Science.gov

Sample records for automotive exhaust gases

  1. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  2. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…

  3. Characterization of nitromethane emission from automotive exhaust

    NASA Astrophysics Data System (ADS)

    Sekimoto, Kanako; Inomata, Satoshi; Tanimoto, Hiroshi; Fushimi, Akihiro; Fujitani, Yuji; Sato, Kei; Yamada, Hiroyuki

    2013-12-01

    We carried out time-resolved experiments using a proton-transfer-reaction mass spectrometer and a chassis dynamometer to characterize nitromethane emission from automotive exhaust. We performed experiments under both cold-start and hot-start conditions, and determined the dependence of nitromethane emission on vehicle velocity and acceleration/deceleration as well as the effect of various types of exhaust-gas treatment system. We found that nitromethane emission was much lower from a gasoline car than from diesel trucks, probably due to the reduction function of the three-way catalyst of the gasoline car. Diesel trucks without a NOx reduction catalyst using hydrocarbons produced high emissions of nitromethane, with emission factors generally increasing with increasing acceleration at low vehicle velocities.

  4. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  5. The Toxicity of Exhaust Gases from the Gas-Turbine Engine of a Dump Truck,

    DTIC Science & Technology

    EXHAUST GASES, *AIR POLLUTION), (* GAS TURBINES, EXHAUST GASES), (*CARGO VEHICLES, EXHAUST GASES), CONCENTRATION(CHEMISTRY), CARBON MONOXIDE, HYDROCARBONS, ALDEHYDES, NITROGEN OXIDES, CARBON BLACK, PARTICLES, USSR

  6. Embryotoxicity of irradiated and nonirradiated catalytic convertertreated automotive exhaust.

    PubMed

    Hoffman, D J; Campbell, K I

    1977-11-01

    This study was undertaken to examine the relative embryotoxicity in chick embryos of photochemically reacted and unreacted diluted automotive exhaust emissions from a system equipped with a catalytic converter. Clean air controls and H2SO4 aerosol controls equivalent in concentration to those found in the catalytic exhaust atmosphere were also studied. From day 1 through day 14 of development, continuous exposure to nonirradiated exhause resulted in decreased survival, lowered embryonic weight, a small increase in heart/body weight ratio, and altered hematocrit and serum enzyme activities (LDH and GOT). Irradiated exhaust had little effect on survival or on embryonic weight but resulted in a higher liver/body weight ratio as well as altered hematocrit and serum enzyme activities. Interactions or cumulative effects of different compositions of exhaust atmospheres may play a role in differing biological responses between unreacted and irradiated exhaust. Sulfuric acid aerosol had a minimal effect on survival and resulted in only a slight decrease in embryonic weight and serum LDH activity, with no other apparent effects. In previous studies where the catalytic converter was not used, more pronounced effects on survival, increased heart/body weigh ratio, elevated serum GPT activity, and liver discoloration were observed. Thus, the introduction of an oxidizing catalytic converter appeared to alleviate some but not all of the embryotoxic effects of automotive exhaust.

  7. Inerting Aircraft Fuel Systems Using Exhaust Gases

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  8. Process for desulfurizing combustion exhaust gases

    SciTech Connect

    Kumagai, T.; Matsuda, S.; Mori, T.; Nishimura, T.; Nishimura, Y.

    1982-05-04

    An improved process for desulfurizing combustion exhaust gases of mainly coal containing sulfur oxides, Hf and dust containing Al is provided, which process consists of four steps; a first step of contacting the gases with calcium carbonate or hydroxide in the form of slurry to convert the sulfur oxides into caso3; a second step of contacting O2 with the resulting slurry to convert CaSo3 into caso4; a third step of separating caso4 and mother liquor from the resulting slurry; and a fourth step of preparing a slurry of calcium carbonate or hydroxide to be employed in the first step, from the mother liquor, the pHs of the slurry and the mother liquor in the first and fourth steps being adjusted to 5 or higher by adding alkali such as sodium carbonate. According to the present process, it is possible to prevent hindrance of hf and al contained in dust to the reaction of so2absorbent (CaCO3 or Ca(OH)2) with SO2 gas, and thereby improve percentage desulfurization and also obtain a high quality gypsum.

  9. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  10. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  11. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  12. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  13. 49 CFR 229.43 - Exhaust and battery gases.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  14. Recent advances in investigations of toxicity of automotive exhaust.

    PubMed

    Stupfel, M

    1976-10-01

    The influence of auto exhaust on man's health is difficult to gauge considering the intricacy of human environmental urban stresses and particularly of other air polluting (industrial, domestic) emissions. Epidemiological surveys made in road tunnel employees and in traffic officers have not demonstrated specific effects and have often been complicated by cigarette smoking as a factor. Long-term animal experiments run mostly on small rodents give evidence of little effect of the pathological actions of dilutions such as those encountered in high polluted cities. However the acute toxicity of gasoline exhaust emission is well known and mostly due to carbon monoxide. Considering the different types of cycles and operating conditions of vehicles (gasoline and diesel), auto exhaust gases constitute no more a chemical entity than they show, a definite toxicity. A great number of substances that they contain (nitrogen oxides, aldehydes, antiknock additives, heavy metals, possible catalysts are highly toxic as shown by in vivo and in vitro (mutagenic) tests. Interactions of the components are for the moment ignored or poorly understood. Besides, the evolution of the physicochemical properties and natures of the auto exhaust emission in the gaseous biotope of man under determined conditions of ultraviolet irradiation, temperature, and hygrometry provoke the formation of secondary products such as oxidants and ozone. Several experiments show clearly that irradiation increases the toxicity of auto exhaust significantly. For these reasons, geographical, meteorological, and chronological (circadian and seasonal) factors should be taken into consideration, especially with regard to emission standards.

  15. Recent advances in investigations of toxicity of automotive exhaust

    PubMed Central

    Stupfel, Maurice

    1976-01-01

    The influence of auto exhaust on man's health is difficult to gauge considering the intricacy of human environmental urban stresses and particularly of other air polluting (industrial, domestic) emissions. Epidemiological surveys made in road tunnel employees and in traffic officers have not demonstrated specific effects and have often been complicated by cigarette smoking as a factor. Long-term animal experiments run mostly on small rodents give evidence of little effect of the pathological actions of dilutions such as those encountered in high polluted cities. However the acute toxicity of gasoline exhaust emission is well known and mostly due to carbon monoxide. Considering the different types of cycles and operating conditions of vehicles (gasoline and diesel), auto exhaust gases constitute no more a chemical entity than they show, a definite toxicity. A great number of substances that they contain (nitrogen oxides, aldehydes, antiknock additives, heavy metals, possible catalysts are highly toxic as shown by in vivo and in vitro (mutagenic) tests. Interactions of the components are for the moment ignored or poorly understood. Besides, the evolution of the physicochemical properties and natures of the auto exhaust emission in the gaseous biotope of man under determined conditions of ultraviolet irradiation, temperature, and hygrometry provoke the formation of secondary products such as oxidants and ozone. Several experiments show clearly that irradiation increases the toxicity of auto exhaust significantly. For these reasons, geographical, meteorological, and chronological (circadian and seasonal) factors should be taken into consideration, especially with regard to emission standards. PMID:67944

  16. Combustion control system adding a liquid, exhaust gases, and PCV gases

    SciTech Connect

    Lindberg, J.E.

    1980-01-15

    A combustion control system is disclosed that adds a fluid and heat energy to the air-fuel mixture of the induction system of an internal combustion engine in response to engine need to improve combustion, to increase power, to improve efficiency, and to reduce emissions. The system incorporates fluidic control mechanisms which provide the control functions without any moving parts. The system incorporates one or more variable impedance flow control mechanisms, each of which produces an impedance to flow through the control mechanism which varies in a controlled relationship to the pressure differential across the control mechanism. In one embodiment, the main variable impedance control mechanism is a vortex chamber. The outlet of the vortex chamber is connected to the positive crankcase ventilation (PCV) inlet to intake manifold downstream of the butterfly valve. The vortex chamber has inputs for supplying air, the liquid, exhaust gases, and PCV gases for mixing within the vortex chamber. The incoming liquid, air, exhaust gases, and PCV gases are transmitted into the main vortex chamber by input constructions which, in themselves, provide for controlled regulation of both the relative proportions and total amounts of the incoming liquid and gases. In a specific embodiment, the input constructions include a liquid-exhaust gas acceleration chamber for mixing liquid with exhaust gases and a PCV-exhaust gas vortex chamber for mixing exhaust gases with PCV gases and air and swirl producing devices for causing controlled choking of the inlets of one or more of the vortex chambers. The system also incorporates a variable impedance syphon break in the line connecting the liquid source with the liquid-exhaust gas acceleration chamber.

  17. Influence of MTBE addition into gasoline on automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S.; Philippopoulos, C.

    The effect of methyl-t-butyl ether (MTBE) addition into gasoline on the exhaust emissions from internal combustion engines was studied. A four-cylinder OPEL 1.6 l engine equipped with a hydraulic brake dynamometer was used in all the experiments. Fuels containing 0.0-11.0% MTBE were used in a wide range of engine operations, and the exhaust gases were analyzed for CO, HC (total unburned hydrocarbons, methane, ethylene) and MTBE, before and after their catalytic treatment by a three-way catalytic converter. The addition of MTBE into gasoline resulted in a decrease in CO and HC emissions only at high engine loading. During cold-start up of the engine, MTBE, HC, CO emissions were significant and increased with MTBE addition into fuel. At the catalytic converter outlet MTBE was detected when its concentration in fuels was greater than 8% and only as long as the catalytic converter operates at low temperatures. Methane and ethylene emissions were comparable for all fuels tested at engine outlet, but methane emissions remained almost at the same level while ethylene emissions were significantly decreased by the catalytic converter.

  18. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Pacheco, M.; Alva, E.; Valdivia, R.; Pacheco, J.; Rivera, C.; Santana, A.; Huertas, J.; Lefort, B.; Estrada, N.

    2012-06-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  19. Cleaning of exhaust gases in the mold core industry

    SciTech Connect

    Balabanov, V.P.

    1988-05-01

    Methods for detoxifying the exhaust gases in the core-making sections of the casting industry were studied. The gases generated when making cores from sand-resin mixtures based on oil-free binders and synthetic resins were evaluated. Tests were conducted on activated carbon AR-3, catalysts containing precious and nonprecious metals, and on solutions of sulfuric acid, hydrogen peroxide, and sodium hypochlorate. The absorption, adsorption, and catalytic methods of cleaning the gas discharges from toxic substances were comparatively assessed. Results show that sorption methods were unsuitable while catalytic methods achieved near-total detoxification.

  20. Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.

    PubMed

    Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung

    2015-03-17

    NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.

  1. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  2. Catalyst for treatment of exhaust gases from internal combustion engines

    SciTech Connect

    Bricker, M.L.; Lawson, R.J.

    1990-04-24

    This patent describes a process for the treatment of exhaust gases. It comprises: contacting the gases with a catalytic composite comprising a support which is a refractory inorganic oxide selected from the group consisting of alumina, silica, titania, zirconia, aluminosilicates and mixtures thereof, having dispersed thereon lanthanum oxide. The lanthanum oxide is dispersed on the support by the method of commingling a solution of a lanthanum salt with a hydrosol of the metal precursor of the support, forming particles from the lanthanum containing hydrosol, calcining the particles to forma particulate support containing lanthanum oxide, having an average crystallite size of less than 25 Angstroms, at least one other rare earth oxide and at least one noble metal component selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium.

  3. Treatment of industrial exhaust gases by a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Hołub, Marcin; Jõgi, Indrek; Sikk, Martin

    2016-08-01

    Volatile organic compounds (VOCs) in industrial exhaust gases were treated by a dielectric barrier discharge (DBD) operated with two different mobile power supplies. Together with the plasma source various gas diagnostics were used, namely fourier transform infrared (FTIR) spectroscopy, flame ionization detector (FID) and GC-MS. The analysis revealed that some exhaust gases consist of a rather complex mixture of hydrocarbons and inorganic compounds and also vary in pollutants concentration and flow rate. Thus, analysis of removal efficiencies and byproduct concentrations is more demanding than under laboratory conditions. This contribution presents the experimental apparatus used under the harsh conditions of industrial exhaust systems as well as the mobile power source used. Selected results obtained in a shale oil processing plant, a polymer concrete production facility and a yacht hull factory are discussed. In the case of total volatile organic compounds in oil processing units, up to 60% were removed at input energy of 21-37 J/L when the concentrations were below 500 mg/m3. In the yacht hull factory up to 74% of styrene and methanol were removed at specific input energies around 300 J/L. In the polymer concrete production site 195 ppm of styrene were decomposed with the consumption of 1.8 kJ/L. These results demonstrate the feasibility of plasma assisted methods for treatment of VOCs in the investigated production processes but additional analysis is needed to improve the energy efficiency. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  4. Controlling automotive exhaust emissions: successes and underlying science.

    PubMed

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures.

  5. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    SciTech Connect

    Hutter, E.; Besserer, U.; Jacqmin, G.

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  6. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    SciTech Connect

    Ibrahim, Essam; Szybist, James P; Parks, II, James E

    2010-01-01

    In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

  7. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  8. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  9. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  10. Computer modeling of wear in extrusion and forging of automotive exhaust valves

    NASA Astrophysics Data System (ADS)

    Tulsyan, R.; Shivpuri, R.

    1995-04-01

    In an automotive engine valve forging process, the billet is cold sheared, induction heated, and fed to a mechanical press for a two-stage forging operation with the first stage being extrusion. The main limiting factor in this operation is the wear of the dies during the first stage, extrusion. In this study. abrasive wear was identified as the primary mode of wear, and computer simulation was used to investigate the effect of process variables, such as press speed, initial billet temperature, and die preheat temperature upon abrasive wear. The result generated by this study should be applicable to other part geometry and not limited just to exhaust valves.

  11. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  12. Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    PubMed Central

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters. PMID:22163575

  13. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    PubMed

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters.

  14. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  15. Inhalation toxicology of automotive emissions as affected by an oxidation exhaust catalyst.

    PubMed

    Hysell, D K; Moore, W; Hinners, R; Malanchuk, M; Miller, R; Stara, J F

    1975-04-01

    Preliminary data are given on the acute inhalation toxicology of automotive emissions as affected by an oxidation exhaust catalyst. The catalyst effectively reduced CO and HC in the exhause which apparently had an effect (at least in a closed exposure system) on oxidant and NO2 levels by altering the HC/NOx ratio. There was a resultant reduction in biological effects due to the exposure. The catalyst altered the type of particulate to one which probably contained sulfuric acid as a major component. No evidence was present in these acute exposures to suggest a toxic response due to the higher sulfate emissions or possible catalyst attrition products. The effects of long-term exposure have not yet been investigated.

  16. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOEpatents

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  17. Studies on health effects of automotive exhaust emissions. How dangerous are diesel emissions?

    PubMed

    Klingenberg, H; Winneke, H

    1990-04-01

    The following paper indicates that current results of research conducted on the effects of intentionally increased concentrations of diesel engine exhaust emissions, particularly the results of animal experiments, do not lead scientifically to final conclusions. According to the current level of knowledge, we must continue to assume that the risk of cancer, possibly due to diesel particles, is negligible, particularly under real environmental conditions. The preventive measures taken by governments are of course supported by the automotive industry, an additional research outlay, however, is necessary not only to clear up contradictions and answer new questions arising from current test results, but also to take positive, and not merely precautionary, action in the future. Due to its links to other influences on humans and plants, research conducted on the effects of motor vehicle emissions is a task that lies very much in the public interest. At the same time, the overview of concluded and ongoing research objectives presented in this paper indicates that the automotive industry is greatly committed to this issue and will meet well-justified expectations.

  18. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.

    SciTech Connect

    FTHENAKIS,V.

    2001-12-01

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

  19. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  20. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  1. Potential dilemma: the methods of meeting automotive exhaust emission standards of the clean air act of 1970.

    PubMed

    Piver, W T

    1974-08-01

    This review attempts to provide an overview of the interconnected industrial changes associated with compliance with the exhaust emission standards of the Clean Air Act of 1970. To understand the complex nature of air pollution problems, Federal legislation, and compliance with this legislation requires an understanding of automotive technology, petroleum refining, atmospheric chemistry and physics, economics, and public health. The endeavors of all of these different areas impinge to a greater or lesser extent on the final response to the Clean Air Act which is designed to safeguard public health. This overview begins by examining gasoline refinery practice and gasoline composition. Included in this discussion are average values for trace contaminants in gasoline, and an explanation of the function of the many gasoline additives. Next, exhaust emissions are characterized, average values of exhaust components given, and a summary of important atmospheric air pollution reactions presented. Emission control devices and sulfate emissions from these devices are described. This is followed by a complete discussion of methyl cyclopentadienyl manganese tricarbonyl, a substitute antiknock for tetraethyllead. In the event TEL is legally banned from gasoline, or removed because it poisons the catalytic muffler surface, this manganese antiknock is the most efficaous replacement. In this discussion, the adverse health effects caused by exposure to manganese oxide particulates, the possible exhaust emission products from this additive, are examined in detail. The review concludes with comments on automotive engine and gasoline composition redesign as an approach to automotive air pollution.

  2. Potential Dilemma: The Methods of Meeting Automotive Exhaust Emission Standards of the Clean Air Act of 1970

    PubMed Central

    Piver, Warren T.

    1974-01-01

    This review attempts to provide an overview of the interconnected industrial changes associated with compliance with the exhaust emission standards of the Clean Air Act of 1970. To understand the complex nature of air pollution problems, Federal legislation, and compliance with this legislation requires an understanding of automotive technology, petroleum refining, atmospheric chemistry and physics, economics, and public health. The endeavors of all of these different areas impinge to a greater or lesser extent on the final response to the Clean Air Act which is designed to safeguard public health. This overview begins by examining gasoline refinery practice and gasoline composition. Included in this discussion are average values for trace contaminants in gasoline, and an explanation of the function of the many gasoline additives. Next, exhaust emissions are characterized, average values of exhaust components given, and a summary of important atmospheric air pollution reactions presented. Emission control devices and sulfate emissions from these devices are described. This is followed by a complete discussion of methyl cyclopentadienyl manganese tricarbonyl, a substitute antiknock for tetraethyllead. In the event TEL is legally banned from gasoline, or removed because it poisons the catalytic muffler surface, this manganese antiknock is the most efficaous replacement. In this discussion, the adverse health effects caused by exposure to manganese oxide particulates, the possible exhaust emission products from this additive, are examined in detail. The review concludes with comments on automotive engine and gasoline composition redesign as an approach to automotive air pollution. PMID:4143457

  3. Positive Streamers and Glows in Air and Exhaust Gases

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    1998-10-01

    Theoretical and experimental studies have been made of the effects of sub-microsecond voltage pulses on the plasma chemistry of real flue gases in a test cell. Chemical analysis shows that, for real flue gases, the pulsed system can remove up to 90 % of NO, and 30 % of SO_2, if a residence time of ~ 30s is used. We also find that (i) water vapour is essential to the removal of SO_2, but not for the removal of NO or NO_2; and (ii) that small quantities of N_2O are produced. The removal of SO2 is primarily due to reactions with OH radicals from water vapour, producing sulphuric acid, whereas nitrogen oxides are reduced by N atoms. When a positive voltage is abruptly applied to a point in air at atmospheric pressure, positive streamers are produced. A theory is presented for the development of the first such streamer by solving the continuity equations for electrons, positive ions and negative ions, including the effects of ionisation, attachment, recombination, electron diffusion, and photoionisation, simultaneously with Poisson's equation. With an applied voltage of 20 kV across a 50 mm gap, the streamer does not reach the cathode. When the voltage is sustained in the presence of free electrons, the electric field at the anode starts to recover until positive glow pulses develop at the anode. The presence of the positive glow corona precludes any further streamer formation; this limits the number of chemical reactions stimulated by the discharge because the positive glow is confined close to the anode. Thus, a limit is set for the voltage pulse width. A theory is also presented for the current and light pulses of positive glow corona from a point in air; results are obtained by solving the continuity equations, described above, in concentric sphere geometry. A series of ``saw--toothed'' current pulses of period ~ 1 μs are predicted with a dc current level. Accompanying the current peaks are discrete 30 ns wide pulses of light. It is found that if, in the presence

  4. A death in a stationary vehicle whilst idling: unusual carbon monoxide poisoning by exhaust gases.

    PubMed

    Osawa, Motoki; Horiuchi, Hidekazu; Yoshida, Koutaro; Tada, Takeshi; Harada, Akira

    2003-03-01

    In this paper, we describe an autopsy case in which death was due to accidental carbon monoxide poisoning occurring in a stationary vehicle idling in an open space. To investigate the source of the fatal fumes, the death scene situation was reconstructed using the vehicle. Exhaust gases were found to invade the interior through the floor from a defective exhaust system. CO gas was detected while idling and the level in the cabin gradually rose to 1.5% over a 2-h period. Since the 8-year-old motor vehicle seemed to have been defective for some months, it was concluded that stationary idling overnight caused an accumulation of toxic gases in the interior.

  5. On-line analysis of diesel engine exhaust gases by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Spanĕl, Patrik; Dabill, David; Cocker, John; Rajan, Bob

    2004-01-01

    Selected ion flow tube mass spectrometry (SIFT-MS) has been used to analyse on-line and in real time the exhaust gas emissions from a Caterpillar 3304 diesel engine under different conditions of load (idle and 50% of rated load) and speed (910, 1500 and 2200 rpm) using three types of fuel: an ultra-low-sulphur diesel, a rapeseed methyl ester and gas oil. SIFT-MS analyses of the alkanes, alkenes and aromatic hydrocarbons in the headspace of these fuels were also performed, but the headspace of the rapeseed methyl ester consists mainly of methanol and a compound with the molecular formula C4H8O. The exhaust gases were analysed for NO and NO2 using O2+* reagent ions and for HNO2 using H3O+ reagent ions. The following aldehydes and ketones in the exhaust gases were quantified by using the combination of H3O+ and NO+ reagent ions: formaldehyde, acetaldehyde, propenal, propanal, acetone, butanal, pentanal, butanone and pentanone. Formaldehyde, acetaldehyde and pentenal, all known respiratory irritants associated with sensitisation to asthma of workers exposed to diesel exhaust, are variously present within the range 100-2000 ppb. Hydrocarbons in the exhaust gases accessible to SIFT-MS analyses were also quantified as total concentrations of the various isomers of C3H4, C3H6, C4H6, C5H8, C5H10, C6H8, C6H10, C7H14, C6H6, C7H8, C8H10 and C9H12. 2004 John Wiley & Sons, Ltd.

  6. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  7. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  8. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-08-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  9. Research on the 2nd generation biofuel BIOXDIESEL in aspects of emission of toxic substances in exhaust gases

    NASA Astrophysics Data System (ADS)

    Struś, M. S.; Poprawski, W.; Rewolte, M.

    2016-09-01

    This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.

  10. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle

  11. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  12. Batch-processed semiconductor gas sensor array for the selective detection of NOx in automotive exhaust gas

    NASA Astrophysics Data System (ADS)

    Jang, Hani; Kim, Minki; Kim, Yongjun

    2016-12-01

    This paper reports on a semiconductor gas sensor array to detect nitrogen oxides (NOx) in automotive exhaust gas. The proposed semiconductor gas sensor array consisted of one common electrode and three individual electrodes to minimize the size of the sensor array, and three sensing layers [TiO2 + SnO2 (15 wt%), SnO2, and Ga2O3] were deposited using screen printing. In addition, sensing materials were sintered under the same conditions in order to take advantage of batch processing. The sensing properties of the proposed sensor array were verified by experimental measurements, and the selectivity improved by using pattern recognition.

