell. The selenium concentrations observed in wells 0731 and 0732 are elevated when compared to the disposal cell 0733. Wells 0731 and 0732 are completed at the alluvium/Mancos contact; here, elevated selenium concentrations are expected due to contributions from the Mancos shale.

  6. Development in release testing of topical dosage forms: use of the Enhancer Cell with automated sampling.

    PubMed

    Rege, P R; Vilivalam, V D; Collins, C C

    1998-09-01

    The aim of this study was to evaluate an automated method using the Enhancer Cell and compare the release of the corticosteroid triamcinolone acetonide (TA) from commercial semisolid formulations. The method used a modified USP Apparatus 2 using the Enhancer Cell in 200 ml capacity flasks instead of the standard 900 ml flasks. The additional equipment included an adapter plate to position the flasks in the center, a cover to reduce the receptor phase evaporation and smaller sized (1/4 in.) shaft and collets. All products were evaluated prior to their expiration date. Effects of system variables such as the temperature and composition of the receptor medium, stirring speed, and the choice of membrane on the drug release were evaluated. Statistical analysis was carried out using SAS Ver. 6.07 and the slopes and intercepts (of the cumulative release/unit area versus square root of time plots) were compared. TA release was a linear function of the square root of time (P < or = 0.0001), in accordance with Higuchi's model (r2 > or = 0.9 in most cases). Temperature (32 and 37 degrees C) did not affect the drug release (P > 0.32) but a significantly higher release rate was observed (P < or = 0.0001) at 50 degrees C. Stirring speed (50, 100, 200 rpm) (P > 0.26) and receptor media composition (38 and 76% ethanol) (P > 0.68) did not significantly alter the release rates. Membrane selection (regenerated cellulose, polyethylene, and rat skin) was found to be a significant variable (P < or = 0.004). This study demonstrates the use of the Enhancer Cell as an automated quality control tool in the in vitro release testing procedure for semisolid drug formulations.

  7. Sampling Instruction: Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    SciTech Connect

    Truex, Michael J.; Vermeul, Vincent R.

    2012-05-01

    Several types of data are needed to assess the flux of Cr(VI) from the excavation into the groundwater. As described in this plan, these data include (1) temporal Cr(VI) data in the shallow groundwater beneath the pit; (2) hydrologic data to interpret groundwater flow and contaminant transport; (3) hydraulic gradient data; and (4) as a contingency action if necessary, vertical profiling of Cr(VI) concentrations in the shallow aquifer beyond the depth possible with aquifer tubes.

  8. Surveillance cultures of samples obtained from biopsy channels and automated endoscope reprocessors after high-level disinfection of gastrointestinal endoscopes

    PubMed Central

    2012-01-01

    Background The instrument channels of gastrointestinal (GI) endoscopes may be heavily contaminated with bacteria even after high-level disinfection (HLD). The British Society of Gastroenterology guidelines emphasize the benefits of manually brushing endoscope channels and using automated endoscope reprocessors (AERs) for disinfecting endoscopes. In this study, we aimed to assess the effectiveness of decontamination using reprocessors after HLD by comparing the cultured samples obtained from biopsy channels (BCs) of GI endoscopes and the internal surfaces of AERs. Methods We conducted a 5-year prospective study. Every month random consecutive sampling was carried out after a complete reprocessing cycle; 420 rinse and swabs samples were collected from BCs and internal surface of AERs, respectively. Of the 420 rinse samples collected from the BC of the GI endoscopes, 300 were obtained from the BCs of gastroscopes and 120 from BCs of colonoscopes. Samples were collected by flushing the BCs with sterile distilled water, and swabbing the residual water from the AERs after reprocessing. These samples were cultured to detect the presence of aerobic and anaerobic bacteria and mycobacteria. Results The number of culture-positive samples obtained from BCs (13.6%, 57/420) was significantly higher than that obtained from AERs (1.7%, 7/420). In addition, the number of culture-positive samples obtained from the BCs of gastroscopes (10.7%, 32/300) and colonoscopes (20.8%, 25/120) were significantly higher than that obtained from AER reprocess to gastroscopes (2.0%, 6/300) and AER reprocess to colonoscopes (0.8%, 1/120). Conclusions Culturing rinse samples obtained from BCs provides a better indication of the effectiveness of the decontamination of GI endoscopes after HLD than culturing the swab samples obtained from the inner surfaces of AERs as the swab samples only indicate whether the AERs are free from microbial contamination or not. PMID:22943739

  9. Surveillance cultures of samples obtained from biopsy channels and automated endoscope reprocessors after high-level disinfection of gastrointestinal endoscopes.

    PubMed

    Chiu, King-Wah; Tsai, Ming-Chao; Wu, Keng-Liang; Chiu, Yi-Chun; Lin, Ming-Tzung; Hu, Tsung-Hui

    2012-09-03

    The instrument channels of gastrointestinal (GI) endoscopes may be heavily contaminated with bacteria even after high-level disinfection (HLD). The British Society of Gastroenterology guidelines emphasize the benefits of manually brushing endoscope channels and using automated endoscope reprocessors (AERs) for disinfecting endoscopes. In this study, we aimed to assess the effectiveness of decontamination using reprocessors after HLD by comparing the cultured samples obtained from biopsy channels (BCs) of GI endoscopes and the internal surfaces of AERs. We conducted a 5-year prospective study. Every month random consecutive sampling was carried out after a complete reprocessing cycle; 420 rinse and swabs samples were collected from BCs and internal surface of AERs, respectively. Of the 420 rinse samples collected from the BC of the GI endoscopes, 300 were obtained from the BCs of gastroscopes and 120 from BCs of colonoscopes. Samples were collected by flushing the BCs with sterile distilled water, and swabbing the residual water from the AERs after reprocessing. These samples were cultured to detect the presence of aerobic and anaerobic bacteria and mycobacteria. The number of culture-positive samples obtained from BCs (13.6%, 57/420) was significantly higher than that obtained from AERs (1.7%, 7/420). In addition, the number of culture-positive samples obtained from the BCs of gastroscopes (10.7%, 32/300) and colonoscopes (20.8%, 25/120) were significantly higher than that obtained from AER reprocess to gastroscopes (2.0%, 6/300) and AER reprocess to colonoscopes (0.8%, 1/120). Culturing rinse samples obtained from BCs provides a better indication of the effectiveness of the decontamination of GI endoscopes after HLD than culturing the swab samples obtained from the inner surfaces of AERs as the swab samples only indicate whether the AERs are free from microbial contamination or not.

