Science.gov

Sample records for automotive materials

  1. Advanced Materials for Automotive Application

    NASA Astrophysics Data System (ADS)

    Tisza, M.

    2013-12-01

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry.

  2. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  3. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  4. Friction of Materials for Automotive Applications

    SciTech Connect

    Blau, Peter Julian

    2013-01-01

    This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

  5. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed

  6. Future automotive materials: Evolution or revolution

    NASA Technical Reports Server (NTRS)

    Beardmore, P.

    1990-01-01

    An exciting era is evolving in the application of new materials technologies to automotive applications. The desire on the part of the automobile industry to completely satisfy the customers while concurrently meeting increasing demands and regulations for stringent emission control and fuel efficiency is opening a plethora of opportunities for new materials. In many cases, materials solutions are the only mechanisms for resolving some of the upcoming issues. The materials scientist and engineer will therefore have a primary role to play and will assume a position of significance hithertofore unseen in the automobile industry. The nature of the industry dictates that changes are primarily evolutionary with respect to chronology but nevertheless some of the future material changes will be revolutionary in nature. This presentation will treat three primary systems of the vehicle separately, based on the different materials approaches which will be adopted. These areas are: (1) skin panels, (2) structures, and (3) powertrains. The competition between a variety of new materials in these 3 systems will be discussed in detail with the various tradeoffs being outlined. Amongst the more prominent of the new breed of materials will be new steel technologies, structural plastics (FRP), aluminum alloys (conventional and rapidly solidified), titanium alloys, metal matrix composites and smart materials (electrorheological fluids, etc.). The pace of development and application is accelerating rapidly and the impetus is likely to increase.

  7. Adhesive Bonding of Polymeric Materials for Automotive Applications

    SciTech Connect

    Warren, C.D., Boeman, R.G., Paulauskas, F.L.

    1994-11-18

    In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative research program with the Automotive Composites Consortium (ACC) to develop technologies that would overcome obstacles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures. By reducing the weight of current automobiles, greater fuel economy and reduced emissions can be achieved. The bonding of similar and dissimilar materials was identified as being of primary importance since this enabling technology gives designers the freedom to choose from an expanded menu of low-mass materials for structural component weight reduction. Early in the project`s conception, five key areas were identified as being of primary importance to the automotive industry.

  8. Solidification studies of automotive heat exchanger materials

    NASA Astrophysics Data System (ADS)

    Carlberg, T.; Jaradeh, M.; Kamgou Kamaga, H.

    2006-11-01

    Modifications of the aluminum alloy AA 3003 have been studied to improve and tailorits properties for applications in automotive heat exchangers. Laboratory techniques have been applied to simulate industrial direct-chill casting, and some basic solidification studies have been conducted. The results are coupled to structures observed in industrial-size ingots and discussed in terms of structure-property relations.

  9. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  10. Role of Friction in Materials Selection for Automotive Applications

    SciTech Connect

    Blau, Peter Julian

    2013-01-01

    This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

  11. Impact of novel thermoelectric materials on automotive applications

    NASA Astrophysics Data System (ADS)

    Brignone, Mauro; Ziggiotti, Alessandro

    2012-06-01

    Despite the fact that thermoelectric (TE) devices are compact, quiet, rugged, stable and very reliable, thermoelectrics have found only niche applications because they are also inefficient (less that 5% conversion efficiency is typical) and costly. The key to more widespread acceptance of thermoelectric is the development of materials that are capable of higher conversion efficiency, but other fundamental materials parameters play a role not less important to open to large applications and markets. In particular the automotive sector requires low materials density, materials made from widely-available pure elements with very large supply chains, non-toxicity of elements and potential compliance with REACH and RoHS obligations and low raw material cost combined with low manufacturing costs. The impact of novel TE materials on automotive application will be described focusing on promising nano magnesium silicide and skutterudites.

  12. Advantages and challenges of dissimilar materials in automotive lightweight construction

    NASA Astrophysics Data System (ADS)

    Weberpals, Jan-Philipp; Schmidt, Philipp A.; Böhm, Daniel; Müller, Steffen

    2015-03-01

    The core of future automotive lightweight materials is the joining technology of various material mixes. The type of joining will be essential, particularly in electrified propulsion systems, especially as an improved electrical energy transmission leads to a higher total efficiency of the vehicle. The most evident parts to start the optimization process are the traction battery, the electrical performance modules and the engines. Consequently aluminum plays a very central role for lightweight construction applications. However, the physical-technical requirements of components often require the combination with other materials. Thus the joining of mixed material connections is an essential key technology for many of the current developments, for example in the areas E-Mobility, solar energy and lightweight construction. Due to these advantages mixed material joints are already established in the automotive industry and laser beam remote welding is now a focus technology for mixed material connections. The secret of the laser welding process with mixed materials lies within the different areas of the melting phase diagram depending on the mixing ratio and the cooling down rate. According to that areas with unwanted, prim, intermetallic phases arise in the fusion zone. Therefore, laser welding of mixed material connections can currently only be used with additional filler in the automotive industry.

  13. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  14. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  15. Present and Future Automotive Composite Materials Research Efforts at DOE

    SciTech Connect

    Warren, C.D.

    1999-07-03

    Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

  16. Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications

    NASA Astrophysics Data System (ADS)

    Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert

    This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).

  17. Laser beam joining of material combinations for automotive applications

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Zerner, Ingo; Sepold, Gerd

    1997-08-01

    An ideal material for automotive applications would combine the following properties: high corrosion resistance, high strength, high stiffness and not at least a low material price. Today a single material is not able to meet all these requirements. Therefore, in the future different materials will be placed where they meet the requirements best. The result of this consideration is a car body with many different alloys and metals, which have to be joined to one another. BIAS is working on the development of laser based joining technologies for different material combinations, especially for thin sheets used in automotive applications. One result of the research is a joining technology for an aluminum-steel-joint. Using a Nd:YAG laser the problem of brittle intermetallic phases between these materials was overcome. Using suitable temperature-time cycles, elected by a FEM-simulation, the thickness of intermetallic phases was kept below 10 micrometers . This technology was also applied to coated steels, which were joined with different aluminum alloys. Further it is demonstrated that titanium alloys, e.g. used for racing cars, can also be joined with aluminum alloys.

  18. Parametric assessment of climate change impacts of automotive material substitution.

    PubMed

    Geyer, Roland

    2008-09-15

    Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction.

  19. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  20. Gas sensing using porous materials for automotive applications.

    PubMed

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-07

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours.

  1. Composite materials molding simulation for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.

    2016-08-01

    Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from

  2. Thermophysical Properties of Automotive Metallic Brake Disk Materials

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Park, K.; Lee, S. H.; Kang, K. H.; Lim, K. T.

    2008-12-01

    The temperature distribution, the thermal deformation, and the thermal stress of automotive brake disks have quite close relations with car safety; therefore, much research in this field has been performed. However, successful and satisfactory results have not been obtained because the temperature-dependent thermophysical properties of brake disk materials are not sufficiently known. In this study, the thermophysical properties (thermal diffusivity, the specific heat, and the coefficient of thermal expansion) of three kinds of iron alloy series brake disk materials, FC250, FC170, and FCD50, and two kinds of aluminum alloy series brake disk materials, Al MMC and A356, were measured in the temperature range from room temperature to 500 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat capacity, and density. As expected, the results show that the two series have significant differences in respect of the thermophysical properties, and to reduce the thermal deformation of the brake disk, the aluminum alloys with a high thermal conductivity and the iron alloys with low thermal expansion are recommended.

  3. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  4. Automotive Lightweight Materials: the Roles of Nde in Bringing New Materials Into Production

    NASA Astrophysics Data System (ADS)

    Dasch, Cameron J.

    2008-02-01

    The automotive industry is in the midst of a time of tremendous change. There is an almost perfect storm of changing governmental and market requirements seeking much higher fuel economy, low or no carbon dioxide emissions, and much higher crash and safety performance. Moreover, this occurs in a globe-spanning market that has more low-cost manufacturers than ever before. This confluence of factors leads to new vehicles with many new types of powertrains having unprecedented power densities and highly-engineered body structures with many new materials and joining methods. These are being turned out with shorter lead times, higher quality requirements, and continuous cost pressures. This talk will review the role in NDE in bringing new materials and processes to market, some of the applications in production, and to highlight some of the current NDE needs driven by these forces on the automotive industry.

  5. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  6. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    1997-12-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    1996-12-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 264 citations and includes a subject term index and title list.)

  10. Sol-gel processed alumina based materials in microcalorimeter sensor device fabrication for automotive applications

    SciTech Connect

    Nakouzi, S.R.; McBride, J.R.; Nietering, K.E.; Narula, C.K.

    1996-12-31

    The application of sol-gel processed materials in a variety of sensors has been proposed. The authors describe microcalorimeter sensor devices employing sol-gel processed alumina based materials which can be used to monitor pollutants in automotive exhaust. These sensors operate by measuring changes in resistance upon catalysis and are economically acceptable for automotive applications. It is important to point out that automobiles will be required to have a means of monitoring exhaust gases by on-board sensors as mandated by the EPA and the California Air Resources Board (OBD-II).

  11. Application of Economic Evaluation Techniques to Automotive Lightweighting Materials Research and Development Projects

    SciTech Connect

    Das, Sujit; Tonn, Bruce Edward; Peretz, Jean H

    2008-01-01

    This paper presents the results of a program evaluation, using two economic analysis techniques (benefit-cost ratios and person years/cost savings), conducted on nine research and development (R&D) projects funded in four lightweight materials areas by the Phase II Automotive Lightweighting Materials effort of the U.S. Department of Energy. The results are quite impressive for each case and suggest that a collaborative effort between the Department of Energy and the private-sector automotive industry has potential for introduction and market penetration of lightweight vehicles.

  12. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect

    1997-04-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Materials selection for automotive engines. (Latest citations from Metadex). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography. (Contains a minimum of 165 citations and includes a subject term index and title list.)

  14. Automotive Engine Maintenance and Repair, 8-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of six individualized lessons dealing with automotive engine maintenance and repair. Covered in the individual volumes are basic engine construction and operation, engine and engine components design, engine malfunction diagnosis and remedy, engine disassembly, engine repair, and engine repair…

  15. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  16. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  17. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  18. Advanced high temperature materials for the energy efficient automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.

    1984-01-01

    The Stirling Engine is under investigated jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling Engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

  19. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    SciTech Connect

    Das, S.

    2002-01-11

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percent of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.

  20. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    SciTech Connect

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow production rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.

  1. Preliminary Results from Duplex Procedure for Obtain of Fe Based Materials for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Crăciun, R. C.; Stanciu, S.; Geantă, V.; Voiculescu, I.; Manole, V.; Gârneţ, I. A.; Alexandru, A.; Cimpoesu, N.; Săndulache, F.

    2017-06-01

    Abstract Iron based materials still represent a high percentage from metallic materials used in industry, in general, and in automotive industry, in particular. In this case we used a duplex process in order to obtain the FeMnSiAl experimental alloy for a more efficient use of various units. In the first stage iron, manganese, silicon and aluminum were melted and mixed together using arc melting technology and for the second stage the alloy was re-melt for homogeneity in an induction furnace. Chemical composition, after each melting step, was analyzed using EDS Bruker detector for various areas and microstructural characterization using SEM, VegaTescan LMH II with SE detector, equipment. This alloy is proposed as a metallic approach of mechanical dumpers used in automotive industry for low and medium impact contacts.

  2. Recent development of plastic material for automotive interior application

    SciTech Connect

    Okamoto, K.

    1983-11-01

    In addition to weight reduction and cost reduction, maintenance of the initial quality has become an important subject including color matching after long years of use since automobiles are used for longer years these days. This paper describes an outline of our manufacturing process of instrument panel pads, characteristics of the new surface material which we developed for above requirements, quality comparison of the surface material with those by other methods, possibility of applying this new method to other interior parts, for example, door trim, and so on.

  3. Environmentally responsive material to address human-system interaction in the automotive cockpit

    NASA Astrophysics Data System (ADS)

    Rehkopf, Jackie D.; Barbat, Saeed D.; Goldman, Neil M.; Samus, Marsha A.; Gold, Harris

    2001-06-01

    There is significant human-system interaction in an automotive cockpit, and for particular components this interaction can be ever-present while being transient in nature. It is envisioned that environmentally responsive materials can be used in some components to accommodate personal and transient differences in the desired human-system interaction. Systems containing responsive gels have been developed to provide user activation and adjustment of the physical properties of a particular interior automotive component. Proprietary reverse viscosification gel formulations were developed that are thermally responsive. Formulations were modified to adjust the dynamic modulus and viscosity in terms of magnitude, amount of change over the viscosification transition, and the temperature over which the transition occurs. Changes in the physical properties of two orders of magnitude and more were achieved over a narrow transition region. Preliminary human factors assessment indicates that this order of magnitude of change is desirable. As the system of responsive gel, encapsulating material and activation mechanism is developed further, additional human factors studies will refine the desired physical properties and thermal activation mechanism. Ultimately, this system will have to perform over the broad range of temperatures imposed on interior automotive components and exhibit long-term durability chemically, physically and mechanically.

  4. Fabrication and test of experimental automotive friction materials

    NASA Technical Reports Server (NTRS)

    Halberstadt, M. L.

    1976-01-01

    Three classes of experimental ingredients having good high temperature stability were substituted, singly and in combination, for corresponding ingredients in a standard friction material. The effects of substitution were evaluated by physical and chemical analysis, and principally by determination of friction and wear properties as a function of temperature on a sample drag dynamometer. The major finding was the demonstration of the potential of potassium titanate fiber for the improvement of a friction material of the secondary lining type. For example, the maintenance of a mean friction coefficient of 0.35 between 232 and 343 C (450 and 650 F) was achieved in the presence of the titanate fiber, as opposed to a value of 0.30 in its absence. Wear improvement of the order of 30 to 40% also becomes possible by proper adjustment of resin content and potassium titanate fiber-to-asbestos ratio.

  5. Future trends in metal forming—equipment, materials and processes in automotive applications

    NASA Astrophysics Data System (ADS)

    Hitz, D.; Duggirala, R.

    1995-10-01

    Global competition in the automotive market has made a significant impact in the materials, processes, tools, and equipment used to make components. Steels are being replaced by other materials, such as aluminum, composites, and plastics, that meet the demand for a higher performance per weight ratio. From a processing viewpoint, the customers demand production of parts to near-net shape with little or no machining. Competition in business depends on understanding the needs of the customer in the coming years in the area of metal forming. A workshop was conducted using a novel approach to address the above issue. This presentation describes the approach and the results of the study.

  6. Evaluating knowledge benefits of automotive lightweighting materials R&D projects.

    PubMed

    Peretz, Jean H; Das, Sujit; Tonn, Bruce E

    2009-08-01

    This paper presents a set of metrics used to evaluate short-run knowledge benefits that accrued from research and development (R&D) projects funded in fiscal years 2000-2004 by automotive lightweighting materials (ALM) of the U.S. Department of Energy (DOE). Although DOE presents to Congress energy, environmental, and security benefits and costs of its R&D efforts under the Government Performance and Results Act, DOE has yet to include knowledge benefits in that report [U.S. Department of Energy. (2007). Projected benefits of federal energy efficiency and renewable energy programs: FY2008 budget request. NREL/TP-640-41347 (March). Washington, DC: National Renewable Energy Laboratory for DOE Energy Efficiency and Renewable Energy. Retrieved February 12, 2007 from http://www1.eere.energy.gov/ba/pba/2008_benefits.html]. ALM focuses on development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost [U.S. Department of Energy. (2005a). Automotive lightweighting materials 2004 annual progress report. Washington, DC: DOE Energy Efficiency and Renewable Energy. Retrieved March 30, 2005 from http://www.eere.energy.gov/vehiclesandfuels/resources/fcvt_alm_fy04.shtml]. The ultimate goal of ALM to have lightweighter materials in vehicles hinges on many issues, including the (1) collaborative nature of ALMs R&D with the automobile industry and (2) manufacturing knowledge gained through the R&D effort. The ALM projects evaluated in this paper yielded numerous knowledge benefits in the short run. While these knowledge benefits are impressive, there remains uncertainty about whether the research will lead to incorporation of lightweight materials by the Big Three automakers into their manufacturing process and introduction of lightweight vehicles into the marketplace. The uncertainty illustrates a difference between (1) knowledge

  7. Separation and recovery process R&D to enhance automotive materials recycling

    SciTech Connect

    Daniels, E.J.

    1994-05-01

    Since 1976, the sales-weighted curb-weight of cars and light trucks sold in the United States has decreased by almost 800 pounds. Vehicle weight reduction has, of course, provided for a significant increase in US fleet fuel economy, from 17 to 27 miles per gallon. However, achievement of the weight reduction and concomitant increase in fuel economy was brought about, in part, by the substitution of lighter-weight materials, such as thinner-gauge coated sheet-steels replacing heavy-gauge noncoated sheet-steels and new aluminum alloys replacing steel as well as the increased use of plastics replacing metals. Each of these new materials has created the need for new technology for materials recycling. This paper highlights some of the R&D being conducted at Argonne National Laboratory to develop technology that will enhance and minimize the cost of automotive materials recycling.

  8. Automotive Mechanics.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This curriculum guide provides materials for a competency-based course in automotive mechanics at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  9. Automotive Mechanics.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This curriculum guide provides materials for a competency-based course in automotive mechanics at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  10. Density functional calculations in the automotive industry: Catalyst supports and hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Wolverton, Christopher

    2006-03-01

    In my talk, I will describe some uses of density functional theory (DFT) calculations in the research laboratory at Ford, and particularly highlight work that was inspired by, or performed in collaboration with Ken Hass. I begin with a discussion of past work on γ-Al2O3 catalyst support materials, but also discuss the current main focus of our group's activities: hydrogen storage materials. Catalyst Supports: In current three-way automotive catalysts, precious metals are often supported by the phase of aluminum oxide known as γ-Al2O3. Despite the ubiquitous nature of this oxide in current automobile catalysts, and a considerable amount of effort expended to understand this material, many questions about the phase stability and even crystal structure of γ-Al2O3 remain. DFT calculations have made significant progress in unraveling these unanswered questions, allowing one to construct realistic models of the supported catalysts materials. Hydrogen Storage Materials: One of the major bottlenecks to the widespread use of hydrogen-fueled vehicles is the ability to store sufficient energy on-board to enable vehicle attributes acceptable to customers. I will give a general introduction to the topic of hydrogen storage, and a broad survey of the various classes of hydrogen storage technologies, and point out some pros and cons associated with each class. Currently known technologies have insufficient usable energy densities, and I will describe how DFT calculations are aiding the search for improved high density storage materials.

  11. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials

    NASA Astrophysics Data System (ADS)

    Lee, Wan Kyu; Rhee, Tae Hee; Kim, Hyun Seong; Jang, Ho

    2013-09-01

    The effect of antimony trisulfide (Sb2S3) on the tribological properties of automotive brake friction materials was investigated using a Krauss type tribometer and a 1/5 scale dynamometer with a rigid caliper. Results showed that Sb2S3 improved fade resistance by developing transfer films on the disc surface at elevated temperatures. On the other hand, the rubbing surfaces of the friction material exhibited contact plateaus with a broader height distribution when it contained Sb2S3, indicating fewer contact junctions compared to the friction material with graphite. The friction material with Sb2S3 also exhibited a lower stick-slip propensity than the friction material with graphite. The improved fade resistance with Sb2S3 is attributed to its lubricating capability sustained at high temperatures, while the lower stick-slip propensity of the friction material with Sb2S3 is associated with the slight difference between its static and kinetic coefficients of friction and high normal stiffness.