  13. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  14. Influence of Ambient Temperature on the CO2 Emitted With Exhaust Gases of Gasoline Vehicles

    NASA Astrophysics Data System (ADS)

    Chainikov, D.; Chikishev, E.; Anisimov, I.; Gavaev, A.

    2016-08-01

    This article focuses on the regulation of CO2 emitted in the exhaust gases of gasoline vehicles. Based on comparing the world practices of restrictive measures on greenhouse gas emissions with Russian legislation, we conclude that there is a need to adjust the limits of CO2 emission taking into account the negative impact of ambient temperature on CO2 emission. The climatic conditions of many countries stipulate the use of vehicles in temperatures below zero. At the same time, the existing regulations fully take into account the temperature features of the various countries, which casts doubt on the existence of uniform emission standards for all countries. Here, we conduct an experiment on one of the most popular cars in Russia: the Mitsubishi Lancer 9. We establish that lower temperatures are correlated with larger concentrations of CO2 in the exhaust gases. We draw a conclusion about the need to account for the actual operating conditions when establishing limit values on CO2 emissions of vehicles.

  15. Measurement procedures of polycyclic aromatic hydrocarbons in undiluted diesel exhaust gases

    SciTech Connect

    Wajsman, J.; Champoussin, J.C.; Dessalces, G.; Claus, G.

    1996-09-01

    Procedures for the measurement of aromatic hydrocarbons in undiluted Diesel exhaust gases were developed and compared. In the first one, hydrocarbons are trapped on sorbents, then analyzed by thermal desorption coupled to GC/FID. Eight monoaromatic hydrocarbons and eleven PAHs from two to four aromatic rings have been detected. The second procedure uses three media: a filter, a condenser and a resin cartridge. After extraction, samples are purified and analyzed by GC/FID or by HPLC/Fluorescence. Fourteen PAHs of two to six aromatic rings have been thus quantified. The two procedures are in agreement for the common species measured. The procedure using the analysis by HPLC/Fluorescence is both more selective and more sensitive. It allows an estimate to be made of the influence of load and speed on PAH emissions.

  16. Process for controlling nitrogen oxides in exhaust gases and apparatus therefor

    SciTech Connect

    Atsukawa, M.; Matsumoto, K.; Sera, T.; Seto, T.; Ukawa, N.

    1981-11-24

    In a process and an apparatus for controlling oxides of nitrogen in exhaust gases from combustion equipment by decomposing the oxides, in the presence of oxygen, with ammonia blown into the equipment and associated ducting at temperatures within the range from 700 to 1300/sup 0/C, a catalyst assembly is arranged, with the catalytic surfaces of the component units substantially in parallel to the direction of exhaust gas flow, in a region where the temperature of the gas after the decomposing treatment is between 300 and 500/sup 0/C, and the gas after the decomposing treatment is caused to pass through the catalyst assembly to decompose residual nitrogen oxides and ammonia in the gas to innocuous substances. An additional supply of ammonia, in an amount from 0.5 to 1.5 times equivalent (In molar ratio) to the amount of nitrogen oxides in moles in the gas is introduced into the space immediately upstream of the catalyst assembly, thereby to accelerate the decomposition of the oxides in the gas to make it harmless.

  17. Research on Integration of an Automotive Exhaust-Based Thermoelectric Generator and a Three-Way Catalytic Converter

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Chen, Y. L.; Chen, S.; Xianyu, W. D.; Su, C. Q.

    2015-06-01

    A key research topic related to thermoelectric generators (TEGs) for automotive applications is to improve their compatibility with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. A new TEG integrated with a three-way catalytic converter (CTEG) by reshaping the converter as the heat exchanger is proposed. A heat-flux coupling simulation model of the integrated TEG is established at the light-off stage of the original three-way catalytic converter (TWC). Temperature distribution maps of the integrated heat exchanger, thermoelectric modules, and cooling-water tank are obtained to present the process of energy flow among the parts of the CTEG. Based on the simulation results, the output power of the CTEG is calculated by a mathematical model. A minimum output power of 31.93 W can be obtained by conversion when the TWC starts working at steady conditions. Theoretically, this case study demonstrates the great potential for use of CTEGs in vehicles.

  18. Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Cheng, Ping; Spanel, Patrik

    2002-01-01

    We have used selected ion flow tube mass spectrometry (SIFT-MS) to analyse the vapours emitted by petrol and diesel fuels and the exhaust gases from petrol (spark ignition) and diesel (compression ignition) engine vehicles fitted with catalytic converters. Only those components of these media that have significant vapour pressures at ambient temperatures were analysed and thus particulates were obviously not detected. These media have been analysed using the full scope of SIFT-MS, i.e., with the three available precursor ions H3O+, NO+ and O2+. The combination of the H3O+ and NO+ analyses is seen to be essential to distinguish between different product ions at the same mass-to-charge ratio (m/z) especially in identifying aldehydes in the exhaust gases. The O2+ precursor ions are used to detect and quantify the large amount of nitric oxide present in the exhaust gases from both engine types. The petrol and diesel vapours consist almost exclusively of aliphatic alkanes, alkenes and alkynes (and dienes) and aromatic hydrocarbons. Some of these compounds appear in the exhaust gases together with several aldehydes, viz. formaldehyde, acetaldehyde, pentanal, pentenal (acrolein), butenal, and also methanol and ethanol. Acetone, nitric oxide and ammonia are also present, acetone and nitric oxide being much more abundant in the diesel exhaust gas than in the petrol exhaust gas. These data were obtained from samples collected into pre-evacuated stainless steel vessels. Trapping of the volatile compounds from the gas samples is not required and analysis was completed a few minutes later. All the above compounds are detected simultaneously, which demonstrates the value of SIFT-MS in this area of research.

  19. Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Liu, X.; Chen, S.; Tong, N. Q.

    2013-07-01

    Recent advances in thermoelectric technologies have made exhaust-based thermoelectric generators (TEGs) promising to recover waste heat. The thermal performance of the heat exchanger in exhaust-based TEGs is studied in this work. In terms of interface temperature and thermal uniformity, the thermal characteristics of heat exchangers with different internal structures, lengths, and materials are discussed. Following computational fluid dynamics simulations, infrared experiments are carried out on a high-performance production engine with a dynamometer. Simulation and experimental results show that a plate-shaped heat exchanger made of brass with fishbone-shaped internal structure and length of 600 mm achieves a relatively ideal thermal performance, which is practically helpful to enhance the thermal performance of the TEG.

  20. Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles

    NASA Astrophysics Data System (ADS)

    Frobenius, Fabian; Gaiser, Gerd; Rusche, Ulrich; Weller, Bernd

    2016-03-01

    A special thermoelectric generator system design and the setup of a thermoelectric generator for the integration into the exhaust line of combustion engine-driven vehicles are described. A prototype setup for passenger cars and the effects on the measured power output are shown. Measurement results using this setup show the potential and the limitations of a setup based on thermoelectric modules commercially available today. In a second step, a short outline of the detailed mathematical modeling of the thermoelectric generator and simulation studies based on this model are presented. By this means, it can be shown by which measures an improvement of the system power output can be achieved—even if today's modules are used. Furthermore, simulation studies show how the exhaust gas conditions of diesel- and Otto-engines significantly affect the requirements on thermoelectric materials as well as the potential and the design of the thermoelectric generator. In a further step, the design and the setup of a thermoelectric generator for an application in a commercial vehicle are presented. This thermoelectric generator is designed to be integrated into the exhaust aftertreatment box of the vehicle. Experimental results with this setup are performed and presented. The results show that thermoelectric generators can become an interesting technology for exhaust waste heat recovery due to the fact that they comprise non-moving parts. However, the efficiency of the modules commercially available today is still far from what is required. Hence, modules made of new materials known from laboratory samples are urgently required. With regard to future CO2 regulations, a large market opportunity for modules with a high efficiency can be expected.

  1. Certification of Pd and Pt single spikes and application to the quantification of Pt and Pd in automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Vogl, Jochen; Meyer, Christian; Noordmann, Janine; Rienitz, Olaf; Geilert, Sonja

    2014-05-01

    Numerous epidemiological studies show the effect of increased ambient pollution. Therefore measurement networks for air quality have been installed worldwide and legislation requires the monitoring of air pollution. Besides monitoring it is also important to be able to identify, to quantify and finally to regulate the emission of distinct sources in order to improve the quality of life. Automotive vehicles are a major source of environmental pollution especially through contaminants such as CO, NOX, SOX and hydrocarbons which derive from petrol combustion, while for example Platinum Group Elements (PGE) can be present from catalytic converters. The release of PGE into the environment, however, may be damaging in terms of public health, ecological and economic interests. In order to reliably assess the risks from PGEs, traceable and thus comparable data on the release rates of PGE from automotive catalysers are needed. As no Certified Reference Materials (CRM) are available for such samples the development of analytical procedures enabling SI-traceable results will be challenging. Therefore reference procedures for Pd and Pt in automotive exhaust emissions based on isotope dilution mass spectrometry (IDMS) have been developed and applied to specifically sampled automotive exhaust emissions. Due to the commonly known advantages, IDMS often is applied for quantification PGEs, as is the case within this work. The main reasons here are the required accuracy and the low PGE mass fractions in the sample. In order to perform IDMS analysis the analyte element must be available in an isotopically enriched form as so-called spike material or solution thereof, which is mixed with the sample. Unfortunately, no certified PGE spike solutions are available yet. To fill this gap two single PGE spikes, one 106Pd and one 194Pt spike, have been produced and characterized. The selection of the isotopes, the production of the solutions and the ampoulation will be described in this

  2. Optimization of Cooling Unit Design for Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Xu, M.; Wang, W. S.; Deng, Y. D.; Liu, X.; Tang, Z. B.

    2015-06-01

    Integrating a thermoelectric cooler (TEC) into the engine cooling system has various advantages including reducing additional mechanical parts, and saving energy and space for automotive applications. Based on performance parameters of the engine and thermoelectric modules, three different TEC configurations called plate-shape, stripe-shape, and diamond-shape are constructed with development of simulations of the different TECs and the performance of the circulating coolant. Based on these simulations, the velocity, pressure, and temperature fields of the coolant are obtained for further research. Besides, the temperature of the TEC and the output power of the thermoelectric generator (TEG) are acquired experimentally. Comparing the working performance of the different TECs, the simulation and experimental results show that the TEG using the diamond-shaped TEC achieves a relatively ideal performance. Finally, some measures are proposed to improve the cooling system, providing guidelines for future research.

  3. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts.

    PubMed

    Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua

    2016-03-23

    In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds.

  4. Chromosome changes in workers (smokers and nonsmokers) exposed to automobile fuels and exhaust gases.

    PubMed

    Fredga, K; Dävring, L; Sunner, M; Bengtsson, B O; Elinder, C G; Sigtryggsson, P; Berlin, M

    1982-09-01

    The incidence of chromosome changes in men occupationally exposed to automobile fuels and exhaust gases was investigated. Blood samples were taken from the following four groups of 12 men: drivers of diesel-engine trucks, drivers of gasoline-engine trucks, automobile inspectors, and a reference group. The men in the groups were matched with respect to age, smoking habits, and length of time in their respective jobs. Chromosome preparations from lymphocytes were made and analyzed by standardized routine methods, and the frequencies of gaps, breaks, and sister chromatid exchanges were recorded. Statistical analysis of the results gave no evidence for a marked occupational effect, though there remains a grave suspicion that working with diesel motors may cause an increased level of chromosome changes. Smokers showed a significant or near significant increase in breaks, total aberrations, and sister chromatid exchanges over the nonsmokers in three of the groups. An analysis of the data revealed a weak positive correlation between the frequencies of chromosome breaks and sister chromatid exchanges in an individual.

  5. Multi-Objective Optimization Design for Cooling Unit of Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Qiang, J. W.; Yu, C. G.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.; Yuan, X. H.

    2016-03-01

    In order to improve the performance of cooling units for automotive thermoelectric generators, a study is carried out to optimize the cold side and the fin distributions arranged on its inner faces. Based on the experimental measurements and numerical simulations, a response surface model of different internal structures is built to analyze the heat transfer and pressure drop characteristics of fluid flow in the cooling unit. For the fin distributions, five independent variables including height, length, thickness, space and distance from walls are considered. An experimental study design incorporating the central composite design method is used to assess the influence of fin distributions on the temperature field and the pressure drop in the cooling units. The archive-based micro genetic algorithm (AMGA) is used for multi-objective optimization to analyze the sensitivity of the design variables and to build a database from which to construct the surrogate model. Finally, improvement measures are proposed for optimization of the cooling system and guidelines are provided for future research.

  6. Investigation of the Performance of HEMT-Based NO, NO₂ and NH₃ Exhaust Gas Sensors for Automotive Antipollution Systems.

    PubMed

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-02-23

    We report improved sensitivity to NO, NO₂ and NH₃ gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO₂ and 15 ppm-NH₃ is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  7. A comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources.

    PubMed

    Brooks, A L; Li, A P; Dutcher, J S; Clark, C R; Rothenberg, S J; Kiyoura, R; Bechtold, W E; McClellan, R O

    1984-01-01

    This research (1) ranked the genotoxicity of methylene chloride extracts of laboratory and environmentally collected particles and (2) evaluated the role of collection location and sample composition on genotoxic potency. Samples of exhaust from a spark-ignition automobile, light-duty diesel automobile, and a heavy-duty diesel engine operated in a laboratory on a dynamometer were studied, as well as samples taken in a highway tunnel and outside the same tunnel. The tunnel samples were collected 30 m inside or 56 m outside the exit portal at times when between 70%-95% of the traffic consisted of diesel trucks. In the Ames Salmonella mutagenicity assay, each extract produced a dose-dependent increase in mutagenicity in strain TA-98 without addition of liver S-9 fraction. Extracts from two tunnel samples collected 1 yr apart, and extracts of particles collected outside the tunnel had similar mutagenic activity. The order of mutagenic activity per microgram of extract in TA-98 without S-9 from the lowest to the highest was environmental sample less than or equal to tunnel less than heavy-duty diesel less than light-duty diesel less than spark ignition. Addition of S-9 or testing in Salmonella strains resistant to the mutagenicity of nitroaromatic compounds (TA-98 NR and TA-98 1,8-DNP6) decreased the mutagenic response. With cell killing, sister chromatid exchanges, and mutations as endpoints in Chinese hamster ovary cells (CHO), the order of potency was tunnel less than light-duty less than spark-ignition samples. All three extracts induced a similar amount of mitotic delay per microgram with or without S-9. Enhanced chromosome aberration frequency was detected only in cells exposed to extracts from spark-ignition exhaust. The data indicated that genotoxic activity was detected in each particle extract, that the potency ranking was similar using different genetic endpoints, and that the magnitude of the genotoxic potency was similar.

  8. Assessment and prediction of urban air pollution caused by motor transport exhaust gases using computer simulation methods

    NASA Astrophysics Data System (ADS)

    Boyarshinov, Michael G.; Vaismana, Yakov I.

    2016-10-01

    The following methods were used in order to identify the pollution fields of urban air caused by the motor transport exhaust gases: the mathematical model, which enables to consider the influence of the main factors that determine pollution fields formation in the complex spatial domain; the authoring software designed for computational modeling of the gas flow, generated by numerous mobile point sources; the results of computing experiments on pollutant spread analysis and evolution of their concentration fields. The computational model of exhaust gas distribution and dispersion in a spatial domain, which includes urban buildings, structures and main traffic arteries, takes into account a stochastic character of cars apparition on the borders of the examined territory and uses a Poisson process. The model also considers the traffic lights switching and permits to define the fields of velocity, pressure and temperature of the discharge gases in urban air. The verification of mathematical model and software used confirmed their satisfactory fit to the in-situ measurements data and the possibility to use the obtained computing results for assessment and prediction of urban air pollution caused by motor transport exhaust gases.

  9. Histological examination of the rat after long-term exposure to subtoxic automotive exhaust gas.

    PubMed

    Roggendorf, W; Neumann, H; Thron, H L; Schneider, H; Sarasa-Corral, J L

    1981-07-01

    Regarding the potential impact of traffic-born air pollutants on public health, in recent years attention has increasingly been focused on the possible effects on the cardiovascular system. In order to investigate this problem further, the influence of long-term exhaust gas exposure on rats has been studied. One hundred Wistar rats of either sex were exposed 5 X 8 h/week up to 28 months to an atmosphere polluted by the emissions of an idling Otto engine, CO concentrations held constant at 90 ppm. A second group (50 rats) was exposed to 250 ppm for 6 months. Blood parameters and body weight were controlled. Specimens of CNS, heart, vessels, kidney etc. were investigated light microscopically. Focal necroses of the myocardium with inflammatory reactions as well as interstitial fibrosis were found in the heart muscle of the 90 ppm group. In the 250 ppm group endothelial proliferations, edema of the intima and deposits of proteoglycanes in the media were observed. We conclude that subtoxic concentrations of CO which only lead to slight morphologic changes may aggravate preexisting lesions caused by high risk conditions, e.g., hypertension or hypercholesteremia.

  10. Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles

    NASA Astrophysics Data System (ADS)

    de Castro, A. J.; Meneses, J.; Briz, S.; López, F.

    1999-07-01

    Road traffic is one of the most important contributors to air pollution, being that a small fraction of the running vehicles is responsible for more than a half of the emissions. Roadside emission monitoring of individual cars appears to be an efficient way to identify these gross polluters. In this sense, nondispersive infrared (NDIR) systems have been developed to monitor the gas emissions of individual vehicles. However, these systems do not include NOx detection because of the strong interference of NO and NO2 absorption bands with the water band. This work is focused on the roadside monitoring of NO emissions by NDIR techniques. A theoretical study of the interference between NO and H2O absorption bands in the 1800-1950 cm-1 spectral region has been performed. Two absorption lines, centered at 1876 and 1900 cm-1 have been selected due to the very low water interference. The development of a new application based on the buildup of a high order interference filter, the solid state Fabry-Pérot filter, is presented. Design of the filter system has been done, optimizing the transmittance at these two absorption lines. Finally, the ability of such a filter to discriminate NO absorption has been tested by using experimental absorption spectra measured by a commercial Fourier transform infrared spectroradiometer working in the active mode. The buildup of such a filter would permit us to increase the capabilities of on road exhaust monitoring systems using the NDIR technique, extending the range of analyzed gases to the nitrogen oxides.

  11. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  12. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  13. A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases

    NASA Technical Reports Server (NTRS)

    Evans, Albert; Hibbard, Robert R

    1954-01-01

    A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.

  14. Separation of VOC from exhaust gases in the trickle-bed bioreactor

    SciTech Connect

    Kirchner, K.; Wagner, S.; Rehm, H.J.

    1996-12-31

    The separation efficiency of certain substances, such as acetone and isopropanol in a trickle-bed bioreactor, depends strongly on the oxygen concentration. The results obtained can be described by a mathematical model based on the diffusion of oxygen into the biofilm (diffusion regime of the catalyst). The non-stationary operation of the reactor - interruption of the oxygen stream and strong fluctuation in the exhaust gas stream - showed that other components, such as propionaldehyde and n-propanol, could be eliminated for a certain time without oxygen. Propionic acid is formed. Finally a technical biofilter is compared with a trickle-bed bioreactor. 4 refs., 5 figs., 1 tab.

  15. The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Piperel, A.; Montagne, X.; Dagaut, P.

    2008-10-01

    Nowadays, in diesel engines, it is typical to recycle exhaust gases (EGR) in order to decrease pollutant emissions. However, few studies report the precisely measured composition of the recycled gases. Indeed, in order to know precisely the composition of the EGR gases, they have to be sampled hot and not diluted, in contrast to the usual practice. Thus, a new system to collect such samples was developed. With this new trapping system, it is possible to measure the concentrations of NOx, CO, CO2, O2, hydrocarbons (HCs) in the range C1-C9, aldehydes, ketones and PAHs. The trapping system and the analytical protocol used are described in this paper.

  16. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    NASA Astrophysics Data System (ADS)

    Briault, Pauline; Rieu, Mathilde; Laucournet, Richard; Morel, Bertrand; Viricelle, Jean-Paul

    2014-12-01

    This project deals with the development and the electrochemical characterization of anode supported single chamber SOFC in a simulated environment of thermal engine exhaust gas. In the present work, a gas mixture representative of exhaust conditions is selected. It is composed of hydrocarbons (HC: propane and propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water. Only oxygen content is varied leading to different gas mixtures characterized by three ratios R = HC/O2. Concerning the cell components, a cermet made of nickel and an electrolyte material, Ce0.9Gd0.1O1.95 (CGO) is used as anode and two cathode materials, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Pr2NiO4+δ (PNO), are evaluated. The prepared cells are investigated in the various gas mixtures for temperatures ranging from 450 °C to 600 °C. Ni-CGO/CGO/LSCF-CGO cell has delivered a maximum power density of 15 mW cm-2 at 500 °C with R = HC/O2 = 0.21, while lower power densities are obtained for the other ratios, R = 0.44 and R = 0.67. Afterwards, LSCF and PNO cathode materials are compared and LSCF is found to deliver the highest power densities. Finally, by improving the electrolyte microstructure, some cells presenting a maximum power density of 25 mW cm-2 at 550 °C are produced. Moreover, up to 17% of initial HC are eliminated in the gas mixture.

  17. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  18. Sol-gel processed alumina based materials in microcalorimeter sensor device fabrication for automotive applications

    SciTech Connect

    Nakouzi, S.R.; McBride, J.R.; Nietering, K.E.; Narula, C.K.

    1996-12-31

    The application of sol-gel processed materials in a variety of sensors has been proposed. The authors describe microcalorimeter sensor devices employing sol-gel processed alumina based materials which can be used to monitor pollutants in automotive exhaust. These sensors operate by measuring changes in resistance upon catalysis and are economically acceptable for automotive applications. It is important to point out that automobiles will be required to have a means of monitoring exhaust gases by on-board sensors as mandated by the EPA and the California Air Resources Board (OBD-II).

  19. Lead, cadmium, iron, zinc, copper, manganese, calcium and magnesium in SPF male rats exposed to a dilution of automotive exhaust gas throughout their lives.

    PubMed

    Stupfel, M; Valleron, A J; Radford, E

    1983-12-15

    Male pathogen free CFE albino Sprague Dawley rats were exposed 8 h per day, 5 days per week, for three years to a 1/1000 dilution of automotive exhaust gas, containing 58 ppm carbon monoxide, 0.37% carbon dioxide, 23 ppm nitrogen oxides, 2 ppm aldehydes, less than 5 mg/l hydrocarbons and 8.5 micrograms/m3 lead. Lead, cadmium, iron, zinc, calcium and magnesium were measured by atomic absorption in the femurs and tibias of the rats which died during the experiment. A comparison with two control groups revealed that the only significant difference in the elements measured in the bones was a 500% increase in lead concentration. The calculations of the correlations between the percentages of the elements in bones, the ages and the body weights of the rats, as well as cluster analysis, did not show consistent variations of the water, calcium, magnesium concentrations nor of the other studied metals related to this increase in lead concentration. Moreover, longevity was the same in the 3 groups of rats, but the body weight was statistically smaller (4%) in the group exposed to the auto exhaust dilution.

  20. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea.

    PubMed

    Song, Sang-Keun; Shon, Zang-Ho

    2014-05-01

    The emissions of exhaust gases (NOx , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes ("at sea," "maneuvering," and "in port") and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6 × 10(3), 374, 1.2 × 10(3), and 5.6 × 10(5) ton year(-1), respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7 × 10(3) ton year(-1)) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in "in port" mode. In addition, the largest fraction (approximately 45-67%) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4-1.8 and 4.7-6.1 times higher than those in 2009 (base year), respectively.