  10. October 1999 Groundwater Sampling and Data Analysis, Distler Brickyard Site, Hardin County, Kentucky

    SciTech Connect

    J. P. Martin, L. N. Peterson; C. J. Taylor

    2000-03-01

    This report describes the results of a sampling event conducted at the Distler Brickyard Superfund Site, Hardin County, Kentucky, October 1999. The purpose of the sampling event was to evaluate the extent of natural biodegradation of chlorinated aliphatic hydrocarbons (CAH) occurring at the Site. Sampling locations were selected to evaluate three areas of the suspected CAH plume: the source area, an axial cross-section, and a downgradient transect. Due to inadequate recharge to and the poor physical condition of some monitoring wells at the Site, the sampling approach was modified to reflect wells that could be sampled. Results indicate that natural anaerobic degradation of chlorinated aliphatic hydrocarbons is occurring in the presumed source area around monitoring well GW-11. The primary contaminant of concern, trichloroethene, migrates downgradient from the source area into the Coarse Grained Alluvium Aquifer at concentrations slightly greater than the Maximum Contaminant Level (MCL). Based on the available, the following hypothesis is proposed: the source area has been remediated through soil removal activities and subsequent anaerobic reductive dechlorination. If this is the case, this Site may be a good candidate for implementation of a monitored natural attenuation remedy. However, more data are necessary before this hypothesis can be confirmed.

  11. Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport

    USGS Publications Warehouse

    Knopman, D.S.; Voss, C.I.

    1989-01-01

    Optimal design of a sampling network is a sequential process in which the next phase of sampling is designed on the basis of all available physical knowledge of the system. Three objectives are considered: model discrimination, parameter estimation, and cost minimization. For the first two objectives, physically based measures of the value of information obtained from a set of observations are specified. In model discrimination, value of information of an observation point is measured in terms of the difference in solute concentration predicted by hypothesized models of transport. Points of greatest difference in predictions can contribute the most information to the discriminatory power of a sampling design. Sensitivity of solute concentration to a change in a parameter contributes information on the relative variance of a parameter estimate. Inclusion of points in a sampling design with high sensitivities to parameters tends to reduce variance in parameter estimates. Cost minimization accounts for both the capital cost of well installation and the operating costs of collection and analysis of field samples. -from Authors

  12. Reference values for performance on the Automated Neuropsychological Assessment Metrics V3.0 in an active duty military sample.

    PubMed

    Reeves, Dennis L; Bleiberg, Joseph; Roebuck-Spencer, Tresa; Cernich, Alison N; Schwab, Karen; Ivins, Brian; Salazar, Andres M; Harvey, Sally C; Brown, Fred H; Warden, Deborah

    2006-10-01

    The Automated Neuropsychological Assessment Metrics (ANAM) is a computerized measure of processing speed, cognitive efficiency, and memory. This study describes performance and psychometric properties of ANAM in an active duty, healthy military sample (N = 2,371) composed primarily of young (18-46 years) adult males. Rarely have neuropsychological reference values for use with individuals in the military been derived from a large, active duty military population, and this is the first computerized neuropsychological test battery with military-specific reference values. Although these results do not provide demographically corrected, formal normative data, they provide reference points for neuropsychologists and other health care providers who are using ANAM data in research or clinical settings, with patients of comparable demographics to the present sample.

  13. Pharmacokinetic Studies of Chinese Medicinal Herbs Using an Automated Blood Sampling System and Liquid Chromatography-mass Spectrometry

    PubMed Central

    Wu, Yu-Tse; Wu, Ming-Tsang; Lin, Chia-Chun; Chien, Chao-Feng; Tsai, Tung-Hu

    2012-01-01

    The safety of herbal products is one of the major concerns for the modernization of traditional Chinese medicine, and pharmacokinetic data of medicinal herbs guide us to design the rational use of the herbal formula. This article reviews the advantages of the automated blood sampling (ABS) systems for pharmacokinetic studies. In addition, three commonly used sample preparative methods, protein precipitation, liquid-liquid extraction and solid-phase extraction, are introduced. Furthermore, the definition, causes and evaluation of matrix effects in liquid chromatography-mass spectrometry (LC/MS) analysis are demonstrated. Finally, we present our previous works as practical examples of the application of ABS systems and LC/MS for the pharmacokinetic studies of Chinese medicinal herbs. PMID:24716112

  14. Screening urine samples for the absence of urinary tract infection using the sediMAX automated microscopy analyser.

    PubMed

    Sterry-Blunt, Rosanne E; S Randall, Karen; J Doughton, Michael; H Aliyu, Sani; Enoch, David A

    2015-06-01

    Urinalysis culminates in a workload skew within the clinical microbiology laboratory. Routine processing involves screening via manual microscopy or biochemical dipstick measurement, followed by culture for each sample. Despite this, as many as 80% of specimens are reported as negative; thus, there is vast wastage of resources and time, as well as delayed turnaround time of results as numerous negative cultures fulfil their required incubation time. Automation provides the potential for streamlining sample screening by efficiently (>30% sample exclusion) and reliably [negative predictive value (NPV) ≥ 95%] ruling out those likely to be negative, whilst also reducing resource usage and hands-on time. The present study explored this idea by using the sediMAX automated microscopy urinalysis platform. We prospectively collected and processed 1411 non-selected samples directly after routine laboratory processing. The results from this study showed multiple optimum cut-off values for microscopy. However, although optimum cut-off values permitted rule-out of 40.1% of specimens, an associated 87.5% NPV was lower than the acceptable limit of 95%. Sensitivity and specificity of leukocytes and bacteria in determining urinary tract infection was assessed by receiver operator characteristic curves with area under the curve values found to be 0.697 [95% confidence interval (CI): 0.665-0.729] and 0.587 (95% CI: 0.551-0.623), respectively. We suggested that the sediMAX was not suitable for use as a rule-out screen prior to culture and further validation work must be carried out before routine use of the analyser.

  15. Fully automated determination of cannabinoids in hair samples using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Musshoff, Frank; Junker, Heike P; Lachenmeier, Dirk W; Kroener, Lars; Madea, Burkhard

    2002-01-01

    This paper describes a fully automated procedure using alkaline hydrolysis and headspace solid-phase microextraction (HS-SPME) followed by on-fiber derivatization and gas chromatographic-mass spectrometric (GC-MS) detection of cannabinoids in human hair samples. Ten milligrams of hair was washed with deionized water, petroleum ether, and dichloromethane. After the addition of deuterated internal standards the sample was hydrolyzed with sodium hydroxide and directly submitted to HS-SPME. After absorption of analytes for an on-fiber derivatization procedure the fiber was directly placed into the headspace of a second vial containing N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) before GC-MS analysis. The limit of detection was 0.05 ng/mg for delta9-tetrahydrocannabinol (THC), 0.08 ng/mg for cannabidiol (CBD), and 0.14 ng/mg for cannabinol (CBN). Absolute recoveries were in the range between 0.3 and 7.5%. Linearity was proved over a range from 0.1 to 20 ng/mg with coefficients of correlation from 0.998 to 0.999. Validation of the whole procedure revealed excellent results. In comparison with conventional methods of hair analysis this automated HS-SPME-GC-MS procedure is substantially faster. It is easy to perform without use of solvents and with minimal sample quantities, but with the same degree of sensitivity and reproducibility. The applicability was demonstrated by the analysis of 25 hair samples from several forensic cases. The following concentration ranges were determined: THC 0.29-2.20 (mean 1.7) ng/mg, CBN 0.55-4.54 (mean 1.2) ng/mg, and CBD 0.53-18.36 (mean 1.3) ng/mg. 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid could not be detected with this method.