  12. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    SciTech Connect

    Das, S.

    2003-01-23

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal

  13. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  14. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    SciTech Connect

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  15. Frictional behavior of automotive brake materials under wet and dry conditions

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Weintraub, M.H.; Jang, Ho; Donlon, W.

    1996-12-15

    The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.

  16. A multidisciplinary combinatorial approach for tuning promising hydrogen storage materials towards automotive applications.

    PubMed

    Amieiro-Fonseca, A; Ellis, S R; Nuttall, C J; Hayden, B E; Guerin, S; Purdy, G; Soulié, J P; Callear, S K; Culligan, S D; David, W I F; Edwards, P P; Jones, M O; Johnson, S R; Pohl, A H

    2011-01-01

    HyStorM is a multidisciplinary hydrogen-storage project aiming to synthesise and tune materials hydrogen storage properties for automotive applications. Firstly, unique high-throughput combinatorial thin-film technologies are used to screen materials' hydrogen storage properties. Then promising thin-film candidate compositions are synthesised and examined in the bulk. In this paper, we report on our results within the ternary compositions Mg-Ti-B and Ca-Ti-B. Primary screening of the Mg-Ti-B ternary identified a high capacity hotspot corresponding to Mg0.36Ti0.06B0.58, with 10.6 wt% H2 capacity. Partial reversibility has been observed for this material in the thin-film. Bulk Ti-doped Mg(BH4)2 composites show rehydrogenation to MgH2 under the conditions used. The synthesised thin-film Ca-Ti-B ternary showed only low hydrogen storage capacities. In the bulk, Ti-doping experiments on Ca(BH4)2 demonstrated reversible storage capacities up to 5.9 wt% H2. Further characterisation experiments are required to decipher the role of the Ti-dopant in these systems in both films and in the bulk.

  17. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kisner, Roger A; Ahmad, Aquil

    2010-08-01

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  18. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    SciTech Connect

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  19. Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications

    SciTech Connect

    Simunovic, S.; Aramayo, G.A.; Zacharia, T.; Toridis, T.G.; Bandak, F.; Ragland, C.L.

    1997-04-01

    Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

  20. Effect of plate preparation on active-material utilization and cycleability of positive plates in automotive lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Ozgun, H.; Lam, L. T.; Rand, D. A. J.; Bhargava, S. K.

    The power demands from automotive lead/acid batteries are rising steadily with the increasing number of electronic accessories that are being fitted to modern vehicles. In order to meet new levels of performance, automotive batteries have been redesigned to use low-ohmic microporous separators, as well as thinner plates (to increase the number of plates per cell) that are made with a low paste density. This approach, however, has led to a separate problem, namely, an appreciable reduction in battery service life. To redress this situation, a research programme has been implemented in our laboratories to examine, in detail, the effect of plate preparation on the active-material utilization and cycleability of automotive positive plates with grids made from low-antimony alloy. The cycleability is evaluated in terms of repetitive reserve-capacity. The results suggest that a paste formula with a combination of high density and low acid-to-oxide ratio is the most appropriate technology for the production of the thin positive plates that are required in advanced designs of automotive batteries.

  1. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  2. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion.

    PubMed

    Viganò, F; Consonni, S; Grosso, M; Rigamonti, L

    2010-01-01

    Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.

  3. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  4. Methodology on Investigating the Influences of Automated Material Handling System in Automotive Assembly Process

    NASA Astrophysics Data System (ADS)

    Saffar, Seha; Azni Jafar, Fairul; Jamaludin, Zamberi

    2016-02-01

    A case study was selected as a method to collect data in actual industry situation. The study aimed to assess the influences of automated material handling system in automotive industry by proposing a new design of integration system through simulation, and analyze the significant effect and influence of the system. The method approach tool will be CAD Software (Delmia & Quest). The process of preliminary data gathering in phase 1 will collect all data related from actual industry situation. It is expected to produce a guideline and limitation in designing a new integration system later. In phase 2, an idea or concept of design will be done by using 10 principles of design consideration for manufacturing. A full factorial design will be used as design of experiment in order to analyze the performance measured of the integration system with the current system in case study. From the result of the experiment, an ANOVA analysis will be done to study the performance measured. Thus, it is expected that influences can be seen from the improvement made in the system.

  5. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy

    SciTech Connect

    Viswanathan, S.

    1997-01-31

    The replacement of cast iron by aluminum alloys in automotive engine blocks and heads represents a significant weight reduction in automobiles. The primary hurdle to the widespread use of aluminum alloy engine blocks in the North American automobile industry was high cost. The lack of wear resistance in most aluminum alloys added to manufacturing cost, since expensive procedures such as the incorporation of cast iron liners or special coatings were needed to achieve the required wear properties. The project targeted the development of a wear resistant aluminum alloy, as well as tools and the knowledge-base required to design the casting process, to allow it to be cast economically into engine blocks without the use of a cast iron liner or special coating, thereby providing benefits to both the material and manufacturing aspects of the process. The project combined the alloy development, wear and microstructural characterization, and casting modeling capabilities of the laboratory with the partners extensive alloy and casting process development and manufacturing experience to develop a suitable wear resistant aluminum alloy and casting process.

  6. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    SciTech Connect

    Hitchcock, A. P. Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  7. Lightweight Materials for Automotive Application: An Assessment of Material Production Data for Magnesium and Carbon Fiber

    SciTech Connect

    Johnson, M. C.; Sullivan, J. L.

    2014-09-01

    The use of lightweight materials in vehicle components, also known as “lightweighting,” can result in automobile weight reduction, which improves vehicle fuel economy and generally its environmental footprint. Materials often used for vehicle lightweighting include aluminum, magnesium, and polymers reinforced with either glass or carbon fiber. However, because alternative materials typically used for vehicle lightweighting require more energy to make on a per part basis than the material being replaced (often steel or iron), the fuel efficiency improvement induced by a weight reduction is partially offset by an increased energy for the vehicle material production. To adequately quantify this tradeoff, reliable and current values for life-cycle production energy are needed for both conventional and alternative materials. Our focus here is on the production of two such alternative materials: magnesium and carbon fibers. Both these materials are low density solids with good structural properties. These properties have enabled their use in applications where weight is an issue, not only for automobiles but also for aerospace applications. This report addresses the predominant production methods for these materials and includes a tabulation of available material and energy input data necessary to make them. The life cycle inventory (LCI) information presented herein represents a process chain analysis (PCA) approach to life cycle assessment (LCA) and is intended for evaluation as updated materials production data for magnesium and carbon fiber for inclusion into the Greenhouse gases, Regulated Emissions, and Energy use in Transportation model (GREET2_2012). The summary life-cycle metrics used to characterize the cradle-to-gate environmental performance of these materials are the cumulative energy demand (CED) and greenhouse gas emissions (GHG) per kilogram of material.

  8. Automotive Diagnostic Technologies.

    ERIC Educational Resources Information Center

    Columbus State Community Coll., OH.

    This document contains materials developed for and about the automotive diagnostic technologies tech prep program of the South-Western City Schools in Ohio. Part 1 begins with a map of the program, which begins with an automotive/diagnostic technologies program in grades 11 and 12 that leads to entry-level employment or a 2-year automotive…

  9. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  10. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  11. Toxicity and mutagenicity of low-metallic automotive brake pad materials.

    PubMed

    Malachova, Katerina; Kukutschova, Jana; Rybkova, Zuzana; Sezimova, Hana; Placha, Daniela; Cabanova, Kristina; Filip, Peter

    2016-09-01

    Organic friction materials are standardly used in brakes of small planes, railroad vehicles, trucks and passenger cars. The growing transportation sector requires a better understanding of the negative impact related to the release of potentially hazardous materials into the environment. This includes brakes which can release enormous quantities of wear particulates. This paper addresses in vitro detection of toxic and mutagenic potency of one model and two commercially available low-metallic automotive brake pads used in passenger cars sold in the EU market. The model pad made in the laboratory was also subjected to a standardized brake dynamometer test and the generated non-airborne wear particles were also investigated. Qualitative "organic composition" was determined by GC/MS screening of dichloromethane extracts. Acute toxicity and mutagenicity of four investigated sample types were assessed in vitro by bioluminescence assay using marine bacteria Vibrio fischeri and by two bacterial bioassays i) Ames test on Salmonella typhimurium His(-) and ii) SOS Chromotest using Escherichia coli PQ37 strain. Screening of organic composition revealed a high variety of organic compounds present in the initial brake pads and also in the generated non-airborne wear debris. Several detected compounds are classified by IARC as possibly carcinogenic to humans, e. g. benzene derivatives. Acute toxicity bioassay revealed a response of bacterial cells after exposure to all samples used. Phenolic resin and wear debris were found to be acutely toxic; however in term of mutagenicity the response was negative. All non-friction exposed brake pad samples (a model pad and two commercial pad samples) were mutagenic with metabolic activation in vitro.

  12. Materials chemistry issues related to advanced materials applications in the automotive industry

    SciTech Connect

    Narula, C.K.; Allison, J.E.; Bauer, D.R.; Gandhi, H.S.

    1996-05-01

    This paper describes materials research for automobile applications. Topics include ceramics in gas turbines and adibatic engines, metal matrix composites, fiber reinforced plastics, automobile catalysts, and ceramic precursor technology.

  13. The Effect of Rotor Disc Material on Tribo Behavior of Automotive Brake Pad Materials

    NASA Astrophysics Data System (ADS)

    Liew, K. W.; El-Tayeb, N. S. M.

    This work aims to investigate the effect of two different counterdisc materials, i.e. gray cast iron (GCI) and ductile gray cast iron (DGCI) on tribo behavior of non-commercial frictional materials (NF1, NF2, NF4, and NF5) and two other chosen commercial brake pads (CMA and CMB) under dry sliding contact conditions. The four non-commercial frictional materials were fabricated with various percentages of phenolic binder resin (15 and 20 vol.%) and reinforced with steel fibers (15 and 20 vol.%) using hot press molding methods. Tribo tests were carried out using a small-scale tribo-tester of pad-on-disc type. Friction coefficient and wear of non-commercial and commercial brake pads were measured against each counterdisc (GCI and DGCI) and compared. Then, the friction and wear characteristic are discussed by comparing the experimental results obtained for each kind of cast iron. The results showed that maximum friction coefficient (0.4-0.5) of brake pad was attained at 2.22 MPa applied pressure and 2.1 m/s sliding speed when the frictional brake pad materials were tested against DGCI disc rotor. Meanwhile, similar wear rates for all frictional brake pad materials were sustained at higher applied pressure and sliding speed when tested against either type of rotor discs (GCI and DGCI). The results on the other hand, indicated that non-commercial materials NF1 and NF4, gave better wear resistance compared to other frictional pad materials. NF2 exhibited the lowest wear resistance when tested against GCI and DGCI rotor disc at all applied pressure and sliding speeds. The latter result is referred to the low percentage binder resin in the friction material NF2.

  14. Active materials for automotive adaptive forward lighting Part 1: system requirements vs. material properties

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew C.; Browne, Alan L.; Johnson, Nancy L.

    2011-04-01

    Adaptive Frontlighting Systems (AFS in GM usage) improve visibility by automatically optimizing the beam pattern to accommodate road, driving and environmental conditions. By moving, modifying, and/or adding light during nighttime, inclement weather, or in sharp turns, the driver is presented with dynamic illumination not possible with static lighting systems The objective of this GM-HRL collaborative research project was to assess the potential of active materials to decrease the cost, mass, and packaging volume of current electric stepper-motor AFS designs. Solid-state active material actuators, if proved suitable for this application, could be less expensive than electric motors and have lower part count, reduced size and weight, and lower acoustic and EMF noise1. This paper documents Part 1 of the collaborative study, assessing technically mature, commercially available active materials for use as actuators. Candidate materials should reduce cost and improve AFS capabilities, such as increased angular velocity on swivel. Additional benefits to AFS resulting from active materials actuators were to be identified as well such as lower part count. In addition, several notional approaches to AFS were documented to illustrate the potential function, which is developed more fully in Part 2. Part 1 was successful in verifying the feasibility of using two active materials for AFS: shape memory alloys, and piezoelectrics. In particular, this demonstration showed that all application requirements including those on actuation speed, force, and cyclic stability to effect manipulation of the filament assembly and/or the reflector could be met by piezoelectrics (as ultrasonic motors) and SMA wire actuators.

  15. Total Life Cycle-Based Materials Selection for Polymer Metal Hybrid Body-in-White Automotive Components

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Sellappan, V.; He, T.; Seyr, Norbert; Obieglo, Andreas; Erdmann, Marc; Holzleitner, Jochen

    2009-03-01

    Over the last dozen of years, polymer metal hybrid (PMH) technologies have established themselves as viable alternatives for use in light-weight automotive body-in-white bolt-on as well as load-bearing (structural) components. Within the PMH technologies, sheet-metal stamped/formed and thermoplastic injection molding subcomponents are integrated into a singular component/module. Due to attending synergetic effects, the performance of the PMH component typically exceeds that attainable by an alternative single-material technologies. In the present work, a total life cycle (TLC) approach to the selection of metallic and thermoplastic materials (as well as the selection of structural adhesives, where appropriate) is considered. The TLC material selection approach considers the consequences and ramifications of material selection at each major stage of the vehicle manufacturing process chain (press shop, injection molding shop, body shop, paint shop, and assembly), as well as relation to the vehicle performance, durability and the end-of-the-life-of-the-vehicle considerations. The approach is next applied to the case of injection overmolding technology to identify the optimal grade of short glass-fiber reinforced nylon when used in a prototypical PMH load-bearing automotive body-in-white component.

  16. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    NASA Astrophysics Data System (ADS)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  17. Assessing Economic Modulation of Future Critical Materials Use: The Case of Automotive-Related Platinum Group Metals.

    PubMed

    Zhang, Jingshu; Everson, Mark P; Wallington, Timothy J; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2016-07-19

    Platinum-group metals (PGMs) are technological and economic enablers of many industrial processes. This important role, coupled with their limited geographic availability, has led to PGMs being labeled as "critical materials". Studies of future PGM flows have focused on trends within material flows or macroeconomic indicators. We complement the previous work by introducing a novel technoeconomic model of substitution among PGMs within the automotive sector (the largest user of PGMs) reflecting the rational response of firms to changing prices. The results from the model support previous conclusions that PGM use is likely to grow, in some cases strongly, by 2030 (approximately 45% for Pd and 5% for Pt), driven by the increasing sales of automobiles. The model also indicates that PGM-demand growth will be significantly influenced by the future Pt-to-Pd price ratio, with swings of Pt and Pd demand of as much as 25% if the future price ratio shifts higher or lower even if it stays within the historic range. Fortunately, automotive catalysts are one of the more effectively recycled metals. As such, with proper policy support, recycling can serve to meet some of this growing demand.

  18. Foot motions in manual material handling transfer tasks: a taxonomy and data from an automotive assembly plant.

    PubMed

    Wagner, David W; Kirschweng, Rebecca L; Reed, Matthew P

    2009-03-01

    Ergonomic job analysis commonly applies static postural and biomechanical analysis tools to particular postures observed during manual material handling (MMH) tasks, usually focusing on the most extreme postures or those involving the highest loads. When these analyses are conducted prospectively using digital human models, accurate prediction of the foot placements is critical to realistic postural analyses. In automotive assembly jobs, workers frequently take several steps between task elements, for example, picking up a part at one location and moving to another location to place it on the vehicle. A detailed understanding of the influence of task type and task sequence on the stepping pattern is necessary to accurately predict the foot placements associated with MMH tasks. The current study examined the patterns of foot motions observed during automotive assembly tasks. Video data for 529 pickup and delivery tasks from 32 automotive assembly jobs were analysed. A minimum of five cycles was analysed for each task. The approach angle, departure angle, hand(s) used, manipulation height and patterns of footsteps were coded from the video. Object mass was identified from the job information sheet provided by the assembly plant. Three independent raters coded each video and demonstrated an intraclass correlation coefficient of 0.54 for identification of the configuration of the lower extremities during terminal stance. Based on an analysis of the distribution of stepping behaviours during object transitions (pickups or deliveries), a transition classification system (TRACS) was developed. TRACS uses a compact notation to quantify the sequence of steps associated with a MMH transition. Five TRACS behaviour groups accounted for over 90% of the transition stepping behaviours observed in the assembly plant. Approximately two-thirds (68.4%) of the object transfers observed were performed with only one foot in contact with the ground during the terminal posture. The

  19. Automotive Wastes.

    PubMed

    Guigard, Selma E; Shariaty, Pooya; Niknaddaf, Saeid; Lashaki, Masoud Jahandar; Atkinson, John D; Hashisho, Zaher

    2015-10-01

    A review of the literature from 2014 related to automotive wastes is presented. Topics include solid wastes from autobodies and tires as well as vehicle emissions to soil and air as a result of the use of conventional and alternative fuels. Potential toxicological and health risks related to automotive wastes are also discussed.

  20. International forensic automotive paint database

    NASA Astrophysics Data System (ADS)

    Bishea, Gregory A.; Buckle, Joe L.; Ryland, Scott G.

    1999-02-01

    The Technical Working Group for Materials Analysis (TWGMAT) is supporting an international forensic automotive paint database. The Federal Bureau of Investigation and the Royal Canadian Mounted Police (RCMP) are collaborating on this effort through TWGMAT. This paper outlines the support and further development of the RCMP's Automotive Paint Database, `Paint Data Query'. This cooperative agreement augments and supports a current, validated, searchable, automotive paint database that is used to identify make(s), model(s), and year(s) of questioned paint samples in hit-and-run fatalities and other associated investigations involving automotive paint.

  1. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  2. Introduction to Automotive Service. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document provides instruction for high-priority competencies on task lists developed by the National Institute of Automotive Service Excellence. Contained in this teacher's guide are the materials necessary to teach 11 competency-based instructional units related to the automotive service industry. The following instructional units are…

  3. Automotive Electricity: Automotive Mechanics Instructional Program. Block 3.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The third of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive electricity at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  4. Introduction to Automotive Service. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document provides instruction for high-priority competencies on task lists developed by the National Institute of Automotive Service Excellence. Contained in this teacher's guide are the materials necessary to teach 11 competency-based instructional units related to the automotive service industry. The following instructional units are…

  5. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; And Others

    This publication contains instructional materials for both teachers and students for a course in automotive emission control. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes 16 units. Each instructional unit includes some or all of the basic components of a…

  6. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  7. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, Electrotechnic and Electronics

    NASA Astrophysics Data System (ADS)

    Rouif, Sophie

    2004-09-01

    Used since the beginning of the 1970s for the production of halogen-free and heat-resistant cables and wires, for conditioning polyethylene hot-water pipes or for the manufacture of heat shrinkable tubes and of tyres, radiation cross-linking is developing fastly today on the scale of plastic-moulded parts, and not only by the mean of EB, but also under gamma rays. Indeed, it improves considerably the performances of a great number of plastics among thermoplastics, elastomers and thermoplastic elastomers (TPE). Radiation cross-linking reinforces the dimensional stability of polymers in chemically aggressive and high-temperature conditions. Radiation cross-linked-based engineering plastics offers OEM and end users in many branches of industry both technical and economical advantages in comparison with high-performances plastics. They constitute a technical and economical compromise between engineering plastics that failed and high-performances plastic, often over-tailored and expensive. This modern industrial technology gives way to new applications and perspectives in various sectors (packaging, automotive, electrotechnic and electronics, including connectors, surface-mounted devices, integrated circuits, 3D-MID, etc.) that are described in the paper.