  1. Experiments and Simulations on a Heat Exchanger of an Automotive Exhaust Thermoelectric Generation System Under Coupling Conditions

    NASA Astrophysics Data System (ADS)

    Liu, X.; Yu, C. G.; Chen, S.; Wang, Y. P.; Su, C. Q.

    2014-06-01

    The present experimental and computational study investigates an exhaust gas waste heat recovery system for vehicles, using thermoelectric modules and a heat exchanger to produce electric power. It proposes a new plane heat exchanger of a thermoelectric generation (TEG) system, producing electricity from a limited hot surface area. To investigate the new plane heat exchanger, we make a coupling condition of heat-flow and flow-solid coupling analysis on it to obtain the temperature, heat, and pressure field of the heat exchanger, and compared it with the old heat exchanger. These fields couple together to solve the multi-field coupling of the flow, solid, and heat, and then the simulation result is compared with the test bench experiment of TEG, providing a theoretical and experimental basis for the present exhaust gas waste heat recovery system.

  2. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  3. General Motors Corporation and Pacific Northwest Laboratory Staff Exchange: Instrumentation for rapid measurement of automotive exhaust emissions

    SciTech Connect

    Griffin, J.W.; Sharpe, S.W.; Sloane, T.M.

    1995-07-01

    Information in this report on the staff exchange of Pacific Northwest Laboratory (PNL) staff with the AIGER Consortium (General Motors, Ford, Chrysler, Navistar, the environmental protection Agency, and the California Air Resources Board) includes the purpose and objectives, a summary of activities, significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefits from that work, and two appendices. Appendix A is a brief description of the fast gas chromatography and infrared spectroscopy chemometric technologies and their application to the rapid characterization of automobile exhaust emissions. Appendix B is a list of key contacts and the schedule of activities pertaining to the staff exchange.

  4. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  5. High temperature corrosion performance of automotive coupling alloys

    SciTech Connect

    Smith, G.D.; Crum, J.R.; Flower, H.L.

    1998-12-31

    Key to the satisfactory performance of automotive exhaust couplings is adequate high temperature corrosion resistance. This is becoming especially critical as service life is being extended by government legislation and as service temperatures are increasing due to the need for increased fuel efficiency and faster catalyst light-off. Currently employed and candidate coupling alloys, including 409, 304, 316Ti and 321 stainless steels (SS) and alloys 600, 800, 864 and 625, are selectively evaluated for resistance to road salt spray corrosion, oxidation in air and engine exhaust gases and under cyclic burner rig conditions, These laboratory results are compared with alloy performance of couplings subjected to test track and field exposure.

  6. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    PubMed Central

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  7. Baseline Exhaust Emissions from U. S. Army M54A2 LDS 465 Powered Five-Ton Trucks.

    DTIC Science & Technology

    DIESEL ENGINES, *EXHAUST GASES), (*AIR POLLUTION, EXHAUST GASES), (*ODORS, EXHAUST GASES), CARGO VEHICLES, SMOKE, HYDROCARBONS, CARBON MONOXIDE, CARBON DIOXIDE, NITROGEN OXIDES, SULFUR COMPOUNDS, ALDEHYDES, TEST METHODS

  8. Effects of chronic exposure to diluted automotive exhaust gas on the CNS of normotensive and hypertensive rats.

    PubMed

    Roggendorf, W; Thron, N L; Ast, D; Köhler, P R

    1981-01-01

    Regarding the potential impact of traffic-born air pollutants on public health, attention during the last years has been increasingly focused on the possible effects in high-risk groups of the population. In order to evaluated this point further, the combined influence of both, chronic arterial hypertension and long-time exhaust gas exposure on the CNS has been studied. Both, normotensive Wistar) and spontaneously hypertensive rats (SHR) of either sex were exposed 5 X 8 hours per week for up to 18 months to atmospheres polluted by the emissions of an idling Otto engine with CO concentrations held constant at about 0,90 and 250 ppm, respectively. Biochemical data, body weight, and blood pressure were checked regularly. Characteristic histomorphological findings in the non-exposed SHR brains were hyalinosis and hyperplasia of intracerebral arterioles and -- in some cases -- small focal hemorrhages and infarcts. In the exposed SHR brains, large infarcts of the hemisphere and in the basal ganglia were found, which possibly corresponds to the increase of the mortality rate in SHR. We assume that the increase hematocrit plays an important role in the disturbance of microcirculation of the CNS.

  9. Changes of respiratory system in mice exposed to PM4.0 or TSP from exhaust gases of combustion of cashew nut shell.

    PubMed

    Josino, Jeanne Batista; Serra, Daniel Silveira; Gomes, Maria Diana Moreira; Araújo, Rinaldo Santos; de Oliveira, Mona Lisa Moura; Cavalcante, Francisco Sales Ávila

    2017-08-25

    Air pollution is a topic discussed all over the world and the search for alternatives to reduce it is of great interest to many researchers. The use of alternative energy sources and biofuels seems to be the environmentally safer solution. In this work, the deleterious effects on the respiratory system of mice exposed to PM4.0 or TSP, present in exhaust gases from the combustion of CNS were investigated, through data from respiratory system mechanics, oxidative stress, histopathology and morphometry of the parenchyma pulmonary. The results show changes in all variables of respiratory system mechanics, in oxidative stress, the histopathological analysis and lung morphometry. The results provide experimental support for epidemiological observations of association between effects on the respiratory system and exposure to PM4.0 or TSP from CNS combustion exhaust gases, even at acute exposure. It can serve as a basis for regulation or adjustment of environmental laws that control the emissions of these gases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of varying the combustion parameters on the emissions of carbon monoxide and nitrogen oxides in the exhaust gases from propane-fueled vehicles.

    PubMed

    Roberge, B

    2000-05-01

    Propane-fueled forklifts are one source of carbon monoxide (CO) contamination of workplace air. The previous study carried out by the Quebec Occupational Health and Safety Research Institute dealt with worker exposure to CO during forklift use in buildings. It recommends that exhaust gas emissions be kept below a 1 percent concentration. However, this control has not produced a significant reduction in worker exposure to CO, when factors (ventilation, type of work tasks, and management of vehicle fleet) specific to companies are taken into account. Consequently, a reduction in CO emissions below the threshold of 0.3 percent should be considered. The experience acquired with propane-fueled ice resurfacers can be used to determine the effect of combustion parameters on exhaust gas emissions. It is known that a reduction in CO emissions from ice resurfacers resulted in the appearance of nitrogen oxides (NOx) and eventually in nitrogen dioxide (NO2) poisoning. Few publications present NOx results in relation to the CO measured in the exhaust gases of propane-fueled vehicles. The objective of this study is to define the level to which CO emissions can be reduced without increasing NOx concentrations. This real-situation study quantified the CO, NO, and NOx in the exhaust gases of a fleet of propane-fueled forklifts in relation to the mixture ratio. The results show the impact of the motor speed and mixture ratio on the CO, NO, and NO2 concentrations. They confirm an increase in NOx concentrations when CO concentrations are reduced. They also show that proper maintenance of forklifts combined with optimal adjustments can reduce CO and NOx emissions. The study proposes a compromise between CO and NOx emissions by taking into account worker health and safety as well as vehicle performance. Monitoring must be done to control air quality in work areas and worker exposure to CO and NO2. A forklift preventive maintenance program and general building ventilation are the favored

  11. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  12. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  13. Measurement of aromatic compounds in automobile exhaust gases with membrane inlet mass spectrometry equipped with an on-line-probe and an automatic Tenax-Sampler

    SciTech Connect

    Matz, G.; Walte, A.; Muenchmeyer, W.; Rikeit, H.E.

    1996-09-01

    A novel membrane inlet mass spectrometer is used to monitor organic compounds in combustion emissions. Different gas probes, which can be changed in minutes, have been developed for use in combination with the mobile mass spectrometer. With the On-Line-Probe, volatile organic compounds (BTXE) can be measured down to the ppm range with a cycle rate of one analysis per second. Time resolved measurements of aromatic compounds together with other exhaust gases can be done. By sampling with a polymer adsorbent, analysis with thermal desorption and GC/MS down to the ppb concentration range can be achieved. A six-fold Tenax-Sampler, connected to the mobile GC/MS system, is capable of taking and transferring the samples automatically. Because sampling with this device is independent from the analysis, measurements of narrow time windows in a dynamical process can be done easily. The whole analytical equipment was evaluated on-site through measurements on an engine test stand, a dynamometer and on the road during real traffic. It is shown, that time resolved quantitative measurements give information on the influence of special driving conditions (warm up, congestion) on the amount of aromatic compounds emitted by automobile exhausts.

  14. An interband cascade laser-based in situ absorption sensor for nitric oxide in combustion exhaust gases

    NASA Astrophysics Data System (ADS)

    Diemel, O.; Pareja, J.; Dreizler, A.; Wagner, S.

    2017-05-01

    A direct absorption nitric oxide sensor for combustion exhaust gas measurements, based on an interband cascade laser operating at 5.2 µm, is presented. The sensor was applied to the hot air co-flow of an auto-ignition test rig (800-1300 K), which contains nitric oxide mole fractions of the order of 1 mol%, due to prior microwave plasma heating. The effect of non-uniform temperature along the beam path, on both absorption line strength and gas density, was included in mole fraction measurements at various co-flow temperatures and velocities. At an absorption length of only 82 mm, a noise-limited detection limit of 30 ppm with a 10 ms observation time was achieved at 800 K. The results were compared in detail to previously measured mole fractions, using a sampling gas analyzer.

  15. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  16. In situ synthesis of platinum nanocatalysts on a microstructured paperlike matrix for the catalytic purification of exhaust gases.

    PubMed

    Koga, Hirotaka; Umemura, Yuuka; Tomoda, Akihiko; Suzuki, Ryo; Kitaoka, Takuya

    2010-05-25

    The successful in situ synthesis of platinum nanoparticles (PtNPs) on a microstructured paperlike matrix, comprising ceramic fibers as main framework and zinc oxide whiskers as selective support for the PtNPs, is reported. The as-prepared hybrid material (PtNPs@ZnO "paper") resembles ordinary paper products because it is flexible, lightweight, and easy to handle. In the catalytic reduction of nitrogen oxide (NO(x)) with propene for exhaust gas purification, the PtNPs@ZnO paper demonstrates a high catalytic performance at a low reaction temperature, with one-third the dosage of precious platinum compared to conventional platinum-loaded honeycomb catalysts. These results imply that the combination of easily synthesized PtNPs and a unique fiber-network microstructure can provide excellent performances, promoting the effective transport of heat and reactants to the active sites of the platinum nanocatalysts. Thus, PtNPs@ZnO materials with paperlike practical aspects are promising catalytic materials for efficient NO(x) gas purification.

  17. A case study for removal of sulphur-di-oxide from exhaust flue gases at thermal power plant, Rajasthan (India).

    PubMed

    Sharma, Rashmi; Acharya, Shveta; Sharma, Arun Kumar

    2011-01-01

    The aim of this study is to reduce the percent SO2 in environment and to produce a byproduct with SO2, to control air pollution. The present work envisages a situation that compares the efficiency of three different reagents, viz. sodium hydroxide, calcium hydroxide and waste product of water treatment plant containing CaO in removal of SO2 that would be generated in this situation. Various parameters were also observed with variation involving percent concentration of reactants, pH of the solution, time for reaction , temperature of solution and flow of flue gas in impingers. Pet coke with lime stone is being used for power generation in power plant during the experiment, the pet coke having 6% sulphur resulting in emission of SO2. Hence experiments have been conducted to trap these gases to produce sulphates. Waste product of water treatment plant, calcium hydroxide, and sodium hydroxide in various permutation and combination have been used with control flow by SO2 monitoring kit for preparation of calcium sulphate and sodium sulphate. Thus sodium hydroxide turned out to be better as compared to calcium hydroxide and sludge. It is also concluded that pH of the solution should be alkaline for good absorption of SO2 and maximum absorption of SO2 found in direct passing of SO2 in impinger as compared to indirect passing of SO2 in impingers. Good absorption of SO2 found at temperature range between 20-25 degrees C and it seems to be optimum. Maximum recovery of SO2 was obtained when the reaction took place for long time period.

  18. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  19. Automotive Wastes.

    PubMed

    Guigard, Selma E; Shariaty, Pooya; Niknaddaf, Saeid; Lashaki, Masoud Jahandar; Atkinson, John D; Hashisho, Zaher

    2015-10-01

    A review of the literature from 2014 related to automotive wastes is presented. Topics include solid wastes from autobodies and tires as well as vehicle emissions to soil and air as a result of the use of conventional and alternative fuels. Potential toxicological and health risks related to automotive wastes are also discussed.

  20. Gas sensing using porous materials for automotive applications.

    PubMed

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-07

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours.

  1. Turbocharged engine with exhaust purifier

    SciTech Connect

    Tadokoro, T.; Matsuda, I.; Okimoto, H.

    1986-09-23

    The patent described a control system for an automobile engine having intake and exhaust systems for respectively conducting intake gases to and exhaust gases from the engine, which comprises, in combination: a turbocharger including a turbine disposed in the exhaust system and adapted to be driven by the flow of the exhaust gases therethrough and a blower disposed in the intake system and drivingly connected with the turbine for supercharging the intake gases; and exhaust purifying device disposed in the exhaust system downstream of the turbine with respect to the direction of flow of the exhaust gases; a regulating means for varying the effective cross-section of a portion of the exhaust system leading to the turbine; a control means for controlling the regulating means in dependence on an operating condition of the engine, the control means causing the regulating means to decrease the effective cross-section during a low speed operating condition, but to increase the effective cross-section during a high speed operating condition of the engine.

  2. 40 CFR 600.108-08 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.108-08 Analytical gases. The analytical gases for all fuel economy...

  3. 40 CFR 600.108-08 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.108-08 Analytical gases. The analytical gases for all fuel economy...

  4. Automotive Mechanics.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This curriculum guide provides materials for a competency-based course in automotive mechanics at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  5. Automotive Mechanics.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This curriculum guide provides materials for a competency-based course in automotive mechanics at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  6. I. Textural/Structural tuning and nanoparticle stabilization of copper-containing nanocomposite materials. II. Generation of reducing agents for automotive exhaust gas purification via the processing of hydrocarbons in a PACT (plasma and catalysis integrated technologies) reactor

    NASA Astrophysics Data System (ADS)

    Xing, Yu

    This research consists of two parts. The first part deals with the preparation and properties of copper-containing nanocomposite materials. For studies of textural tuning, structural tuning, or material sintering, copper/aluminum and copper/zinc nanocomposites were prepared via various inorganic synthesis methods including conventional coprecipitation methods and a novel urea-gelation/thermal-modification method that produces narrow distributions of pore sizes, high surface areas, and significantly higher specific metal loadings. Solid-solid reaction analysis and differential scanning calorimetry (DSC) analysis were developed for the determination of the mixing homogeneities of the copper/aluminum nanocomposites. A sintering experiment at 250-600°C for 350 h under methanol-steam reforming conditions was carried out to compare the stability of supported Cu0 nanoparticles. The mixing homogeneities of CuO/Al2O3 nanocomposites significantly affected the thermal stability of their reduced Cu0 crystallites. Creation of relatively narrow distributions of pore sizes with relatively small major pore diameters (e.g., 3.5 nm) can also be used for the stabilization of supported Cu0 nanoparticles. The supported nanoparticles with a relatively small initial size cannot ensure good thermal stability. A "hereditary" character on the homogeneity of copper/aluminum nanocomposites was revealed. Stepwise reduction and reoxidation were studied for the structural tuning and purification of Cu-Al-O spinels with isotropic and gradual unit-cell contractions. The second part of the research deals with the processing of hydrocarbons. Conversion of a model hydrocarbon (n-hexane or n-octane) in an AC discharge PACT (plasma and catalysis integrated technologies) reactor was verified to be an effective method to instantly produce reducing agents (e.g., hydrogen or/and light alkanes and alkenes), at room temperature and atmospheric pressure for automotive exhaust gas purification. Effects of

  7. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  8. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  9. System for the incineraton of refuse and the treatment of the incineration exhaust gasses

    SciTech Connect

    Wilson, P.

    1991-09-24

    This patent describes a method for the incineration of refuse and the treatment of incineration exhaust gases, it comprises: incinerating the refuse in a fire box having air intake means, oil decomposition product removal means, and exhaust gas off take means, directing the gases from the off take means to cooling means, treating the exhaust gases in the cooling means by heat exchange with a cooling liquid, passing the exhaust gases through filtration means whereby particulates are removed from the exhaust gases, subjecting the exhaust gases to after-burning in a closed after-burner chamber, passing the exhaust gases through a wash assembly whereby the exhaust gases are passed through a water bath and subjected to a water spray, and discharging the cleaned exhaust gases to the atmosphere.

  10. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  11. Titanium aluminide automotive engine valves

    SciTech Connect

    Hartfield-Wuensch, S.E.; Sperling, A.A.; Morrison, R.S.; Dowling, W.E. Jr.; Allison, J.E.

    1995-12-31

    The low density and high elevated temperature strength make titanium aluminide alloys an excellent candidate for automotive exhaust valve applications. Lighter weight valve train components allow either improved performance or reduction of valve spring loads which reduce noise and friction, thereby improving fuel economy. The key to successful application of TiAl alloys for automotive engine valves is not optimization of strength and ductility, but rather the development of a low-cost, high-volume manufacturing method. Different manufacturing approaches will be discussed in this paper, along with their advantages and disadvantages. Currently, casting appears to be the lowest-cost alternative that produces adequate material properties and emphasis is being placed on this manufacturing approach. The results of several successful engine tests will also be discussed, including results on a binary TiAl alloy. However, these engine tests have indicated that TiAl alloy valves will require tip protection and stem coating.

  12. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    PubMed

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  13. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  14. Greenhouse Gases

    MedlinePlus

    ... and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future ... greenhouse effect that results in global warming and climate change. Many gases exhibit these greenhouse properties. Some ...

  15. Exhaust gas sensors

    SciTech Connect

    Hiller, J.; Miree, T.J.

    1997-02-09

    The automotive industry needed a fast, reliable, under-the-hood method of determining nitrogen oxides in automobile exhaust. Several technologies were pursued concurrently. These sensing technologies were based on light absorption, electrochemical methods, and surface mass loading. The Y-12 plant was selected to study the methods based on light absorption. The first phase was defining the detailed technical objectives of the sensors--this was the role of the automobile companies. The second phase was to develop prototype sensors in the laboratories--the national laboratories. The final phase was testing of the prototype sensors by the automobile industries. This program was canceled a few months into what was to be a three-year effort.

  16. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  17. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  18. 40 CFR 600.108-78 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.108-78 Analytical gases. The analytical gases for all...

  19. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    NASA Astrophysics Data System (ADS)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  20. Recovery of exhaust waste heat for a hybrid car using steam turbine

    NASA Astrophysics Data System (ADS)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  1. Supercharging system for automotive engines

    SciTech Connect

    Yamada, T.; Yabuhara, H.; Takimoto, F.

    1988-03-15

    A supercharging system for an automotive engine is described comprising: a turbocharger driven by exhaust-gas of the engine; a supercharger; an intake passage connecting the turbocharger and the supercharger in series, for supplying air to the engine; driving means for driving the supercharger by the engine; clutch means provided in the driving means; a first bypass provided around the supercharger; a control valve provided in the first bypass; a second bypass provided around the turbine of the turbocharger; a waste gate valve provided in the second bypass; a first actuator for operating the control valve; a second actuator for operating the waste gate valve; first means for operating the second actuator to open the waste gate valve when supercharging pressure exceeds a predetermined value; an engine speed sensor for detecting speed of the engine; an engine load sensor for detecting load on the engine; and a control unit.

  2. Automotive Parts Management Survey.

    ERIC Educational Resources Information Center

    Kuehn, Edward J.

    Members of the automotive parts distribution industry responded to a survey on the specific attitudes, values, knowledge, and skills necessary for students planning to enter the industry, as the basis for revision of an associate degree curriculum in Automotive Parts Management. The survey instrument, sent to 252 industry members (99 responded),…

  3. Automotive Technology Skill Standards

    ERIC Educational Resources Information Center

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  4. Automotive Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and potential to pass successfully a training program in automotive mechanics or in a similar automotive job. Section 1 describes the assessment, correlates the work performed and worker traits required for completing the work sample, and lists related…

  5. Automotive Diagnostic Technologies.

    ERIC Educational Resources Information Center

    Columbus State Community Coll., OH.

    This document contains materials developed for and about the automotive diagnostic technologies tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an automotive/diagnostic technologies program in grades 11 and 12 that leads to entry-level employment or a 2-year automotive…

  6. Kentucky's Automotive Certification Program.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Vocational Education.

    The state of Kentucky recognized a need to standardize automotive mechanics training throughout the state and to establish minimum guidelines for the quality of instruction in such programs. To meet these needs, the Office of Vocational Education selected the National Institute for Automotive Service Excellence (ASE) and began the certification…

  7. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  8. SECONDARY ORGANIC AEROSOL FORMATION FROM THE IRRADIATION OF SIMULATED AUTOMOBILE EXHAUST

    EPA Science Inventory

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SO...

  9. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  10. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  11. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  12. ATIP: Automotive Technician Internship Program.

    ERIC Educational Resources Information Center

    De Anza Coll., Cupertino, CA.

    The Automotive Technology Department (ATD) of De Anza College (DAC) in Cupertino, California, in partnership with the Automotive Service Council of California, received funding to develop and implement a 2-year, competency-based certification program for automotive service technicians. Students in the Automotive Technician Internship Program…

  13. Effects of jet exhaust gas properties on exhaust simulation and afterbody drag

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1975-01-01

    The effect of varying the jet exhaust's ratio of specific heats, gas constant, and temperature on airplane afterbody drag was investigated. Jet exhaust simulation parameters were evaluated also. Subsonic and transonic tests were made using a single nacelle model with afterbodies having boattail angles of 10 deg and 20 deg. Besides air, three other jet exhaust gases were investigated. The ratios of specific heats, gas constants, and total temperatures of the four exhaust gases ranged from 1.40 to 1.26, 287 to 376 J/kg-K, and 300 to 1013 K, respectively. For steep boattail angles, and transonic speeds and typical turbojet pressure ratios, the current data indicate that the use of air to simulate a dry turbojet exhaust can result in an overprediction of afterbody drag as high as 17 percent of the dry turbojet value.

  14. Electronegative gases

    SciTech Connect

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

  15. Exhaust system for an internal combustion engine

    SciTech Connect

    Ikenoya, Y.; Otani, J.

    1982-10-19

    An exhaust system for an engine of a motorcycle is disclosed having catalytic and silencing mufflers arranged in adjacent side -by-side series flow relationship, the catalytic muffler extending rearwardly of the motorcycle, and, adjacent its rear end, being interconnected with the silencing muffler, the silencing muffler including plural expansion chambers which are interconnected in flow reversal relationship for gases to be exhausted rearwardly of the motorcycle.

  16. 102. Giullotine type gate (inclosed position to regulate furnace exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  17. A Technique for the Analysis of Auto Exhaust.