  16. Extending laboratory automation to the wards: effect of an innovative pneumatic tube system on diagnostic samples and transport time.

    PubMed

    Suchsland, Juliane; Winter, Theresa; Greiser, Anne; Streichert, Thomas; Otto, Benjamin; Mayerle, Julia; Runge, Sören; Kallner, Anders; Nauck, Matthias; Petersmann, Astrid

    2017-02-01

    The innovative pneumatic tube system (iPTS) transports one sample at a time without the use of cartridges and allows rapid sending of samples directly into the bulk loader of a laboratory automation system (LAS). We investigated effects of the iPTS on samples and turn-around time (TAT). During transport, a mini data logger recorded the accelerations in three dimensions and reported them in arbitrary area under the curve (AUC) units. In addition representative quantities of clinical chemistry, hematology and coagulation were measured and compared in 20 blood sample pairs transported by iPTS and courier. Samples transported by iPTS were brought to the laboratory (300 m) within 30 s without adverse effects on the samples. The information retrieved from the data logger showed a median AUC of 7 and 310 arbitrary units for courier and iPTS transport, respectively. This is considerably below the reported limit for noticeable hemolysis of 500 arbitrary units. iPTS reduces TAT by reducing the hands-on time and a fast transport. No differences in the measurement results were found for any of the investigated 36 analytes between courier and iPTS transport. Based on these findings the iPTS was cleared for clinical use in our hospital.

  17. Design and practices for use of automated drilling and sample handling in MARTE while minimizing terrestrial and cross contamination.

    PubMed

    Miller, David P; Bonaccorsi, Rosalba; Davis, Kiel

    2008-10-01

    Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources--whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination)-to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.

  18. Sample cleanup and reversed-phase high-performance liquid chromatographic analysis of polar aromatic compounds in groundwater samples from a former gas plant.

    PubMed

    Müller, M B; Zwiener, C; Frimmel, F H

    1999-11-12

    A method for the analysis of the polar aromatic compounds 1H-quinolin-4-one (Q), 10H-acridin-9-one (A), 5H-phenanthridin-6-one (P) and 9H-fluoren-9-one (F) in aqueous solutions has been developed. The method comprises steps for sample preparation (solid-phase extraction, cleanup) and analytical determination by means of reversed-phase high-performance liquid chromatography (RP-HPLC). For the cleanup step the suitability of two different sorbents (alternative A: silica gel, alternative B: LiChrolut EN) was investigated. Alternative B depicted several advantages, in particular higher sorbent capacity, faster and less complicated handling, higher recovery and better reproducibility. For Q, A and P, reproducibility of all method steps is better than 13%, with recovery rates ranging from 76% to 105% (n=3). Alternative B was applied to groundwater samples from a former gas plant. The analytes A and P could be detected at concentrations in the micro/l range.

  19. DETERMINATION OF CHLOROPHEONIS, NITROPHENOIS AND METHYLPHENOIS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  20. DETERMINATION OF CHLOROPHENOLS, NITROPHENOLS, AND METHYLPHENOLS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  1. DETERMINATION OF CHLOROPHEONIS, NITROPHENOIS AND METHYLPHENOIS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  2. DETERMINATION OF CHLOROPHENOLS, NITROPHENOLS, AND METHYLPHENOLS IN GROUND-WATER SAMPLES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A high performance liquid chromatography (HPLC) method was developed to quantitatively determine phenolic compounds and their isomers in aqueous samples. The HPLC method can analyze a mixture of 15 contaminants in the same analytical run with an analysis time of 25 minutes. The...

  3. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... analysis. (c) The sampling procedures and frequency must be protective of human health and the environment... testing period. If a multiple comparisons procedure is used, the Type I experiment wise error rate for... shall be protective of human health and the environment. The parameters shall be determined...

  4. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... analysis. (c) The sampling procedures and frequency must be protective of human health and the environment... testing period. If a multiple comparisons procedure is used, the Type I experiment wise error rate for... shall be protective of human health and the environment. The parameters shall be determined...

  5. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... analysis. (c) The sampling procedures and frequency must be protective of human health and the environment... testing period. If a multiple comparisons procedure is used, the Type I experiment wise error rate for... shall be protective of human health and the environment. The parameters shall be determined...

  6. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents

    USGS Publications Warehouse

    Wood, Warren W.

    1976-01-01

    The unstable nature of many chemical and physical constituents in ground water requires special collection procedures and field analysis immediately after collection. This report describes the techniques and equipment commonly used m the collection and field analysis of samples for pH, temperature, carbonate, bicarbonate, specific conductance, Eh, and dissolved oxygen.

  7. Groundwater-quality data in 12 GAMA study units: Results from the 2006–10 initial sampling period and the 2008–13 trend sampling period, California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy M.

    2017-03-09

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic

  8. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    USGS Publications Warehouse

    Krempa, Heather M.

    2015-10-29

    Relative percent differences between methods were greater than 10 percent for most analyzed trace elements. Barium, cobalt, manganese, and boron had concentrations that were significantly different between sampling methods. Barium, molybdenum, boron, and uranium method concentrations indicate a close association between pump and grab samples based on bivariate plots and simple linear regressions. Grab sample concentrations were generally larger than pump concentrations for these elements and may be because of using a larger pore sized filter for grab samples. Analysis of zinc blank samples suggests zinc contamination in filtered grab samples. Variations of analyzed trace elements between pump and grab samples could reduce the ability to monitor temporal changes and potential groundwater contamination threats. The degree of precision necessary for monitoring potential groundwater threats and application objectives need to be considered when determining acceptable variation amounts.

  9. 234U/238U isotope data from groundwater and solid-phase leachate samples near Tuba City Open Dump, Tuba City, Arizona

    USGS Publications Warehouse

    Johnson, Raymond H.; Horton, Robert J.; Otton, James K.; Ketterer, Michael K.

    2012-01-01

    This report releases 234U/238U isotope data, expressed as activity ratios, and uranium concentration data from analyses completed at Northern Arizona University for groundwater and solid-phase leachate samples that were collected in and around Tuba City Open Dump, Tuba City, Arizona, in 2008.