  8. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  9. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    PubMed

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis.

  10. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    SciTech Connect

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  11. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  12. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  13. The influence of high temperatures on the tribological properties of automotive friction materials

    NASA Astrophysics Data System (ADS)

    Savage, Luke

    Temperatures of over 800C can be generated at the frictional interface within the brake systems of large vehicles, such high temperatures result in severe wear at the frictional interface, and can also lead to a very dangerous condition known as brake fade, characterised by a sharp fall in the coefficient of friction between the pad and disc, resulting in a catastrophic loss of braking efficiency. Common friction materials are very specialised composites often containing up to 15 components bound together within a phenolic resin matrix. The high temperature behaviour of the various constituents of friction materials were investigated using thermogravimetric analysis, focusing in particular on the thermal decomposition of the phenolic resin matrix material, where it has been firmly established that the thermal decomposition products of phenolic resin are the primary cause of brake fade. This has lead to the development of a novel approach for reducing fade in conventional resin based friction materials, involving a partial carbonisation to 400C. The high temperature wear characteristics of both modified and conventional friction materials were examined using standard dynamometer tests, as well as a 'continuous drag' type test machine, equipped with a heating facility. During this study a number of factors were identified as the main influences on the overall wear behaviour of friction materials. These included test temperature, sample test history, and the various effects of friction films, which were the subject of a detailed analysis. The formation of friction films was found to be an important facet of a successful friction material, producing a reduction in wear at the frictional interface. Films were examined and analysed using EDX, SEM, and X-ray diffraction techniques, which revealed the presence of a high proportion of magnetite (Fe3O4), containing iron which originated from the disc surface. It was established that the incorporation of iron in friction

  14. Candidate materials for high-strength fastener applications in both the aerospace and automotive industries

    NASA Astrophysics Data System (ADS)

    Ferrero, J. G.

    2005-12-01

    There are many commercially available titanium alloys that have exhibited the capability of achieving high strength. Many of these alloys have not been seriously considered for fastener applications due to their cost or availability as coil or bar product. However, because new designs, increased material requirements, and larger aircraft are being built, the need to reduce weight and improve performance continues to be a major issue. The possibility of reducing weight by replacing currently used steel or Ni-based fasteners in various sizes is a great incentive. Over the past few years, many of these titanium alloys have been processed to bar and coil products to evaluate their capabilities as potential fastener materials. This article will review and summarize the mechanical properties, tensile, shear, notch tensile, and available fatigue, as well as the microstructure of these candidate alloys.

  15. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  16. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  17. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  18. Elemental composition of current automotive braking materials and derived air emission factors

    NASA Astrophysics Data System (ADS)

    Hulskotte, J. H. J.; Roskam, G. D.; Denier van der Gon, H. A. C.

    2014-12-01

    Wear-related PM emissions are an important constituent of total PM emissions from road transport. Due to ongoing (further) exhaust emission reduction wear emissions may become the dominant PM source from road transport in the near future. The chemical composition of the wear emissions is crucial information to assess the potential health relevance of these PM emissions. Here we provide an elemental composition profile of brake wear emissions as used in the Netherlands in 2012. In total, 65 spent brake pads and 15 brake discs were collected in car maintenance shops from in-use personal cars vehicles and analyzed with XRF for their metal composition (Fe, Cu, Zn, Sn, Al, Si, Zr, Ti, Sb, Cr, Mo, Mn, V, Ni, Bi, W, P, Pb and Co). Since car, engine and safety regulations are not nationally determined but controlled by European legislation the resulting profiles will be representative for the European personal car fleet. The brake pads contained Fe and Cu as the dominant metals but their ratio varied considerably, other relatively important metals were Sn, Zn and Sb. Overall a rather robust picture emerged with Fe, Cu, Zn and Sn together making up about 80-90% of the metals present in brake pads. Because the XRF did not give information on the contents of other material such as carbon, oxygen and sulphur, a representative selection of 9 brake pads was further analyzed by ICP-MS and a carbon and sulphur analyzer. The brake pads contained about 50% of non-metal material (26% C, 3% S and the remainder mostly oxygen and some magnesium). Based on our measurements, the average brake pad profile contained 20% Fe, 10% Cu, 4% Zn and 3% Sn as the dominant metals. The brake discs consisted almost entirely of metal with iron being the dominant metal (>95%) and only traces of other metals (<1% for individual metals). Non-metal components in the discs were 2-3% Silicon and, according to literature, ∼3% carbon. The robust ratio between Fe and Cu as found on kerbsides has been used to

  19. Dynamic materials testing and constitutive modeling of structural sheet steel for automotive applications. Final progress report

    SciTech Connect

    Cady, C.M.; Chen, S.R.; Gray, G.T. III

    1996-08-23

    The objective of this study was to characterize the dynamic mechanical properties of four different structural sheet steels used in automobile manufacture. The analysis of a drawing quality, special killed (DQSK) mild steel; high strength, low alloy (HSLA) steel; interstitial free (IF); and a high strength steel (M-190) have been completed. In addition to the true stress-true strain data, coefficients for the Johnson-Cook, Zerilli-Armstrong, and Mechanical Threshold Stress constitutive models have been determined from the mechanical test results at various strain rates and temperatures and are summarized. Compression, tensile, and biaxial bulge tests and low (below 0.1/s) strain rate tests were completed for all four steels. From these test results it was determined to proceed with the material modeling optimization using the through thickness compression results. Compression tests at higher strain rates and temperatures were also conducted and analyzed for all the steels. Constitutive model fits were generated from the experimental data. This report provides a compilation of information generated from mechanical tests, the fitting parameters for each of the constitutive models, and an index and description of data files.

  20. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials

    SciTech Connect

    Szanyi, Janos; Yi, Cheol-Woo W.; Mudiyanselage, Kumudu K.; Kwak, Ja Hun

    2013-11-01

    The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0\\hBaO\\30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (\\4 ML), BaO clusters (\\1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation

  1. The Liquid Crystal Shutter In Automotive Environments

    NASA Astrophysics Data System (ADS)

    Haven, Thomas J.; Melcher, Dean

    1988-10-01

    The Liquid Crystal Shutter (LCS) is being developed for the automotive market. Liquid crystal material that meets operation to 85°C has been screened. Thin film heaters have been explored to obtain -40°C operation. Sunlight viewability has been improved and system colors have been matched to standard vacuum fluorescent automotive instrumentation. Successful completion of automotive humidity and thermal cycling tests have led to the adaptation of a flex connector.

  2. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    NASA Astrophysics Data System (ADS)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  3. Petroleum Marketing. Selling Automotive Products and Services.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This textbook contains material for the individualized instruction of students training for careers in service stations; automotive, tire, battery, and accessory retail stores; oil jobbers and petroleum product wholesalers, or any wholesale or retail establishment that sells automotive products and services. Included among the topics addressed in…

  4. Brakes Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  5. Brakes Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  6. Petroleum Marketing. Selling Automotive Products and Services.

    ERIC Educational Resources Information Center

    Luter, Robert R.

    This textbook contains material for the individualized instruction of students training for careers in service stations; automotive, tire, battery, and accessory retail stores; oil jobbers and petroleum product wholesalers, or any wholesale or retail establishment that sells automotive products and services. Included among the topics addressed in…

  7. Ceramics potential in automotive powerplants

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1983-01-01

    The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.

  8. Automotive Mechanics. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  9. Automotive Mechanics. Student Learning Guides.

    ERIC Educational Resources Information Center

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  10. Automotive Cooling and Lubricating Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  11. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  12. Automotive Insulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between Boeing North America and BSR Products, Space Shuttle Thermal Protection System (TPS) materials are now used to insulate race cars. BSR has created special TPS blanket insulation kits for use on autos that take part in NASCAR events, and other race cars through its nationwide catalog distribution system. Temperatures inside a race car's cockpit can soar to a sweltering 140 to 160 degrees, with the extreme heat coming through the engine firewall, transmission tunnel, and floor. It is common for NASCAR drivers to endure blisters and burns due to the excessive heat. Tests on a car insulated with the TPS material showed a temperature drop of some 50 degrees in the driver's cockpit. BSR-TPS Products, Inc. now manufactures insulation kits for distribution to race car teams around the world.

  13. Automotive Parts Management Survey.

    ERIC Educational Resources Information Center

    Kuehn, Edward J.

    Members of the automotive parts distribution industry responded to a survey on the specific attitudes, values, knowledge, and skills necessary for students planning to enter the industry, as the basis for revision of an associate degree curriculum in Automotive Parts Management. The survey instrument, sent to 252 industry members (99 responded),…

  14. Automotive Technology Skill Standards

    ERIC Educational Resources Information Center

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  15. Automotive Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and potential to pass successfully a training program in automotive mechanics or in a similar automotive job. Section 1 describes the assessment, correlates the work performed and worker traits required for completing the work sample, and lists related…

  16. Kentucky's Automotive Certification Program.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Vocational Education.

    The state of Kentucky recognized a need to standardize automotive mechanics training throughout the state and to establish minimum guidelines for the quality of instruction in such programs. To meet these needs, the Office of Vocational Education selected the National Institute for Automotive Service Excellence (ASE) and began the certification…

  17. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  18. Titanium aluminide automotive engine valves

    SciTech Connect

    Hartfield-Wuensch, S.E.; Sperling, A.A.; Morrison, R.S.; Dowling, W.E. Jr.; Allison, J.E.

    1995-12-31

    The low density and high elevated temperature strength make titanium aluminide alloys an excellent candidate for automotive exhaust valve applications. Lighter weight valve train components allow either improved performance or reduction of valve spring loads which reduce noise and friction, thereby improving fuel economy. The key to successful application of TiAl alloys for automotive engine valves is not optimization of strength and ductility, but rather the development of a low-cost, high-volume manufacturing method. Different manufacturing approaches will be discussed in this paper, along with their advantages and disadvantages. Currently, casting appears to be the lowest-cost alternative that produces adequate material properties and emphasis is being placed on this manufacturing approach. The results of several successful engine tests will also be discussed, including results on a binary TiAl alloy. However, these engine tests have indicated that TiAl alloy valves will require tip protection and stem coating.

  19. Final report: U.S. competitive position in automotive technologies

    SciTech Connect

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  20. ATIP: Automotive Technician Internship Program.

    ERIC Educational Resources Information Center

    De Anza Coll., Cupertino, CA.

    The Automotive Technology Department (ATD) of De Anza College (DAC) in Cupertino, California, in partnership with the Automotive Service Council of California, received funding to develop and implement a 2-year, competency-based certification program for automotive service technicians. Students in the Automotive Technician Internship Program…

  1. Steering and Suspension Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the steering and suspension specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on National Institute of Automotive Service Excellence task lists. The six instructional units contain materials…

  2. Fuel System: Automotive Mechanics Instructional Program. Block 4.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The fourth of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive fuel systems at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  3. Manual Drivetrain and Axles Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the manual drive trains and axle specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on National Institute of Automotive Service Excellence task lists. Six instructional units contain materials…

  4. Steering and Suspension Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the steering and suspension specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on National Institute of Automotive Service Excellence task lists. The six instructional units contain materials…

  5. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  6. Nanotechnology impact on the automotive industry.

    PubMed

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  7. Techno-economic requirements for automotive composites

    NASA Technical Reports Server (NTRS)

    Arnold, Scot

    1993-01-01

    New technology generally serves two main goals of the automotive industry: one is to enable vehicles to comply with various governmental regulations and the other is to provide a competitive edge in the market. The latter goal can either be served through improved manufacturing and design capabilities, such as computer aided design and computer aided manufacturing, or through improved product performance, such as anti-lock braking (ABS). Although safety features are sometimes customer driven, such as the increasing use of airbags and ABS, most are determined by regulations as outlined by the Federal Motor Vehicle Safety Standards (FMVSS). Other standards, set by the Environmental Protection Agency, determine acceptable levels of emissions and fuel consumption. State governments, such as in California, are also setting precedent standards, such as requiring manufacturers to offer zero-emission vehicles as a certain fraction of their sales in the state. The drive to apply new materials in the automobile stems from the need to reduce weight and improve fuel efficiency. Topics discussed include: new lightweight materials; types of automotive materials; automotive composite applications; the role for composite materials in automotive applications; advantages and disadvantages of composite materials; material substitution economics; economic perspective; production economics; and composite materials production economics.

  8. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  9. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  10. Chemicals for the automotive industry

    SciTech Connect

    Drake, J.A.G.

    1991-01-01

    This book covers a wide range of advanced materials, surface treatments, and clean fuels/lubricants now used to manufacture, propel, and maintain motor vehicles. The book examines recent advancements and current research, illustrating the progress to date, future trends, new applications, and the effects of these of automotive chemicals on the environment (including pollution, recyclability, and efficiency). Environmental considerations and their effect on the industry are covered in discussions about such topics as biodegradable lubricants, oxygenated diesel and ignition engine fuels, oils, and recyclable, lightweight plastic components.

  11. Status and Trend of Automotive Power Packaging

    SciTech Connect

    Liang, Zhenxian

    2012-01-01

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  12. Mod I automotive Stirling engine mechanical development

    SciTech Connect

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  13. Orientation: Automotive Mechanics Instructional Program. Block 1.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The first six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the basic theory and practice of a beginning course at the secondary and post-secondary level. The material, as organized, is a suggested sequence of instruction…

  14. Automotive gear oil lubricant from soybean oil

    USDA-ARS?s Scientific Manuscript database

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  15. Automotive Body Repair. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  16. Automotive Body Repair. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 10 terminal objectives for an intermediate automotive body repair and refinishing course. The materials were developed for a two-semester (3 hours daily) course for specialized classrooms, shop, and practical experiences designed to enable the…

  17. Automotive Body Repair. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Lang, Thomas

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 15 terminal objectives for a basic automotive body repair and refinishing course. The materials were developed for a two-semester (2 hours daily) course for organized classroom and shop experiences designed to enable the student to develop…

  18. Magnesium for automotive applications

    SciTech Connect

    VanFleteren, R.

    1996-05-01

    Die cast magnesium parts are rapidly replacing steel and aluminum structural components in automotive applications, as design engineers seek to reduce assembly costs, raise fuel efficiency, and improve safety. Dozens of automotive components are now die cast from magnesium alloys, including seat stanchions, valve covers, steering wheels, and a variety of steering column components. Because of their excellent castability, complex magnesium die castings can sometimes consolidate several components and eliminate assembly steps. Highly ductile magnesium alloys such as AM60B (6% aluminum) and AM50A (5% aluminum) are important in helping to meet automotive industry crash-energy requirements for car seating and steering components. AZ91D (9% aluminum, 1% zinc) alloys are making removable rear seats in new minivans much easier to handle.

  19. Standardized Curriculum for Automotive Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  20. Standardized Curriculum for Automotive Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  1. Automotive Applications of MEMS

    NASA Astrophysics Data System (ADS)

    Barua, Debojit

    2001-03-01

    Application of MEMS (Microelectromechanical systems) in the automotive industry has a relatively long history with the introduction of pressure sensors for engine control systems. The next significant inroad came with the introduction of silicon accelerometers for safety systems. Opportunities for MEMS are opening up with other sensor requirements in systems such as Vehicle Dynamics and Navigation. We shall discuss some of the automotive applications of MEMS from the users point of view. In particular, requirements due to harsh environment, reliability and durability, and of course, cost will be reviewed. Finally, we will discuss some applications in the area of actuators.

  2. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  3. Automotive Power Trains.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the operation, maintenance, and troubleshooting of automotive power trains and certain auxiliary equipment. The course contains six study units covering basic power trains; clutch principles and operations; conventional…

  4. Automotive Technology Curriculum Guide.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Idaho state curriculum guide provides lists of tasks, performance objectives, and enabling objectives for instruction in automotive technology. The document begins with a list of all tasks covered by the curriculum, a short course outline, and a curriculum framework that explains major content, laboratory activities, and intended outcomes.…

  5. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  6. Personal Achievement Mathematics: Automotive.

    ERIC Educational Resources Information Center

    Baenziger, Betty

    Utilizing word problems relevant to automotive mechanics, this workbook presents a concept-oriented approach to competency development in 13 areas of basic mathematics: (1) the expression of numbers as figures and words; (2) the addition, subtraction, multiplication, and division of whole numbers, fractions, and decimals; (3) scientific notation;…

  7. Bringing Excellence to Automotive

    NASA Astrophysics Data System (ADS)

    Večeřa, Pavel; Paulová, Iveta

    2012-12-01

    Market situation and development in recent years shows, that organization's ability to meet customer requirements is not enough. Successful organizations are able to exceed the expectations of all stakeholders. They are building their excellence systematically. Our contribution basically how the excellence in automotive is created using EFQM Excellence Model in Total Quality Management.

  8. Automotive Brake Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  9. Automotive Pollution Control.

    ERIC Educational Resources Information Center

    Raudenbush, David B.

    Intended for a 1- or 2-month curriculum in auto mechanics, this student manual on automotive pollution control was developed by a subject matter specialist at an area vocational school and tested in a vocational auto shop. Intended either for use in an integrated curriculum or for use in teaching pollution control as a separate course, these 12…

  10. Design concepts for a composite door frame system for general automotive applications

    NASA Technical Reports Server (NTRS)

    Tauber, J. A.

    1976-01-01

    Conceptual design, manufacturing process, and costs are explored to determine the feasibility of replacing present steel parts in automotive door structures with various composite materials. The problems of conforming to present anti-intrusion specifications with advanced materials are examined and discussed. Modest weight reductions, at competitive costs, were identified for the utilization of specific composite materials in automotive door structures.

  11. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    SciTech Connect

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  12. Current Automotive Holometry Studies

    NASA Astrophysics Data System (ADS)

    Marchi, Mitchell M.; Snyder, D. S.

    1990-04-01

    Holometry studies of automotive body and powertrain components have become a very useful high resolution test methodology to knowledgeable Ford engineering personnel. Current examples of studies that represent the static or dynamic operational conditions of the automotive test component are presented. Continuous wave laser holometry, computer aided holometry (CAH) and pulsed laser holometry were the holometric techniques used to study the following subjects: (1) body in prime (BIP) vibration modes, (2) transmission flexplate stud-torque converter deformation due to engine torque pulses, (3) engine cylinder head and camshaft support structure deformation due to cylinder pressure and (4) engine connecting rod/cap lift-off. Static and dynamic component loading and laboratory techniques required to produce usable and valid test results are discussed along with possible conclusions for the engineering concerns.