    ERIC Educational Resources Information Center

    Sothern, Ray D.; And Others

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline explains a technique for separating the complex mixture of hydrocarbons contained in automotive exhausts. A Golay column and subambient temperature programming technique are…

  18. A Technique for the Analysis of Auto Exhaust.

    ERIC Educational Resources Information Center

    Sothern, Ray D.; And Others

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline explains a technique for separating the complex mixture of hydrocarbons contained in automotive exhausts. A Golay column and subambient temperature programming technique are…

  19. An experimental study of jet exhaust simulation

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1975-01-01

    Afterbody drag predictions for jet aircraft are usually made experimentally with the jet exhaust flow simulated. The physical gas properties of the fluid used for the model jet exhaust can affect the accuracy of simulation of the airplane's jet exhaust plume. The effect of the accuracy of this simulation on afterbody drag was investigated by wind-tunnel tests with single engine model. In addition to unheated air as the exhaust gas, the decomposition products of three different concentrations of hydrogen peroxide were utilized. The air jet simulation consistently resulted in higher boattail drag than hydrogen peroxide simulation. The differences in drag for the various exhaust gases are attributed to different plume shapes and entrainment properties of the gases. The largest differences in drag due to exhaust gas properties were obtained for the combination of high transonic Mach numbers and high boattail angles. For these conditions, the current data indicate that the use of air to simulate a nonafterburning turbojet exhaust can result in an increase in afterbody amounting to 20 percent of the nonafterburning turbojet value.

  20. Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.

    2016-03-01

    Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.

  1. Magnesium for automotive applications

    SciTech Connect

    VanFleteren, R.

    1996-05-01

    Die cast magnesium parts are rapidly replacing steel and aluminum structural components in automotive applications, as design engineers seek to reduce assembly costs, raise fuel efficiency, and improve safety. Dozens of automotive components are now die cast from magnesium alloys, including seat stanchions, valve covers, steering wheels, and a variety of steering column components. Because of their excellent castability, complex magnesium die castings can sometimes consolidate several components and eliminate assembly steps. Highly ductile magnesium alloys such as AM60B (6% aluminum) and AM50A (5% aluminum) are important in helping to meet automotive industry crash-energy requirements for car seating and steering components. AZ91D (9% aluminum, 1% zinc) alloys are making removable rear seats in new minivans much easier to handle.

  2. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  3. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  4. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  5. Standardized Curriculum for Automotive Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  6. Standardized Curriculum for Automotive Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  7. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  8. Automotive Applications of MEMS

    NASA Astrophysics Data System (ADS)

    Barua, Debojit

    2001-03-01

    Application of MEMS (Microelectromechanical systems) in the automotive industry has a relatively long history with the introduction of pressure sensors for engine control systems. The next significant inroad came with the introduction of silicon accelerometers for safety systems. Opportunities for MEMS are opening up with other sensor requirements in systems such as Vehicle Dynamics and Navigation. We shall discuss some of the automotive applications of MEMS from the users point of view. In particular, requirements due to harsh environment, reliability and durability, and of course, cost will be reviewed. Finally, we will discuss some applications in the area of actuators.

  9. Improved Exhaust Diffuser for Jet-Engine Testing

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Sarohia, V. S.

    1985-01-01

    High-altitude simulator reduced power requirements. Test cell uses its exhaust-capture duct only to remove gases from engine; cooling air evacuated through separate path by auxiliary suction system. This way, capture duct cross-sectional area kept close to exhaust jet area, leading to greatly improved recovery performance.

  10. Conductometric soot sensor for automotive exhausts: initial studies.

    PubMed

    Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf

    2010-01-01

    In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction.

  11. Conductometric Soot Sensor for Automotive Exhausts: Initial Studies

    PubMed Central

    Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf

    2010-01-01

    In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888

  12. Automotive Power Trains.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the operation, maintenance, and troubleshooting of automotive power trains and certain auxiliary equipment. The course contains six study units covering basic power trains; clutch principles and operations; conventional…

  13. Automotive Technology Curriculum Guide.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Idaho state curriculum guide provides lists of tasks, performance objectives, and enabling objectives for instruction in automotive technology. The document begins with a list of all tasks covered by the curriculum, a short course outline, and a curriculum framework that explains major content, laboratory activities, and intended outcomes.…

  14. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  15. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; And Others

    This publication contains instructional materials for both teachers and students for a course in automotive emission control. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes 16 units. Each instructional unit includes some or all of the basic components of a…

  16. Personal Achievement Mathematics: Automotive.

    ERIC Educational Resources Information Center

    Baenziger, Betty

    Utilizing word problems relevant to automotive mechanics, this workbook presents a concept-oriented approach to competency development in 13 areas of basic mathematics: (1) the expression of numbers as figures and words; (2) the addition, subtraction, multiplication, and division of whole numbers, fractions, and decimals; (3) scientific notation;…

  17. Bringing Excellence to Automotive

    NASA Astrophysics Data System (ADS)

    Večeřa, Pavel; Paulová, Iveta

    2012-12-01

    Market situation and development in recent years shows, that organization's ability to meet customer requirements is not enough. Successful organizations are able to exceed the expectations of all stakeholders. They are building their excellence systematically. Our contribution basically how the excellence in automotive is created using EFQM Excellence Model in Total Quality Management.

  18. Automotive Brake Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  19. Automotive Pollution Control.

    ERIC Educational Resources Information Center

    Raudenbush, David B.

    Intended for a 1- or 2-month curriculum in auto mechanics, this student manual on automotive pollution control was developed by a subject matter specialist at an area vocational school and tested in a vocational auto shop. Intended either for use in an integrated curriculum or for use in teaching pollution control as a separate course, these 12…

  20. High speed exhaust gas recirculation valve

    SciTech Connect

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  1. SST-1 Gas feed and Gas Exhaust system

    NASA Astrophysics Data System (ADS)

    Raval, Dilip C.; Khan, Ziauddin; Thankey, Prashant L.; Dhanani, Kalpesh R.; Pathan, Firozkhan S.; Semwal, Pratibha; George, Siju; Yuvakiran, Paravastu; Manthena, Himabindu; Pradhan, Subrata

    2012-11-01

    SST-1 tokamak is a long pulse tokamak designed for the plasma operation up to 1000 sec duration. Gas feed system and gas exhaust management will play a very crucial role during plasma discharge. During the different type of operations of tokamak like wall conditioning, diverter operation and neutral beam injection, a large amount of gas will be fed into the vacuum chamber at different locations. Also during plasma operations, the gas will be fed both in continues and pulse mode. Gas feed will be carried out mainly using piezo-electric valves controlled by PXI based data acquisition and control system. Such operations will lead to a huge amount gas exhaust by the main system which requires good exhaust facility to searches, great care should be taken in constructing both. Also initial pumping of cryostat and vacuum vessel of SST-1 will release a large amount of gas. Exhausted gases from SST -1 will be Hydrogen, Nitrogen, Mixture gases or some toxic gases. Dedicated exhaust system controlling the different gases are installed. Special treatment of hazardous/explosive gases is done before releasing to the atmosphere. This paper describes design and implementations of the complete gas feed and exhaust system of SST-1.

  2. Exergetic analysis of a thermo-generator for automotive application: A dynamic numerical approach

    NASA Astrophysics Data System (ADS)

    Glavatskaya, O.; Goupil, C.; Bakkali, A. El; Shonda, O.

    2012-06-01

    It is well known that, when using a passenger car with an ICE (Internal Combustion Engine), only a fraction of the burnt fuel energy actually contributes to drive the vehicle. Typical passenger vehicle engines run about 25% efficiency while a great part of the remaining energy (about 40%), is lost through the exhaust gases. This latter has a significant energy conversion potential since the temperature (more than 300°C) and the mass flow rate are high enough. Thus, direct conversion of heat into electricity is a credible option if the overall system is optimized. This point is crucial since the heat conversion into work process is very sensible to any mismatching of the different parts of the system, and very sensible significant to the possible varying working conditions. All these effects constitute irreversibility sources that degrade the overall efficiency. The exergetic analysis is known to be an efficient tool for finding the root causes of theses irreversible processes. In order to investigate the performance of our automotive thermo-generator we propose an analysis of the exergy flow through the system under dynamic conditions. Taking into account the different irreversible sources such as thermal conduction and Joule effect, we are able to localize and quantify the exergy losses. Then, in order to optimize the thermoelectric converter for a given vehicle, correct actions in term of design and working conditions can be proposed.

  3. New Exhauster Equipment at the Propulsion Systems Laboratory

    NASA Image and Video Library

    1955-04-21

    The Propulsion Systems Laboratory’s exhaust system was expanded in 1955 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The facility contained two altitude chambers that were first used to study the increasingly-powerful jet engines of the early 1950s and the ramjets for missile programs such as Navaho and Bomarc. Later, the facility tested large rocket engines and a variety of turbofan engines. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing the hot gases exhausted by the engines being tested. These tasks were accomplished by large Roots-Connersville exhauster equipment in the Equipment Building. The original configuration could exhaust the 3500° F gases at a rate of 100 pounds per second when the simulated altitude was 50,000 feet. In 1955, three years after operation started, a fourth line of exhausters was added. There were three centrifugal exhausters capable of supplying 166 pounds of air per second at the test chamber altitude of 50,000 feet or 384 pounds per second at 32,000 feet. These exhausters had two first-stage castings driven by a 10,000-horsepower motor; one second; one third; and one fourth-stage casting driven by a 16,500-horsepower motor. The total inlet volume of the exhausters is 1,650,000 cubic feet of gas per minute. The exhausters were continually improved and upgraded over the years.

  4. Effluent sampling of Scout D and Delta launch vehicle exhausts

    NASA Technical Reports Server (NTRS)

    Hulten, W. C.; Storey, R. W.; Gregory, G. L.; Woods, D. C.; Harris, F. S., Jr.

    1974-01-01

    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds.

  5. Detection of aircraft exhaust in hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Smith, William L., Sr.; Burdette, Edward M.

    2011-10-01

    The use of a hyperspectral imaging system for the detection of gases has been investigated, and algorithms have been developed for various applications. Of particular interest here is the ability to use these algorithms in the detection of the wake disturbances trailing an aircraft. A dataset of long wave infrared (LWIR) hyperspectral datacubes taken with a Telops Hyper-Cam at Hartsfield-Jackson International Airport in Atlanta, Georgia is investigated. The methodology presented here assumes that the aircraft engine exhaust gases will become entrained in wake vortices that develop; therefore, if the exhaust can be detected upon exiting the engines, it can be followed through subsequent datacubes until the vortex disturbance is detected. Gases known to exist in aircraft exhaust are modeled, and the Adaptive Coherence/Cosine Estimator (ACE) is used to search for these gases. Although wake vortices have not been found in the data, an unknown disturbance following the passage of the aircraft has been discovered.

  6. Current Automotive Holometry Studies

    NASA Astrophysics Data System (ADS)

    Marchi, Mitchell M.; Snyder, D. S.

    1990-04-01

    Holometry studies of automotive body and powertrain components have become a very useful high resolution test methodology to knowledgeable Ford engineering personnel. Current examples of studies that represent the static or dynamic operational conditions of the automotive test component are presented. Continuous wave laser holometry, computer aided holometry (CAH) and pulsed laser holometry were the holometric techniques used to study the following subjects: (1) body in prime (BIP) vibration modes, (2) transmission flexplate stud-torque converter deformation due to engine torque pulses, (3) engine cylinder head and camshaft support structure deformation due to cylinder pressure and (4) engine connecting rod/cap lift-off. Static and dynamic component loading and laboratory techniques required to produce usable and valid test results are discussed along with possible conclusions for the engineering concerns.

  7. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  8. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    PubMed

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis.

  9. [Progresses on adverse health effects of automobile exhaust].

    PubMed

    Cheng, Yibin; Jin, Yinlong; Liu, Yingchun

    2003-09-01

    The progresses on the latest studies at home and abroad on adverse health effects of automobile exhaust were reviewed in this paper. Particulates and poisonous gases from automobile exhaust were considered to be harmful to respiratory system, immune system and reproductive system. It showed that increased prevalence of respiratory disease (e.g. chronic bronchitis and asthma), and decreased lung function, immunity were associated with automobile exhaust. The carcinogenic potential from the exposure to automobile exhausts needs to be further explored because the carcinogenesis is multifactorial.

  10. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  11. Get Your Automotive Program Nationally Certified!

    ERIC Educational Resources Information Center

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  12. Get Your Automotive Program Nationally Certified!

    ERIC Educational Resources Information Center

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  13. International forensic automotive paint database

    NASA Astrophysics Data System (ADS)

    Bishea, Gregory A.; Buckle, Joe L.; Ryland, Scott G.

    1999-02-01

    The Technical Working Group for Materials Analysis (TWGMAT) is supporting an international forensic automotive paint database. The Federal Bureau of Investigation and the Royal Canadian Mounted Police (RCMP) are collaborating on this effort through TWGMAT. This paper outlines the support and further development of the RCMP's Automotive Paint Database, `Paint Data Query'. This cooperative agreement augments and supports a current, validated, searchable, automotive paint database that is used to identify make(s), model(s), and year(s) of questioned paint samples in hit-and-run fatalities and other associated investigations involving automotive paint.

  14. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  15. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  16. Rocket exhaust probe

    NASA Astrophysics Data System (ADS)

    Kessel, P. A.

    1986-01-01

    Disclosed is a rocket exhaust probe for collecting particulates from a rocket exhaust plume. The probe comprises a tungsten nose tip, a tip holder, a probe body, and a tail section. Rocket exhaust gas enters the probe at the nose tip inlet and passes into a mixing chamber where the exhaust gas mixes with an inert cooling gas that cools and decelerates the exhaust gas. The mixture of exhaust gas and inert gas then passes into a diffusion chamber where it further cools and decelerates before passsing through a submicron particle collection filter.

  17. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats

    NASA Astrophysics Data System (ADS)

    Ballesteros, R.; Monedero, E.; Guillén-Flores, J.

    2011-05-01

    Biodiesel from animal fats appears as an alternative for conventional diesel in automotive consumption. Animal fats are classified into three categories, although only one of them can be used for biodiesel production, according to regulation. Due to its novelty, researchers testing animal-fat biodiesel on diesel engines focus only on regulated emissions. In this paper, the experiments carried out analyze carbonyl compounds emissions, due to its highly atmospheric reactivity, to complete the characterization of the total emissions in this kind of biofuel. Two fuels, a reference petro-diesel and a pure animal-fat biodiesel, were tested in a 4-cylinder, direct injection, diesel engine Nissan Euro 5 M1D-Bk. Samples were collected in 4 different operating modes and 3 points along the exhaust line. The analyses of samples were made in a high performance liquid chromatography, following the method recommended by the CARB to analyze air quality. Results show, on the one hand, a significant rise in carbonyl emissions, almost three times at the mode with highest hydrocarbon emissions, when biodiesel is used. On the other hand, on average, a reduction of 90% of carbonyl emissions when exhaust gases go through the different post-treatment systems installed. Despite this reduction, specific reactivity does not decrease substantially.

  18. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  19. Automotive Chassis; Automotive Mechanics-Basic: 9043.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive chassis course is designed to familiarize the beginning student of the history and development of the automobile with basic concepts common to the automobile industry, and general information that is required for successful advancement in the automotive mechanics field. It is one quinmester in a series of quinmester outlines…

  20. Automotive Engines; Automotive Mechanics I: 9043.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  1. Introduction to Automotive Service. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document provides instruction for high-priority competencies on task lists developed by the National Institute of Automotive Service Excellence. Contained in this teacher's guide are the materials necessary to teach 11 competency-based instructional units related to the automotive service industry. The following instructional units are…

  2. Automotive Electricity: Automotive Mechanics Instructional Program. Block 3.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The third of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive electricity at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  3. Introduction to Automotive Service. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document provides instruction for high-priority competencies on task lists developed by the National Institute of Automotive Service Excellence. Contained in this teacher's guide are the materials necessary to teach 11 competency-based instructional units related to the automotive service industry. The following instructional units are…

  4. Automotive aluminum recycling in 2010

    SciTech Connect

    Not Available

    1994-08-01

    This article examines the aluminium recycling industry's ability to handle effectively the increased amounts of automotive aluminium scrap resulting from increased amounts of wrought and cast aluminium alloys in automobile manufacturing. This study takes a system-wide view of both volume and composition aspects of automotive aluminium recycling.

  5. Automotive Engine Maintenance and Repair.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide students with an understanding of automotive engine maintenance and repair. The course contains six study units covering automotive engine maintenance and repair; design classification; engine malfunction, diagnosis, and repair; engine disassembly; engine…

  6. Automotive Technology. Career Education Guide.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. European Area.

    The curriculum guide is designed to provide students with realistic training in automotive technology theory and practice within the secondary educational framework and to prepare them for entry into an occupation or continuing postsecondary education. The learning modules are grouped into three areas: small engines, automotive technology, and…

  7. Ultracapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Ashtiani, Cyrus; Wright, Randy; Hunt, Gary

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry.

  8. [Remote passive sensing of aeroengine exhausts using FTIR system].

    PubMed

    Xia, Qing; Zuo, Hong-Fu; Li, Shao-Cheng; Wen, Zhen-Hua; Li, Yao-Hua

    2009-03-01

    The traditional method of measuring the aeroengine exhausts is intrusive gas sampling analysis techniques. The disadvantages of the techniques include complex system, difficult operation, high costs and potential danger because of back-pressure effects. The non-intrusive methods have the potential to overcome these problems. So the remote FTIR passive sensing is applied to monitor aeroengine exhausts and determine the concentration of the exhausts gases of aeroengines. The principle of FTIR remote passive sensing is discussed. The model algorithm for the calibration of FTIR system, the radiance power distribution and gas concentration are introduced. TENSOR27 FTIR-system was used to measure the spectra of infrared radiation emitted by the hot gases of exhausts in a test rig. The emission spectra of exhausts were obtained under different thrusts. By analyzing the spectra, the concentrations of CO2, CO and NO concentration were calculated under 4 thrusts. Researches on the determination of concentration of the exhausts gases of aeroengines by using the remote FTIR sensing are still in early stage in the domestic aeronautics field. The results of the spectra and concentration in the aeroengine test are published for the first time. It is shown that the remote FTIR passive sensing techniques have a great future in monitoring the hot gas of the aeroengines exhausts.

  9. A Method for Reducing the Temperature of Exhaust Manifolds

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report describes tests conducted at the Langley Memorial Aeronautical Laboratory on an "air-inducting" exhaust manifold for aircraft engines. The exhaust gases from each cylinder port are discharged into the throat of an exhaust pipe which has a frontal bellmouth. Cooling air is drawn into the pipe, where it surrounds and mixes with the exhaust gases. Temperatures of the manifold shell and of the exhaust gases were obtained in flight for both a conventional manifold and the air-inducting manifold. The air-inducting manifold was installed on an engine which was placed on a test stand. Different fuels were sprayed on and into the manifold to determine whether the use of this manifold reduced the fire hazard. The flight tests showed reductions in manifold temperatures of several hundred degrees, to values below the ignition point of aviation gasoline. On the test stand when the engine was run at idling speeds fuels sprayed into the manifold ignited. It is believed that at low engine speeds the fuel remained in the manifold long enough to become thoroughly heated, and was then ignited by the exhaust gas which had not mixed with cooling air. The use of the air-inducting exhaust manifold must reduce the fire hazard by virtue of its lower operating temperature, but it is not a completely satisfactory solution of the problem.

  10. Making aerospace technology work for the automotive industry, introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  11. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  12. Removal of sulfur compounds from combustion product exhaust

    DOEpatents

    Cheng, Dah Y.

    1982-01-01

    A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

  13. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  14. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  15. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  16. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  17. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  18. Suicidal carbon monoxide inhalation of exhaust fumes. Investigation of cases

    SciTech Connect

    Tsunenari, S.; Yonemitsu, K.; Kanda, M.; Yoshida, S.

    1985-09-01

    The inhalation of automobile exhaust gases is a relatively frequent suicidal method. Two such cases of special interest to forensic pathology and toxicology have been introduced. In case 1, a suicide note disclosed the victim's mental state, the inside conditions of the car, and toxic effects of automobile exhaust. In case 2, a reconstruction experiment has revealed important factors for the investigation of the scene, such as the size of a vinyl hose, the conditions of connecting site of the hose with the exhaust pipe, etc.

  19. Handbook of infrared radiation from combustion gases

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Malkmus, W.; Reardon, J. E.; Thomson, J. A. L.; Goulard, R. (Editor)

    1973-01-01

    The treatment of radiant emission and absorption by combustion gases are discussed. Typical applications include: (1) rocket combustion chambers and exhausts, (2) turbojet engines and exhausts, and (3) industrial furnaces. Some mention is made of radiant heat transfer problems in planetary atmospheres, in stellar atmospheres, and in reentry plasmas. Particular consideration is given to the temperature range from 500K to 3000K and the pressure range from 0.001 atmosphere to 30 atmospheres. Strong emphasis is given to the combustion products of hydrocarbon fuels with oxygen, specifically to carbon dioxide, water vapor, and carbon monoxide. In addition, species such as HF, HC1, CN, OH, and NO are treated.

  20. Development of a new nickel containing alloy for flexible exhaust couplings

    SciTech Connect

    Crum, J.R.; Smith, G.D.; Flower, H.L.

    1998-12-31

    In automotive exhaust flexible coupling applications commonly used stainless steels have failed by hot salt corrosion, stress corrosion cracking, pitting and fatigue with associated sensitization resulting from the high temperature exposure. This paper describes the development of an alloy designed specifically to overcome these failure mechanisms while maintaining good weldability and thermal stability.

  1. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  2. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  3. Automotive suspension system

    SciTech Connect

    Kanai, S.

    1986-11-11

    This patent describes an automotive suspension system comprising a wheel support for supporting a wheel, and a wheel supporting member for connecting the wheel support to the vehicle body. The wheel supporting member includes front and rear resilient supporting means spaced from each other by a predetermined distance in the longitudinal direction of the vehicle body and the direction of the toe of the wheel is adapted to be changed according to deformation of the front and rear resilient supporting means. The load-deformation characteristics of the front and rear resilient supporting means are selected so that the ratio of the amount of deformation of the front resilient supporting means for a given load to that of the rear resilient supporting means for the same load changes according to the magnitude of external side forces acting on the wheel, thereby changing the steering characteristics according to the magnitude of external force. The deformation is that in right and left or width directions of the vehicle body caused by the side forces.

  4. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  5. Automotive high color carbon

    SciTech Connect

    Ducote, R.E.; Dees, R.G.; Musick, V.L.

    1988-06-14

    A method of making a low porosity carbon black is described comprising: (1) feeding into a carbon black reactor a carbonaceous feed; (2) contacting the feed in the reactor with combustion gases containing oxygen thereby cracking the feed to produce carbon black; and (3) contacting the produced carbon black in the reactor with vaporizable hydrocarbon oil injected into the reaction at a point where the carbon black forming reaction is substantially complete to at least partially quench the carbon black producing reaction, the vaporizable hydrocarbon oil being cracked and serving to plate the carbon black to reduce the porosity thereof.

  6. Removal of Radioactive Aerosols and Gases from Exhaust Air

    DTIC Science & Technology

    1975-08-07

    relatively small Yinvestment and operating costs. A disadvantage is the danger of explosion as the consequence of ozone formation. The processes of...Bakterien und Viron) aus Luft und ardereu Gasen Staub U (1963) 21 5] HASENCLEVER, D. Filter sur Luft- und Gasroinigung in ker-teohnisohen Anlagen Staub

  7. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  8. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  9. Automotive Sensors and MEMS Technology

    NASA Astrophysics Data System (ADS)

    Nonomura, Yutaka

    - Automotive sensors are used for emission gas purification, energy conservation, car kinematic performance, safety and ITS (intelligent transportation system). The comparison of the sensor characteristics was made for their application area. Many kinds of the principles are applied for the sensors. There are two types of sensors, such as physical and chemical one. Many of the automotive sensors are physical type such as mechanical sensors. And a gas sensor is a chemical type. The sensors have been remarkably developed with the advancement of the MEMS (Micro Electro Mechanical Systems) technology. In this paper, gas, pressure, combustion pressure, acceleration, magnetic, and angular rate sensors for automotive use are explained with their features. The sensors are key devices to control cars in the engine, power train, chassis and safety systems. The environment resistance, long term reliability, and low cost are required for the automotive sensors. They are very hard to be resolved. However, the sensor technology contributes greatly to improving global environment, energy conservation, and safety. The applications of automotive sensors will be expanded with the automobile developments.