  10. Final ROI Report - Technology Transfer of Waste-Reducing Groundwater Sampling Systems

    SciTech Connect

    Noyes, C; Howard, G; Bishop, D; Tuckfield, C; Hiergesell, R

    2002-09-30

    This report presents the findings of a U.S. DOE Environmental Management technology transfer initiative of waste-reducing ground water sampling systems between Savannah River Site (SRS) and Lawrence Livermore National Laboratory (LLNL) which occurred during fiscal years 2001 and 2002. The report describes the collaboration between the two sites, the deployment of the Savannah River Site Purge Water Management System at LLNL, the changes made to that system for use at LLNL, and documents the return-on-investment derived from the system's use at LLNL as well as other benefits generated through this inter-laboratory collaboration. An evaluation of the deployment of the LLNL EasyPump sampling technology at SRS will be covered in a separate report from SRS.

  11. Rapid and automated sample preparation for nucleic acid extraction on a microfluidic CD (compact disk)

    NASA Astrophysics Data System (ADS)

    Kim, Jitae; Kido, Horacio; Zoval, Jim V.; Gagné, Dominic; Peytavi, Régis; Picard, François J.; Bastien, Martine; Boissinot, Maurice; Bergeron, Michel G.; Madou, Marc J.

    2006-01-01

    Rapid and automated preparation of PCR (polymerase chain reaction)-ready genomic DNA was demonstrated on a multiplexed CD (compact disk) platform by using hard-to-lyse bacterial spores. Cell disruption is carried out while beadcell suspensions are pushed back and forth in center-tapered lysing chambers by angular oscillation of the disk - keystone effect. During this lysis period, the cell suspensions are securely held within the lysing chambers by heatactivated wax valves. Upon application of a remote heat to the disk in motion, the wax valves release lysate solutions into centrifuge chambers where cell debris are separated by an elevated rotation of the disk. Only debris-free DNA extract is then transferred to collection chambers by capillary-assisted siphon and collected for heating that inactivates PCR inhibitors. Lysing capacity was evaluated using a real-time PCR assay to monitor the efficiency of Bacillus globigii spore lysis. PCR analysis showed that 5 minutes' CD lysis run gave spore lysis efficiency similar to that obtained with a popular commercial DNA extraction kit (i.e., IDI-lysis kit from GeneOhm Sciences Inc.) which is highly efficient for microbial cell and spore lysis. This work will contribute to the development of an integrated CD-based assay for rapid diagnosis of infectious diseases.

  12. Variation in aluminum, iron, and particle concentrations in oxic ground-water samples collected by use of tangential-flow ultrafiltration with low-flow sampling

    USGS Publications Warehouse

    Szabo, Z.; Oden, J.H.; Gibs, J.; Rice, D.E.; Ding, Y.; ,

    2001-01-01

    Particulates that move with ground water and those that are artificially mobilized during well purging could be incorporated into water samples during collection and could cause trace-element concentrations to vary in unfiltered samples, and possibly in filtered samples (typically 0.45-um (micron) pore size) as well, depending on the particle-size fractions present. Therefore, measured concentrations may not be representative of those in the aquifer. Ground water may contain particles of various sizes and shapes that are broadly classified as colloids, which do not settle from water, and particulates, which do. In order to investigate variations in trace-element concentrations in ground-water samples as a function of particle concentrations and particle-size fractions, the U.S. Geological Survey, in cooperation with the U.S. Air Force, collected samples from five wells completed in the unconfined, oxic Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain. Samples were collected by purging with a portable pump at low flow (0.2-0.5 liters per minute and minimal drawdown, ideally less than 0.5 foot). Unfiltered samples were collected in the following sequence: (1) within the first few minutes of pumping, (2) after initial turbidity declined and about one to two casing volumes of water had been purged, and (3) after turbidity values had stabilized at less than 1 to 5 Nephelometric Turbidity Units. Filtered samples were split concurrently through (1) a 0.45-um pore size capsule filter, (2) a 0.45-um pore size capsule filter and a 0.0029-um pore size tangential-flow filter in sequence, and (3), in selected cases, a 0.45-um and a 0.05-um pore size capsule filter in sequence. Filtered samples were collected concurrently with the unfiltered sample that was collected when turbidity values stabilized. Quality-assurance samples consisted of sequential duplicates (about 25 percent) and equipment blanks. Concentrations of particles were determined by light scattering

  13. Solid recovered fuels in the cement industry--semi-automated sample preparation unit as a means for facilitated practical application.

    PubMed

    Aldrian, Alexia; Sarc, Renato; Pomberger, Roland; Lorber, Karl E; Sipple, Ernst-Michael

    2016-03-01

    One of the challenges for the cement industry is the quality assurance of alternative fuel (e.g., solid recovered fuel, SRF) in co-incineration plants--especially for inhomogeneous alternative fuels with large particle sizes (d95⩾100 mm), which will gain even more importance in the substitution of conventional fuels due to low production costs. Existing standards for sampling and sample preparation do not cover the challenges resulting from these kinds of materials. A possible approach to ensure quality monitoring is shown in the present contribution. For this, a specially manufactured, automated comminution and sample divider device was installed at a cement plant in Rohožnik. In order to prove its practical suitability with methods according to current standards, the sampling and sample preparation process were validated for alternative fuel with a grain size >30 mm (i.e., d95=approximately 100 mm), so-called 'Hotdisc SRF'. Therefore, series of samples were taken and analysed. A comparison of the analysis results with the yearly average values obtained through a reference investigation route showed good accordance. Further investigations during the validation process also showed that segregation or enrichment of material throughout the comminution plant does not occur. The results also demonstrate that compliance with legal standards regarding the minimum sample amount is not sufficient for inhomogeneous and coarse particle size alternative fuels. Instead, higher sample amounts after the first particle size reduction step are strongly recommended in order to gain a representative laboratory sample.

  14. Development and deployment of a passive sampling system in groundwater to characterize the critical zone through isotope tracing

    NASA Astrophysics Data System (ADS)

    Gal, Frédérick; Négrel, Philippe; Chagué, Bryan

    2017-04-01

    The Critical Zone (CZ) is the evolving boundary layer where rock, soil, water, air, and living organisms interact, zone controlling the transfer and storage of water and chemical elements. For investigating the CZ, we have developed an integrative sampling system to concentrate the chemical elements in groundwater (CRITEX project). Aims are to measure concentrations and isotopic ratios in groundwater through integrative sampling. In the frame of the groundwater analysis, particularly those located in the critical zone (0-100 m depth), this system makes it possible to create a water flow in a support of passive samplers using Diffusive Gradient in Thin type (DGT) and thus to pre-concentrate the chemical species on a chelating resin by diffusion through a membrane and over a given period in order to facilitate subsequent laboratory measurements. Because DGTs are generally used in surface waters with a high flow rate, the current objective is to create a sufficient flow of water in the sampler to optimize the trapping of elements. Different options and geometries have been modelled by simulation of the flow (agitation of water supplied by a motor and a propeller, pumping ...). The economic model of the device is based on an assembly of commercially available equipment, the novation is based on the support, fully designed in house (patent pending). The device aims to recreate sufficient water flow to avoid the creation of a too large Diffusion Boundary Layer (DBL) on the DGT surface and then to mimic the uptake conditions that prevail in surface waters. The simulations made it possible to optimize the position of the DGT and the velocity of the fluid in order to obtain the maximum flow at its surface and avoid the creation of the DBL. Conditions equivalent to those of a circulation of weakly agitated surface water are thus recreated. The first tests were carried out at lab, in a column simulating a piezometer, including pump, DGT holder and flow meter. Initial

  15. Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification

    NASA Astrophysics Data System (ADS)

    Huertas-Company, M.; Aguerri, J. A. L.; Bernardi, M.; Mei, S.; Sánchez Almeida, J.