  13. Magnesium for automotive applications: Primary production cost assessment

    NASA Astrophysics Data System (ADS)

    Das, Sujit

    2003-11-01

    Production technologies must be cost effective for primary magnesium to become an economically viable alternative material for wide spread automotive applications. In this article, the prices at which magnesium becomes competitive with aluminum and steel are examined, including magnesium production cost estimates for current and future scenarios using electrolytic and thermal processes. The economic viability of the industry for automotive applications is also examined in the context of magnesium market price, taking into consideration the dynamics of its supply and demand as well.

  14. Determination of the NOx loading of an automotive lean NOx trap by directly monitoring the electrical properties of the catalyst material itself.

    PubMed

    Fremerey, Peter; Reiss, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.

  15. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    PubMed Central

    Fremerey, Peter; Reiß, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074

  16. Get Your Automotive Program Nationally Certified!

    ERIC Educational Resources Information Center

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  17. Get Your Automotive Program Nationally Certified!

    ERIC Educational Resources Information Center

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  18. Automotive Chassis; Automotive Mechanics-Basic: 9043.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive chassis course is designed to familiarize the beginning student of the history and development of the automobile with basic concepts common to the automobile industry, and general information that is required for successful advancement in the automotive mechanics field. It is one quinmester in a series of quinmester outlines…

  19. Automotive Engines; Automotive Mechanics I: 9043.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  20. Automotive aluminum recycling in 2010

    SciTech Connect

    Not Available

    1994-08-01

    This article examines the aluminium recycling industry's ability to handle effectively the increased amounts of automotive aluminium scrap resulting from increased amounts of wrought and cast aluminium alloys in automobile manufacturing. This study takes a system-wide view of both volume and composition aspects of automotive aluminium recycling.

  1. Automotive Engine Maintenance and Repair.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide students with an understanding of automotive engine maintenance and repair. The course contains six study units covering automotive engine maintenance and repair; design classification; engine malfunction, diagnosis, and repair; engine disassembly; engine…

  2. Automotive Technology. Career Education Guide.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. European Area.

    The curriculum guide is designed to provide students with realistic training in automotive technology theory and practice within the secondary educational framework and to prepare them for entry into an occupation or continuing postsecondary education. The learning modules are grouped into three areas: small engines, automotive technology, and…

  3. Ultracapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Ashtiani, Cyrus; Wright, Randy; Hunt, Gary

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry.

  4. Characterization of three-way automotive catalysts

    SciTech Connect

    Kenik, E.A.; More, K.L.; LaBarge, W.

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  5. Ultrahigh carbon steel for automotive applications

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.

    1995-12-04

    Ultrahigh carbon steels (UHCSs), which contain 1--2.1% carbon, have remarkable structural properties for automotive application when processed to achieve fine ferrite grains with fine spheroidized carbides. When processed for high room temperature ductility, UHCS can have good tensile ductility but significantly higher strength than current automotive high strength steels. The material can also be made superplastic at intermediate temperatures and exhibits excellent die fill capability. Furthermore, they can be made hard with high compression ductility. In wire form it is projected that UHCS can exhibit extremely high strengths (5,000 MPa) for tire cord applications. Examples of structural components that have been formed from fine-grained spheroidized UHCSs are illustrated.

  6. Polymer matrix nanocomposites for automotive structural components

    DOE PAGES

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field andmore » propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.« less

  7. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  8. Polymer matrix nanocomposites for automotive structural components.

    PubMed

    Naskar, Amit K; Keum, Jong K; Boeman, Raymond G

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  9. Polymer matrix nanocomposites for automotive structural components

    SciTech Connect

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-06

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this paper, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Finally, only once we achieve a deeper understanding of the structure–properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  10. Polymer matrix nanocomposites for automotive structural components

    NASA Astrophysics Data System (ADS)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  11. Lightweight Steel Solutions for Automotive Industry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  12. Automotive MEMS sensors based on additive technologies

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. A.; Sokolov, A. V.; Pisliakov, A. V.; Oblov, K. Yu; Samotaev, N. N.; Kim, V. P.; Tkachev, S. V.; Gubin, S. P.; Potapov, G. N.; Kokhtina, Yu V.; Nisan, A. V.

    2016-10-01

    The application of MEMS devices is one of the recent trends in sensor technology. However, traditional silicon MEMS have some intrinsic limitations, when applied to the monitoring of high temperature/high humidity processes. Thin ceramic films of alumina, zirconia or LTCC fixed on rigid frame made of the same ceramic material in combination with ink and aerosol jet printing of functional materials (heaters, temperature, pressure, gas sensitive elements) provides a cheap, flexible, and high-performance alternative for silicon MEMS devices used as gas sensors, gas flowmeters, lambda probes, bolometric matrices for automotive and general application.

  13. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  14. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  15. Automotive Mg Research and Development in North America

    SciTech Connect

    Carpenter, Joseph A.; Jackman, Jennifer; Li, Naiyi; Osborne, Richard J.; Powell, Bob R.; Sklad, Philip S

    2006-01-01

    Expanding world economic prosperity and probable peaking of conventional petroleum production in the coming decades require efforts to increase the efficiency of, and the development of alternatives to, petroleum-based fuels used in automotive transportation. North America has been aggressively pursuing both approaches for over ten years. Mainly as a result of lower prices due to global sourcing, magnesium has recently emerged as a serious candidate for lightweighting, and thus increasing the fuel efficiency of, automotive transportation. Automotive vehicles produced in North America currently use more Mg than vehicles produced elsewhere in the world, but the amounts per vehicle are very small in comparison to other materials such as steel, aluminum and plastics. The reasons, besides price, are primarily a less-developed state of technology for Mg in automotive transportation applications and lack of familiarity by the vehicle manufacturers with the material. This paper reviews some publicly-known, recent, present and future North American research and development activities in Mg for automotive applications.

  16. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  17. Baseline automotive gas turbine engine development program

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Tests results on a baseline engine are presented to document the automotive gas turbine state-of-the-art at the start of the program. The performance characteristics of the engine and of a vehicle powered by this engine are defined. Component improvement concepts in the baseline engine were evaluated on engine dynamometer tests in the complete vehicle on a chassis dynamometer and on road tests. The concepts included advanced combustors, ceramic regenerators, an integrated control system, low cost turbine material, a continuously variable transmission, power-turbine-driven accessories, power augmentation, and linerless insulation in the engine housing.

  18. Automotive suspension system

    SciTech Connect

    Kanai, S.

    1986-11-11

    This patent describes an automotive suspension system comprising a wheel support for supporting a wheel, and a wheel supporting member for connecting the wheel support to the vehicle body. The wheel supporting member includes front and rear resilient supporting means spaced from each other by a predetermined distance in the longitudinal direction of the vehicle body and the direction of the toe of the wheel is adapted to be changed according to deformation of the front and rear resilient supporting means. The load-deformation characteristics of the front and rear resilient supporting means are selected so that the ratio of the amount of deformation of the front resilient supporting means for a given load to that of the rear resilient supporting means for the same load changes according to the magnitude of external side forces acting on the wheel, thereby changing the steering characteristics according to the magnitude of external force. The deformation is that in right and left or width directions of the vehicle body caused by the side forces.

  19. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  20. Application of the 50 {Omega} radio frequency technology in the automotive industry: Fast bonding of composite materials: Rear doors of the Citroen ZX and Citroen Xantia cars

    SciTech Connect

    Bernard, J.P.; Sabran, M.; Collett, L.

    1996-12-31

    In the field of plastic and composite materials the radio frequency dielectric heating is more and more used. Compared to traditional techniques such as conduction and convection heating, the radio frequency technology is interesting, because it allows fast heating of thick materials and heat insulation materials. As bonding techniques are more and more integrated in production lines, the polymerization of glues must be realized in a very short time. The 50 use of the {Omega} radio frequency technology makes this heating process possible. The authors describe the industrial application of this technology to the CITROEN ZX and CITROEN XANTIA cars. Steps involved in implementing this industrial process (laboratory-pilot-industrial equipment) are presented and analysis the technical and economic results of this application.

  1. Producing lower-cost titanium for automotive applications

    NASA Astrophysics Data System (ADS)

    Hartman, A. D.; Gerdemann, S. J.; Hansen, J. S.

    1998-09-01

    Although titanium has attractive properties that can improve the performance and economy of automobiles, at its current cost, it cannot compete with steel in most applications for which it is suited. It is readily apparent that titanium cannot be considered a viable mass-market automotive materials alternative as long as it is produced with the Kroll process. A look at existing and new technologies (as well as some that have been found lacking) in terms of applicability toward high-volume, low-cost titanium production for automotive applications indicates other options.

  2. Automotive body panel containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  3. Basic Strategies in Blueprint Reading for United Technologies-Automotive.

    ERIC Educational Resources Information Center

    Shuler, Jacqueline

    This document contains the instructional materials developed and presented in a 39-hour course for employees of an automotive assembly plant. The course is an introductory look at blueprint reading using blueprints similar to those used at the company. Worksheets and tests relating to the blueprints are included. The course covers an introduction,…

  4. Engine Fundamentals: Automotive Mechanics Instructional Program. Block 2.

    ERIC Educational Resources Information Center

    O'Brien, Ralph D.

    The second of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in engine fundamentals at the secondary and postsecondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…

  5. Automotive Stirling Engine Mod 1 Design Review, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Risk assessment, safety analysis of the automotive stirling engine (ASE) mod I, design criteria and materials properties for the ASE mod I and reference engines, combustion are flower development, and the mod I engine starter motor are discussed. The stirling engine system, external heat system, hot engine system, cold engine system, and engine drive system are also discussed.

  6. Dow Corning photonics: the silicon advantage in automotive photonics

    NASA Astrophysics Data System (ADS)

    Clapp, Terry V.; Paquet, Rene; Norris, Ann; Pettersen, Babette

    2005-02-01

    The Automotive Market offers several opportunities for Dow Corning to leverage the power of silicon-based materials. Dow Corning Photonics Solutions has a number of developments that may be attractive for the emergent photonics needs in automobiles, building on 40 years of experience as a leading Automotive supplier with a strong foundation of expertise and an extensive product offering- from encapsulents and highly reliable resins, adhesives, insulating materials and other products, ensuring that the advantage of silicones are already well-embedded in Automotive systems, modules and components. The recent development of LED encapsulants of exceptional clarity and stability has extended the potential for Dow Corning"s strength in Photonics to be deployed "in-car". Demonstration of board-level and back-plane solutions utilising siloxane waveguide technology offers new opportunities for systems designers to integrate optical components at low cost on diverse substrates. Coupled with work on simple waveguide technology for sensors and data communications applications this suite of materials and technology offerings is very potent in this sector. The harsh environment under hood and the very extreme thermal range that materials must sustain in vehicles due to both their engine and the climate is an applications specification that defines the siloxane advantage. For these passive optics applications the siloxanes very high clarity at the data-communications wavelengths coupled with extraordinary stability offers significant design advantage. The future development of Head-Up-Displays for instrumentation and data display will offer yet more opportunities to the siloxanes in Automotive Photonics.

  7. Molded GASIR ® infrared optics for automotive applications

    NASA Astrophysics Data System (ADS)

    Guimond, Y.; Bellec, Y.

    2006-05-01

    Umicore IR Glass has developed an industrial process to manufacture low cost chalcogenide glasses. These materials called GASIR® are transparent in the 3-5 and 8-12 μm atmospheric windows which allows to use them in all the sensing and thermal imaging applications where Germanium and ZnSe usually stands. During the past 5 years, Umicore has developed and produced with and for its customers various GASIR ® optics in low and medium volume for military and civilian applications. But from the beginning of last year, the company is also very active in the automotive market. For that reason, a huge work of development on optics quality has been done to comply with automotive requests. Umicore's GASIR ® optics are used for instance in the night vision system that BMW launched in September 2005 on its 7-series. This system which will be described in this paper was developed by Umicore's customer, automotive TIER1 producer Autoliv.

  8. Automotive Sensors and MEMS Technology

    NASA Astrophysics Data System (ADS)

    Nonomura, Yutaka

    - Automotive sensors are used for emission gas purification, energy conservation, car kinematic performance, safety and ITS (intelligent transportation system). The comparison of the sensor characteristics was made for their application area. Many kinds of the principles are applied for the sensors. There are two types of sensors, such as physical and chemical one. Many of the automotive sensors are physical type such as mechanical sensors. And a gas sensor is a chemical type. The sensors have been remarkably developed with the advancement of the MEMS (Micro Electro Mechanical Systems) technology. In this paper, gas, pressure, combustion pressure, acceleration, magnetic, and angular rate sensors for automotive use are explained with their features. The sensors are key devices to control cars in the engine, power train, chassis and safety systems. The environment resistance, long term reliability, and low cost are required for the automotive sensors. They are very hard to be resolved. However, the sensor technology contributes greatly to improving global environment, energy conservation, and safety. The applications of automotive sensors will be expanded with the automobile developments.

  9. An automotive transmission for automotive gas turbine power plants

    NASA Technical Reports Server (NTRS)

    Polak, J. C.

    1980-01-01

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  10. An automotive transmission for automotive gas turbine power plants

    NASA Technical Reports Server (NTRS)

    Polak, J. C.

    1980-01-01

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  11. Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"

    NASA Astrophysics Data System (ADS)

    Cole, Gerald S.

    This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.

  12. Importance of Projects in Automotive Industry

    NASA Astrophysics Data System (ADS)

    Babeľová, Zdenka Gyurák; Lenhardtová, Zuzana; Cagáňová, Dagmar; Weidlichová-Luptáková, Stanislava

    2010-01-01

    For automotive companies, research and development is the key to success for new generation of products. The aim of this article is to accent the importance of innovations and innovations-focused projects in automotive industry. Relevance of co-operation between automotive industry and educational institutions is noticed in the article, too. Furthermore, history of automotive industry in Slovakia is outlined in the article. Main part of the article is focused on project AUTOCLUSTERS.

  13. Potential automotive uses of wrought magnesium alloys

    SciTech Connect

    Gaines, L.; Cuenca, R.; Wu, S.; Stodolsky, F. |

    1996-06-01

    Vehicle weight reduction is one of the major means available to improve automotive fuel efficiency. High-strength steels, aluminum (Al), and polymers are already being used to reduce weight significantly, but substantial additional reductions could be achieved by greater use of low-density magnesium (Mg) and its alloys. Mg alloys are currently used in relatively small quantities for auto parts, generally limited to die castings (e.g., housings). Argonne National Laboratory`s Center for Transportation Research has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel/aluminum for automotive structural and sheet applications. Mg sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. This study identifies high cost as the major barrier to greatly increased Mg use in autos. Two technical R and D areas, novel reduction technology and better hot-forming technology, could enable major cost reductions.

  14. Crashworthiness simulation of composite automotive structures

    SciTech Connect

    Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

  15. Automotive Fuel and Carburetor; Automotive Mechanics 3: 9047.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help students become employable with the skills, knowledge, attitudes, and values necessary for performing the required services of the automotive fuel and carburetor systems mechanic. The course is an introduction to the automobile fuel and carburetion systems. Basic manipulative…

  16. Fracture testing and analysis of adhesively bonded joints for automotive applications

    SciTech Connect

    Boeman, R.G.; Warren, C.D.

    1994-12-31

    In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative effort with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. This paper concentrates on the details of developing accurate fracture test methods for adhesively bonded joints in the automotive industry. The test methods being developed are highly standardized and automated so that industry suppliers will be able to pass on reliable data to automotive designers in a timely manner. Mode I fracture tests have been developed that are user friendly and automated for easy data acquisition, data analysis, test control and test repeatability. The development of this test is discussed. In addition, materials and manufacturing issues are addressed which are of particular importance when designing adhesive and composite material systems.

  17. Readings in the Automotive Trade.

    ERIC Educational Resources Information Center

    DiGise, Joe

    Designed for reluctant readers in vocational high school, this selection of readings emphasizes general information about the automotive trade. Articles have been selected from a variety of auto magazines and trade journals. Each article is followed by an assortment of exercises designed to enable the student to further develop vocabulary and…

  18. Automotive Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in automotive technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and are used…

  19. Readings in the Automotive Trade.

    ERIC Educational Resources Information Center

    DiGise, Joe

    Designed for reluctant readers in vocational high school, this selection of readings emphasizes general information about the automotive trade. Articles have been selected from a variety of auto magazines and trade journals. Each article is followed by an assortment of exercises designed to enable the student to further develop vocabulary and…

  20. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  1. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  2. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  3. Automotive Technology. Technical Committee Report.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This Technical Committee Report prepared by industry representatives in Idaho lists the skills currently necessary for an employee in that state to obtain a job in automotive technology, retain a job once hired, and advance in that occupational field. (Task lists are grouped according to duty areas generally used in industry settings, and are used…

  4. Automotive Technologies. State Competency Profile.

    ERIC Educational Resources Information Center

    Ohio Board of Regents, Columbus.

    This document, which lists the technical automotive technologies competencies identified by representatives from business, industry, and labor as well as technical educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through post-secondary…

  5. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  6. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  7. Automotive Electronics. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Mackert, Howard C.; Heiserman, Russell L.

    This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…

  8. Visualization of complex automotive data.

    PubMed

    Stevens, Jeffrey A

    2007-01-01

    Making complicated data easier to understand has always been a challenge. Four types of visualization applications (CAD, generalized, specialized, and custom) have successfully been used by automotive manufacturers such as General Motors to help meet this goal. Here are some ways that common processes can be developed for all types of visualization.

  9. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  10. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  11. I. Textural/Structural tuning and nanoparticle stabilization of copper-containing nanocomposite materials. II. Generation of reducing agents for automotive exhaust gas purification via the processing of hydrocarbons in a PACT (plasma and catalysis integrated technologies) reactor

    NASA Astrophysics Data System (ADS)

    Xing, Yu

    This research consists of two parts. The first part deals with the preparation and properties of copper-containing nanocomposite materials. For studies of textural tuning, structural tuning, or material sintering, copper/aluminum and copper/zinc nanocomposites were prepared via various inorganic synthesis methods including conventional coprecipitation methods and a novel urea-gelation/thermal-modification method that produces narrow distributions of pore sizes, high surface areas, and significantly higher specific metal loadings. Solid-solid reaction analysis and differential scanning calorimetry (DSC) analysis were developed for the determination of the mixing homogeneities of the copper/aluminum nanocomposites. A sintering experiment at 250-600°C for 350 h under methanol-steam reforming conditions was carried out to compare the stability of supported Cu0 nanoparticles. The mixing homogeneities of CuO/Al2O3 nanocomposites significantly affected the thermal stability of their reduced Cu0 crystallites. Creation of relatively narrow distributions of pore sizes with relatively small major pore diameters (e.g., 3.5 nm) can also be used for the stabilization of supported Cu0 nanoparticles. The supported nanoparticles with a relatively small initial size cannot ensure good thermal stability. A "hereditary" character on the homogeneity of copper/aluminum nanocomposites was revealed. Stepwise reduction and reoxidation were studied for the structural tuning and purification of Cu-Al-O spinels with isotropic and gradual unit-cell contractions. The second part of the research deals with the processing of hydrocarbons. Conversion of a model hydrocarbon (n-hexane or n-octane) in an AC discharge PACT (plasma and catalysis integrated technologies) reactor was verified to be an effective method to instantly produce reducing agents (e.g., hydrogen or/and light alkanes and alkenes), at room temperature and atmospheric pressure for automotive exhaust gas purification. Effects of

  12. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  13. Army National Automotive Center

    DTIC Science & Technology

    2007-12-07

    FY09-15 $122M FY09-15 $27M FY09-15 $121M FY09-15 $142M • TARDEC is guiding the design to maximize energy conservation and use of alternative ... energies , materials and other aspects of building design and sustainment. • Goal is to attain a minimum of Leadership in Energy and Environmental Design

  14. Automotive Stirling engine systems development

    NASA Technical Reports Server (NTRS)

    Richey, A. E.