  10. An automotive transmission for automotive gas turbine power plants

    NASA Technical Reports Server (NTRS)

    Polak, J. C.

    1980-01-01

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  11. An automotive transmission for automotive gas turbine power plants

    NASA Technical Reports Server (NTRS)

    Polak, J. C.

    1980-01-01

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  12. ATP for the portable 500 CFM exhauster POR-004 skid B

    SciTech Connect

    Keller, C.M.

    1997-05-06

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-004 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.

  13. ATP for the portable 500 CFM exhauster POR-005 skid C

    SciTech Connect

    Keller, C.M.

    1997-06-27

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-005 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.

  14. ATP for the portable 500 CFM exhauster POR-006 skid D

    SciTech Connect

    Keller, C.M.

    1997-07-29

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-006 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.

  15. Importance of Projects in Automotive Industry

    NASA Astrophysics Data System (ADS)

    Babeľová, Zdenka Gyurák; Lenhardtová, Zuzana; Cagáňová, Dagmar; Weidlichová-Luptáková, Stanislava

    2010-01-01

    For automotive companies, research and development is the key to success for new generation of products. The aim of this article is to accent the importance of innovations and innovations-focused projects in automotive industry. Relevance of co-operation between automotive industry and educational institutions is noticed in the article, too. Furthermore, history of automotive industry in Slovakia is outlined in the article. Main part of the article is focused on project AUTOCLUSTERS.

  16. Electron beam treatment of exhaust gas with high NOx concentration

    NASA Astrophysics Data System (ADS)

    Licki, Janusz; Chmielewski, Andrzej G.; Pawelec, Andrzej; Zimek, Zbigniew; Witman, Sylwia

    2014-05-01

    Simulated exhaust gases with a high NOx concentration, ranging from 200 to 1700 ppmv, were irradiated by an electron beam from an accelerator. In the first part of this study, only exhaust gases were treated. Low NOx removal efficiencies were obtained for high NOx concentrations, even with high irradiation doses applied. In the second part of study, gaseous ammonia or/and vapor ethanol were added to the exhaust gas before its inlet to the plasma reactor. These additions significantly enhanced the NOx removal efficiency. The synergistic effect of high SO2 concentration on NOx removal was observed. The combination of electron beam treatment with the introduction of the above additions and with the performance of irradiation under optimal parameters ensured high NOx removal efficiency without the application of a solid-state catalyst.

  17. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  18. Lethal methemoglobinemia and automobile exhaust inhalation.

    PubMed

    Vevelstad, Merete; Morild, Inge

    2009-05-30

    Inhalation of automobile exhaust gas often leads to death by CO intoxication. In some cases the measured carbon monoxide hemoglobin saturation level (COHb) is considerably below what is considered to be lethal. The death in such cases has been attributed to a combination of a high CO2 and a low O2 tension. In a recent case the deceased was found dead in a car equipped with a catalytic converter, with a hose leading exhaust from the engine to the interior of the car. Analysis revealed a moderately elevated COHb and a high methemoglobin saturation level (MetHb) in peripheral blood. No ethanol, narcotics or drugs were detected. Reports mentioning MetHb or methemoglobinemia in post-mortem cases are surprisingly scarce, and very few have related exhaust gas deaths to methemoglobinemia. High-degree methemoglobinemia causes serious tissue hypoxia leading to unconsciousness, arrhythmia and death. The existing literature in this field and the knowledge that exhaust fumes contain nitrogen oxide gases (NOx) that by inhalation and absorption can result in severe methemoglobinemia, led us to postulate that this death could possibly be attributed to a combination of methemoglobinemia and a moderately high COHb concentration.

  19. Interrelation of exhaust-gas constituents

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1938-01-01

    This report presents the results of an investigation conducted to determine the interrelation of the constituents of the exhaust gases of internal-combustion engines and the effect of engine performance on these relations. Six single-cylinder, liquid-cooled tests engines and one 9-cylinder radial air-cooled engine were tested. Various types of combustion chambers were used and the engines were operated at compression ratios from 5.1 to 7.0 using spark ignition and from 13.5 to 15.6 using compression ignition. The investigation covered a range of engine speeds from 1,500 to 2,100 r.p.m. The fuels used were two grades of aviation gasoline, auto diesel fuel, and laboratory diesel fuel. Power, friction, and fuel-consumption data were obtained from the single-cylinder engines at the same time that the exhaust-gas samples were collected.

  20. Automotive Fuel and Carburetor; Automotive Mechanics 3: 9047.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help students become employable with the skills, knowledge, attitudes, and values necessary for performing the required services of the automotive fuel and carburetor systems mechanic. The course is an introduction to the automobile fuel and carburetion systems. Basic manipulative…

  1. Exhaust gas control actuator

    SciTech Connect

    Motosugi, K.; Sumiyoshi, M.

    1980-11-11

    An exhaust gas control actuator is described wherein the feed of secondary air fed to an exhaust piping is controlled by an oxygen concentration detector disposed in the stream of exhaust gas of an internal combustion engine and an air-fuel ratio of the exhaust gas entering a catalyst disposed downstream of the exhaust piping is maintained within a given range. The actuator comprises a flow control valve and a flow control device for controlling the flow control valve. The flow control valve is provided with a flow-in port communicated with an air pump and the valve body, a flow-out port communicated with an exhaust manifold and a bypass port communicated with an air cleaner. Furthermore, the flow control device is actuated by an electronic control circuit and comprises an actuating chamber partitioned by a diaphragm for actuating the valve body and including a negative pressure introducing port communicated with an intake manifold and an atmosphere introducing port constantly communicated with atmosphere, and a nozzle flapper mechanism provided in the actuating chamber and varying resistances to flow through the negative pressure introducing port and the atmosphere introducing port in accordance with the actuating position of the valve body in such a manner that an output signal of the oxygen concentration detector is negatively fed back to the feed of secondary air.

  2. Fermentation exhaust gas analysis using mass spectrometry

    SciTech Connect

    Buckland, B.; Brix, Fastert, H.; Gbewonyo, K.; Hunt, G.; Jain, D.

    1985-11-01

    A Perkin Elmer MGA-1200 mass spectrometer has been coupled with a mini-computer and a sampling manifold to analyze up to 8 components in the exhaust gases of fermentors. Carbon dioxide, oxygen, and nitrogen are typically analyzed, but ethanol for yeast fermentations can also be tested by heating the line from the fermentor to the sampling manifold. Specifications, operation, and performance of the system are described. The system has been used for process control, the study of fermentation kinetics, and process development. 8 references, 7 figures, 1 table.

  3. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  4. Greenhouse gases: What is their role in climate change

    SciTech Connect

    Edmonds, J.A.; Chandler, W.U. ); Wuebbles, D. )

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  5. Readings in the Automotive Trade.

    ERIC Educational Resources Information Center

    DiGise, Joe

    Designed for reluctant readers in vocational high school, this selection of readings emphasizes general information about the automotive trade. Articles have been selected from a variety of auto magazines and trade journals. Each article is followed by an assortment of exercises designed to enable the student to further develop vocabulary and…

  6. Ceramics potential in automotive powerplants

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1983-01-01

    The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.

  7. Automotive Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in automotive technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and are used…

  8. Readings in the Automotive Trade.

    ERIC Educational Resources Information Center

    DiGise, Joe

    Designed for reluctant readers in vocational high school, this selection of readings emphasizes general information about the automotive trade. Articles have been selected from a variety of auto magazines and trade journals. Each article is followed by an assortment of exercises designed to enable the student to further develop vocabulary and…

  9. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  10. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  11. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  12. Automotive Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in automotive technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and are used…

  13. Automotive Technologies. State Competency Profile.

    ERIC Educational Resources Information Center

    Ohio Board of Regents, Columbus.

    This document, which lists the technical automotive technologies competencies identified by representatives from business, industry, and labor as well as technical educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through post-secondary…

  14. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  15. Automotive Mechanics. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  16. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  17. Automotive Mechanics. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  18. Automotive Cooling and Lubricating Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  19. Automotive Electronics. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Mackert, Howard C.; Heiserman, Russell L.

    This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…

  20. Visualization of complex automotive data.

    PubMed

    Stevens, Jeffrey A

    2007-01-01

    Making complicated data easier to understand has always been a challenge. Four types of visualization applications (CAD, generalized, specialized, and custom) have successfully been used by automotive manufacturers such as General Motors to help meet this goal. Here are some ways that common processes can be developed for all types of visualization.

  1. Carbon footprint of automotive ignition coil

    NASA Astrophysics Data System (ADS)

    Chang, Huey-Ling; Chen, Chih-Ming; Sun, Chin-Huang; Lin, Hung-Di

    2015-07-01

    In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissions during the life cycle of a product to lessen its impact on environment is an important topic in the industrial society. Furthermore, it is also of great significance to cut down the required energy so as to lower its production costs during the manufacturing process nowadays. This study presents the carbon footprint of an automotive ignition coil and its partial materials are defined to explore their carbon emissions and environmental impact. The model IPCC GWP100a calculates potential global greenhouse effect by converting them into CO2 equivalents. In this way, the overall carbon footprint of an ignition coil can be explored. By using IPCC GWP100a, the results display that the shell has the most carbon emissions. The results can help the industry reduce the carbon emissions of an ignition coil product.

  2. Exhaust assembly for a high speed civil transport aircraft engine

    SciTech Connect

    Giffin, R.G.; Wolf, J.P.; Hilse, M.A.

    1992-10-13

    This patent describes an exhaust assembly for an aircraft gas turbine engine including a core engine having an outlet for discharging exhaust gases. It comprises: a casing having an inlet for receiving the exhaust gases from the core engine outlet; a variable area converging-diverging CD nozzle attached to the casing and including a first throat having a flow area A[sub 8] outlet having a flow area A[sub 9] for channeling the exhaust gases the CD nozzle further including: a plurality of spaced apart primary flaps defining therebetween a converging channel; a plurality of spaced apart secondary flaps defining therebetween a diverging channel; a plurality of space dapart retractable chutes; means for cahnneling air along aft facing surfaces of the chutes into siad CD nozzle; and wherein each of the chutes has a generally U-shaped trailing edge including first and second transversely spaced apart legs, a base extending between the legs at radially inner ends thereof, and a top opening extending between the legs at radially outer ends thereof.thereof.

  3. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  4. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  5. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  6. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  7. Hyperventilation and exhaustion syndrome.

    PubMed

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p < 0.001). The NQ scores correlated strongly with two measures of exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p < 0.01; Shirom Melamed Burnout Measure SMBM r = 0.565, p < 0.01), mental status [Hospital Anxiety and Depression Score (HADS) depression r = 0.414, p < 0.01; HADS anxiety r = 0.627, p < 0.01], sleep disturbances (r = -0.514, p < 0.01), pain (r = -.370, p < 0.05) and poor well-being (Medical Outcomes Survey Short Form 36 questionnaire- SR Health r = -0.529, p < 0.05). In the logistic regression analysis, the variance in the scores from NQ were explained to a high degree (R(2) = 0.752) by scores in KES and HADS. The brief Grounding training contributed to a near significant reduction in hyperventilation (F = 2.521, p < 0.124) and to significant reductions in exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy

  8. Investigation of NOx Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  9. Investigation of NO(x) Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  10. 40 CFR 86.1314-94 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... CO2. respectively, using nitrogen as the diluent. (b) Gases for the hydrocarbon analyzer shall be: (1... named as NOX with a maximum NO2 concentration of five percent of the nominal value using nitrogen as...

  11. 40 CFR 86.1314-94 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... CO2. respectively, using nitrogen as the diluent. (b) Gases for the hydrocarbon analyzer shall be: (1... named as NOX with a maximum NO2 concentration of five percent of the nominal value using nitrogen as...

  12. 40 CFR 86.1314-94 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... CO2. respectively, using nitrogen as the diluent. (b) Gases for the hydrocarbon analyzer shall be: (1... named as NOX with a maximum NO2 concentration of five percent of the nominal value using nitrogen as...

  13. 40 CFR 86.1314-94 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures... CO2. respectively, using nitrogen as the diluent. (b) Gases for the hydrocarbon analyzer shall be: (1... named as NOX with a maximum NO2 concentration of five percent of the nominal value using nitrogen as...

  14. 40 CFR 600.108-08 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Analytical gases. 600.108-08 Section 600.108-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...

  15. [Determination of palladium in automobile exhaust catalysts by FAAS method].

    PubMed

    Wei, Xiao-Feng; Cai, Guo-Hui; Xiao, Yi-Hong; Zhan, Ying-Ying; Xie, Zeng-Hong; Wei, Ke-Mei

    2009-12-01

    Palladium in automotive exhaust catalyst was determined by flame atomic absorption spectrometry (FAAS). The analytical conditions and the coexisting elements interference were studied. The catalyst was dissolved by the mixture of H2O2 and HCl. Pd in the solution was directly determined by FAAS method. The linearity of working curve ranges from 0.1 to 15 microg x mL(-1); the detection limit is 0.029 microg x mL(-1); the relative standard deviation (RSD) range is from 0.8% to 2.5%; and the recovery rate range is from 99.6% to 101.2%. It is a simple and convenient method for accurate analysis of Pd in the exhaust catalysts.

  16. Advanced Materials for Automotive Application

    NASA Astrophysics Data System (ADS)

    Tisza, M.

    2013-12-01

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry.

  17. Automotive Stirling engine systems development

    NASA Technical Reports Server (NTRS)

    Richey, A. E.

    1984-01-01

    The objective of the Automotive Stirling Engine (ASE) program is to develop a Stirling engine for automotive use that provides a 30 percent improvement in fuel economy relative to a comparable internal-combustion engine while meeting emissions goals. This paper traces the engine systems' development efforts focusing on: (1) a summary of engine system performance for all Mod I engines; (2) the development, program conducted for the upgraded Mod I; and (3) vehicle systems work conducted to enhance vehicle fuel economy. Problems encountered during the upgraded Mod I test program are discussed. The importance of the EPA driving cycle cold-start penalty and the measures taken to minimize that penalty with the Mod II are also addressed.

  18. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  19. Recycling used automotive oil filters

    NASA Astrophysics Data System (ADS)

    Peaslee, Kent D.

    1994-02-01

    Over 400 million used automotive oil filters are discarded in the United States each year, most of which are disposed of in landfills wasting valuable resources and risking contamination of ground- and surface-water supplies. This article summarizes U.S. bureau of Mines research evaluating scrap prepared from used automotive oil filters. Experimental results show that crushed and drained oil filters have a bulk density that is higher than many typical scrap grades, a chemical analysis low in residual elements (except tin due to use of tin plate in filters), and an overall yield, oil-filter scrap to cast steel, of 76% to 85%, depending on the method used to prepare the scrap.

  20. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  1. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  2. Response Characteristics of a Stable Mixed Potential Ammonia Sensor in Simulated Diesel Exhaust

    DOE PAGES

    Ramaiyan, Kannan P.; Pihl, Josh A.; Kreller, Cortney R.; ...

    2017-07-15

    A mixed potential sensor using Au and Pt dense wire electrodes embedded between tape-casted layers of 8 mol% yttria stabilized zirconia (YSZ) was tested for application toward NH3, NO, NO2, C3H6 and C3H8. In single-gas testing, the sensor exhibited the highest response toward NH3, while still exhibiting reasonably high sensitivity toward other interferent gases. We tested the sensor in a high-flow reactor at the National Transportation Research Center (NTRC) in order to simulate exhaust gas constituents and flow rates produced by lean-burn vehicles powered by Compression-Ignition Direct-Injection (CIDI), diesel engines. The sensor was characterized at 525 and 625°C for NH3,more » CO, C3H6, C3H8, and NOx in a base gas composition of 10% O2, 5% H2O, and 5% CO2 flowing at 15 slpm. The sensor exhibited fast response time equal to the response time of the system's switching valve (T90<0.6s). Furthermore, in simulations of overdosing a selective catalytic reduction (SCR) system, the sensor was able to selectively respond to 20ppm injections of NH3 slip despite the presence of the interferent gas species at combined concentrations ten times higher than that of the NH3. The laboratory sensor construct was transitioned to a pre-commercial, automotive stick sensor configuration that was demonstrated to retain the advantageous characteristics of the tape-cast device.« less

  3. Exhaust bypass flow control for exhaust heat recovery

    DOEpatents

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  4. Rejuvenation of automotive fuel cells

    SciTech Connect

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  5. Payload dose rate from direct beam radiation and exhaust gas fission products. [for nuclear engine for rocket vehicles

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Mickle, R.

    1975-01-01

    A study was made to determine the dose rate at the payload position in the NERVA System (1) due to direct beam radiation and (2) due to the possible effect of fission products contained in the exhaust gases for various amounts of hydrogen propellant in the tank. Results indicate that the gamma radiation is more significant than the neutron flux. Under different assumptions the gamma contribution from the exhaust gases was 10 to 25 percent of total gamma flux.

  6. Asphyxial deaths caused by automobile exhaust inhalation not attributable to carbon monoxide toxicity: study of 2 cases.

    PubMed

    Schmunk, Gregory A; Kaplan, James A

    2002-06-01

    The authors report two suicides that resulted from the intentional inhalation of automobile exhaust gases in which death occurred without the formation of physiologically significant amounts of carboxyhemoglobin. These circumstances are correlated with measurements of the involved vehicles' exhaust gases, which showed reduced concentrations of carbon monoxide present, reflecting improvements in automobile engine technology. In the absence of carbon monoxide toxicity, the authors attribute death in these cases to asphyxia caused by carbon dioxide intoxication and diminished atmospheric oxygen concentrations.

  7. The Liquid Crystal Shutter In Automotive Environments

    NASA Astrophysics Data System (ADS)

    Haven, Thomas J.; Melcher, Dean

    1988-10-01

    The Liquid Crystal Shutter (LCS) is being developed for the automotive market. Liquid crystal material that meets operation to 85°C has been screened. Thin film heaters have been explored to obtain -40°C operation. Sunlight viewability has been improved and system colors have been matched to standard vacuum fluorescent automotive instrumentation. Successful completion of automotive humidity and thermal cycling tests have led to the adaptation of a flex connector.

  8. AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREWFEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREW-FEED COAL HOPPER ON RIGHT SIDE, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  9. AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP OFFICE AND SOUTH WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  10. AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON SOUTH SIDE OF SOUTH WING. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  11. AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING WOOD EAVE AND STUCCO RAKEBOARD ON GABLE END, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  12. AUTOMOTIVE REPAIR SHOP, DETAIL OF FABRICATING PRESS IN EAST END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF FABRICATING PRESS IN EAST END OF MAIN WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  13. AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREWFEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREW-FEED COAL HOPPER ON RIGHT SIDE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  14. AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING WOOD EAVE AND STUCCO RAKEBOARD ON GABLE END. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  15. AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON SOUTH SIDE OF SOUTH WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  16. AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP OFFICE AND SOUTH WING. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  17. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOEpatents

    Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  18. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  19. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  20. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  1. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  2. Primary Exhaust Cooler at the Propulsion Systems Laboratory

    NASA Image and Video Library

    1952-09-21

    One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.

  3. Organic content of particulate matter in turbine engine exhaust

    SciTech Connect

    Robertson, D.J.; Groth, R.H.; Blasko, T.J.

    1980-03-01

    Research report:Solid particulate matter, mainly carbon, emitted during fossil fuels combustion contains a variety of organic species adsorbed onto it. Studies were conducted to identify the organic compounds generated by a gas turbine engine. Total organics were determined by gas chromatography and flame ionization. Polynuclear aromatic hydrocarbons, phenols, and nitrosamines were present in samples collected from exhaust gases. (1 diagram, 4 references, 11 tables)

  4. Automobile exhaust level of CO: study in Chidambaram town.

    PubMed

    Ramamurthy, N; Thirumarran, M

    2002-01-01

    The exhaust gases from automobiles constitute about 75% of air pollution. Among the various pollutants emitted from vehicles, CO is the primary pollutant and very toxic one. The CO monitor method was used to predict the CO level in Chidambaram town. From the study it is evident that the pollution level is closely related to the density of motor vehicles on the roads. With increase in number of motor vehicles pollution level also increases which pollutes the roadside environment severely in future.

  5. Natural Cycles, Gases

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Rood, R. B.; Aikin, A. C.; Stolarski, R. S.; Mccormick, M. P.; Fahey, David W.

    1992-01-01

    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust.

  6. Petroleum Marketing. Selling Automotive Products and Services.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This textbook contains material for the individualized instruction of students training for careers in service stations; automotive, tire, battery, and accessory retail stores; oil jobbers and petroleum product wholesalers, or any wholesale or retail establishment that sells automotive products and services. Included among the topics addressed in…

  7. Brakes Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  8. Standardized Curriculum for Automotive Body Repair.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive body repair I and II. The nine units in automotive body repair I are as follows: introduction; related information; basic tool usage and safety; body and frame construction; basic sheet metal repair; preparing for…

  9. Using Technology to Enhance an Automotive Program

    ERIC Educational Resources Information Center

    Ashton, Denis

    2009-01-01

    Denis Ashton uses technology in his automotive technology program at East Valley Institute of Technology (EVIT) to positively impact student outcomes. Ashton, the department chair for the automotive programs at EVIT, in Mesa, Arizona, says that using an interactive PowerPoint curriculum makes learning fun for students and provides immediate…

  10. Brakes Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  11. An Analysis of the Automotive Service Occupation.

    ERIC Educational Resources Information Center

    Winfrey, Prince J.; Morse, David L.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the automotive service advisor occupation. The automotive service advisor is responsible primarily for sales and services and at the same time may be called upon to supervise other service center…

  12. Petroleum Marketing. Selling Automotive Products and Services.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This textbook contains material for the individualized instruction of students training for careers in service stations; automotive, tire, battery, and accessory retail stores; oil jobbers and petroleum product wholesalers, or any wholesale or retail establishment that sells automotive products and services. Included among the topics addressed in…

  13. Chemicals for the automotive industry

    SciTech Connect

    Drake, J.A.G.

    1991-01-01

    This book covers a wide range of advanced materials, surface treatments, and clean fuels/lubricants now used to manufacture, propel, and maintain motor vehicles. The book examines recent advancements and current research, illustrating the progress to date, future trends, new applications, and the effects of these of automotive chemicals on the environment (including pollution, recyclability, and efficiency). Environmental considerations and their effect on the industry are covered in discussions about such topics as biodegradable lubricants, oxygenated diesel and ignition engine fuels, oils, and recyclable, lightweight plastic components.

  14. Diesel exhaust rapidly degrades floral odours used by honeybees.

    PubMed

    Girling, Robbie D; Lusebrink, Inka; Farthing, Emily; Newman, Tracey A; Poppy, Guy M

    2013-10-03

    Honeybees utilise floral odours when foraging for flowers; we investigated whether diesel exhaust pollution could interrupt these floral odour stimuli. A synthetic blend of eight floral chemicals, identified from oilseed rape, was exposed to diesel exhaust pollution. Within one minute of exposure the abundances of four of the chemicals were significantly lowered, with two components rendered undetectable. Honeybees were trained to recognise the full synthetic odour mix; altering the blend, by removing the two chemicals rendered undetectable, significantly reduced the ability of the trained honeybees to recognize the altered odour. Furthermore, we found that at environmentally relevant levels the mono-nitrogen oxide (NOx) fraction of the exhaust gases was a key facilitator of this odour degradation. Such changes in recognition may impact upon a honeybee's foraging efficiency and therefore the pollination services that they provide.