    2011-01-01

    We present an automated morphological classification in 4 types (E, S0, Sab, Scd) of ~700 000 galaxies from the SDSS DR7 spectroscopic sample based on support vector machines. The main new property of the classification is that we associate a probability to each galaxy of being in the four morphological classes instead of assigning a single class. The classification is therefore better adapted to nature where we expect a continuous transition between different morphological types. The algorithm is trained with a visual classification and then compared to several independent visual classifications including the Galaxy Zoo first-release catalog. We find a very good correlation between the automated classification and classical visual ones. The compiled catalog is intended for use in different applications and is therefore freely available through a dedicated webpage* and soon from the CasJobs database. Full catalog is only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A157 or via http://gepicom04.obspm.fr/sdss_morphology/Morphology_2010.html

  16. A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis.

    PubMed

    Balimane, Praveen V; Pace, Ellen; Chong, Saeho; Zhu, Mingshe; Jemal, Mohammed; Pelt, Colleen K Van

    2005-09-01

    Parallel artificial membrane permeability assay (PAMPA) has recently gained popularity as a novel, high-throughput assay capable of rapidly screening compounds for their permeability characteristics in early drug discovery. The analytical techniques typically used for PAMPA sample analysis are HPLC-UV, LC/MS or more recently UV-plate reader. The LC techniques, though sturdy and accurate, are often labor and time intensive and are not ideal for high-throughput. On the other hand, UV-plate reader technique is amenable to high-throughput but is not sensitive enough to detect the lower concentrations that are often encountered in early drug discovery work. This article investigates a novel analytical method, a chip-based automated nanoelectrospray mass spectrometric method for its ability to rapidly analyze PAMPA permeability samples. The utility and advantages of this novel analytical method is demonstrated by comparing PAMPA permeability values obtained from nanoelectrospray to those from conventional analytical methods. Ten marketed drugs having a broad range of structural space, physico-chemical properties and extent of intestinal absorption were selected as test compounds for this investigation. PAMPA permeability and recovery experiments were conducted with model compounds followed by analysis by UV-plate reader, UV-HPLC as well as the automated nanoelectrospray technique (nanoESI-MS/MS). There was a very good correlation (r(2) > 0.9) between the results obtained using nanoelectrospray and the other analytical techniques tested. Moreover, the nanoelectrospray approach presented several advantages over the standard techniques such as higher sensitivity and ability to detect individual compounds in cassette studies, making it an attractive high-throughput analytical technique. Thus, it has been demonstrated that nanoelectrospray analysis provides a highly efficient and accurate analytical methodology to analyze PAMPA samples generated in early drug discovery.

  17. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    PubMed

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  18. Improved Understanding of Sources of Variability in Groundwater Sampling for Long-Term Monitoring Programs

    DTIC Science & Technology

    2013-02-01

    Lab Sample ID: 600-44501-11 Acetone 1100 RL 1000 ug/L 8260B Total/ NA200 MDL 200 Analyte Result Qualifier Unit Dil Fac D Method Prep Type Benzene 8260B...8260B Total/ NA200 MDL 22 Analyte Result Qualifier Unit Dil Fac D Method Prep Type Trichloroethene - DL 8260B Total/NA1100 200 ug/L 20036 cis-1,2...L 8260B Total/ NA200 MDL 200 Benzene 8260B Total/NA7100 200 ug/L 20016 Chlorobenzene 8260B Total/NA2200 200 ug/L 20024 Chloroform 8260B Total/NA57 J

  19. Activities and summary statistics of radon-222 in stream- and ground-water samples, Owl Creek basin, north-central Wyoming, September 1991 through March 1992

    USGS Publications Warehouse

    Ogle, K.M.; Lee, R.W.

    1994-01-01

    Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)

  20. Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2017-02-01

    This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R (2) < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R (2) values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.

  1. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames.

    PubMed

    Leschowski, M; Dreier, T; Schulz, C

    2014-04-01

    Studying soot particle morphology in high-pressure flames via thermophoretic sampling critically depends on sampling precision, speed, and reproducibility. This is mainly limited by the challenges of applying pneumatically driven devices for burner chamber pressures higher than the pneumatic pressure. We present a pneumatically driven device for high-pressure applications up to 90 bars. The novelty is to separate the pneumatic driver section from the high-pressure environment in the burner chamber. The device was tested by sampling soot from a laminar high-pressure flame at 20 bars.

  2. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-02-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  3. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-07-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  4. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques

    PubMed Central

    Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J.; Nobukawa, Kazutoshi; Pan, Christopher S.

    2016-01-01

    Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs. PMID:27840592

  5. An automated laboratory-scale methodology for the generation of sheared mammalian cell culture samples.

    PubMed

    Joseph, Adrian; Goldrick, Stephen; Mollet, Michael; Turner, Richard; Bender, Jean; Gruber, David; Farid, Suzanne S; Titchener-Hooker, Nigel

    2017-05-01

    Continuous disk-stack centrifugation is typically used for the removal of cells and cellular debris from mammalian cell culture broths at manufacturing-scale. The use of scale-down methods to characterise disk-stack centrifugation performance enables substantial reductions in material requirements and allows a much wider design space to be tested than is currently possible at pilot-scale. The process of scaling down centrifugation has historically been challenging due to the difficulties in mimicking the Energy Dissipation Rates (EDRs) in typical machines. This paper describes an alternative and easy-to-assemble automated capillary-based methodology to generate levels of EDRs consistent with those found in a continuous disk-stack centrifuge. Variations in EDR were achieved through changes in capillary internal diameter and the flow rate of operation through the capillary. The EDRs found to match the levels of shear in the feed zone of a pilot-scale centrifuge using the experimental method developed in this paper (2.4×10(5) W/Kg) are consistent with those obtained through previously published computational fluid dynamic (CFD) studies (2.0×10(5) W/Kg). Furthermore, this methodology can be incorporated into existing scale-down methods to model the process performance of continuous disk-stack centrifuges. This was demonstrated through the characterisation of culture hold time, culture temperature and EDRs on centrate quality. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques.

    PubMed

    Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J; Nobukawa, Kazutoshi; Pan, Christopher S

    2016-08-05

    Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs.