    1984-01-01

    The objective of the Automotive Stirling Engine (ASE) program is to develop a Stirling engine for automotive use that provides a 30 percent improvement in fuel economy relative to a comparable internal-combustion engine while meeting emissions goals. This paper traces the engine systems' development efforts focusing on: (1) a summary of engine system performance for all Mod I engines; (2) the development, program conducted for the upgraded Mod I; and (3) vehicle systems work conducted to enhance vehicle fuel economy. Problems encountered during the upgraded Mod I test program are discussed. The importance of the EPA driving cycle cold-start penalty and the measures taken to minimize that penalty with the Mod II are also addressed.

  15. Recycling used automotive oil filters

    NASA Astrophysics Data System (ADS)

    Peaslee, Kent D.

    1994-02-01

    Over 400 million used automotive oil filters are discarded in the United States each year, most of which are disposed of in landfills wasting valuable resources and risking contamination of ground- and surface-water supplies. This article summarizes U.S. bureau of Mines research evaluating scrap prepared from used automotive oil filters. Experimental results show that crushed and drained oil filters have a bulk density that is higher than many typical scrap grades, a chemical analysis low in residual elements (except tin due to use of tin plate in filters), and an overall yield, oil-filter scrap to cast steel, of 76% to 85%, depending on the method used to prepare the scrap.

  16. Rejuvenation of automotive fuel cells

    SciTech Connect

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  17. Combustor development for automotive gas turbines

    NASA Technical Reports Server (NTRS)

    Ross, P. T.; Williams, J. R.; Anderson, D. N.

    1982-01-01

    The development of a combustion system for the AGT 100 automotive gas turbine engine is described. A maximum turbine inlet temperature of 1288 C is reached during the regenerative cycle, and air up to 1024 C is supplied to the combustor inlet. A premix/prevaporization ceramic combustor employing variable geometry to control burning zone temperature was developed and tested. Tests on both metal and ceramic combustors showed that emissions were a function of burner inlet temperature (BIT). At 999 C BIT, NO(x) emissions were two orders of magnitude below program goals, and at the same temperature but at a different variable geometry position, the CO was 30 times below program goal. Tests to evaluate the durability of the ceramic materials showed no failures during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  18. AGT101 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  19. Visual comparison testing of automotive paint simulation

    NASA Astrophysics Data System (ADS)

    Meyer, Gary; Fan, Hua-Tzu; Seubert, Christopher; Evey, Curtis; Meseth, Jan; Schnackenberg, Ryan

    2015-03-01

    An experiment was performed to determine whether typical industrial automotive color paint comparisons made using real physical samples could also be carried out using a digital simulation displayed on a calibrated color television monitor. A special light booth, designed to facilitate evaluation of the car paint color with reflectance angle, was employed in both the real and virtual color comparisons. Paint samples were measured using a multi-angle spectrophotometer and were simulated using a commercially available software package. Subjects performed the test quicker using the computer graphic simulation, and results indicate that there is only a small difference between the decisions made using the light booth and the computer monitor. This outcome demonstrates the potential of employing simulations to replace some of the time consuming work with real physical samples that still characterizes material appearance work in industry.

  20. Current and Future Uses of Aluminum in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Long, R. S.; Boettcher, E.; Crawford, D.

    2017-08-01

    Aluminum use is growing in automotive closures and body in white applications to improve vehicle performance and fuel economy. The auto industry is looking for higher-strength aluminum materials needed for strength-driven safety-critical parts. Through cooperation with industrial partners and support from the Department of Energy (DOE), multiple experimental 7xxx alloys were developed for automotive applications. The objective is to enable complex shapes to be formed at temperatures below 225°C. A demonstration part has been developed that is representative of the forming challenges within a current hot-stamped door ring component. This part tooling has been built and installed into a press line which includes blank heating and robotic transfer. Forming trials of these alloys are currently underway and the formability, strength and corrosion performance of these materials are being evaluated.

  1. AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREWFEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREW-FEED COAL HOPPER ON RIGHT SIDE, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  2. AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP OFFICE AND SOUTH WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  3. AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON SOUTH SIDE OF SOUTH WING. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  4. AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING WOOD EAVE AND STUCCO RAKEBOARD ON GABLE END, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  5. AUTOMOTIVE REPAIR SHOP, DETAIL OF FABRICATING PRESS IN EAST END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF FABRICATING PRESS IN EAST END OF MAIN WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  6. AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREWFEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF MILLS COAL BOILER WITH SCREW-FEED COAL HOPPER ON RIGHT SIDE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  7. AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, DETAIL OF BUILDING CORNER (MAIN WING) SHOWING WOOD EAVE AND STUCCO RAKEBOARD ON GABLE END. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  8. AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, SLIDING DOOR LEADING TO BOILER ROOM ON SOUTH SIDE OF SOUTH WING, WITH SCALE. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  9. AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMOTIVE REPAIR SHOP, INTERIOR VIEW TO SOUTHEAST, DOORWAYS TO SHOP OFFICE AND SOUTH WING. - Cedar City Automotive Repair Shop, Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  10. High-Temperature Alloys for Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Titran, R. H.

    1986-01-01

    Stirling engine is external-combustion engine that offers fuel economy, low emissions, low noise, and low vibrations. One of most critical areas in engine development concerns material selection for component parts. Alloys CG-27 and XF-818 identified capable of withstanding rigorous requirements of automotive Stirling engine. Alloys chosen for availability, performance, and manufacturability. Advanced iron-base alloys have potential for variety of applications, including stationary solar-power systems.

  11. Investigation on hardness and impact resistance of automotive brake pad composed with rice husk dust

    NASA Astrophysics Data System (ADS)

    Bahari, Shahril Anuar; Isa, Khairul Hafizee; Kassim, Masitah Abu; Mohamed, Zulkifli; Othman, Eliasidi Abu

    2012-06-01

    In this study, hardness and impact resistance properties of automotive brake pad composed with rice husk dust (RHD) were documented. RHD was mixed with other metallic and synthetic ingredients of automotive brake pad. To obtain RHD, rice husk was ground and dried to 1 - 3% moisture content. The RHD was screened to obtain different dust sizes (80 and 100-mesh) before it was mixed with other materials at different percentages of composition (10 and 30%). The mixture was then pressed to produce brake pad. Rockwell hardness testing machine was used in hardness determination, while Izod impact testing machine was used in impact resistance determination. Hardness resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was significantly higher than 100-mesh. Hardness resistance of automotive brake pad mixed with 30% composition and 100-mesh size of RHD was slightly higher than 80 mesh. However, based on analysis, the difference was not significant. According to the result, hardness resistance of automotive brake pad mixed with 30% composition of RHD was higher than 10%. RHD has filled up the space and enhanced the micro structural behaviour of automotive brake pad. Impact resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was insignificantly higher than 100-mesh. Impact resistance of automotive brake pad mixed with 30% composition and 80-mesh size of RHD was significantly higher than 100 mesh. Large RHD size has increased the capability to resist high-rated impact loading. The impact energy was distributed over wider area for larger particle size. This factor has increased the impact resistance of automotive brake pad from large dust size. Impact resistance of automotive brake pad mixed with 80-mesh size and 30% composition of RHD was higher than 10%. In contrast, impact resistance of automotive brake pad mixed with 100-mesh size and 10% composition of RHD was higher than 30%. However, the difference was not

  12. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  13. Standardized Curriculum for Automotive Body Repair.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive body repair I and II. The nine units in automotive body repair I are as follows: introduction; related information; basic tool usage and safety; body and frame construction; basic sheet metal repair; preparing for…

  14. Using Technology to Enhance an Automotive Program

    ERIC Educational Resources Information Center

    Ashton, Denis

    2009-01-01

    Denis Ashton uses technology in his automotive technology program at East Valley Institute of Technology (EVIT) to positively impact student outcomes. Ashton, the department chair for the automotive programs at EVIT, in Mesa, Arizona, says that using an interactive PowerPoint curriculum makes learning fun for students and provides immediate…

  15. An Analysis of the Automotive Service Occupation.

    ERIC Educational Resources Information Center

    Winfrey, Prince J.; Morse, David L.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the automotive service advisor occupation. The automotive service advisor is responsible primarily for sales and services and at the same time may be called upon to supervise other service center…

  16. Vibration reduction on automotive shafts using piezoceramics

    NASA Astrophysics Data System (ADS)

    Kunze, Holger; Riedel, Mathias; Schmidt, Knut; Bianchini, Emanuele

    2003-08-01

    This paper reports an experimental study on active vibration reduction for automotive shafts with the use of piezoelectric material. The work focuses on an axle of an Audi A2. The demand in the automobile sector for higher comfort in the vehicle is of a great importance alongside the requirements of lighter weight and low fuel consumption. These requirements are typically in conflict with each other. One solution is the use of intelligent materials instead of viscoelastic materials and proof mass absorbers. These solutions are quite heavy especially at low frequencies. Active vibration control and piezoelectric devices are advantageous in this application due to their low mass to performance ratio. Our research study explores the use of such piezoelectric devices for an axle. In conjunction with electronics it will reduce vibrations in the first natural bending mode of the axle. Laboratory tests simulated the condition present in the road. At first a stationary set up was used, then a simulated disturbance was input at the attachment points of the shaft. Finally, a test with rotating shaft was performed. Piezoelectric devices (custom QuickPacks from ACX, a Division of Cymer) were used as sensors and as actuators to properly control the axle during the different operating conditions. The power consumption of each actuator pair was less than 20W. The work described here details the test setup, the control strategy, the hardware implementation as well as the test results obtained.

  17. Nano-crystalline P/M aluminium for automotive applications

    NASA Astrophysics Data System (ADS)

    Hummert, K.; Schattevoy, R.; Broda, M.; Knappe, M.; Beiss, P.; Klubberg, F.; Schubert, T. H.; Leuschner, R.

    2009-01-01

    The reduction of total vehicle weight and lowering of moving masses within the engine are key elements to overcome future emission challenges of the automotive industry. Within a German BMBF funded project the melt spinning technology will be driven to a series production status. The very fast cooling condition of the melt leads to a nano-structure of the aluminium material. This results in new material properties of known alloys. The strength increases dramatically without lowered forming behaviour. With this process the freedom of designing complex alloys is very flexible. Different alloys have been investigated for several applications, where high strength at room and elevated temperatures and/or high wear resistance is required. This paper presents some results regarding the processing, microstructure and mechanical properties of a developed Al-Ni-Fe alloy. This joined research project with partners from the automotive industry as well as automotive suppliers and universities is funded by the German BMBF "NanoMobile" Program under Project number 03X3008.

  18. Prospects of metal science in the automotive industry

    NASA Astrophysics Data System (ADS)

    Gliner, R. E.

    1997-10-01

    In January 1932, the first trucks rolled off the assembly line at the Gorky Automotive Plant (GAZ). In the past 65 years, the makes of trucks and cars and the way they are manufactured have changed more than once, but the range of metal-science problems that have to be tackled at the GAZ has remained unchanged. These are the choice of materials, heat-treatment schedules, and test techniques. Now that new economic relations have come to govern the market and the opportunity exists for user-oriented control over the quality of the metal supplied, the GAZ metal scientists have a stronger leverage through which they can assure the efficient use of metals and thus to promote metal science, one of the basic sciences serving the automotive industry.

  19. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.

  20. Space Software for Automotive Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    John Thousand of Wolverine Western Corp. put his aerospace group to work on an unfamiliar job, designing a brake drum using computer design techniques. Computer design involves creation of a mathematical model of a product and analyzing its effectiveness in simulated operation. Technique enables study of performance and structural behavior of a number of different designs before settling on a final configuration. Wolverine employees attacked a traditional brake drum problem, the sudden buildup of heat during fast and repeated braking. Part of brake drum not confined tends to change its shape under combination of heat, physical pressure and rotational forces, a condition known as bellmouthing. Since bellmouthing is a major factor in braking effectiveness, a solution of problem would be a major advance in automotive engineering. A former NASA employee, now a Wolverine employee, knew of a series of NASA computer programs ideally suited to confronting bellmouthing. Originally developed as aids to rocket engine nozzle design, it's capable of analyzing problems generated in a rocket engine or automotive brake drum by heat, expansion, pressure and rotational forces. Use of these computer programs led to new brake drum concept featuring a more durable axle, and heat transfer ribs, or fins, on hub of drum.

  1. Development process of automotive microsensors

    NASA Astrophysics Data System (ADS)

    Tang, William C.

    1995-05-01

    The phased product development approach can be applied advantageously to develop and manufacture automotive microsensors. The phased approach involves a multifunctional team from innovation to development to eventual production and maintenance phases. The key advantage of this approach is the shortened development cycle and fast product introduction, while minimizing waste of resources and lowering risk of product failure. When applied to the product cycles of automotive sensors based on micromachining technology, this approach elucidates several critical considerations. In particular, since industrial application of micromachining technology is still at the infant stage, standards and design rules are not firmly established. Therefore, several important activities must be initiated simultaneously from the start of the innovation phase, which proves to be crucial to the prudent decision of technology alternatives and sensor system configuration. The use of a multifunctional team, as mandated in the phased approach, enables coherent development and optimization of the sense element, the fabrication technology, the packaging approach, the interface circuit configuration, and design features that allow efficient test and assembly flow. Also, with intermediate milestones within each phase, risk assessment and necessary midcourse adjustment to technology trade- offs can be both timely and accurate. Accelerometers, one of the most developed micromachined sensors, serve as representative examples that illustrate how the phased approach can benefits the commercialization of the newly established and rapidly expanding field of micromechanics.

  2. Holography for automotive head-up displays

    NASA Astrophysics Data System (ADS)

    Ramsbottom, Andrew P.; Sergeant, Shirley A.; Sheel, David W.

    1992-05-01

    There is increasing interest in head-up-displays (HUDs) for automotive use. A number of technologies could be employed for the combiner function including plain glass reflection, dielectric enhancement, and holography. This paper will consider the potential role for conformal holography as the combiner element by initially reviewing the system requirements from an optical design view, how these differ significantly from an avionic HUD, and how they relate to material characteristics and process features. This will involve a consideration in some detail of the effects of specified hologram properties and lamination features on the optical performance and image characteristic of a car HUD. In particular, we shall examine such features as hologram efficiency, bandwidth, tuning position, environmental stability, tolerances, and film lamination effects and how these may influence the key optical characteristics of the image, i.e., distortions, blur, brightness, double imaging (separation and contrast) outside world view, etc.. A theoretical model based on Kogelnik coupled wave theory will be used to illustrate the various tradeoffs between hologram properties and process, image features, and display characteristics (bandwidth, polarization, etc.). This analysis will be related to properties of currently available holographic materials with reference to recent experimental work.

  3. Wear-resistant nodular iron for automotive piston rings

    NASA Astrophysics Data System (ADS)

    Vatavuk, J.; Mariano, J. R.

    1992-01-01

    Progress in automotive engine development demands new cost-effective materials with higher mechanical properties and improved wear resistance as compared to existing materials. For example, niobium, as niobium carbide, improves the wear resistance of a typical nodular iron used for piston rings. Niobium prompts the precipitation of stable and hard niobium carbides in the liquid; these particles do not interfere with the subsequent heat treatment of the iron. Industrial production of new niobium-alloyed piston rings was accomplished with a minimum of disruption in normal production processes.

  4. T & I--Automotive Body Repair. Kit No. 49. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Lanford, Frank

    An instructor's manual and student activity guide on automotive body repair are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  5. History and evolution of warning labels for automotive friction products.

    PubMed

    Kopelovich, Luda M; Thuett, Kerry A; Chapman, Pamela S; Paustenbach, Dennis J

    2014-04-01

    There have been claims over the years that asbestos-containing product manufacturers did not sufficiently warn end users early enough regarding the potential health hazards associated with their products (1930s-1990s). To address this issue, we compared the content of the warnings associated with asbestos-containing friction products (brakes, clutches, and gaskets) manufactured by the US automotive industries to what was expected by regulatory agencies during the time period in which an understanding of asbestos health hazards was being developed. We ended our evaluation around 1990, since asbestos-containing manufacturer supplied automotive products were functionally removed from commerce by 1985 in the United States. We assessed the warnings issued in users' manuals, technical service bulletins, product packaging materials, and labels placed on products themselves. Based on our evaluation, regulatory agencies had no guidelines regarding specific warning language for finished friction products, particularly when a product contained encapsulated asbestos fibers (i.e., modified by a bonding agent). Even today, federal regulations do not require labeling on encapsulated products when, based on professional judgment or sampling, user exposure is not expected to exceed the OSHA PEL. We concluded that, despite limited regulatory guidance, the US automotive industry provided adequate warnings with regards to its friction products.

  6. MSc degree in color technology for the automotive sector

    NASA Astrophysics Data System (ADS)

    Martinez-Verdu, F.; Perales, E.; Chorro, E.; Viqueira, V.; Gilabert, E.

    2014-07-01

    Nowadays, the measurement and management of color quality of the gonio-apparent materials is complex, but highly demanded in many industrial sectors, as automotive, cosmetics, plastics for consumer electronics, printing inks, architectural coatings, etc. It is necessary to control complex instrumentation and to do visual assessments of texture and color differences to get, for instance, a visual harmony in car bodies; and a profound knowledge of physics and chemistry of special-effect pigments for their optical formulation to obtain attractive visual effects in coatings, plastics, etc, combining among them and with solid pigments. From University of Alicante, for the academic year 2013-14, we are organizing the first MSc degree in Color Technology for the Automotive Sector, with a design of contents embracing CIE colorimetry and visual perception, included the AUDI2000 color difference formula, instrumentation and color management software, fundamentals of coatings and plastics in the automotive sector, and, optical formulation of pigments. The MSc syllabus, with 60 ECTS, is designed to be taught in two semesters: from September to February with on classroom theoretical and practical activities, and, from March to June at virtual level, with internships of training in some companies. Therefore, the MSc Thesis would be the performance report during the internship in companies or research institutions. Some multinational companies, both as car makers and coatings and plastics providers, from European and non-European countries have already shown their support and interest in welcoming students for specific training, even some job offers when the first MSc edition finishes.

  7. Supercharging system for automotive engines

    SciTech Connect

    Yamada, T.; Yabuhara, H.; Takimoto, F.