  15. Measurement and infrared image prediction of a heated exhaust flow

    NASA Astrophysics Data System (ADS)

    Nelson, Edward L.; Mahan, J. Robert; Turk, Jeffrey A.; Birckelbaw, Larry D.; Wardwell, Douglas A.; Hange, Craig E.

    1994-06-01

    The focus of the current research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate CFD codes through infrared imaging. The technique of reducing the 3D field-variable domain to a 2D infrared image invokes the use of an inverse Monte-Carlo ray trace algorithm and an infrared band model for exhaust gases. This paper describes an experiment in which the above- mentioned field variables were carefully measured. Data from this experiment in the form of velocity plots are shown. The inverse Monte-Carlo ray trace technique is described. Finally, an experimentally obtained infrared image is directly compared to an infrared image predicted from the measured field variables.

  16. The impact of global warming on the automotive industry

    NASA Astrophysics Data System (ADS)

    Hannappel, Ralf

    2017-08-01

    One cause of global warming of the earth's atmosphere is the emission of human made gases (methane, CO2, nitrous oxygen, etc.) into the environment. Of the total global CO2 emissions the transportation sector contributes to about 14%. In order to control the emissions of the automotive sector, in all major countries (USA, Europe, China, Japan) of the world, tough emissions targets were being set to reduce the vehicle traffic's contribution of CO2. These are derived from the global climate conference' target to limit the maximum temperature increase of the earth of 2 degrees Celsius until 2100. In order to achieve these stringent targets the automotive industry will face a major change in its drivetrain. It will move from combustion to electrical engines. The technical realization of these engines will most likely be battery and fuel cell driven propulsion systems. In order to achieve that transition a major effort is required in 4 industrial areas, i.e. growing electrical charging infrastructure, lowering battery cost, increasing the battery-electric vehicle ranges and developing new environmental friendly hydrogen production methods.

  17. Remote passive detection of aircraft exhausts at airports

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus P.; Jahn, Carsten; Harig, Roland; Aleyt, Christian; Rusch, Peter

    Emissions from vented sources are often important inputs for the development of emission inventories and contribute to local air pollution and global enhancement of greenhouse gases. Aircraft engines are part of these emission sources. A passive measurement technique such as FTIR emission spectrometry is more cost effective and faster in operation for the determination of the composition of hot exhausts of this kind than other measurement systems as e.g. in situ techniques. Within the scope of aircraft emission investigations the measurements were performed from a measurement van which is equipped with an FTIR spectrometer of high spectral resolution coupled with a telescope and a two-axis movable mirror for rapid orientation towards the emission sources. At airports the emission indices of CO2, CO and NO of main engines and auxiliary power units of standing aircraft were determined. The measurement time is about one minute. The accuracy is better than 30 % as found from burner experiments with calibration gases (CO and NO). The method is also applied to detect exhausts of flares and smoke stacks. Currently, a new scanning FTIR-system is developed. The system allows imaging of the exhaust gas and rapid automated alignment of the field of view. The goal of the new development is to measure aircraft exhausts during normal operations at the airport. The spectrometer is coupled with a camera giving an image of the scenery so that a rapid selection of the hottest exhaust area is possible. It is planned to equip the system with an infrared camera for automatic tracking of this area with the scanning mirror so that measurements of the exhausts of a moving aircraft are possible.

  18. Space Software for Automotive Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    John Thousand of Wolverine Western Corp. put his aerospace group to work on an unfamiliar job, designing a brake drum using computer design techniques. Computer design involves creation of a mathematical model of a product and analyzing its effectiveness in simulated operation. Technique enables study of performance and structural behavior of a number of different designs before settling on a final configuration. Wolverine employees attacked a traditional brake drum problem, the sudden buildup of heat during fast and repeated braking. Part of brake drum not confined tends to change its shape under combination of heat, physical pressure and rotational forces, a condition known as bellmouthing. Since bellmouthing is a major factor in braking effectiveness, a solution of problem would be a major advance in automotive engineering. A former NASA employee, now a Wolverine employee, knew of a series of NASA computer programs ideally suited to confronting bellmouthing. Originally developed as aids to rocket engine nozzle design, it's capable of analyzing problems generated in a rocket engine or automotive brake drum by heat, expansion, pressure and rotational forces. Use of these computer programs led to new brake drum concept featuring a more durable axle, and heat transfer ribs, or fins, on hub of drum.

  19. Development process of automotive microsensors

    NASA Astrophysics Data System (ADS)

    Tang, William C.

    1995-05-01

    The phased product development approach can be applied advantageously to develop and manufacture automotive microsensors. The phased approach involves a multifunctional team from innovation to development to eventual production and maintenance phases. The key advantage of this approach is the shortened development cycle and fast product introduction, while minimizing waste of resources and lowering risk of product failure. When applied to the product cycles of automotive sensors based on micromachining technology, this approach elucidates several critical considerations. In particular, since industrial application of micromachining technology is still at the infant stage, standards and design rules are not firmly established. Therefore, several important activities must be initiated simultaneously from the start of the innovation phase, which proves to be crucial to the prudent decision of technology alternatives and sensor system configuration. The use of a multifunctional team, as mandated in the phased approach, enables coherent development and optimization of the sense element, the fabrication technology, the packaging approach, the interface circuit configuration, and design features that allow efficient test and assembly flow. Also, with intermediate milestones within each phase, risk assessment and necessary midcourse adjustment to technology trade- offs can be both timely and accurate. Accelerometers, one of the most developed micromachined sensors, serve as representative examples that illustrate how the phased approach can benefits the commercialization of the newly established and rapidly expanding field of micromechanics.

  20. Experimental hydrogen-fueled automotive engine design data-base project. Volume 1. Executive summary report

    SciTech Connect

    Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

    1983-05-01

    A preliminary hydrogen-fueled automotive piston engine design data-base now exists as a result of a research project at the University of Miami. The effort, which is overviewed here, encompassed the testing of 19 different configurations of an appropriately-modified, 1.6-liter displacement, light-duty automotive piston engine. The design data base includes engine performance and exhaust emissions over the entire load range, generally at a fixed speed (1800 rpm) and best efficiency spark timing. This range was sometimes limited by intake manifold backfiring and lean-limit restrictions; however, effective measures were demonstrated for obviating these problems. High efficiency, competitive specific power, and low emissions were conclusively demonstrated.

  1. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  2. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  3. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.

  4. Corrosion of Exhaust and Filtration Equipment in a Radioactive Waste Incinerator

    SciTech Connect

    Jenkins, C.F.

    2003-10-31

    Condensation in the exhaust gas system of an incinerator burning low activity radioactive wastes led to numerous corrosion developments and rapid failure of the discharge filters. The problem was traced to insufficient reheat of the exhaust gases following scrubbing. Rust particulate and moisture loaded the filters, leading to water accumulation, chloride cracking of the filter housings, and plugging and tearing of the filter media itself. To mitigate the problem, the exhaust gas temperature was increased, thermal insulation was installed on the ductwork, and the interiors of the ducts and new filter housings were lined with a protective coating.

  5. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  6. Dispersal of gases generated near a lunar outpost

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Taylor, G. Jeffrey; Duric, Nebojsa; Sulkanen, Martin; Fernini, Ilias

    1990-01-01

    The dispersal of gases evolved by prospective lunar base operations is presently modeled analytically using continuous (mining and habitat-venting) and impulsive (primarily rocket exhaust) injections of gases. In the case of impulsive injection, the neutral atmosphere and associated ionosphere both decay on time-scales of about 20 min; in that of continuous injection, the atmosphere near the base grows and achieves a steady state after about 20 min. Both direct and diffusive transport mechanisms are considered, and it is concluded that for the injection rates and assumptions presently employed the artificial lunar atmospheres produced are not significantly detrimental to astronomical observations and high-vacuum materials processing operations.

  7. Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2016-01-01

    An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.

  8. Automotive Sectors (NAICS 336, 4231, 8111)

    EPA Pesticide Factsheets

    Find regulatory, compliance, and enforcement information for environmental laws and regulations for the automotive sectors, which includes transportation equipment manufacturing, and establishments involved in repair and maintenance services for vehicles

  9. 78 FR 36633 - National Automotive Sampling System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... upgrade the National Automotive Sampling System (NASS) by improving the information technology (IT...; Modernize the information technology (IT) infrastructure; Re-examine the electronic formats in which the..., provide information on the new sample design and describe the information ] technology...

  10. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  11. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  12. Treatment of power utilities exhaust

    SciTech Connect

    Koermer, Gerald

    2012-05-15

    Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

  13. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2004-01-01

    power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  14. Heat transfer during quenching of gases

    NASA Astrophysics Data System (ADS)

    Ambraziavichius, A.

    Results of theoretical and experimental investigations of gas-side heat transfer of subsonic laminar or turbulent flows of diatomic gases (air or nitrogen) heated to 5000 K in cold-wall pipes are presented. While determining the mixing length, physical parameters which consider local temperatures of the boundary layer were adopted. Thus, the generalized fields of velocities and temperatures in the turbulent region of the boundary layer are identical for both moderate and high gas temperature ranges, and Pr-sub-t may be considered constant and approximately equal to 0.9. The temperature level of gases in turblent flow is shown to insignificantly affect heat transfer equations, provided the physical parameters in the similarity numbers are chosen according to the bulk flow temperature. A calculation technique is developed for heat transfer of dissociated diatomic gases in annular and rectangular channels, in slots, and over bundles of square tubes in cross flow. Also, a relation is shown between the heat transfer coefficient, quenching velocity, and nitrogen oxide concentration in the air exhaust of a nitrogen oxide quenching apparatus.

  15. Development of detergent additives for automotive fuels in other countries

    SciTech Connect

    Zakharova, E.L.; Emel`yanov, V.E.; Deineko, P.S.

    1994-09-01

    With increasing demands on environmental protection and with the production of reformulated unleaded motor fuels, new and effective detergent additives are urgently needed. A number of monographs and scientific works have been devoted to problems involved in the development and application of such additives. Since the mid-1980s in the United States and certain other countries, a crisis has been noted in the application of detergent additives. It has been found that certain types of detergents not only fail to give the required cleaning effect, but even promote the formation of deposits. This situation can be attributed primarily to the development of automotive gasoline engines with direct fuel injection. In the United States in 1989, about 90% of all automotive vehicles were equipped with such engines, which have very definite advantages in fuel economy, less smoking, and a number of other areas. However, after a few thousand kilometers of travel, the characteristics of these engines deteriorate, and undesirable changes are observed, including excessive fuel consumption, a reduction of the vehicle speed, and increased contents of carbon monoxide in the exhaust. These changes occur because of deposit formation in the fuel intake system, particularly on the intake valves. As the deposits continue to accumulate, the engines gradually experience an increase in octane number demand for engine operation without knocking. This phenomenon, which is known in American publications as {open_quotes}octane requirement increase{close_quotes} or ORI (Russian initialism RTOCh, literal translation, {open_quotes}increase of requirements for octane number{close_quotes}), continues until a certain equilibrium octane number is reached. This equilibrium value may change, depending on the engine design and other factors. In all cases, however, the ORI of modern engines is significant, amount to 2-14 octane numbers.

  16. Planetary noble gases

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  17. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    PubMed

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size.

  18. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  19. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  20. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson... have occurred involving workers in support of the Anderson, South Carolina location of Plastic Omnium...

  1. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    ERIC Educational Resources Information Center

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  2. Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…

  3. Automotive Refinishing II; Automotive Body Repair and Refinishing 2: 9035.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Part of the Dade County Public School (Florida)Quinmester Program, the automotive refinishing course outline is a continuation of automotive refinishing 1 and emphasizes the practical application of color coating and sheet metal refinishing. Overall refinishing with enamels, lacquers, and acrylics are included as well as spot repair painting and…

  4. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  5. Automotive History and Development of the Automobile; Automotive Mechanics I: 9043.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The automotive history and development of the automobile course is designed to familiarize the beginning student with basic concepts common to the automobile history and general information that is required for successful advancement in the automotive mechanics field. A course outline is provided and seven pages of post-tests are included in the…

  6. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    ERIC Educational Resources Information Center

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  7. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  8. Treating exhaust gas from a pressurized fluidized bed reaction system

    SciTech Connect

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  9. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  10. Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats

    EPA Science Inventory

    Diesel exhaust (DE) is a major contributor to traffic-related fine PM2.5. While inroads have been made in understanding the mechanisms of PM related health effects, DE’s complex mixture of PM, gases and volatile organics makes it difficult to determine how the constituents contri...

  11. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the temperatures where condensation of water in the exhaust gases could occur. This may be achieved by...: (i) Using a duct of unrestricted length maintained at a temperature below 599 °F (315 °C). (Heating... tunnel, which lowers the duct temperature below 599 °F (315 °C). (5) Heated sample lines are required...

  12. Diesel Exhaust-Induced Pulmonary and Cardiovascular Impairment: The Role of Hypertension Intervention

    EPA Science Inventory

    Background–Exposure to diesel exhaust (DE) particles and associated gases is linked to cardiovascular impairments; however the susceptibility of hypertensive individuals is less well understood. Objective–1) To determine cardiopulmonary effects of gas-phase versus whole-DE, and 2...

  13. Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats

    EPA Science Inventory

    Diesel exhaust (DE) is a major contributor to traffic-related fine PM2.5. While inroads have been made in understanding the mechanisms of PM related health effects, DE’s complex mixture of PM, gases and volatile organics makes it difficult to determine how the constituents contri...

  14. Diesel Exhaust-Induced Pulmonary and Cardiovascular Impairment: The Role of Hypertension Intervention

    EPA Science Inventory

    Background–Exposure to diesel exhaust (DE) particles and associated gases is linked to cardiovascular impairments; however the susceptibility of hypertensive individuals is less well understood. Objective–1) To determine cardiopulmonary effects of gas-phase versus whole-DE, and 2...

  15. Supporting design information for portable exhauster installation at tanks S-109, SX-102/103, BY-105/106, S-101/102, S-107

    SciTech Connect

    Keller, C.M.

    1997-10-09

    This document provides supporting calculations and equipment dedication plans for portable exhausters and ductwork installed on tanks S-109, SX-102/103, BY-105/106, S-101/102, and S-107. The exhausters will ventilate the tanks during saltwell pumping to prevent the potential accumulation of flammable gases.

  16. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  17. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The third quarter (April-June, 1978) effort of the Ford/DOE Automotive Stirling Engine Development Program is reported, specifically Task 1 of that effort, which is Fuel Economy Assessment. At the end of this quarter the total fourth generation fuel economy projection was 26.12 MPG (gasoline) with a confidence level of 44%. This represents an improvement of 66.4% over the baseline M-H fuel economy of 15.7 MPG. The confidence level for the original 20.6 MPG goal has been increased from 53% to 57%. Engine 3X17 has accumulated a total of 213 hours of variable speed running. A summary of the individual sub-tasks of Task 1 are given. The sub-tasks are grouped into two categories: Category 1 consists of those sub-tasks which are directly related to fuel economy and Category 2 consists of those sub-tasks which are not directly related to fuel economy but are an integral part of the Task 1 effort.

  18. User discrimination in automotive systems

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-03-01

    The recently developed dual-view touch screens, which are announced to be installed in cars in a near future, give rise to completely new challenges in human-machine interaction. The automotive system should be able to identify if the driver or the passenger is currently interacting with the touch screen to provide a correct response to the touch. The optical devices, due to availability, acceptance by the users and multifunctional usage, approved to be the most appropriate sensing technology for driver/passenger discrimination. In this work the prototypic optical user discrimination system is implemented in the car simulator and evaluated in the laboratory environment with entirely controlled illumination. Three tests were done for this research. One of them examined if the near-infrared illumination should be switched on around the clock, the second one if there is a difference in discrimination performance between day, twilight and night conditions, and the third one examined how the intensive directional lighting influences the performance of the implemented user discrimination algorithm. Despite the high error rates, the evaluation results show that very simple computer vision algorithms are able to solve complicated user discrimination task. The average error rate of 10.42% (daytime with near-infrared illumination) is a very promising result for optical systems.

  19. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  20. Methods of suppressing automotive interference

    NASA Astrophysics Data System (ADS)

    Taggart, H. E.

    1981-11-01

    Automotive manufacturers utilize several techniques to reduce EMI emanating from the vehicle. The techniques include resistor spark plugs, resistor spark plug cables, use of silicone lubricant in the distributor, use of capacitors as filters, placement of grounding straps at key locations, conductive fan belt discharge, and tire static-charge reduction. If even further reduction is needed to obtain the maximum capability of a specific mobile communication system, additional suppression techniques are discussed which are effective at frequencies from approximately 30 to 1000 MHz. Measurement results show that the EMI from a new production-line automobile, measured in accordance with SAE Standard J551g, can be reduced as much as 10 to 15 dB by employing these suppression techniques. The amount of degradation to a mobile narrow-band FM receiver, such as the type used by law enforcement agencies, can be measured using the measurement technique described. This same technique can then be used as a tool to further reduce EMI from the vehicle components.

  1. Pyrolysis of automotive shredder residue light fraction: maximization of the tar yield using design of experiment

    NASA Astrophysics Data System (ADS)

    Anzano, Manuela; Collina, Elena; Piccinelli, Elsa; Lasagni, Marina

    2017-05-01

    The general aim of this study is the valorisation of Automotive Shredder Residue (ASR) via pyrolysis. Tar, the condensable gases obtained in the pyrolysis process, is an interesting alternative fuel. Thus, the pyrolysis process was investigated in order to maximize the tar yield. The design of experiment approach was used to plan a series of experiments and to identify which operating variables influence the yield of the process. Temperature and carrier gas flow proved to be significant factors affecting the yield, while the influence of ASR light fraction amount pyrolysed was negligible. In the experimental domain, the maximum response was obtained at 500 °C and 100 mL/min.

  2. Evolution of vehicle exhaust particles in the atmosphere.

    PubMed

    Canagaratna, Manjula R; Onasch, Timothy B; Wood, Ezra C; Herndon, Scott C; Jayne, John T; Cross, Eben S; Miake-Lye, Richard C; Kolb, Charles E; Worsnop, Douglas R

    2010-10-01

    Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on

  3. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    SciTech Connect

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  4. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1992-01-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  5. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Astrophysics Data System (ADS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R.-L.

    1992-10-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  6. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust.

    PubMed

    Rudell, B; Ledin, M C; Hammarström, U; Stjernberg, N; Lundbäck, B; Sandström, T

    1996-10-01

    Diesel exhaust is a common air pollutant made up of several gases, hydrocarbons, and particles. An experimental study was carried out which was designed to evaluate if a particle trap on the tail pipe of an idling diesel engine would reduce effects on symptoms and lung function caused by the diesel exhaust, compared with exposure to unfiltered exhaust. Twelve healthy non-smoking volunteers (aged 20-37) were investigated in an exposure chamber for one hour during light work on a bicycle ergometer at 75 W. Each subject underwent three separate double blind exposures in a randomised sequence: to air and to diesel exhaust with the particle trap at the tail pipe and to unfiltered diesel exhaust. Symptoms were recorded according to the Borg scale before, every 10 minutes during, and 30 minutes after the exposure. Lung function was measured with a computerised whole body plethysmograph. The ceramic wall flow particle trap reduced the number of particles by 46%, whereas other compounds were relatively constant. It was shown that the most prominent symptoms during exposure to diesel exhaust were irritation of the eyes and nose and an unpleasant smell increasing during exposure. Both airway resistance (R(aw)) and specific airway resistance (SR(aw)) increased significantly during the exposures to diesel exhaust. Despite the 46% reduction in particle numbers by the trap effects on symptoms and lung function were not significantly attenuated. Exposure to diesel exhaust caused symptoms and bronchoconstriction which were not significantly reduced by a particle trap.

  7. Biodiesel exhaust: the need for a systematic approach to health effects research.

    PubMed

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure.

  8. Changes in mechanical work during severe exhausting running.

    PubMed

    Avogadro, Patrick; Dolenec, Ales; Belli, Alain

    2003-09-01

    The possible contribution of muscular work to the increase in oxygen uptake ( VO(2)) over time during running was investigated on 11 adult males who were asked to run until exhaustion at 90 (3)% [mean (SD)] of their maximal aerobic velocity on a treadmill ergometer. Ground reaction forces, expired gases and EMG from leg muscles were collected for 30 s at min 3 and during the last minute of the run. Subjects ran for 829 (165) s and showed an increase in VO(2 )of 179 (93) ml.min(-1) between min 3 and exhaustion. Increased ventilation explained 41 (27)% of the increase in VO(2). Stride frequency slightly decreased but no significant differences were found in the mechanical work or in integrated EMG. It was concluded that, in running, the increase in VO(2 )could not be related to a drift in muscle work.

  9. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  10. Platinum availability for future automotive technologies.

    PubMed

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-04

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users.

  11. Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition

    NASA Astrophysics Data System (ADS)

    Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi

    2017-02-01

    An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.

  12. View of automotive repair and gas station, facing southwest from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of automotive repair and gas station, facing southwest from across Pope Street. Garage built for storage of employee automobiles in left background - Automotive Repair & Gas Station, Southwest corner of Pope Street & Olympic Avenue, Port Gamble, Kitsap County, WA

  13. Lube rack of Automotive and Tractor Repair Shops with Warehousefield ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lube rack of Automotive and Tractor Repair Shops with Warehouse-field Equipment Repair Shop Building's wall to the right, looking from the south - Kekaha Sugar Company, Automotive and Tractor Repair Shops, 8315 Kekaha Road, Kekaha, Kauai County, HI

  14. View of south elevation of Automotive and Tractor Repair Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of south elevation of Automotive and Tractor Repair Shops with the Warehouse Fabrication Shop and Stack in the background, looking from the southwest - Kekaha Sugar Company, Automotive and Tractor Repair Shops, 8315 Kekaha Road, Kekaha, Kauai County, HI

  15. Exhaust Fan Temperature Switch

    SciTech Connect

    Ball, G.S.; /Fermilab

    1989-05-11

    tests bore out do not threaten the exhaust fan and are therefore acceptable.

  16. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  17. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermúdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum

  18. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect

    Love, Norman; Szybist, James P; Sluder, Scott

    2011-01-01

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  19. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials

    SciTech Connect

    Szanyi, Janos; Yi, Cheol-Woo W.; Mudiyanselage, Kumudu K.; Kwak, Ja Hun

    2013-11-01

    The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0\\hBaO\\30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (\\4 ML), BaO clusters (\\1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation of a BaCO3 layer that prevents to complete carbonation of the entire BaO film under the experimental conditions applied in these studies. However, these ‘‘carbonated’’ BaO layers readily react with NO2, and at elevated sample temperature even the carbonate layer is converted to nitrates. The importance of the metal oxide/metal interface in the chemistry on NOx storage-reduction catalysts was studied on BaO(\\1 ML)/Pt(111) reverse model catalysts. In comparison to the clean Pt(111), new oxygen adsorption phases were identified on the BaO/Pt(111) surface that can be associated with oxygen atoms strongly adsorbed on Pt atoms at the peripheries of BaO particles. A simple kinetic model developed helped explain the observed thermal desorption results. The role of the oxide/metal interface in the reduction of Ba(NO3)2 was also substantiated in experiments where Ba(NO3)2/O/Pt(111) samples were exposed to CO at elevated sample temperature. The catalytic decomposition of the nitrate phase occurred as soon as metal sites opened up by the removal of interfacial oxygen via CO oxidation from the O/Pt(111) surface. The temperature for catalytic nitrate reduction was found to be significantly lower than the onset temperature of thermal nitrate decomposition. We gratefully acknowledge the US Department of Energy (DOE), Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility sponsored by the DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830.