  7. Analytical results from ground-water sampling using a direct-push technique at the Dover National Test Site, Dover Air Force Base, Delaware, June-July 2001

    USGS Publications Warehouse

    Guertal, William R.; Stewart, Marie; Barbaro, Jeffrey R.; McHale, Timthoy J.

    2004-01-01

    A joint study by the Dover National Test Site and the U.S. Geological Survey was conducted from June 27 through July 18, 2001 to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site at Dover Air Force Base, Delaware. The study was conducted to support a planned enhanced bio-remediation demonstration and to assist the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. This report presents the analytical results from ground-water samples collected during the direct-push ground-water sampling study. A direct-push drill rig was used to quickly collect 115 ground-water samples over a large area at varying depths. The ground-water samples and associated quality-control samples were analyzed for volatile organic compounds and methyl tert-butyl ether by the Dover National Test Site analytical laboratory. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloroethene, 1.14 micrograms per liter of trichloroethene, 2.65 micrograms per liter of tetrachloroethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest methyl tert-butyl ether concentrations were found in the surficial aquifer from -4.6 to 6.4 feet mean sea level, however, methyl tert-butyl ether was detected as deep as -9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations were found in

  8. Investigation of Mercury Wet Deposition Physicochemistry in the Ohio River Valley through Automated Sequential Sampling

    EPA Science Inventory

    Intra-storm variability and soluble fractionation was explored for summer-time rain events in Steubenville, Ohio to evaluate the physical processes controlling mercury (Hg) in wet deposition in this industrialized region. Comprehensive precipitation sample collection was conducte...

  9. Investigation of Mercury Wet Deposition Physicochemistry in the Ohio River Valley through Automated Sequential Sampling

    EPA Science Inventory

    Intra-storm variability and soluble fractionation was explored for summer-time rain events in Steubenville, Ohio to evaluate the physical processes controlling mercury (Hg) in wet deposition in this industrialized region. Comprehensive precipitation sample collection was conducte...

  10. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    PubMed

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample

  11. Automated transmission line fault analysis using synchronized sampling at two ends

    SciTech Connect

    Kezunovic, M.; Perunicic, B.

    1996-02-01

    This paper introduces a new approach to fault analysis using synchronized sampling. A digital fault recorder with Global Positioning System (GPS) satellite receiver is the source of data for this approach. Fault analysis functions, such as fault detection, classification and location are implemented for a transmission line using synchronized samples from two ends of a line. This technique can be extremely fast, selective and accurate, providing fault analysis performance that can not easily be matched by other known techniques.

  12. Automated transmission line fault analysis using synchronized sampling at two ends

    SciTech Connect

    Kezunovic, M.; Perunicic, B.

    1995-12-31

    This paper introduces a new approach to fault analysis using synchronized sampling. A digital fault recorder with Global Positioning System (GPS) satellite receiver is the source of data for this approach. Fault analysis functions, such as fault detection, classification and location are implemented for a transmission line using synchronized samples from two ends of a line. This technique can be extremely fast, selective and accurate, providing fault analysis performance that can not easily be matched by other known techniques.

  13. Well installation and ground-water sampling plan for 1100 Area environmental monitoring wells

    SciTech Connect

    Bryce, R.W.

    1989-05-01

    This report outlines a plan for the installation and sampling of five wells between inactive waste sites in the 1100 Area of the Hanford Site and Richland City water supply wells. No contamination has been detected in water pumped from the water supply wells to date. The five wells are being installed to provide for early detection of contaminants and to provide data that may be used to make decisions concerning the management of the North Richland Well Field. This plan describes the existing waste disposal facilities and water supply wells, hydrogeology of the area, well completion specifics, and the data to be gathered from the five new wells. 26 refs., 8 figs., 4 tabs.

  14. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    SciTech Connect

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastian C.

    2006-03-15

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon registered seat, and Kalrez registered O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  15. High-throughput automated microfluidic sample preparation for accurate microbial genomics

    PubMed Central

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B.; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P.; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C.

    2017-01-01

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications. PMID:28128213

  16. High-throughput automated microfluidic sample preparation for accurate microbial genomics.

    PubMed

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C

    2017-01-27

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications.

  17. Detection of motile micro-organisms in biological samples by means of a fully automated image processing system

    NASA Astrophysics Data System (ADS)

    Alanis, Elvio; Romero, Graciela; Alvarez, Liliana; Martinez, Carlos C.; Hoyos, Daniel; Basombrio, Miguel A.

    2001-08-01

    A fully automated image processing system for detection of motile microorganism is biological samples is presented. The system is specifically calibrated for determining the concentration of Trypanosoma Cruzi parasites in blood samples of mice infected with Chagas disease. The method can be adapted for use in other biological samples. A thin layer of blood infected by T. cruzi parasites is examined in a common microscope in which the images of the vision field are taken by a CCD camera and temporarily stored in the computer memory. In a typical field, a few motile parasites are observable surrounded by blood red cells. The parasites have low contrast. Thus, they are difficult to detect visually but their great motility betrays their presence by the movement of the nearest neighbor red cells. Several consecutive images of the same field are taken, decorrelated with each other where parasites are present, and digitally processed in order to measure the number of parasites present in the field. Several fields are sequentially processed in the same fashion, displacing the sample by means of step motors driven by the computer. A direct advantage of this system is that its results are more reliable and the process is less time consuming than the current subjective evaluations made visually by technicians.

  18. Quantitative analysis of a biopharmaceutical protein in cell culture samples using automated capillary electrophoresis (CE) western blot.

    PubMed

    Xu, Dong; Marchionni, Kentaro; Hu, Yunli; Zhang, Wei; Sosic, Zoran

    2017-10-25

    An effective control strategy is critical to ensure the safety, purity and potency of biopharmaceuticals. Appropriate analytical tools are needed to realize such goals by providing information on product quality at an early stage to help understanding and control of the manufacturing process. In this work, a fully automated, multi-capillary instrument is utilized for size-based separation and western blot analysis to provide an early readout on product quality in order to enable a more consistent manufacturing process. This approach aims at measuring two important qualities of a biopharmaceutical protein, titer and isoform distribution, in cell culture harvest samples. The acquired data for isoform distribution can then be used to predict the corresponding values of the final drug substance, and potentially provide information for remedy through timely adjustment of the downstream purification process, should the expected values fall out of the accepted range. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples

    PubMed Central

    Hoogewerf, Martine; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2016-01-01

    Molecular detection methods, such as quantitative PCR (qPCR), have found their way into clinical microbiology laboratories for the detection of an array of pathogens. Most routinely used methods, however, are directed at specific species. Thus, anything that is not explicitly searched for will be missed. This greatly limits the flexibility and universal application of these techniques. We investigated the application of a rapid universal bacterial molecular identification method, IS-pro, to routine patient samples received in a clinical microbiology laboratory. IS-pro is a eubacterial technique based on the detection and categorization of 16S-23S rRNA gene interspace regions with lengths that are specific for each microbial species. As this is an open technique, clinicians do not need to decide in advance what to look for. We compared routine culture to IS-pro using 66 samples sent in for routine bacterial diagnostic testing. The samples were obtained from patients with infections in normally sterile sites (without a resident microbiota). The results were identical in 20 (30%) samples, IS-pro detected more bacterial species than culture in 31 (47%) samples, and five of the 10 culture-negative samples were positive with IS-pro. The case histories of the five patients from whom these culture-negative/IS-pro-positive samples were obtained suggest that the IS-pro findings are highly clinically relevant. Our findings indicate that an open molecular approach, such as IS-pro, may have a high added value for clinical practice. PMID:26763956

  20. Use of single particle aerosol mass spectrometry for the automated nondestructive identification of drugs in multicomponent samples.