    1988-03-15

    A supercharging system for an automotive engine is described comprising: a turbocharger driven by exhaust-gas of the engine; a supercharger; an intake passage connecting the turbocharger and the supercharger in series, for supplying air to the engine; driving means for driving the supercharger by the engine; clutch means provided in the driving means; a first bypass provided around the supercharger; a control valve provided in the first bypass; a second bypass provided around the turbine of the turbocharger; a waste gate valve provided in the second bypass; a first actuator for operating the control valve; a second actuator for operating the waste gate valve; first means for operating the second actuator to open the waste gate valve when supercharging pressure exceeds a predetermined value; an engine speed sensor for detecting speed of the engine; an engine load sensor for detecting load on the engine; and a control unit.

  8. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.

  9. Automotive Sectors (NAICS 336, 4231, 8111)

    EPA Pesticide Factsheets

    Find regulatory, compliance, and enforcement information for environmental laws and regulations for the automotive sectors, which includes transportation equipment manufacturing, and establishments involved in repair and maintenance services for vehicles

  10. 78 FR 36633 - National Automotive Sampling System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... upgrade the National Automotive Sampling System (NASS) by improving the information technology (IT...; Modernize the information technology (IT) infrastructure; Re-examine the electronic formats in which the..., provide information on the new sample design and describe the information ] technology...

  11. Analysis of the potential for new automotive uses of wrought magnesium

    SciTech Connect

    Gaines, L.; Cuenca, R.; Wu, S.; Stodolsky, F. |

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  12. Durability of a continuous strand mat polymeric composite for automotive structural applications

    SciTech Connect

    Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.; Simpson, W.A. Jr.

    1995-12-31

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failure behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.

  13. Combustor development for automotive gas turbines

    SciTech Connect

    Ross, P.T.; Anderson, D.N.; Williams, J.R.

    1983-09-01

    This paper describes the development of a combustion system for the AGT 100 automotive gas turbine engine. The AGT 100 is a 100 hp engine being developed by Detroit Diesel Allison Division of General Motors Corporation. To achieve optimum fuel economy, the AGT 100 engine operates on a regenerative cycle. A maximum turbine inlet temperature of 1288/sup 0/C (2350/sup 0/F) is reached, and air is supplied to the inlet of the combustor at temperatures as high as 1024/sup 0/C (1875/sup 0/F). To meet the low-emission and high-durability requirements at these conditions, a premix/prevaporization ceramic combustor employing variable geometry to control the temperature in the burning zone has been developed. A test section capable of handling 1024/sup 0/C (1875/sup 0/F) inlet air was designed and fabricated to evaluate this combustor. Testing of both metal (transpiration cooled) and ceramic combustors was conducted. Emissions were measured and found to be a function of burner inlet temperature. At 999/sup 0/C (1830/sup 0/F) burner inlet temperature, NO /SUB x/ emissions were two orders of magnitude below the program goals. At the same temperature but at a different variable-geometry position, the CO was 30 times below the program goal. Considerable testing was conducted to evaluate the behavior of the ceramic materials used in the combustor. No failures occurred during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  14. Automotive shredder residue (ASR) management: An overview.

    PubMed

    Cossu, R; Lai, T

    2015-11-01

    On the basis of statistical data, approximately 6.5 million tons of ELVs were produced in Europe in 2011. ELVs are processed according to a treatment scheme comprising three main phases: depollution, dismantling and shredding. The ferrous fraction represents about 70-75% of the total shredded output, while nonferrous metals represent about 5%. The remaining 20-25% is referred to as automotive shredder residue (ASR). ASR is largely landfilled due to its heterogeneous and complex matrix. With a start date of January 1st 2015, the European Directive 2000/53/EC establishes the reuse and recovery of a minimum of 95% ELV total weight. To reach these targets various post-shredder technologies have been developed with the aim of improving recovery of materials and energy from ASR. In order to evaluate the environmental impacts of different management options of ELVs, the life cycle assessment (LCA) methodology has been applied taking into account the potential implication of sustainable design of vehicles and treatment of residues after shredding of ELVs. Findings obtained reveal that a combination of recycling and energy recovery is required to achieve European targets, with landfilling being viewed as the least preferred option. The aim of this work is to provide a general overview of the recent development of management of ELVs and treatment of ASR with a view to minimizing the amount of residues disposed of in landfill.

  15. Carbon footprint of automotive ignition coil

    NASA Astrophysics Data System (ADS)

    Chang, Huey-Ling; Chen, Chih-Ming; Sun, Chin-Huang; Lin, Hung-Di

    2015-07-01

    In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissions during the life cycle of a product to lessen its impact on environment is an important topic in the industrial society. Furthermore, it is also of great significance to cut down the required energy so as to lower its production costs during the manufacturing process nowadays. This study presents the carbon footprint of an automotive ignition coil and its partial materials are defined to explore their carbon emissions and environmental impact. The model IPCC GWP100a calculates potential global greenhouse effect by converting them into CO2 equivalents. In this way, the overall carbon footprint of an ignition coil can be explored. By using IPCC GWP100a, the results display that the shell has the most carbon emissions. The results can help the industry reduce the carbon emissions of an ignition coil product.

  16. Investigation of metallurgical coatings for automotive applications

    NASA Astrophysics Data System (ADS)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  17. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson... have occurred involving workers in support of the Anderson, South Carolina location of Plastic Omnium...

  18. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    ERIC Educational Resources Information Center

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  19. Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…

  20. Automotive Refinishing II; Automotive Body Repair and Refinishing 2: 9035.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Part of the Dade County Public School (Florida)Quinmester Program, the automotive refinishing course outline is a continuation of automotive refinishing 1 and emphasizes the practical application of color coating and sheet metal refinishing. Overall refinishing with enamels, lacquers, and acrylics are included as well as spot repair painting and…

  1. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  2. Automotive History and Development of the Automobile; Automotive Mechanics I: 9043.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The automotive history and development of the automobile course is designed to familiarize the beginning student with basic concepts common to the automobile history and general information that is required for successful advancement in the automotive mechanics field. A course outline is provided and seven pages of post-tests are included in the…

  3. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    ERIC Educational Resources Information Center

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  4. NASA/DOE automotive Stirling engine project. Overview 1986

    SciTech Connect

    Beremand, D.G.; Shaltens, R.K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and midifications thereto, have accumulated over 15 000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  5. DOE/NASA automotive Stirling engine project - Overview 86

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  6. Parametric study on the performance of automotive MR shock absorbers

    NASA Astrophysics Data System (ADS)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  7. Drawn arc aluminum stud welding for automotive applications

    NASA Astrophysics Data System (ADS)

    Ramasamy, S.

    2002-08-01

    Federal regulations have been enacted to significantly reduce atmospheric pollution caused by motor vehicles. This forced the automotive manufacturers to improve fuel efficiency of cars and light trucks by using lightweight materials such as aluminum. The focus of the current study is to develop welding procedures using the drawn arc process for 5754-0 and 6061-T6 aluminum alloys. The mechanical and macrostructural characteristics of the welded joints were evaluated using tensile tests, torque tests, and optical microscopy. Preliminary study indicates that these alloys can be welded with a minimal amount of porosity and good mechanical properties.

  8. NASA/DOE automotive Stirling engine project: Overview 1986

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  9. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  10. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The third quarter (April-June, 1978) effort of the Ford/DOE Automotive Stirling Engine Development Program is reported, specifically Task 1 of that effort, which is Fuel Economy Assessment. At the end of this quarter the total fourth generation fuel economy projection was 26.12 MPG (gasoline) with a confidence level of 44%. This represents an improvement of 66.4% over the baseline M-H fuel economy of 15.7 MPG. The confidence level for the original 20.6 MPG goal has been increased from 53% to 57%. Engine 3X17 has accumulated a total of 213 hours of variable speed running. A summary of the individual sub-tasks of Task 1 are given. The sub-tasks are grouped into two categories: Category 1 consists of those sub-tasks which are directly related to fuel economy and Category 2 consists of those sub-tasks which are not directly related to fuel economy but are an integral part of the Task 1 effort.

  11. User discrimination in automotive systems

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-03-01

    The recently developed dual-view touch screens, which are announced to be installed in cars in a near future, give rise to completely new challenges in human-machine interaction. The automotive system should be able to identify if the driver or the passenger is currently interacting with the touch screen to provide a correct response to the touch. The optical devices, due to availability, acceptance by the users and multifunctional usage, approved to be the most appropriate sensing technology for driver/passenger discrimination. In this work the prototypic optical user discrimination system is implemented in the car simulator and evaluated in the laboratory environment with entirely controlled illumination. Three tests were done for this research. One of them examined if the near-infrared illumination should be switched on around the clock, the second one if there is a difference in discrimination performance between day, twilight and night conditions, and the third one examined how the intensive directional lighting influences the performance of the implemented user discrimination algorithm. Despite the high error rates, the evaluation results show that very simple computer vision algorithms are able to solve complicated user discrimination task. The average error rate of 10.42% (daytime with near-infrared illumination) is a very promising result for optical systems.

  12. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  13. Methods of suppressing automotive interference

    NASA Astrophysics Data System (ADS)

    Taggart, H. E.

    1981-11-01

    Automotive manufacturers utilize several techniques to reduce EMI emanating from the vehicle. The techniques include resistor spark plugs, resistor spark plug cables, use of silicone lubricant in the distributor, use of capacitors as filters, placement of grounding straps at key locations, conductive fan belt discharge, and tire static-charge reduction. If even further reduction is needed to obtain the maximum capability of a specific mobile communication system, additional suppression techniques are discussed which are effective at frequencies from approximately 30 to 1000 MHz. Measurement results show that the EMI from a new production-line automobile, measured in accordance with SAE Standard J551g, can be reduced as much as 10 to 15 dB by employing these suppression techniques. The amount of degradation to a mobile narrow-band FM receiver, such as the type used by law enforcement agencies, can be measured using the measurement technique described. This same technique can then be used as a tool to further reduce EMI from the vehicle components.

  14. Global sustainability and key needs in future automotive design.

    PubMed

    McAuley, John W

    2003-12-01

    The number of light vehicle registrations is forecast to increase worldwide by a factor of 3-5 over the next 50 years. This will dramatically increase environmental impacts worldwide of automobiles and light trucks. If light vehicles are to be environmentally sustainable globally, the automotive industry must implement fundamental changes in future automotive design. Important factors in assessing automobile design needs include fuel economy and reduced emissions. Many design parameters can impact vehicle air emissions and energy consumption including alternative fuel or engine technologies, rolling resistance, aerodynamics, drive train design, friction, and vehicle weight. Of these, vehicle weight is key and will translate into reduced energy demand across all energy distribution elements. A new class of vehicles is needed that combines ultra-light design with a likely hybrid or fuel cell engine technology. This could increase efficiency by a factor of 3-5 and reduce air emissions as well. Advanced lightweight materials, such as plastics or composites, will need to overtake the present metal-based infrastructure. Incorporating design features to facilitate end-of-life recycling and recovery is also important. The trend will be towards fewer materials and parts in vehicle design, combined with ease of disassembly. Mono-material construction can create vehicle design with improved recyclability as well as reduced numbers of parts and weight.

  15. The Formability of Friction Stir Welds in Automotive Stamping Environments

    SciTech Connect

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; wazny, scott; Kaunitz, Leon; Waldron, D.

    2005-04-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arrise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir woined, aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  16. The Formability of Friction Stir Welds in Automotive Stamping Environments

    SciTech Connect

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; Wazny, Scott; Kaunitz, Leon; Waldron, Douglas J.

    2006-02-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir welded aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  17. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  18. Articulated, Performance-Based Instruction Objectives Guide for Automotive Mechanics. Final Document. Revised.

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr.

    Developed during a project designed to provide continuous, performance-based vocational training at the secondary and postsecondary levels, this instructional guide is intended to help teachers implement a laterally and vertically articulated secondary level automotive mechanics program. Introductory materials include descriptions of Automotive…

  19. 75 FR 41521 - Delphi Corporation, Automotive Holding Group, Plant 6, Currently Known as General Motors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ..., Flint, Michigan and Delphi Corporation, Automotive Holding Group, Plant 2, including on-site leased workers from Securitas, EDS, Bartech and Mays Chemicals, Flint, ] Michigan. The Department's Notice of..., Mays Chemicals, Interim Physicians, LLC and HSS Material Management, Flint, Michigan (TA-W-62,069) and...

  20. Platinum availability for future automotive technologies.

    PubMed

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-04

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users.

  1. View of automotive repair and gas station, facing southwest from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of automotive repair and gas station, facing southwest from across Pope Street. Garage built for storage of employee automobiles in left background - Automotive Repair & Gas Station, Southwest corner of Pope Street & Olympic Avenue, Port Gamble, Kitsap County, WA

  2. Lube rack of Automotive and Tractor Repair Shops with Warehousefield ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lube rack of Automotive and Tractor Repair Shops with Warehouse-field Equipment Repair Shop Building's wall to the right, looking from the south - Kekaha Sugar Company, Automotive and Tractor Repair Shops, 8315 Kekaha Road, Kekaha, Kauai County, HI

  3. View of south elevation of Automotive and Tractor Repair Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of south elevation of Automotive and Tractor Repair Shops with the Warehouse Fabrication Shop and Stack in the background, looking from the southwest - Kekaha Sugar Company, Automotive and Tractor Repair Shops, 8315 Kekaha Road, Kekaha, Kauai County, HI

  4. Concepts for particle foam based ultralight automotive interior parts

    NASA Astrophysics Data System (ADS)

    Trassl, C.; Altstädt, V.; Schreier, P.

    2014-05-01

    The described concepts for modern automotive interior parts are based on polypropylene (PP). These interior parts have a core of expanded polypropylene particle foam (EPP) and a decorative layer of a thermoplastic polyolefin elastomer (TPO) film. Compared with conventional solutions in the field of automotive interior parts, they are characterised mainly due to the avoidance of material mixtures so that they have better recycling properties and are significantly lighter in spite of comparable crash behaviour. Because of the optimized combination of positive component properties (specifically, the rigidity of the carrier, lower density combined with the better crash behaviour of the EPP foam core and good haptic and optical properties of the film), the multi-material system compensates the disadvantages of the individual components. In addition, the integration of all process steps into a new single-step manufacturing process combined with the elimination of an additional surface treatment means that the new ultra-light concept should lead to a significant reduction in the costs and cycle time.

  5. Springback Prediction, Compensation and Correlation for Automotive Stamping

    NASA Astrophysics Data System (ADS)

    Xu, Siguang; Zhao, Kunmin; Lanker, Terry; Zhang, Jimmy; Wang, C. T.

    2005-08-01

    To reduce weight and increase fuel efficiency and safety, more and more automotive sheet stamping parts are being made of aluminum and high strength steels. Forming of such materials encounters not just reduced formability but also dimensional quality problems. Springback prediction accuracy and compensation effectiveness have been the major challenge to die development, construction and tryout. In this paper, the factors that affect the accuracy of springback prediction are discussed, which includes the effect of material models, the selection of element size, and the contact algorithms. Springback predictions of several automotive aluminum and high strength panels are compared with measurement data. The examples show that the prediction correlates with measurement data in both springback trend and magnitude. The effect of springback on final product can be reduced or eliminated through process control and die face compensation. The process control method involves finding the root causes of springback and eliminating them through process modification. The geometrical compensation of die surface is a direct way to eliminate the springback effect. The global scaling compensation method is normally limited to parts with relatively small springback. For large springback and twisting, a new approach is discussed, which takes into account of the effect of deformation and springback history. The compensation is achieved iteratively by solving a system of non-linear equations. Production dies were cut to the compensated surface, which shows that the die compensation is an efficient way to reduce springback-induced geometry deviation.

  6. Johnson-Cook Strength Model for Automotive Steels

    NASA Astrophysics Data System (ADS)

    Vedantam, K.

    2005-07-01

    Over the last few years most automotive companies are engaged in performing simulations of the capability of individual components or entire structure of a motor vehicle to adequately sustain the shock (impacts) and to protect the occupants from injuries during crashes. These simulations require constitutive material models (e.g., Johnson-Cook) of the sheet steel and other components based on the compression/tension data obtained in a series of tests performed at quasi-static (˜1/s) to high strain rates (˜2000/s). One such study is undertaken by the recently formed IISI (International Iron and Steel Institute) in organizing the round robin tests to compare the tensile data generated at our Laboratory at strain rates of ˜1/s, ˜300/s, ˜800/s, and ˜2000/s on two grades of automotive steel (Mild steel and Dual Phase-DP 590) using split Hopkinson bar with those generated at high strain rate testing facilities in Germany and Japan. Our tension data on mild steel (flow stress ˜ 500 MPa) suggest a relatively small strain rate sensitivity of the material. The second steel grade (DP-590) tested exhibits significant strain rate sensitivity in that the flow stress increases from about 700 MPa (at ˜1/s) to 900 MPa (at ˜2000/s). J-C strength model constants (A, B, n, and C) for the two steel grades will be presented.

  7. License plate cosmetic corrosion test of automotive coated steel sheet

    SciTech Connect

    Townsend, H.E.; Simpson, M.W.; McCune, D.C.

    1999-04-01

    A new standard laboratory test (SAE J2334) for evaluation of the cosmetic corrosion resistance of autobody steel sheet has been developed through the joint efforts of the Society of Automotive Engineers Automotive Corrosion Prevention Committee (SAE/ACAP) and the Auto/Steel Partnership (A/SP) Corrosion Task Force. Results from this test gave an excellent correlation with those of on-vehicle tests conducted for 5 years in Canada at St. John`s, Newfoundland, and Montreal, Quebec. To determine how results of the Canadian tests related to environments in the United States, racks of identical materials were mounted on the front license plate brackets of cars driven in various locations in the US snowbelt, including Bethlehem, Pennsylvania; Detroit, Michigan, and Chardon, Ohio. After 4 years to 5 years, these tests showed the US environments produced less scribe creep and more red rust than those conducted in Canada. Similar rankings were obtained for the scribe creep resistance of the various coated steel sheet products when compared at equivalent amounts of corrosion. However, the ranking of materials changed at longer exposure times in Canada, and for that reason, it was concluded that the 5-year Canadian results used in the development of the SAE J2334 test provided a better real-world performance standard.

  8. Can Distance Learning Be Used to Teach Automotive Management Skills?

    ERIC Educational Resources Information Center

    Noto, Teresa L.

    2011-01-01

    Today's automotive college students will shape the future of the automobile industry. The success of college-level automotive programs has long been dependent on the students' ability to participate in hands-on classroom based interactions. In this article, distance learning and how it can be used to teach automotive management skills, as well as…

  9. Engine Performance Specialist. Instructor's Manual. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide is one of a series automotive service specialty publications that continues students' training in the automotive service trade by providing instruction in the engine performance specialty. It is based on the National Institute of Automotive Service Excellence task lists. Each of the 16 units includes some or all of the basic…

  10. Can Distance Learning Be Used to Teach Automotive Management Skills?

    ERIC Educational Resources Information Center

    Noto, Teresa L.

    2011-01-01

    Today's automotive college students will shape the future of the automobile industry. The success of college-level automotive programs has long been dependent on the students' ability to participate in hands-on classroom based interactions. In this article, distance learning and how it can be used to teach automotive management skills, as well as…

  11. Engine Performance Specialist. Instructor's Manual. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide is one of a series automotive service specialty publications that continues students' training in the automotive service trade by providing instruction in the engine performance specialty. It is based on the National Institute of Automotive Service Excellence task lists. Each of the 16 units includes some or all of the basic…

  12. 7 CFR 3201.101 - Automotive care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Automotive care products. 3201.101 Section 3201.101... Designated Items § 3201.101 Automotive care products. (a) Definition. Products such as waxes, buffing..., and fragrances that are formulated for cleaning and protecting automotive surfaces. (b)...