  20. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. A motor vehicle does not conform to the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier...

  1. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust system. 23.1123 Section 23.1123... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means to...

  2. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. A motor vehicle does not conform to the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier...

  3. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. A motor vehicle does not conform to the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier...

  4. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  5. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust system. 23.1123 Section 23.1123... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means to...

  6. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust system. 23.1123 Section 23.1123... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means to...

  7. Can Distance Learning Be Used to Teach Automotive Management Skills?

    ERIC Educational Resources Information Center

    Noto, Teresa L.

    2011-01-01

    Today's automotive college students will shape the future of the automobile industry. The success of college-level automotive programs has long been dependent on the students' ability to participate in hands-on classroom based interactions. In this article, distance learning and how it can be used to teach automotive management skills, as well as…

  8. Engine Performance Specialist. Instructor's Manual. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide is one of a series automotive service specialty publications that continues students' training in the automotive service trade by providing instruction in the engine performance specialty. It is based on the National Institute of Automotive Service Excellence task lists. Each of the 16 units includes some or all of the basic…

  9. Can Distance Learning Be Used to Teach Automotive Management Skills?

    ERIC Educational Resources Information Center

    Noto, Teresa L.

    2011-01-01

    Today's automotive college students will shape the future of the automobile industry. The success of college-level automotive programs has long been dependent on the students' ability to participate in hands-on classroom based interactions. In this article, distance learning and how it can be used to teach automotive management skills, as well as…

  10. Engine Performance Specialist. Instructor's Manual. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide is one of a series automotive service specialty publications that continues students' training in the automotive service trade by providing instruction in the engine performance specialty. It is based on the National Institute of Automotive Service Excellence task lists. Each of the 16 units includes some or all of the basic…

  11. 7 CFR 3201.101 - Automotive care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Automotive care products. 3201.101 Section 3201.101... Designated Items § 3201.101 Automotive care products. (a) Definition. Products such as waxes, buffing..., and fragrances that are formulated for cleaning and protecting automotive surfaces. (b)...

  12. Best Practices in School-to-Careers: The Automotive Industry.

    ERIC Educational Resources Information Center

    National Employer Leadership Council, Washington, DC.

    This document highlights the school-to-careers (STC) partnerships connecting workplace experiences to classroom learning to prepare students for successful employment in the automotive industry. First, the current state of the automotive industry is reviewed and the role of STC in addressing automotive service needs is explained. Next, the…

  13. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  14. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  15. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  16. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  17. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  18. The lock-in effect and the greening of automotive cooling systems in the European Union.

    PubMed

    Bjørnåvold, Amalie; Van Passel, Steven

    2017-06-23

    As of 2017, the sale and use of the refrigerants most commonly used in automotive cooling systems - hydrofluorocarbons - are entirely banned in all new vehicles placed on the market in the European Union. These refrigerants have been recognised as potent greenhouse gases and, therefore, direct contributors to climate change. It is within this regulation-driven market that the technologies for a sustainable solution have been developed. However, this paper argues that the market for automotive cooling systems has been 'locked-in', which means that competing technologies, operating under dynamic increasing returns, will allow for one - potentially inferior technology - to dominate the market. Whilst such a situation is not uncommon, this paper discusses the way that regulation has reinforced a patented monopoly in 'picking winners': to the advantage of a synthetic chemical, R-1234yf, as opposed to the natural solution, which is CO2. By developing a generic conceptual framework of path dependence and lock-in, the presented evidence seeks to show how a snowballing effect has led to the intensification of differences in market share. We also argue that the automotive industry is potentially promoting short-term fixes, rather than long-term, sustainable and economically viable solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nanotechnology impact on the automotive industry.

    PubMed

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  20. Status and Trend of Automotive Power Packaging

    SciTech Connect

    Liang, Zhenxian

    2012-01-01

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  1. Fatigue life of automotive rubber jounce bumper

    NASA Astrophysics Data System (ADS)

    Sidhu, R. S.; Ali, Aidy

    2010-05-01

    It is evident that most rubber components in the automotive industry are subjected to repetitive loading. Vigorous research is needed towards improving the safety and reliability of the components. The study was done on an automotive rubber jounce bumper with a rubber hardness of 60 IRHD. The test was conducted in displacement-controlled environment under compressive load. The existing models by Kim, Harbour, Woo and Li were adopted to predict the fatigue life. The experimental results show strong similarities with the predicted models.

  2. Mod I automotive Stirling engine mechanical development

    SciTech Connect

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  3. Fumigation of Alcohol in a Light Duty Automotive Diesel Engine

    NASA Technical Reports Server (NTRS)

    Broukhiyan, E. M. H.; Lestz, S. S.

    1981-01-01

    A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.

  4. Sudden releases of gases

    NASA Astrophysics Data System (ADS)

    Chaloupecká, Hana; Jaňour, Zbyněk; Jurčáková, Klára; Kukačka, Libor; Nosek, Štěpán

    2014-03-01

    Conurbations all over the world have enlarged for numberless years. The accidental or intentional releases of gases become more frequent. Therefore, these crises situations have to be studied. The aim of this paper is to describe experiments examining these processes that were carried out in the laboratory of Environmental Aerodynamics of the Institute of Thermomechanics AS CR in Nový Knín. Results show huge puff variability from replica to replica.

  5. Toxic gases from fires.

    PubMed

    Terrill, J B; Montgomery, R R; Reinhardt, C F

    1978-06-23

    The major lethal factors in uncontrolled fires are toxic gases, heat, and oxygen deficiency. The predominant toxic gas is carbon monoxide, which is readily generated from the combusion of wood and other cellulosic materials. Increasing use of a variety of synthetic polymers has stimulated interest in screening tests to evaluated the toxicity of polymeric materials when thermally decomposed. As yet, this country lacks a standardized fire toxicity test protocol.

  6. Kinetic Theory of Gases

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory, developed in the nineteenth century, notably by Rudolf Clausius (1822-88) and James Clerk Maxwell (1831-79), that the properties of a gas (temperature, pressure, etc) could be described in terms of the motions (and kinetic energy) of the molecules comprising the gases. The theory has wide implications in astrophysics. In particular, the perfect gas law, which relates the pressure, vol...

  7. HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in

  8. HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in

  9. Influence of increased exhaust gas recirculation ratio on the thermodynamic processes in CI DI engine

    NASA Astrophysics Data System (ADS)

    Pielecha, I.; Skowron, M.; Bueschke, W.; Cieślik, W.; Wisłocki, K.

    2016-09-01

    The aim of the conducted research was the thermodynamic identification of combustion process involving up to 50-60% recirculated exhaust gasses in compression ignition engine. The values of the respective indicators obtained for the high share of exhaust gasses in the cylinder were compared to the values obtained in the engine working without EGR. The research was conducted on the single-cylinder AVL 5804 engine equipped with recirculated gas cooling system. The conditions of combustion process were determined using indicators of engine operation and measurements of fast-varying cylinder pressure. The evaluation of the influence of different share of exhaust gases in the cylinder on the combustion course and heat release was conducted. As a result of the conducted research the possibility of utilizing the high share of exhaust gasses (50-60%) with simultaneous ecological benefits, not only in relation to nitrogen oxides, was demonstrated.

  10. Magnetic analyses of powders from exhausted cabin air filters

    NASA Astrophysics Data System (ADS)

    Winkler, Aldo; Sagnotti, Leonardo

    2013-04-01

    The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.

  11. Ventilation Exhaust Power Recovery Design

    NASA Astrophysics Data System (ADS)

    Yandell, Jeremy

    2012-11-01

    Due to the expense of designing ductwork and exhaust fans to meet the exact desired flow rate for building exhaust, there is wasted energy that is unrecovered when exhausted to the atmosphere. By designing a small diameter wind turbine the kinetic energy in the exhaust stream can be recovered and power provided back into the building. Unlike large scale commercial wind turbines that must be designed to provide power from a large range of wind speeds and directions, this smaller scale turbine can be optimized for a single constant wind speed with no variation in direction. The critical component is to prevent backpressure feeding through the system and increasing the load on the exhaust fan. This design project began with the theoretical airfoil and blade design, followed by modeling the system in fluid dynamics software, a full CAD design was created and modified for the selected manufacturing process, prototype creation and testing will be completed both in a wind tunnel and in a real environment, and the completed data will be compared with theoretical and computational results. Note: There is a patent pending for this design and concept.

  12. CFD modeling of thermoelectric generators in automotive EGR-coolers

    NASA Astrophysics Data System (ADS)

    Högblom, Olle; Andersson, Ronnie

    2012-06-01

    A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.

  13. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study.

    PubMed

    Kazimirova, Alena; Peikertova, Pavlina; Barancokova, Magdalena; Staruchova, Marta; Tulinska, Jana; Vaculik, Miroslav; Vavra, Ivo; Kukutschova, Jana; Filip, Peter; Dusinska, Maria

    2016-07-01

    Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032).

  14. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  15. Solidification studies of automotive heat exchanger materials

    NASA Astrophysics Data System (ADS)

    Carlberg, T.; Jaradeh, M.; Kamgou Kamaga, H.

    2006-11-01

    Modifications of the aluminum alloy AA 3003 have been studied to improve and tailorits properties for applications in automotive heat exchangers. Laboratory techniques have been applied to simulate industrial direct-chill casting, and some basic solidification studies have been conducted. The results are coupled to structures observed in industrial-size ingots and discussed in terms of structure-property relations.

  16. PHYSICS AND CHEMISTRY FOR THE AUTOMOTIVE TRADES.

    ERIC Educational Resources Information Center

    WORTHING, ROBERT

    DESIGNED FOR STUDENT USE, THIS MANUAL PRESENTS RELATED INFORMATION AND LABORATORY EXPERIMENTS FOR A 1-YEAR COURSE IN APPLIED PHYSICS AND CHEMISTRY. IT WAS DEVELOPED BY ESSEX COUNTY AUTOMOTIVE TEACHERS. CONTENT HEADINGS ARE -- (1) MATTER AND ITS PROPERTIES (15 EXPERIMENTS), (2) MECHANICS (4 EXPERIMENTS), (3) HEAT (3 EXPERIMENTS), (4) ELECTRICITY (8…

  17. Energy Cost Reduction for Automotive Service Facilities.

    ERIC Educational Resources Information Center

    Federal Energy Administration, Washington, DC.

    This handbook on energy cost reduction for automotive service facilities consists of four sections. The importance and economic benefits of energy conservation are discussed in the first section. In the second section six energy cost reduction measures are discussed: relamping interior areas; relamping and reducing interior lighting; setting back…

  18. Techno-economic requirements for automotive composites

    NASA Technical Reports Server (NTRS)

    Arnold, Scot

    1993-01-01

    New technology generally serves two main goals of the automotive industry: one is to enable vehicles to comply with various governmental regulations and the other is to provide a competitive edge in the market. The latter goal can either be served through improved manufacturing and design capabilities, such as computer aided design and computer aided manufacturing, or through improved product performance, such as anti-lock braking (ABS). Although safety features are sometimes customer driven, such as the increasing use of airbags and ABS, most are determined by regulations as outlined by the Federal Motor Vehicle Safety Standards (FMVSS). Other standards, set by the Environmental Protection Agency, determine acceptable levels of emissions and fuel consumption. State governments, such as in California, are also setting precedent standards, such as requiring manufacturers to offer zero-emission vehicles as a certain fraction of their sales in the state. The drive to apply new materials in the automobile stems from the need to reduce weight and improve fuel efficiency. Topics discussed include: new lightweight materials; types of automotive materials; automotive composite applications; the role for composite materials in automotive applications; advantages and disadvantages of composite materials; material substitution economics; economic perspective; production economics; and composite materials production economics.

  19. Automotive Mechanics Occupational Performance Survey. Interim Report.

    ERIC Educational Resources Information Center

    Borcher, Sidney D.; Leiter, Paul B.

    The purpose of this federally-funded interim report is to present the results of a task inventory analysis survey of automotive mechanics completed by project staff within the Instructional Systems Design Program at the Center for Vocational and Technical Education. Intended for use in curriculum development for vocational education programs in…

  20. Basic Automotive Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of a basic automotive mechanics program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  1. Automotive Service Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of an automotive service technology program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  2. Automotive Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of an automotive technology program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational Titles…

  3. Metrics for Automotive Merchandising, Petroleum Marketing.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students in automotive merchandising and petroleum marketing classes, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know…

  4. National Apprenticeship Standards for Automotive Machinist.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Bureau of Apprenticeship and Training.

    These 24 standards have been adopted by the Automotive Service Industry Association to provide well-planned, properly supervised training for apprentices to develop into competent machinists. The goal of the standards is to establish and maintain high criteria of workmanship, to develop knowledge by workers of technical and theoretical aspects of…

  5. Orientation: Automotive Mechanics Instructional Program. Block 1.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The first six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the basic theory and practice of a beginning course at the secondary and post-secondary level. The material, as organized, is a suggested sequence of instruction…

  6. Automotive Stirling engine development program: A success

    NASA Technical Reports Server (NTRS)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  7. Automotive Stirling engine development program - A success

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1987-01-01

    The original 5-year Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  8. Computer aided engineering analysis of automotive bumpers

    SciTech Connect

    Glance, P.M.

    1984-01-01

    This paper presents a description of a general purpose, computer-aided engineering design methodology which has been employed in the design of automotive bumper systems. A comparison of computer-aided analysis predictions with actual test data is presented. Two case histories of bumper system designs are discussed.

  9. Automotive gear oil lubricant from soybean oil

    USDA-ARS?s Scientific Manuscript database

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  10. Automotive Body Repair. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  11. Automotive Body Repair. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  12. Automotive Body Repair. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 15 terminal objectives for a basic automotive body repair and refinishing course. The materials were developed for a two-semester (2 hours daily) course for organized classroom and shop experiences designed to enable the student to develop…

  13. Illinois Occupational Skill Standards: Automotive Technician Cluster.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended as a guide for work force preparation program providers, details the Illinois occupational skill standards for programs preparing students for employment in occupations in the automotive technician cluster. The document begins with overviews of the Illinois perspective on occupational skill standards and…

  14. Executive function after exhaustive exercise.

    PubMed

    Sudo, Mizuki; Komiyama, Takaaki; Aoyagi, Ryo; Nagamatsu, Toshiya; Higaki, Yasuki; Ando, Soichi

    2017-08-05

    Findings concerning the effects of exhaustive exercise on cognitive function are somewhat equivocal. The purpose of this study was to identify physiological factors that determine executive function after exhaustive exercise. Thirty-two participants completed the cognitive tasks before and after an incremental exercise until exhaustion (exercise group: N = 18) or resting period (control group N = 14). The cognitive task was a combination of a Spatial Delayed-Response (Spatial DR) task and a Go/No-Go task, which requires executive function. Cerebral oxygenation and skin blood flow were monitored during the cognitive task over the prefrontal cortex. Venous blood samples were collected before and after the exercise or resting period, and blood catecholamines, serum brain-derived neurotrophic factor, insulin-like growth hormone factor 1, and blood lactate concentrations were analyzed. In the exercise group, exhaustive exercise did not alter reaction time (RT) in the Go/No-Go task (pre: 861 ± 299 ms vs. post: 775 ± 168 ms) and the number of error trials in the Go/No-Go task (pre: 0.9 ± 0.7 vs. post: 1.8 ± 1.8) and the Spatial DR task (pre: 0.3 ± 0.5 vs. post: 0.8 ± 1.2). However, ΔRT was negatively correlated with Δcerebral oxygenation (r = -0.64, P = 0.004). Other physiological parameters were not correlated with cognitive performance. Venous blood samples were not directly associated with cognitive function after exhaustive exercise. The present results suggest that recovery of regional cerebral oxygenation affects executive function after exhaustive exercise.

  15. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    SciTech Connect

    Balmer, M. Lou ); Tonkyn, Russell ); Maupin, Gary; Yoon, Steven; Kolwaite, Ana; Barlow, Stephen; Domingo, Norberto; Storey, John M.; Hoard, John Wm.; Howden, Ken

    2000-04-01

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  16. The effect of exhaust plume/afterbody interaction on installed Scramjet performance

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas Alan

    1988-01-01

    Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has

  17. Secondary organic aerosol formation from the irradiation of simulated automobile exhaust.

    PubMed

    Kleindienst, T E; Corse, E W; Li, W; McIver, C D; Conver, T S; Edney, E O; Driscoll, D J; Speer, R E; Weathers, W S; Tejada, S B

    2002-03-01

    A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated

  18. Equilibration of quantum gases

    NASA Astrophysics Data System (ADS)

    Farrelly, Terry

    2016-07-01

    Finding equilibration times is a major unsolved problem in physics with few analytical results. Here we look at equilibration times for quantum gases of bosons and fermions in the regime of negligibly weak interactions, a setting which not only includes paradigmatic systems such as gases confined to boxes, but also Luttinger liquids and the free superfluid Hubbard model. To do this, we focus on two classes of measurements: (i) coarse-grained observables, such as the number of particles in a region of space, and (ii) few-mode measurements, such as phase correlators. We show that, in this setting, equilibration occurs quite generally despite the fact that the particles are not interacting. Furthermore, for coarse-grained measurements the timescale is generally at most polynomial in the number of particles N, which is much faster than previous general upper bounds, which were exponential in N. For local measurements on lattice systems, the timescale is typically linear in the number of lattice sites. In fact, for one-dimensional lattices, the scaling is generally linear in the length of the lattice, which is optimal. Additionally, we look at a few specific examples, one of which consists of N fermions initially confined on one side of a partition in a box. The partition is removed and the fermions equilibrate extremely quickly in time O(1/N).

  19. 76 FR 72674 - Approval for Expansion of Manufacturing Authority, Foreign-Trade Subzone 29F, Hitachi Automotive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ..., Hitachi Automotive Systems Americas, Inc., (Automotive Components), Harrodsburg, KY Pursuant to its... manufacturing authority on behalf of Hitachi Automotive Systems Americas, Inc. (Hitachi), operator of...

  20. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  1. Jet flows of reacting gases

    NASA Astrophysics Data System (ADS)

    Aliev, Farkhadzhan; Zhumaev, Zair Sh.

    The book presents fundamentals of the aerodynamic theory and calculation of straight gas jets. The discussion focuses on the flow structure and turbulent combustion of unmixed gases and thermal characteristics of the jet. The following three types of problems are considered: motion of unmixed chemically active gases; gas motion under conditions of chemical equilibrium; and motion of gases under conditions of finite-rate chemical reactions.

  2. Trapped noble gases in meteorites

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.

    1988-01-01

    The trapped noble gases in meteorites come in two main varieties, usually referred to as solar and planetary. The solar noble gases are implanted solar-wind or solar-flare materials, and thus their relative elemental abundances provide a good estimate of those of the sun. The planetary noble gases have relative elemental abundances similar to those in the terrestrial atmosphere, but there are also important distinctions. At least one other elemental pattern (subsolar) and several isotopic patterns have also been identified.

  3. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  4. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  5. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  6. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  7. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  8. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  9. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  10. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  11. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  12. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  13. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  14. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  15. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  16. Ultrahigh carbon steel for automotive applications

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.

    1995-12-04

    Ultrahigh carbon steels (UHCSs), which contain 1--2.1% carbon, have remarkable structural properties for automotive application when processed to achieve fine ferrite grains with fine spheroidized carbides. When processed for high room temperature ductility, UHCS can have good tensile ductility but significantly higher strength than current automotive high strength steels. The material can also be made superplastic at intermediate temperatures and exhibits excellent die fill capability. Furthermore, they can be made hard with high compression ductility. In wire form it is projected that UHCS can exhibit extremely high strengths (5,000 MPa) for tire cord applications. Examples of structural components that have been formed from fine-grained spheroidized UHCSs are illustrated.

  17. Springback prediction of TWIP automotive sheets

    NASA Astrophysics Data System (ADS)

    Ahn, Kanghwan; Yoo, Donghoon; Seo, Min Hong; Park, Sung-Ho; Chung, Kwansoo

    2009-08-01

    In an effort to reduce the weight of vehicles, automotive companies are replacing conventional steel parts with light weight alloys and/or with advanced high strength steels (AHSS) such as dual-phase (DP), twinning induced plasticity (TWIP), and transformation induced plasticity (TRIP) steels. The main objective of this work is to experimentally and numerically evaluate the macro-performance of the automotive TWIP sheet in conjunction with springback. In order to characterize the mechanical properties, simple tension and tension-compression tests were performed to determine anisotropic properties, as well as the Bauschinger, transient, and permanent softening behaviors during reverse loading. For numerical simulations, the anisotropic yield function Yld2000-2d was utilized along with the combined isotropic-kinematic hardening law based on the modified Chaboche model. Springback verification was performed for the unconstrained cylindrical bending and 2D draw bending tests.

  18. Polymer matrix nanocomposites for automotive structural components

    DOE PAGES

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field andmore » propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.« less

  19. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  20. Intelligent imaging systems for automotive applications

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Huang, Yingping; Fu, Shan

    2004-03-01

    In common with many other application areas, visual signals are becoming an increasingly important information source for many automotive applications. For several years CCD cameras have been used as research tools for a range of automotive applications. Infrared cameras, RADAR and LIDAR are other types of imaging sensors that have also been widely investigated for use in cars. This paper will describe work in this field performed in C2VIP over the last decade - starting with Night Vision Systems and looking at various other Advanced Driver Assistance Systems. Emerging from this experience, we make the following observations which are crucial for "intelligent" imaging systems: 1. Careful arrangement of sensor array. 2. Dynamic-Self-Calibration. 3. Networking and processing. 4. Fusion with other imaging sensors, both at the image level and the feature level, provides much more flexibility and reliability in complex situations. We will discuss how these problems can be addressed and what are the outstanding issues.

  1. Torsion vehicle model test for automotive vehicle

    NASA Astrophysics Data System (ADS)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    Torsion vehicle model test of Simple Structural Surfaces (SSS) model for automotive vehicle sedan is proposed in this paper to demonstrate the importance of providing continuous load path within the vehicle structures. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is capable to show that a satisfactory load paths can five a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global torsion stiffness reduces significantly when only one panel is removed from the complete SSS model. The results also five a food agreement with respect to the theoretical hypothesis as the structure is less stiff in torsion in an open section condition. The SSS model and the corresponding torsion test is obviously useful to give an overview of vehicle structural integrity. It can be potentially integrated with FEM to speed up the design process of automotive vehicle.

  2. Automotive Stirling engine: Mod II design report

    SciTech Connect

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  3. Automotive Stirling engine: Mod 2 design report

    NASA Technical Reports Server (NTRS)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  4. The intelligent automotive battery, "CYBOX ®"

    NASA Astrophysics Data System (ADS)

    Yamada, Keizo; Yamada, Yoshifumi; Otsu, Koji; Machiyama, Yoshiaki; Emori, Akihiko; Okoshi, Teturo

    An intelligent battery to monitor battery states for an automotive use was newly developed. A main parameter to monitor battery states are based on the measurement of voltage variations that are to fluctuate immediately after an engine ignition. The developed monitoring unit is embedded into the lead-acid battery "CYBOX ®" which does not have a current monitoring unit. The monitoring unit that has an alarm system which is compact and highly reliable essentially diagnoses the state of charge and the state of health of battery states in order to inform automotive user of the adequate timing of replace, recharge, and the hazardous state of overcharge of batteries. The battery-monitoring unit has an optical data transfer system to extract internal data from external device. The battery-monitoring unit also has a data acquisition instrument which receives more detailed monitored historical data from the optical data transfer system of the monitoring unit.