    PubMed

    Martin, Audrey N; Farquar, George R; Steele, Paul T; Jones, A Daniel; Frank, Matthias

    2009-11-15

    In this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles. Active ingredients were identified from the parent ions and fragment ions formed from each sample, and alarm files were developed for each active ingredient, allowing successful automated identification of each compound in a mixture. The alarm algorithm developed for SPAMS correctly identified all drug compounds in all single-ingredient and multi-ingredient tablets studied. A further study demonstrated the ability of this technique to identify the active ingredient in a single tablet analyzed in the presence of several other nonidentical tablets. In situ measurements were also made by sampling directly from a drug sample in its original bottle. A single tablet embedded in 11 identical tablets of different composition was detected in this manner. Overall, this work demonstrates the ability of the SPAMS technique to detect a target drug compound both in complex tablets, i.e., multidrug ingredient tablets, and complex sampling environments, i.e., multitablet sampling sources. The technique is practically nondestructive, leaving the characteristic shape, color, and imprint of a tablet intact for further analysis. Applications of this technique may include forensic and pharmaceutical analysis.

  1. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    PubMed Central

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  2. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    PubMed

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  3. The T-lock: Automated compensation of radio-frequency induced sample heating

    PubMed Central

    Hiller, Sebastian; Arthanari, Haribabu; Wagner, Gerhard

    2009-01-01

    Modern high-field NMR spectrometers can stabilize the nominal sample temperature at a precision of less than 0.1 K. However, the actual sample temperature may differ from the nominal value by several degrees because the sample heating caused by high-power radio frequency pulses is not readily detected by the temperature sensors. Without correction, transfer of chemical shifts between different experiments causes problems in the data analysis. In principle, the temperature differences can be corrected by manual procedures but this is cumbersome and not fully reliable. Here, we introduce the concept of a „T-lock“, which automatically maintains the sample at the same reference temperature over the course of different NMR experiments. The T-lock works by continuously measuring the resonance frequency of a suitable spin and simultaneously adjusting the temperature control, thus locking the sample temperature at the reference value. For three different nuclei, 13C, 17O and 31P in the compounds alanine, water, and phosphate, respectively, the T-lock accuracy was found to be < 0.1 K. The use of dummy scan periods with variable lengths allows a reliable establishment of the thermal equilibrium before the acquisition of an experiment starts. PMID:19434373

  4. Rapid and automated detection of fluorescent total bacteria in water samples.

    PubMed

    Lepeuple, A-S; Gilouppe, S; Pierlot, E; De Roubin, M-R

    2004-05-01

    Traditional methods for the detection and enumeration of bacteria in water samples are growth-based and require several days to obtain the result. New techniques which reduce the time of analysis have been developed. The objective of this work was to test a rapid method for the detection and enumeration of total viable bacteria using direct fluorescent labelling and detection by laser scanning. This method (referred to as TVC for Total Viable Count) was compared to the R2A culture method and the cyano-ditolyl-tetrazolium chloride (CTC) staining method for the analysis of samples before the final chlorination (after GAC filtration) and drinking water samples. For the comparison of TVC and CTC, the outcome depends on the water type: for samples after GAC filtration, TVC counts were significantly lower than CTC counts by up to 2 log10 orders of magnitude. For chlorinated water samples, TVC counts were not significantly different from CTC counts. The comparison of TVC and R2A showed that TVC counts could be lower than R2A counts or equivalent depending on the type of water. For drinking water, the TVC method proved to yield results equivalent to those of the R2A method. The TVC method requires much shorter time frame than others. It is also simple to use and allows the analysis of large volumes (100 ml) of drinking water.

  5. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  6. Stability of isoproturon, bentazone, terbuthylazine and alachlor in natural groundwater, surface water and soil water samples stored under laboratory conditions.

    PubMed

    Mouvet, C; Jeannot, R; Riolland, H; Maciag, C

    1997-09-01

    The stability of isoproturon, bentazone, terbuthylazine and alachlor was investigated in groundwater (GrW), surface water (SuW) and soil water from the unsaturated zone (SoW). Samples fortified with a low spiking level (LSL) of about 0.3-0.5 microgram/L and a high spiking level (HSL) of about 0.9-1.3 micrograms/L were stored for 1, 2, 14 (GrW) and 30 days (SuW and SoW) at 4 degrees C in amber glass bottles without biological inhibition. The initial pesticide concentration played a significant role, the lowest concentrations being the least stable for all pesticides. Nevertheless, after 14 days of storage, no concentration had decreased significantly compared to day 0 values, except for bentazone LSL in the GrW and SuW. Significant losses of alachlor were observed only after 30 days. Terbuthylazine and isoproturon were stable for 30 days, except for a slight loss of terbuthylazine HSL in the SoW. The very poor recovery of bentazone from the SoW gave poor results for interpretation. Overall, the stability of the molecules was highest in the GrW and lowest in the SoW. For SoW, the variability of triplicate determinations at a given storage time was, in some cases, as great as the changes in mean concentrations observed over the total 30 day storage period.

  7. ISRU: Automated Water Extraction Ffrom Mars Surface Soils for Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Willson, D.

    2012-06-01

    An ISRU option for Mars sample return vehicles is to employ a Sojourner/MER sized bucket excavation rover that mines and extracts water from the top 5 cm of surface soils and delivers it to an ISRU on the lander. The option is mass competitive.