  13. Best Practices in School-to-Careers: The Automotive Industry.

    ERIC Educational Resources Information Center

    National Employer Leadership Council, Washington, DC.

    This document highlights the school-to-careers (STC) partnerships connecting workplace experiences to classroom learning to prepare students for successful employment in the automotive industry. First, the current state of the automotive industry is reviewed and the role of STC in addressing automotive service needs is explained. Next, the…

  14. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  15. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  16. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  17. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  18. 25 CFR 117.10 - Purchase of automotive equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  19. Fatigue life of automotive rubber jounce bumper

    NASA Astrophysics Data System (ADS)

    Sidhu, R. S.; Ali, Aidy

    2010-05-01

    It is evident that most rubber components in the automotive industry are subjected to repetitive loading. Vigorous research is needed towards improving the safety and reliability of the components. The study was done on an automotive rubber jounce bumper with a rubber hardness of 60 IRHD. The test was conducted in displacement-controlled environment under compressive load. The existing models by Kim, Harbour, Woo and Li were adopted to predict the fatigue life. The experimental results show strong similarities with the predicted models.

  20. Challenges around automotive shredder residue production and disposal.

    PubMed

    Khodier, Ala; Williams, Karl; Dallison, Neil

    2017-05-10

    The challenge for the automotive industry is how to ensure they adopt the circular economy when it comes to the disposal of end-of-life vehicles (ELV). According to the European Commission the UK achieved a total reuse and recovery rate of 88%. This is short of the revised ELV directive target of 95% materials recovery, which requires a minimum of 85% of materials to be recycled or reused. A significant component of the recycling process is the production of automotive shredder residue (ASR). This is currently landfilled across Europe. The additional 10% could be met by processing ASR through either waste-to-energy facilities or Post shredder technology (PST) to recover materials. The UK auto and recycling sectors claimed there would need to be a massive investment by their members in both new capacity and new technology for PST to recover additional recycle materials. It has been shown that 50% of the ASR contains valuable recoverable materials which could be used to meet the Directive target. It is expected in the next 5years that technological innovation in car design will change the composition from easily recoverable metal to difficult polymers. This change in composition will impact on the current drive to integrate the European Circular Economy Package. A positive factor is that main driver for using ASR is coming from the metals recycling industry itself. They are looking to develop the infrastructure for energy generation from ASR and subsequent material recovery. This is driven by the economics of the process rather than meeting the Directive targets. The study undertaken has identified potential pathways and barriers for commercial thermal treatment of ASR. The results of ASR characterisation were used to assess commercial plants from around the world. Whilst there were many claiming that processing of ASR was possible none have so far shown both the technological capability and economic justification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electrohydraulic Forming of Near-Net Shape Automotive Panels

    SciTech Connect

    Golovaschenko, Sergey F.

    2013-09-26

    The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

  2. Durability-Based Design Guide for an Automotive Structural Composite: Part 2. Background Data and Models

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Weitsman, Y.J.; Yahr, G.T.

    1998-02-01

    This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations.

  3. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    SciTech Connect

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  4. PHYSICS AND CHEMISTRY FOR THE AUTOMOTIVE TRADES.

    ERIC Educational Resources Information Center

    WORTHING, ROBERT

    DESIGNED FOR STUDENT USE, THIS MANUAL PRESENTS RELATED INFORMATION AND LABORATORY EXPERIMENTS FOR A 1-YEAR COURSE IN APPLIED PHYSICS AND CHEMISTRY. IT WAS DEVELOPED BY ESSEX COUNTY AUTOMOTIVE TEACHERS. CONTENT HEADINGS ARE -- (1) MATTER AND ITS PROPERTIES (15 EXPERIMENTS), (2) MECHANICS (4 EXPERIMENTS), (3) HEAT (3 EXPERIMENTS), (4) ELECTRICITY (8…

  5. Energy Cost Reduction for Automotive Service Facilities.

    ERIC Educational Resources Information Center

    Federal Energy Administration, Washington, DC.

    This handbook on energy cost reduction for automotive service facilities consists of four sections. The importance and economic benefits of energy conservation are discussed in the first section. In the second section six energy cost reduction measures are discussed: relamping interior areas; relamping and reducing interior lighting; setting back…

  6. Automotive Mechanics Occupational Performance Survey. Interim Report.

    ERIC Educational Resources Information Center

    Borcher, Sidney D.; Leiter, Paul B.

    The purpose of this federally-funded interim report is to present the results of a task inventory analysis survey of automotive mechanics completed by project staff within the Instructional Systems Design Program at the Center for Vocational and Technical Education. Intended for use in curriculum development for vocational education programs in…

  7. Basic Automotive Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of a basic automotive mechanics program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  8. Automotive Service Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of an automotive service technology program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  9. Automotive Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of an automotive technology program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational Titles…

  10. Metrics for Automotive Merchandising, Petroleum Marketing.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students in automotive merchandising and petroleum marketing classes, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know…

  11. National Apprenticeship Standards for Automotive Machinist.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Bureau of Apprenticeship and Training.

    These 24 standards have been adopted by the Automotive Service Industry Association to provide well-planned, properly supervised training for apprentices to develop into competent machinists. The goal of the standards is to establish and maintain high criteria of workmanship, to develop knowledge by workers of technical and theoretical aspects of…

  12. Automotive Stirling engine development program: A success

    NASA Technical Reports Server (NTRS)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  13. Automotive Stirling engine development program - A success

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1987-01-01

    The original 5-year Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  14. Computer aided engineering analysis of automotive bumpers

    SciTech Connect

    Glance, P.M.

    1984-01-01

    This paper presents a description of a general purpose, computer-aided engineering design methodology which has been employed in the design of automotive bumper systems. A comparison of computer-aided analysis predictions with actual test data is presented. Two case histories of bumper system designs are discussed.

  15. Illinois Occupational Skill Standards: Automotive Technician Cluster.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended as a guide for work force preparation program providers, details the Illinois occupational skill standards for programs preparing students for employment in occupations in the automotive technician cluster. The document begins with overviews of the Illinois perspective on occupational skill standards and…

  16. Impact detection for smart automotive damage mitigation systems

    NASA Astrophysics Data System (ADS)

    Peelamedu, Saravanan M.; Ciocanel, Constantin; Naganathan, Nagi G.

    2004-10-01

    Occupant safety and severity of vehicle damage are important factors in automotive vehicle design. Smart automobiles of the future could potentially use distributed smart material sensors and actuators in order to identify impact and take appropriate evasive or mitigative actions. This provides the motivation for this study. The first part of this study is focused on detecting the location and magnitude of impact, particularly for the case where the automotive structure is subjected to minimal damage. This is accomplished by developing a generalized algorithm using the Reissner-Mindlin plate theory, the Rayleigh-Ritz energy approach, and the Lagrangian-Hamilton principle. The level of performance of this methodology is demonstrated for impacts on a simply supported rectangular plate. Different case studies for static as well as impact loading with point as well as area contacts are presented. An algorithm using deconvolution for identifying impact location and magnitude has been developed and implemented. Additionally, the influence of damage on the structural vibratory content is studied via a frequency analysis. Modal analyses for undamaged and damaged plates, with nine different damage locations and six different damage sizes, are performed. Changes in frequency and mode shapes are observed as regards the severity of the damage.

  17. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  18. Impact detection for smart automotive damage mitigation systems

    NASA Astrophysics Data System (ADS)

    Peelamedu, Saravanan M.; Naganathan, Ganapathy

    2000-06-01

    Occupant safety and severity of vehicle damage are important factors in automotive vehicle design. Smart automobiles of the future could potentially use distributed smart material sensors and actuators in order to identify impact and take appropriate evasive or mitigative actions. This provides the motivation for this study. The first part of this study is focused on detecting the location and magnitude of impact, particularly for the case where the automotive structure is subjected to minimal damage. This is accomplished by developing a generalized algorithm using the Reissner-Mindlin plate theory, the Rayleigh-Ritz energy approach, and the Lagrangian-Hamilton principle. The level of performance of this methodology is demonstrated for impacts on a simply supported rectangular plate. Different case studies for static as well as impact loading with point as well as area contacts are presented. An algorithm using deconvolution for identifying impact location and magnitude has been developed and implemented. Additionally, the influence of damage on the structural vibratory content is studied via a frequency analysis. The modal analysis for undamaged and damaged plates, with nine different damage locations and six different damage sizes are performed. Changes in frequency and mode shapes are observed in regard to the severity of the damage.

  19. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  20. Property Criteria for Automotive Al-Mg-Si Sheet Alloys.

    PubMed

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J; Pogatscher, Stefan

    2014-07-04

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented.

  1. Property Criteria for Automotive Al-Mg-Si Sheet Alloys

    PubMed Central

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J.; Pogatscher, Stefan

    2014-01-01

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented. PMID:28788119

  2. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  3. 76 FR 72674 - Approval for Expansion of Manufacturing Authority, Foreign-Trade Subzone 29F, Hitachi Automotive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ..., Hitachi Automotive Systems Americas, Inc., (Automotive Components), Harrodsburg, KY Pursuant to its... manufacturing authority on behalf of Hitachi Automotive Systems Americas, Inc. (Hitachi), operator of...

  4. Optimized Characterization of Thermoelectric Generators for Automotive Application

    NASA Astrophysics Data System (ADS)

    Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg

    2012-06-01

    New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.

  5. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    SciTech Connect

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  6. Springback prediction of TWIP automotive sheets

    NASA Astrophysics Data System (ADS)

    Ahn, Kanghwan; Yoo, Donghoon; Seo, Min Hong; Park, Sung-Ho; Chung, Kwansoo

    2009-08-01

    In an effort to reduce the weight of vehicles, automotive companies are replacing conventional steel parts with light weight alloys and/or with advanced high strength steels (AHSS) such as dual-phase (DP), twinning induced plasticity (TWIP), and transformation induced plasticity (TRIP) steels. The main objective of this work is to experimentally and numerically evaluate the macro-performance of the automotive TWIP sheet in conjunction with springback. In order to characterize the mechanical properties, simple tension and tension-compression tests were performed to determine anisotropic properties, as well as the Bauschinger, transient, and permanent softening behaviors during reverse loading. For numerical simulations, the anisotropic yield function Yld2000-2d was utilized along with the combined isotropic-kinematic hardening law based on the modified Chaboche model. Springback verification was performed for the unconstrained cylindrical bending and 2D draw bending tests.

  7. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  8. Intelligent imaging systems for automotive applications

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Huang, Yingping; Fu, Shan

    2004-03-01

    In common with many other application areas, visual signals are becoming an increasingly important information source for many automotive applications. For several years CCD cameras have been used as research tools for a range of automotive applications. Infrared cameras, RADAR and LIDAR are other types of imaging sensors that have also been widely investigated for use in cars. This paper will describe work in this field performed in C2VIP over the last decade - starting with Night Vision Systems and looking at various other Advanced Driver Assistance Systems. Emerging from this experience, we make the following observations which are crucial for "intelligent" imaging systems: 1. Careful arrangement of sensor array. 2. Dynamic-Self-Calibration. 3. Networking and processing. 4. Fusion with other imaging sensors, both at the image level and the feature level, provides much more flexibility and reliability in complex situations. We will discuss how these problems can be addressed and what are the outstanding issues.

  9. Torsion vehicle model test for automotive vehicle

    NASA Astrophysics Data System (ADS)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    Torsion vehicle model test of Simple Structural Surfaces (SSS) model for automotive vehicle sedan is proposed in this paper to demonstrate the importance of providing continuous load path within the vehicle structures. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is capable to show that a satisfactory load paths can five a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global torsion stiffness reduces significantly when only one panel is removed from the complete SSS model. The results also five a food agreement with respect to the theoretical hypothesis as the structure is less stiff in torsion in an open section condition. The SSS model and the corresponding torsion test is obviously useful to give an overview of vehicle structural integrity. It can be potentially integrated with FEM to speed up the design process of automotive vehicle.

  10. Automotive Stirling engine: Mod II design report

    SciTech Connect

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  11. Automotive Stirling engine: Mod 2 design report

    NASA Technical Reports Server (NTRS)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  12. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  13. The intelligent automotive battery, "CYBOX ®"

    NASA Astrophysics Data System (ADS)

    Yamada, Keizo; Yamada, Yoshifumi; Otsu, Koji; Machiyama, Yoshiaki; Emori, Akihiko; Okoshi, Teturo

    An intelligent battery to monitor battery states for an automotive use was newly developed. A main parameter to monitor battery states are based on the measurement of voltage variations that are to fluctuate immediately after an engine ignition. The developed monitoring unit is embedded into the lead-acid battery "CYBOX ®" which does not have a current monitoring unit. The monitoring unit that has an alarm system which is compact and highly reliable essentially diagnoses the state of charge and the state of health of battery states in order to inform automotive user of the adequate timing of replace, recharge, and the hazardous state of overcharge of batteries. The battery-monitoring unit has an optical data transfer system to extract internal data from external device. The battery-monitoring unit also has a data acquisition instrument which receives more detailed monitored historical data from the optical data transfer system of the monitoring unit.

  14. The AGT101 technology - An automotive alternative

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Davis, K. A.

    1981-01-01

    The Advanced Gas Turbine Powertrain System Development Project is oriented at providing the United States automotive industry the technology base necessary to produce gas turbine powertrains for automotive applications that will have: (1) reduced fuel consumption, (2) the ability to use a variety of fuels, (3) low emissions, and (4) competitive cost/performance. The AGT101 powertrain being developed consists of a regenerated single-shaft gas turbine engine flat rated at 74.6 kW (100 hp) coupled to a split-differential gearbox and a Ford automatic overdrive production transmission. Performance predictions for the AGT101 powertrain represent a 59-percent improvement in mileage estimates over a 1985 conventionally-powered automobile for the combined federal driving cycle.

  15. Tribocharging behaviour of automotive powder coatings

    NASA Astrophysics Data System (ADS)

    Thomas, Aline; Saleh, Khashayar; Guigon, Pierre; Czechowski, Claire

    2008-12-01

    The aim of this work was to build a device allowing the measurement of tribocharging during the fluidization and pneumatic transport of automotive powder coatings. The experimental setup included a fluidization unit, a transport pipe and two 'Faraday cups' allowing continuous monitoring of particle charge. Two batches of industrial automotive powder primers, as well as several other types of powders were tested: alumina, silica... The experimental variables were the length of the conveying pipe and the air flow rate. The results showed that the net amount of acquired tribocharge increases with the length of conveying pipe. The experimental device and procedure allowed to well classify tested powders according to their rate of tribocharging and their maximum charge. More specially, this study pointed out a net difference between electrostatic properties of two powder primers, which behave very differently in the industrial application unit.

  16. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  17. Automotive Fiber Optic Technology: Application Issues

    NASA Astrophysics Data System (ADS)

    Miller, Gregory D.

    1989-02-01

    Function content in automobiles has been projected to increase throughout the '90s. Accordingly, electromagnetic compatibility will become increasingly difficult to attain with all-conductor-based data transmission. The need for alternatives such as fiber optics is assumed. This paper discusses the issues to be addressed when using fiber optics in automotive data transmission applications. Connectors, packaging and data transmission subsystem impact are covered.

  18. Valve operating system for an automotive engine

    SciTech Connect

    Maeda, S.

    1988-03-15

    In a valve operating system for an automotive engine having two or more intake valves for one cylinder, a camshaft having cams for operating the intake valves, the system is described comprising: one of the cams being rotatably and axially slidably mounted on the camshaft; clutch means for engaging the slidable cam with the camshaft at a predetermined angular position; shifting means for axially shifting the slidable cam to engage the cam with the camshaft by the clutch means.

  19. Injuries to Pregnant Occupants in Automotive Crashes

    PubMed Central

    Klinich, Kathleen DeSantis; Schneider, Lawrence W.; Moore, Jamie L.; Pearlman, Mark D.

    1998-01-01

    Injuries unique to pregnant occupants involved in motor-vehicle crashes include placental abruption, uterine rupture or laceration, and direct fetal injury. The mechanisms and characteristics of these injuries are discussed using examples from a literature review and from recent investigations of crashes involving pregnant occupants. In addition, a review of the relationship between the pregnant driver and automotive restraints and the steering wheel illustrates how injury potential may differ from the non-pregnant occupant.

  20. Directions for computational mechanics in automotive crashworthiness

    NASA Astrophysics Data System (ADS)

    Bennett, James A.; Khalil, T. B.

    1993-08-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  1. Occupational skin diseases in automotive industry workers.

    PubMed

    Yakut, Yunus; Uçmak, Derya; Akkurt, Zeynep Meltem; Akdeniz, Sedat; Palanci, Yilmaz; Sula, Bilal

    2014-03-01

    Studies on occupational skin diseases in workers of the automotive industry are few. To investigate the prevalence of occupational skin diseases in workers of the automotive industry. Between September and December 2011, a total of 405 workers from the automotive repair industry in Diyarbakır were interviewed. They were active workers in the repair industry who had been employed for at least six months. Business owners, sellers of spare parts and accounting officers were not included. The employees were examined at their workplaces and the working conditions were observed. Detailed dermatological examination was performed. The mean age of the 405 workers who participated in the study was 27.7 ± 10.3. The mean working time of employees was 13.3 ± 10.4 years. All of the employees were male. Dermatological diseases were not detected in 144 out of 405 workers (35.6%) and at least one condition was diagnosed in 261 (64.4%). The most frequent diagnosis was callus, hyperkeratosis, clavus (27.7%), followed by nail changes (16.8%) and superficial mycoses (12.1%). Contact dermatitis was seen at a rate of 5.9%. Traumatic lesions such as hyperkeratotic lesions and nail changes were found most frequently. Traumatic lesions were common among individuals who did not use gloves. Most nail changes were localized leuconychia, a finding not reported in the studies on automotive industry workers. In accordance with the literature, irritant contact dermatitis was observed in patients with a history of atopy and who had been working for a long time. Occupational skin diseases comprise an important field in dermatology, deserving much attention. Further studies on occupational dermatology are necessary.

  2. General Motors automotive fuel cell program

    SciTech Connect

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  3. Directions for computational mechanics in automotive crashworthiness

    NASA Technical Reports Server (NTRS)

    Bennett, James A.; Khalil, T. B.

    1993-01-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  4. Ceramics for the AGT101 automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Kreiner, D. M.; Wimmer, J. M.

    1981-01-01

    An advanced gas turbine powertrain for automotive application is being developed. Objectives of the program include a fuel consumption of 42.8 mpg on No. 2 diesel fuel in a 3000 pound car, same overall vehicle performance as obtained with a conventional spark ignition internal combustion engine, low emission, multiple fuel capacity, reliability, and competitive cost. The AGT101 powertrain consists of a power section, gearbox and transmission, and the design and analysis conducted thus far support the initial engine concept, as no significant design changes have been required. The ceramic rotor design approach and component materials are discussed, and it is projected that the AGT powertrain will be competitive with any other alternative powertrain in meeting the design objectives.