  5. The AGT101 technology - An automotive alternative

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Davis, K. A.

    1981-01-01

    The Advanced Gas Turbine Powertrain System Development Project is oriented at providing the United States automotive industry the technology base necessary to produce gas turbine powertrains for automotive applications that will have: (1) reduced fuel consumption, (2) the ability to use a variety of fuels, (3) low emissions, and (4) competitive cost/performance. The AGT101 powertrain being developed consists of a regenerated single-shaft gas turbine engine flat rated at 74.6 kW (100 hp) coupled to a split-differential gearbox and a Ford automatic overdrive production transmission. Performance predictions for the AGT101 powertrain represent a 59-percent improvement in mileage estimates over a 1985 conventionally-powered automobile for the combined federal driving cycle.

  6. Polymer matrix nanocomposites for automotive structural components.

    PubMed

    Naskar, Amit K; Keum, Jong K; Boeman, Raymond G

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  7. Polymer matrix nanocomposites for automotive structural components

    SciTech Connect

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  8. Tribocharging behaviour of automotive powder coatings

    NASA Astrophysics Data System (ADS)

    Thomas, Aline; Saleh, Khashayar; Guigon, Pierre; Czechowski, Claire

    2008-12-01

    The aim of this work was to build a device allowing the measurement of tribocharging during the fluidization and pneumatic transport of automotive powder coatings. The experimental setup included a fluidization unit, a transport pipe and two 'Faraday cups' allowing continuous monitoring of particle charge. Two batches of industrial automotive powder primers, as well as several other types of powders were tested: alumina, silica... The experimental variables were the length of the conveying pipe and the air flow rate. The results showed that the net amount of acquired tribocharge increases with the length of conveying pipe. The experimental device and procedure allowed to well classify tested powders according to their rate of tribocharging and their maximum charge. More specially, this study pointed out a net difference between electrostatic properties of two powder primers, which behave very differently in the industrial application unit.

  9. Polymer matrix nanocomposites for automotive structural components

    NASA Astrophysics Data System (ADS)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  10. Lightweight Steel Solutions for Automotive Industry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  11. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  12. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  13. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  14. First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications for nanoparticle formation.

    PubMed

    Arnold, F; Pirjola, L; Rönkkö, T; Reichl, U; Schlager, H; Lähde, T; Heikkilä, J; Keskinen, J

    2012-10-16

    To mitigate the diesel particle pollution problem, diesel vehicles are fitted with modern exhaust after-treatment systems (ATS), which efficiently remove engine-generated primary particles (soot and ash) and gaseous hydrocarbons. Unfortunately, ATS can promote formation of low-vapor-pressure gases, which may undergo nucleation and condensation leading to formation of nucleation particles (NUP). The chemical nature and formation mechanism of these particles are only poorly explored. Using a novel mass spectrometric method, online measurements of low-vapor-pressure gases were performed for exhaust of a modern heavy-duty diesel engine operated with modern ATS and combusting low and ultralow sulfur fuels and also biofuel. It was observed that the gaseous sulfuric acid (GSA) concentration varied strongly, although engine operation was stable. However, the exhaust GSA was observed to be affected by fuel sulfur level, exhaust after-treatment, and driving conditions. Significant GSA concentrations were measured also when biofuel was used, indicating that GSA can be originated also from lubricant oil sulfur. Furthermore, accompanying NUP measurements and NUP model simulations were performed. We found that the exhaust GSA promotes NUP formation, but also organic (acidic) precursor gases can have a role. The model results indicate that that the measured GSA concentration alone is not high enough to grow the particles to the detected sizes.

  15. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust system...

  16. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust system...

  17. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize..., intake air, and exhaust according to § 1065.655 to verify exhaust system integrity. (f)...

  18. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  19. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  20. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  1. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  2. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  3. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  4. Automotive Fiber Optic Technology: Application Issues

    NASA Astrophysics Data System (ADS)

    Miller, Gregory D.

    1989-02-01

    Function content in automobiles has been projected to increase throughout the '90s. Accordingly, electromagnetic compatibility will become increasingly difficult to attain with all-conductor-based data transmission. The need for alternatives such as fiber optics is assumed. This paper discusses the issues to be addressed when using fiber optics in automotive data transmission applications. Connectors, packaging and data transmission subsystem impact are covered.

  5. Friction of Materials for Automotive Applications

    SciTech Connect

    Blau, Peter Julian

    2013-01-01

    This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

  6. Valve operating system for an automotive engine

    SciTech Connect

    Maeda, S.

    1988-03-15

    In a valve operating system for an automotive engine having two or more intake valves for one cylinder, a camshaft having cams for operating the intake valves, the system is described comprising: one of the cams being rotatably and axially slidably mounted on the camshaft; clutch means for engaging the slidable cam with the camshaft at a predetermined angular position; shifting means for axially shifting the slidable cam to engage the cam with the camshaft by the clutch means.

  7. Injuries to Pregnant Occupants in Automotive Crashes

    PubMed Central

    Klinich, Kathleen DeSantis; Schneider, Lawrence W.; Moore, Jamie L.; Pearlman, Mark D.

    1998-01-01

    Injuries unique to pregnant occupants involved in motor-vehicle crashes include placental abruption, uterine rupture or laceration, and direct fetal injury. The mechanisms and characteristics of these injuries are discussed using examples from a literature review and from recent investigations of crashes involving pregnant occupants. In addition, a review of the relationship between the pregnant driver and automotive restraints and the steering wheel illustrates how injury potential may differ from the non-pregnant occupant.

  8. Directions for computational mechanics in automotive crashworthiness

    NASA Astrophysics Data System (ADS)

    Bennett, James A.; Khalil, T. B.

    1993-08-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  9. Occupational skin diseases in automotive industry workers.

    PubMed

    Yakut, Yunus; Uçmak, Derya; Akkurt, Zeynep Meltem; Akdeniz, Sedat; Palanci, Yilmaz; Sula, Bilal

    2014-03-01

    Studies on occupational skin diseases in workers of the automotive industry are few. To investigate the prevalence of occupational skin diseases in workers of the automotive industry. Between September and December 2011, a total of 405 workers from the automotive repair industry in Diyarbakır were interviewed. They were active workers in the repair industry who had been employed for at least six months. Business owners, sellers of spare parts and accounting officers were not included. The employees were examined at their workplaces and the working conditions were observed. Detailed dermatological examination was performed. The mean age of the 405 workers who participated in the study was 27.7 ± 10.3. The mean working time of employees was 13.3 ± 10.4 years. All of the employees were male. Dermatological diseases were not detected in 144 out of 405 workers (35.6%) and at least one condition was diagnosed in 261 (64.4%). The most frequent diagnosis was callus, hyperkeratosis, clavus (27.7%), followed by nail changes (16.8%) and superficial mycoses (12.1%). Contact dermatitis was seen at a rate of 5.9%. Traumatic lesions such as hyperkeratotic lesions and nail changes were found most frequently. Traumatic lesions were common among individuals who did not use gloves. Most nail changes were localized leuconychia, a finding not reported in the studies on automotive industry workers. In accordance with the literature, irritant contact dermatitis was observed in patients with a history of atopy and who had been working for a long time. Occupational skin diseases comprise an important field in dermatology, deserving much attention. Further studies on occupational dermatology are necessary.

  10. General Motors automotive fuel cell program

    SciTech Connect

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  11. Directions for computational mechanics in automotive crashworthiness

    NASA Technical Reports Server (NTRS)

    Bennett, James A.; Khalil, T. B.

    1993-01-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  12. Characterization of three-way automotive catalysts

    SciTech Connect

    Kenik, E.A.; More, K.L.; LaBarge, W.

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  13. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  14. Thermoelectric infrared imaging sensors for automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  15. Reducing drag of a commuter train, using engine exhaust momentum

    NASA Astrophysics Data System (ADS)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  16. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  17. Exhaust Gas Scrubber Washwater Effluent

    DTIC Science & Technology

    2011-11-01

    oxide (SOx) scrubbers, onboard vessels. The use of scrubbers to clean the exhaust from marine engines using high sulfur residual oil and diesel fuels...2010).  The combustion of fuel and lubricant is another source of metals, typically vanadium, nickel, calcium and zinc . Although it makes up a...relatively small amount of the overall PM, ash represents the incombustible residue of burning fuel oil and lubricant . The majority of fuel oil ash

  18. Analysis of automobile exhaust condensates.

    PubMed

    Grimmer, G

    1977-01-01

    1. On the basis of figures for the production of PAH during the Europa drive cycle by 100 passenger cars and those for the consumption of petrol in the Federal Republic of Germany, an annual emission of 1,850 kg benzo[a]pyrene from petrol engine vehicles has been calculated. 2. The carcinogenic effect of benzo[a]pyrene accounts for only 9% of the total activity of exhaust condensates. 3. The amounts of other known carcinogenic PAH, such as benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene and dibenzo[a,h]anthracene are shown in Table 2. (table: see text). Assuming that there is no significant promoting or hyper-additive effect, it can be estimated that these six known carcinogenic PAH contribute about 10-15% of the total carcinogenicity. 4. Six unknown PAH were found: cyclopenteno[cd]pyrene (mol wt 226), methylenebenzo[a]pyrene (mol 264), methylenebenzo[e]pyrene (mol wt 264), methylenebenzo[ghi]perylene (mol wt 288), PAH mol wt 300A and PAH mol wt 300B. It is reasonable to assume that these unknown PAH account for the predominant part of the carcinogenic effect. Biological tests with these pure substances are being undertaken by Drs Pott, Pfeiffer and Habs. 5. It has been shown that almost all of the carcinogenic effect of automobile exhaust condensates is due to PAH. To support this claim, the carcinogenic effects of the exhaust condensate should be compared with those of a mixture of the known and unknwon PAH in the same proportions as are found in the exhaust condensate. The gas chromatogram of such a mixture is shown in Figure 6.

  19. Overview: DOE/NASA automotive gas turbine and Stirling projects

    SciTech Connect

    Beremand, D.G.

    1981-01-01

    A brief overview is presented of the automotive gas turbine and automotive Stirling engine technology projects being carried out by NASA Lewis Research Center for the Department of Energy's Automotive Technology Development Division. This report: (1) discusses the projects as they were formulated and being carried out in accordance with PL 95-238 Auto Propulsion Research and Development Act of 1978; (2) presents substantive technology accomplishments; and (3) briefly addresses future path options of the program.

  20. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  1. Space shuttle exhaust cloud properties

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, V. W.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

  2. Gases in Seawater

    NASA Astrophysics Data System (ADS)

    Nightingale, P. D.; Liss, P. S.

    2003-12-01

    The annual gross and net primary productivity of the surface oceans is similar in size to that on land (IPCC, 2001). Marine productivity drives the cycling of gases such as oxygen (O2), dimethyl sulfide (DMS), carbon monoxide (CO), carbon dioxide (CO2), and methyl iodide (CH3I) which are of fundamental importance in studies of marine productivity, biogeochemical cycles, atmospheric chemistry, climate, and human health, respectively. For example, ˜30% of the world's population (1,570 million) is thought to be at risk of iodine-deficiency disorders that impair mental development (WHO, 1996). The main source of iodine to land is the supply of volatile iodine compounds produced in the ocean and then transferred to the atmosphere via the air-surface interface. The flux of these marine iodine species to the atmosphere is also thought to be important in the oxidation capacity of the troposphere by the production of the iodine oxide radical ( Alicke et al., 1999). A further example is that the net flux of CO2 from the atmosphere to the ocean, ˜1.7±0.5 Gt C yr-1, represents ˜30% of the annual release of anthropogenic CO2 to the atmosphere (IPCC, 2001). This net flux is superimposed on a huge annual flux (90 Gt C yr-1) of CO2 that is cycled "naturally" between the ocean and the atmosphere. The long-term sink for anthropogenic CO2 is recognized as transfer to the ocean from the atmosphere. A final example is the emission of volatile sulfur, in the form of DMS, from the oceans. Not only is an oceanic flux from the oceans needed to balance the loss of sulfur (a bioessential element) from the land via weathering, it has also been proposed as having a major control on climate due to the formation of cloud condensation nuclei (Charlson et al., 1987). Indeed, the existence of DMS and CH3I has been used as evidence in support of the Gaia hypothesis (Lovelock, 1979).There are at least four main processes that affect the concentration of gases in the water column: biological

  3. Oxidation of automotive primary reference fuels at elevated pressures

    SciTech Connect

    Callahan, C V; Curran, H J; Dryer, F L; Pitz, W J; Westbrook, C K

    1999-03-01

    Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines, the premixed burn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, they must understand the chemical kinetic processes that lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF) n-heptane and iso-octane belong. In this study, experiments were performed under engine like conditions in a high-pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments, and comparisons of experimentally measured and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690-1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed model.

  4. 75 FR 24748 - Johnson Controls, Inc., Automotive Experience Division, Including Workers Whose Unemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Employment and Training Administration Johnson Controls, Inc., Automotive Experience Division, Including... of Johnson Controls, Inc., Automotive Experience Division, Greenfield, Ohio. The notice was published... production of foam inserts for the automotive seating industry. New information shows that Johnson Controls...

  5. 75 FR 11938 - Meridian Automotive Systems, Grand Rapids, MI; Notice of Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Meridian Automotive Systems, Grand Rapids, MI; Notice of Termination... Meridian Automotive Systems, Grand Rapids, Michigan (Meridian Automotive). The petitioning group of workers...

  6. Final report: U.S. competitive position in automotive technologies

    SciTech Connect

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  7. SiO2/TiO2 Composite for Removing Hg from Combustion Exhaust

    NASA Technical Reports Server (NTRS)

    Mazyck, David; Londeree, Danielle; Wu, Chang-Yu; Powers, Kevin; Pitoniak, Erik

    2008-01-01

    Pellets made of a high-surface-area composite of silica and titania have shown promise as means of removing elemental mercury from flue gases. With further technical development and commercialization, this material could become economically attractive as a more effective, less-expensive alternative to activated carbons for removing mercury from exhaust streams of coal-burning power plants, which are the sources of more than 90 percent of all anthropogenic airborne mercury.

  8. The carbon monoxide levels in automobile exhaust. A case study in Chidambaram town.

    PubMed

    Ramamurthy, N; Thirumarran, M

    2001-10-01

    The exhaust gases from automobiles constitute about 75% of air pollution. Among the various pollutants emitted from vehicles, CO is the primary pollutant and very toxic one. The CO monitor method was used to measure the CO level in Chidambaram town. From the study, it is evident that the CO level is closely related to the density of motor vehicles plying on the roads. With increase in number of motor vehicles CO level also increases, which pollutes the roadside environment severely in future.

  9. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... follows: GEXHW = GAIRW + GFUEL(for wet exhaust mass) or VEXHD = VAIRD + (−.767) × GFUEL(for dry exhaust volume) or VEXHW = VAIRW + .749 × GFUEL(for wet exhaust volume) (b) Exhaust mass calculation from fuel...

  10. Exhaust Nozzle for a Multitube Detonative Combustion Engine

    NASA Technical Reports Server (NTRS)

    Bratkovich, Thomas E.; Williams, Kevin E.; Bussing, Thomas R. A.; Lidstone, Gary L.; Hinkey, John B.

    2004-01-01

    expansion of the pulsed combustion gases from the multiple combustion tubes into a common exhaust stream, in such a manner as to enhance performance in two ways: (1) It reduces the cyclic variations of pressure at the outlets of the combustion tubes so as to keep the pressure approximately constant near the optimum level needed for filling the tubes, regardless of atmospheric pressure at the altitude of operation; and (2) It maximizes the transfer of momentum from the exhaust gas to the engine, thereby maximizing thrust. The figure depicts a typical engine equipped with a nozzle according to the invention. The nozzle includes an interface section comprising multiple intake ports that couple the outlets of the combustion tubes to a common plenum. Proceeding from its upstream to its downstream end, the interface section tapers to a larger cross-sectional area for flow. This taper fosters expansion of the exhaust gases flowing from the outlets of the combustion tubes and contributes to the desired equalization of exhaust combustion pressure. The cross-sectional area for flow in the common plenum is greater than, or at least equal to, the combined cross-sectional flow areas of the combustor tubes. In the common plenum, the exhaust streams from the individual combustion tubes mix to form a single compound subsonic exhaust stream. Downstream of the common plenum is the throat that tapers to a smaller flow cross section. In this throat, the exhaust gases become compressed to form a compound sonic gas stream. Downstream of the throat is an expansion section, which typically has a bell or a conical shape. (The expansion section can be truncated or even eliminated in the case of an air-breathing engine.) After entering the expansion section, the exhaust gases expand rapidly from compound sonic to compound supersonic speeds and are then vented to the environment. The basic invention admits of numerous variations. For example, the combustion tubes can be arranged around the central

  11. Exhaust system for an internal combustion engine

    SciTech Connect

    Cruichshank, R.W.

    1993-06-15

    An exhaust system for a two-cycle internal combustion engine is described comprising: an exhaust port; exhaust pipe having an upstream end connected to said exhaust port; a baffle chamber connected to a downstream portion of said exhaust pipe; displaceable baffle member means, swingably mounted on pivot means having a fixed axis of rotation and projecting from said pivot means across said baffle chamber toward a wall defining said baffle chamber, for varying the effective volume of said baffle chamber; rotating mechanism means, and means connecting said rotating mechanism means with said displaceable baffle member means, for swingably displacing said displaceable baffle member means in said baffle chamber about said axis of rotation; control means, connected to said rotating mechanism means, for driving said rotating mechanism means and thereby rotating said baffle member means throughout a predetermined range of movement; and tail pipe means for receiving exhaust from said exhaust pipe and said baffle chamber.

  12. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  13. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    SciTech Connect

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

  14. The role of rare-earth dopants in nanophase zirconia catalysts for automotive emission control.

    SciTech Connect

    Loong, C.-K.; Ozawa, M.

    1999-07-16

    Rare earth (RE) modification of automotive catalysts (e.g., ZrO{sub 2}) for exhaust gas treatment results in outstanding improvement of the structural stability, catalytic functions and resistance to sintering at high temperatures. Owing to the low redox potential of nonstoichiometric CeO{sub 2}, oxygen release and intake associated with the conversion between the 3+ and 4+ oxidation states of the Ce ions in Ce-doped ZrO{sub 2} provide the oxygen storage capacity that is essentially to effective catalytic functions under dynamic air-to-fuel ratio cycling. Doping tripositive RE ions such as La and Nd in ZrO{sub 2}, on the other hand, introduces oxygen vacancies that affect the electronic and ionic conductivity. These effects, in conjunction with the nanostructure and surface reactivity of the fine powders, present a challenging problem in the development of better ZrO{sub 2}-containing three-way catalysts. We have carried out in-situ small-to-wide angle neutron diffraction at high temperatures and under controlled atmospheres to study the structural phase transitions, sintering behavior, and Ce{sup 3+} {leftrightarrow} Ce{sup 4+} redox process. We found substantial effects due to RE doping on the nature of aggregation of nanoparticles, defect formation, crystal phase transformation, and metal-support interaction in ZrO{sub 2} catalysts for automotive emission control.

  15. Simulation of hypersonic scramjet exhaust. [pressure distribution on afterbody/nozzle sections of vehicle

    NASA Technical Reports Server (NTRS)

    Oman, R. A.; Foreman, K. M.; Leng, J.; Hopkins, H. B.

    1975-01-01

    A plan and some preliminary analysis for the accurate simulation of pressure distributions on the afterbody/nozzle portions of a hypersonic scramjet vehicle are described. The objectives fulfilled were to establish the standards of similitude for a hydrogen/air scramjet exhaust interacting with a vehicle afterbody, determine an experimental technique for validation of the procedures that will be used in conventional wind tunnel facilities, suggest a program of experiments for proof of the concept, and explore any unresolved problems in the proposed simulation procedures. It is shown that true enthalpy, Reynolds number, and nearly exact chemistry can be provided in the exhaust flow for the flight regime from Mach 4 to 10 by a detonation tube simulation. A detailed discussion of the required similarity parameters leads to the conclusion that substitute gases can be used as the simulated exhaust gas in a wind tunnel to achieve the correct interaction forces and moments.

  16. Use of gas turbine exhaust for the direct drying of food products: Final report

    SciTech Connect

    Not Available

    1988-06-01

    The objective of this program was to evaluate the merits of using natural gas-fired gas turbine exhaust to directly dry food products. A survey of drying practices utilized in the food industry and a detailed review of worldwide regulatory drying practices were completed. An investigation of the economic advantages associated with direct drying was also considered. Four drying scenarios were used as part of the analysis: Dilution - hot turbine exhaust gases were diluted with ambient air to achieve temperatures suitable for food product drying; Indirect Heat Exchanger - gas turbine exhaust was directed through an intermediate heat exchanger to avoid flue-gas contamination of the ambient air; Tri-Generation - exhaust gases from the gas turbine were first directed to a heat recovery boiler and then through the drying system to dry the food product; and Conventional Cogeneration - the most conventional simple cycle gas turbine cogeneration (this scenario served as the baseline for all evaluations). Although the economics associated with direct drying appear attractive, the principal concern of any potential use would be the extraordinarily high NO/sub x/ levels and the potential nitrate and nitrosamine (potential carcinogens and carcinogenic precursors) contamination in food products. 21 refs., 21 figs., 17 tabs.

  17. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust.

    PubMed Central

    Rudell, B; Ledin, M C; Hammarström, U; Stjernberg, N; Lundbäck, B; Sandström, T

    1996-01-01

    OBJECTIVES: Diesel exhaust is a common air pollutant made up of several gases, hydrocarbons, and particles. An experimental study was carried out which was designed to evaluate if a particle trap on the tail pipe of an idling diesel engine would reduce effects on symptoms and lung function caused by the diesel exhaust, compared with exposure to unfiltered exhaust. METHODS: Twelve healthy non-smoking volunteers (aged 20-37) were investigated in an exposure chamber for one hour during light work on a bicycle ergometer at 75 W. Each subject underwent three separate double blind exposures in a randomised sequence: to air and to diesel exhaust with the particle trap at the tail pipe and to unfiltered diesel exhaust. Symptoms were recorded according to the Borg scale before, every 10 minutes during, and 30 minutes after the exposure. Lung function was measured with a computerised whole body plethysmograph. RESULTS: The ceramic wall flow particle trap reduced the number of particles by 46%, whereas other compounds were relatively constant. It was shown that the most prominent symptoms during exposure to diesel exhaust were irritation of the eyes and nose and an unpleasant smell increasing during exposure. Both airway resistance (R(aw)) and specific airway resistance (SR(aw)) increased significantly during the exposures to diesel exhaust. Despite the 46% reduction in particle numbers by the trap effects on symptoms and lung function were not significantly attenuated. CONCLUSION: Exposure to diesel exhaust caused symptoms and bronchoconstriction which were not significantly reduced by a particle trap. PMID:8943829

  18. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  19. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  20. Environmental implications of anesthetic gases.

    PubMed

    Yasny, Jeffrey S; White, Jennifer

    2012-01-01

    For several decades, anesthetic gases have greatly enhanced the comfort and outcome for patients during surgery. The benefits of these agents have heavily outweighed the risks. In recent years, the attention towards their overall contribution to global climate change and the environment has increased. Anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by utilizing techniques that can lessen any adverse effects of these gases on the environment. Moreover, health care facilities that use anesthetic gases are accountable for ensuring that all anesthesia equipment, including the scavenging system, is effective and routinely maintained. Implementing preventive practices and simple strategies can promote the safest and most healthy environment.