  8. A self-contained polymeric cartridge for automated biological sample preparation.

    PubMed

    Xu, Guolin; Lee, Daniel Yoke San; Xie, Hong; Chiew, Deon; Hsieh, Tseng-Ming; Ali, Emril Mohamed; Lun Looi, Xing; Li, Mo-Huang; Ying, Jackie Y

    2011-09-01

    Sample preparation is one of the most crucial processes for nucleic acids based disease diagnosis. Several steps are required for nucleic acids extraction, impurity washes, and DNA/RNA elution. Careful sample preparation is vital to the obtaining of reliable diagnosis, especially with low copies of pathogens and cells. This paper describes a low-cost, disposable lab cartridge for automatic sample preparation, which is capable of handling flexible sample volumes of 10 μl to 1 ml. This plastic cartridge contains all the necessary reagents for pathogen and cell lysis, DNA/RNA extraction, impurity washes, DNA/RNA elution and waste processing in a completely sealed cartridge. The entire sample preparation processes are automatically conducted within the cartridge on a desktop unit using a pneumatic fluid manipulation approach. Reagents transportation is achieved with a combination of push and pull forces (with compressed air and vacuum, respectively), which are connected to the pneumatic inlets at the bottom of the cartridge. These pneumatic forces are regulated by pinch valve manifold and two pneumatic syringe pumps within the desktop unit. The performance of this pneumatic reagent delivery method was examined. We have demonstrated the capability of the on-cartridge RNA extraction and cancer-specific gene amplification from 10 copies of MCF-7 breast cancer cells. The on-cartridge DNA recovery efficiency was 54-63%, which was comparable to or better than the conventional manual approach using silica spin column. The lab cartridge would be suitable for integration with lab-chip real-time polymerase chain reaction devices in providing a portable system for decentralized disease diagnosis.

  9. Development of a method for rapid analysis of Ra-226 in groundwater and discharge water samples by ICP-QQQ-MS.

    PubMed

    van Es, E M; Russell, B C; Ivanov, P; Read, D

    2017-08-01

    A novel and rapid method has been developed for pre-concentration and measurement of (226)Ra in groundwater and discharge water samples using the latest generation triple quadrupole inductively coupled plasma mass spectrometry (ICP-QQQ-MS). Cation exchange and extraction chromatography are capable of pre-concentration factors of ~200 based on 1L samples. The sensitivity and interference removal capability of ICP-QQQ-MS was assessed from spiked groundwaters, with the introduction of He collision gas required to minimise instrument background in high-matrix samples. The technique developed is potentially capable of detecting (226)Ra activities as low as 5mBqL(-1) when combined with pre-concentration prior to measurement. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs) from Clinical Blood Samples

    PubMed Central

    Gogoi, Priya; Sepehri, Saedeh; Zhou, Yi; Gorin, Michael A.; Paolillo, Carmela; Capoluongo, Ettore; Gleason, Kyle; Payne, Austin; Boniface, Brian; Cristofanilli, Massimo; Morgan, Todd M.; Fortina, Paolo; Pienta, Kenneth J.; Handique, Kalyan; Wang, Yixin

    2016-01-01

    Current analysis of circulating tumor cells (CTCs) is hindered by sub-optimal sensitivity and specificity of devices or assays as well as lack of capability of characterization of CTCs with clinical biomarkers. Here, we validate a novel technology to enrich and characterize CTCs from blood samples of patients with metastatic breast, prostate and colorectal cancers using a microfluidic chip which is processed by using an automated staining and scanning system from sample preparation to image processing. The Celsee system allowed for the detection of CTCs with apparent high sensitivity and specificity (94% sensitivity and 100% specificity). Moreover, the system facilitated rapid capture of CTCs from blood samples and also allowed for downstream characterization of the captured cells by immunohistochemistry, DNA and mRNA fluorescence in-situ hybridization (FISH). In a subset of patients with prostate cancer we compared the technology with a FDA-approved CTC device, CellSearch and found a higher degree of sensitivity with the Celsee instrument. In conclusion, the integrated Celsee system represents a promising CTC technology for enumeration and molecular characterization. PMID:26808060

  11. A Simple Method for Automated Solid Phase Extraction of Water Samples for Immunological Analysis of Small Pollutants.

    PubMed

    Heub, Sarah; Tscharner, Noe; Kehl, Florian; Dittrich, Petra S; Follonier, Stéphane; Barbe, Laurent

    2016-01-01

    A new method for solid phase extraction (SPE) of environmental water samples is proposed. The developed prototype is cost-efficient and user friendly, and enables to perform rapid, automated and simple SPE. The pre-concentrated solution is compatible with analysis by immunoassay, with a low organic solvent content. A method is described for the extraction and pre-concentration of natural hormone 17β-estradiol in 100 ml water samples. Reverse phase SPE is performed with octadecyl-silica sorbent and elution is done with 200 µl of methanol 50% v/v. Eluent is diluted by adding di-water to lower the amount of methanol. After preparing manually the SPE column, the overall procedure is performed automatically within 1 hr. At the end of the process, estradiol concentration is measured by using a commercial enzyme-linked immune-sorbent assay (ELISA). 100-fold pre-concentration is achieved and the methanol content in only 10% v/v. Full recoveries of the molecule are achieved with 1 ng/L spiked de-ionized and synthetic sea water samples.

  12. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs) from Clinical Blood Samples.

    PubMed

    Gogoi, Priya; Sepehri, Saedeh; Zhou, Yi; Gorin, Michael A; Paolillo, Carmela; Capoluongo, Ettore; Gleason, Kyle; Payne, Austin; Boniface, Brian; Cristofanilli, Massimo; Morgan, Todd M; Fortina, Paolo; Pienta, Kenneth J; Handique, Kalyan; Wang, Yixin

    2016-01-01

    Current analysis of circulating tumor cells (CTCs) is hindered by sub-optimal sensitivity and specificity of devices or assays as well as lack of capability of characterization of CTCs with clinical biomarkers. Here, we validate a novel technology to enrich and characterize CTCs from blood samples of patients with metastatic breast, prostate and colorectal cancers using a microfluidic chip which is processed by using an automated staining and scanning system from sample preparation to image processing. The Celsee system allowed for the detection of CTCs with apparent high sensitivity and specificity (94% sensitivity and 100% specificity). Moreover, the system facilitated rapid capture of CTCs from blood samples and also allowed for downstream characterization of the captured cells by immunohistochemistry, DNA and mRNA fluorescence in-situ hybridization (FISH). In a subset of patients with prostate cancer we compared the technology with a FDA-approved CTC device, CellSearch and found a higher degree of sensitivity with the Celsee instrument. In conclusion, the integrated Celsee system represents a promising CTC technology for enumeration and molecular characterization.

  13. On-line sample preparation for the automated sequential determination of HG in blood, urine and waste water

    SciTech Connect

    Schlemmer, G.; Erler, W.

    1995-12-31

    The accurate determination of mercury in environmental and clinical samples such as waste water, urine or blood with the cold vapour technique requires a complete oxidation and stabilization of mercury in the liquid phase prior to its reduction. It has been shown that the oxidation of all relevant organo-mercury compounds in this type of matrix can be achieved on-line by an appropriate oxidizing agent used in an open microwave system coupled to a flow injection cold vapour system. The various matrices, however, are handled individually. Blood samples, for example are diluted and injected into a neutral carrier. The acid to start the reaction is added on-line only shortly before the sample enters the heating zone of the microwave oven. Urine and waste water on the other hand are acidified already in the autosampler vessel and the microwave digestion is used for completion of the oxidation only. In this appl