  5. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  6. Ceramics for the AGT101 automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Kreiner, D. M.; Wimmer, J. M.

    1981-01-01

    An advanced gas turbine powertrain for automotive application is being developed. Objectives of the program include a fuel consumption of 42.8 mpg on No. 2 diesel fuel in a 3000 pound car, same overall vehicle performance as obtained with a conventional spark ignition internal combustion engine, low emission, multiple fuel capacity, reliability, and competitive cost. The AGT101 powertrain consists of a power section, gearbox and transmission, and the design and analysis conducted thus far support the initial engine concept, as no significant design changes have been required. The ceramic rotor design approach and component materials are discussed, and it is projected that the AGT powertrain will be competitive with any other alternative powertrain in meeting the design objectives.

  7. Smarter-lighter-greener: research innovations for the automotive sector.

    PubMed

    Bhattacharyya, S K

    2015-07-08

    This paper reviews the changing nature of research underpinning the revolution in the automotive sector. Legislation controlling vehicle emissions has brought urgency to research, so we are now noticing a more rapid development of new technologies than at any time in the past century. The light-weighting of structures, the refinement of advanced propulsion systems, the advent of new smart materials, and greater in-vehicle intelligence and connectivity with transport infrastructure all require a fundamental rethink of established technologies used for many decades-defining a range of new multi-disciplinary research challenges. While meeting escalating emission penalties, cars must also fulfil the human desire for speed, reliability, beauty, refinement and elegance, qualities that mark out the truly great automobile.

  8. Cumulative Impact Damage Evaluation of Automotive Aluminum Bumper Beam

    NASA Astrophysics Data System (ADS)

    Kim, Heon Young; Choi, Jong Gil; Kim, Min Gun; Lee, Kang Wook; Ha, Dae Yul; Yeo, Tae Jung

    We performed numerical analyses using an explicit code to evaluate the cumulative impact damage of an automotive aluminum front-end bumper back beam during low-speed crash events, as described by CMVSS215. we used a coupled numerical analysis scheme and considered the several fracture criterion such as EWK rupture model and plastic strain limit in the PAM-CRASH code to improve our damage and fracture estimates. Tensile test experiments for the notched and un-notched specimens were conducted to tune the performance of the EWK rupture model; The resulting material properties and fracture criterion were incorporated into the numerical analyses of the low-speed crash events. The simulation results were compared with the impact test.

  9. Smarter–lighter–greener: research innovations for the automotive sector

    PubMed Central

    Bhattacharyya, S. K.

    2015-01-01

    This paper reviews the changing nature of research underpinning the revolution in the automotive sector. Legislation controlling vehicle emissions has brought urgency to research, so we are now noticing a more rapid development of new technologies than at any time in the past century. The light-weighting of structures, the refinement of advanced propulsion systems, the advent of new smart materials, and greater in-vehicle intelligence and connectivity with transport infrastructure all require a fundamental rethink of established technologies used for many decades—defining a range of new multi-disciplinary research challenges. While meeting escalating emission penalties, cars must also fulfil the human desire for speed, reliability, beauty, refinement and elegance, qualities that mark out the truly great automobile. PMID:26345309

  10. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  11. Thermoelectric infrared imaging sensors for automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  12. 40 CFR 91.6 - Reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... forth material from the Society of Automotive Engineers which has been incorporated by reference. The... Automotive Engineers International, 400 Commonwealth Dr., Warrendale, PA 15096-0001. Document number and name... Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations and Acronyms 91.113. SAE...

  13. 40 CFR 91.6 - Reference materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... forth material from the Society of Automotive Engineers which has been incorporated by reference. The... Automotive Engineers International, 400 Commonwealth Dr., Warrendale, PA 15096-0001. Document number and name... Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations and Acronyms 91.113. SAE...

  14. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  15. Overview: DOE/NASA automotive gas turbine and Stirling projects

    SciTech Connect

    Beremand, D.G.

    1981-01-01

    A brief overview is presented of the automotive gas turbine and automotive Stirling engine technology projects being carried out by NASA Lewis Research Center for the Department of Energy's Automotive Technology Development Division. This report: (1) discusses the projects as they were formulated and being carried out in accordance with PL 95-238 Auto Propulsion Research and Development Act of 1978; (2) presents substantive technology accomplishments; and (3) briefly addresses future path options of the program.

  16. Ecological assessment of nano-enabled supercapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  17. 75 FR 24748 - Johnson Controls, Inc., Automotive Experience Division, Including Workers Whose Unemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Employment and Training Administration Johnson Controls, Inc., Automotive Experience Division, Including... of Johnson Controls, Inc., Automotive Experience Division, Greenfield, Ohio. The notice was published... production of foam inserts for the automotive seating industry. New information shows that Johnson Controls...

  18. 75 FR 11938 - Meridian Automotive Systems, Grand Rapids, MI; Notice of Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Meridian Automotive Systems, Grand Rapids, MI; Notice of Termination... Meridian Automotive Systems, Grand Rapids, Michigan (Meridian Automotive). The petitioning group of workers...

  19. [Chest modelling and automotive accidents].

    PubMed

    Trosseille, Xavier

    2011-11-01

    Automobile development is increasingly based on mathematical modeling. Accurate models of the human body are now available and serve to develop new means of protection. These models used to consist of rigid, articulated bodies but are now made of several million finite elements. They are now capable of predicting some risks of injury. To develop these models, sophisticated tests were conducted on human cadavers. For example, chest modeling started with material characterization and led to complete validation in the automobile environment. Model personalization, based on medical imaging, will permit studies of the behavior and tolerances of the entire population.

  20. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    PubMed

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  1. Work-related back discomfort and associated factors among automotive maintenance mechanics in Eastern Nigeria: A cross sectional study.

    PubMed

    Abaraogu, Ukachukwu Okoroafor; Ezema, Charles Ikechukwu; Igwe, S E; Egwuonwu, Afamefuna Victor; Okafor, Udoka Chris

    2016-02-15

    Back pain has been identified as a common cause of disability in the working population. Automotive mechanics habitually use awkward back posture in their course of manual activity and hence may be at risk of work-related back pain. To investigate the prevalence, pattern and severity of back pain among automotive maintenance mechanics, as well as the personal and job variables associated with or predicting occurrence of back pain. Using a cross-sectional design, information about self-reported back pain and the associated variables were collected among 684 randomly recruited automotive mechanics. Prevalence of back pain was 76.02%; with the majority experiencing low back pain. 63.3% of the workers reported they limited their activity due to the back pain. Older workers (>50 years), daily work lasting ≥5 hours duration, no more than primary education, being normal weight, frequent use of kneeling and sustained postures, and lack of knowledge of ergonomic postures were associated with increased prevalence of back pain. Lack of job autonomy, inadequate task clarity, heavy physical work load, manual material handling, strenuous posture, noisy environment, vibrations, work schedule and inadequate auxiliary support were also associated with increased prevalence of back pain among the mechanics. Work-related back pain is prevalent among automotive maintenance mechanics. Work-related back pain is high among automotive maintenance mechanics. Workstation policy and legislation on reduction of risks with combined health literacy and ergonomic education programs in this occupational group are imperative.

  2. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  3. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  4. Integrated Technical Curriculum. Curriculum Developed for Project Second Chance II: Tech Reading, Tech Science, Tech Math, Automotive.

    ERIC Educational Resources Information Center

    Sorensen, Mary K.; And Others

    This integrated technical curriculum is designed to enroll and retain adult high school noncompleters in occupational programs by providing them with the remedial and content-area reading instruction needed for success in an automotive program. The following topics are covered in the four units: (1) skills for reading technical materials (basics…

  5. Student Assessment System. Domain Referenced Tests. Transportation/Automotive Mechanics. Volume I: Skills. Georgia Vocational Education Program Articulation.

    ERIC Educational Resources Information Center

    Watkins, James F.; And Others

    These performance tests for the area of transportation/automotive mechanics consist of a sampling technique (domain referenced tests) which covers all the possible performance situations. When used in total, they may also serve as a comprehensive test. Introductory materials discuss domain referenced testing, determining the domains, and…

  6. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  7. Design and Implementation of an Assessment Model for Students Entering Vocational Education Programs in the State of Colorado. Automotive.

    ERIC Educational Resources Information Center

    University of Northern Colorado, Greeley.

    This basic vocational related skills assessment module in automotive mechanics is one of sixteen modules designed to help teachers assess and identify some of the areas in which special needs students may encounter learning difficulties. The materials in the module allow for informal assessment in three basic areas: academic skills, motor skills,…

  8. Student Assessment System. Domain Referenced Tests. Transportation/Automotive Mechanics. Volume II: Theory. Georgia Vocational Education Program Articulation.

    ERIC Educational Resources Information Center

    Watkins, James F., Comp.

    These written domain referenced tests (DRTs) for the area of transportation/automotive mechanics test cognitive abilities or knowledge of theory. Introductory materials describe domain referenced testing and test development. Each multiple choice test includes a domain statement, describing the behavior and content of the domain, and a test item…

  9. Automotive Fuel Economy: A Technical Study and Curriculum Development Project. A Thesis Presented to the Faculty of the College of Education, Mankato State University.

    ERIC Educational Resources Information Center

    Ready, Kirk Lewis

    Automotive fuel economy was the topic of a study during which technical and background information was gathered, curriculum materials were sought, and curricula were developed. Technical information came from written materials and actual mileage tests of selected factors. Background came from written materials, field trips, and building and…

  10. Automotive Fuel Economy: A Technical Study and Curriculum Development Project. A Thesis Presented to the Faculty of the College of Education, Mankato State University.

    ERIC Educational Resources Information Center

    Ready, Kirk Lewis

    Automotive fuel economy was the topic of a study during which technical and background information was gathered, curriculum materials were sought, and curricula were developed. Technical information came from written materials and actual mileage tests of selected factors. Background came from written materials, field trips, and building and…

  11. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    NASA Astrophysics Data System (ADS)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  12. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    NASA Astrophysics Data System (ADS)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers

  13. Automotive Service Occupations. A Suggested Outline of Services and Levels for the Automotive Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to help teachers of automotive services select the body of knowledge and experiences leading to the development of salable skills which might be necessary at various levels of complexity, this guide suggests an alignment of content, with teaching suggestions, for use in developing a vocational program to prepare youth and adults for…

  14. 78 FR 58518 - Notification of Proposed Production Activity; Benteler Automotive Corporation (Automotive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ...; castings of aluminum; flat-rolled steel; tapping plates; fasteners; hub-bearing assemblies; metal knuckle... Foreign-Trade Zones Board Notification of Proposed Production Activity; Benteler Automotive Corporation...), operator of Subzone 38F, submitted a notification of proposed production activity for its facility located...

  15. Automotive Tune-up and Performance; Automotive Mechanics 3: 9047.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help students become employable and provide them with the skills, knowledge, attitudes, and values necessary for performing the required services in automotive tune up and performance. Such services are critical and must be exact to meet Federal Emission Control Standards. The…

  16. Automotive Body Trim and Glass; Automotive Mechanics 2: 9045.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help students become employable with skills, knowledge, attitudes, and values necessary for performing the required service of the automotive trim and glass mechanic. The course of study includes an orientation to the course, service tools and bench skills development, and a study…

  17. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Automotive Fuel Systems.

    ERIC Educational Resources Information Center

    Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, operation, and repair of the carburetor, fuel pump, and other related fuel system components and parts. The course is comprised of six units: (1) Fundamentals of Fuel Systems, (2) Fuel Pumps, (3) Fuel Lines and Filters, (4) Carburetors,…

  18. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  19. 78 FR 14546 - Seagull Maritime Agencies Private Ltd. v. Gren Automotive, Inc., Centrus Automotive Distributors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Limited (``SMA''), hereinafter ``Complainant,'' against Gren Automotive, Inc. (``Gren''), Centrus... reparations to Complainant SMA in the amount of $63,010.68 for failure to pay freight and related charges as describe herein; (4) An Order requiring Respondents to compensate SMA for its attorney's fees, interests...

  20. Investigating antennas as ignition aid for automotive HID lamps

    NASA Astrophysics Data System (ADS)

    Bergner, A.; Engelhardt, M.; Bienholz, S.; Ruhrmann, C.; Hoebing, T.; Groeger, S.; Mentel, J.; Awakowicz, P.

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case.

  1. Hostile environmental conditions facing candidate alloys for the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    The materials research program in support of the Automotive Stirling Engine Project focuses on the hot heater head of the engine including the heater head tubes, cylinders, and regenerator housings, which are considered to be the most critical components from a materials viewpoint. The specific areas of investigation in the program involve hydrogen permeability testing, doping of the hydrogen working fluid to reduce permeability rates, oxidation/corrosion studies, creep-rupture evaluation, and assessing effects of hydrogen environment on mechanical properties. Emphasis is placed on the materials challenges that result from the use of hydrogen as the working fluid. Previously announced in STAR as N81-26236

  2. Nanofluids with CNTs for automotive applications

    NASA Astrophysics Data System (ADS)

    Srinivas, V.; Moorthy, Ch. V. K. N. S. N.; Dedeepya, V.; Manikanta, P. V.; Satish, V.

    2016-04-01

    This paper summarizes a recent work on anti-corrosive and enhanced heat transfer properties of carboxylated water based nanofluids. DI water mixed with Sebacic acid (C10H18O4) as carboxylate additive is dispersed with multi walled carbon nanotubes and tested for corrosion and heat transfer characteristics. Corrosion studies made as per ASTM D 1384 show that carboxylate water dispersed with MWCNTs is resistant to corrosion and hence suitable for automotive environment. In addition to MWCNTs, carboxylated water dispersed with nano sized silver, copper and Aluminium oxide are also tested for corrosion performance but found to be giving considerable corrosion in automotive environment. The stability of MWCNT based nanofluids in terms of zeta potential is found to be good with carboxylated water compared to DI water. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with MWCNTs. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as MWCNTs. The carboxylated water is dispersed with very low mass concentration of multi walled carbon nano tubes at 0.025, 0.05 and 0.1 % and tested for heat transfer performance. The heat transfer studies are made in Reynolds number range of 2500-6000 in the developing flow regime. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator maintained at 5, 10 and 15 m/s. The coolant side overall heat transfer coefficient and overall heat transfer coefficient have improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of overall heat transfer coefficient. Stanton number correlation for the entire data has been developed. It is found that the wall temperature gradients play an important role in the enhancement of heat transfer when nanofluids are

  3. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Electrical Systems.

    ERIC Educational Resources Information Center

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, diagnosis, repair, and adjustment of automotive electrical systems. The course is comprised of six units: (1) Fundamentals of Electrical Systems, (2) Battery Servicing, (3) Starting Systems, (4) Charging Systems, (5) Ignition Systems,…

  4. AUTOMOTIVE SERVICE SPECIALIST, A SUGGESTED GUIDE FOR A TRAINING COURSE.

    ERIC Educational Resources Information Center

    OETTMEIER, ARTHUR J.; AND OTHERS

    THE PURPOSE OF THIS TEACHING GUIDE IS TO SERVE AS A REFERENCE AND COURSE OUTLINE FOR THE INSTRUCTOR. IT WAS DEVELOPED BY A COLLEGE AUTOMOTIVE DEPARTMENT HEAD AND REPRESENTATIVES OF AUTOMOTIVE SERVICE INDUSTRIES, PETROLEUM INDUSTRIES, AND GARAGES. THIS COURSE IS ADAPTABLE TO PREPARATORY, UPGRADING, OR RETRAINING PURPOSES. UNITS ARE SERVICE…

  5. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  6. An Overview of NASA Automotive Component Reliability Studies

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  7. Electrohydraulic Forming of Near Net Shape Automotive Panels

    SciTech Connect

    2009-01-01

    This factsheet describes a research project whose goal is to develop the electrohydraulic forming (EHF) process as a near net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures.

  8. Career Development Standards for Vocational Automotive Service Instruction.

    ERIC Educational Resources Information Center

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The book, prepared for educators and industry, was designed as a complete guide to establishing an automotive training program. The 10 sections describe the following aspects of program planning and implementation: (1) career opportunities in automotive service; (2) guidance, counseling, placement, and followup; (3) school, parent, emPloyer,…

  9. Overview: DOE/NASA automotive gas turbine and stirling projects

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1981-01-01

    An overview on the progress of the automotive gas turbine and automotive Stirling engine technology projects is presented. The following items are reported: (1) formulation and execution of projects in accordance with the Auto Propulsion Research and Development Act of 1978; (2) substantive technology accomplishments; and (3) future path options of the programs.

  10. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Engine Repair.

    ERIC Educational Resources Information Center

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory and construction, inspection diagnoses, and service and overhaul of automotive engines. The course is comprised of five units: (1) Fundamentals of Four-Cycle Engines, (2) Engine Construction, (3) Valve Train, (4) Lubricating Systems, and (5)…

  11. Automotive Workforce Transition: Implications for Cooperative Education Practice.

    ERIC Educational Resources Information Center

    Varty, James; Jacobs, James

    1986-01-01

    Reviews the direction that labor and industry are taking to meet the transition that is occurring within the US automotive industry. Specific implications for cooperative education in supporting further training and development for both the displaced and the current automotive work force are presented. (CT)

  12. Brakes Specialist. Teacher Edition. Automotive Service Series. Second Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide for automatic brakes service is one in a series of automotive service speciality publications that is based on the National Institute of Automotive Service Excellence task lists. The curriculum is composed of four units. Each unit of instruction may contain some or all of the following components: objective sheet, suggested…

  13. DISTANT VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANT VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING "B" ON RIGHT. HOSE WINDING SHED ADJACENT TO SHED-ROOFED ADDITION ON THE UTILITY BUILDING, BLM SEED SHED AND TACK SHED VISIBLE IN FAR DISTANCE. VIEW TO EAST/ - Cedar City Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  14. DISTANCE VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANCE VIEW, AUTOMOTIVE REPAIR SHOP ON LEFT AND UTILITY BUILDING "B" ON RIGHT. HOSE WINDING SHED ADJACENT TO SHED-ROOFED ADDITION ON THE UTILITY BUILDING, BLM SEED SHED AND TACK SHED VISIBLE IN FAR DISTANCE. VIEW TO EAST, WITH SCALE. - Cedar City Automotive Repair Shop, 820 North Main Street, Cedar City, Iron County, UT

  15. Brakes Specialist. Teacher Edition. Automotive Service Series. Second Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide for automatic brakes service is one in a series of automotive service speciality publications that is based on the National Institute of Automotive Service Excellence task lists. The curriculum is composed of four units. Each unit of instruction may contain some or all of the following components: objective sheet, suggested…

  16. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  17. An Overview of NASA Automotive Component Reliability Studies

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  18. An Overview Of NASA Automotive Component Reliability Studies

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  19. Forward-looking automotive radar sensor

    NASA Astrophysics Data System (ADS)

    Ganci, Paul; Potts, Steven; Okurowski, Frank

    1995-12-01

    For intelligent cruise control (ICC) and forward looking collision warning systems to be successful products they must provide robust performance in a complex roadway environment. Inconveniences caused by dropped tracks and nuisance alarms will not be tolerated by consumers, and would likely result in rejection of these new technologies in the marketplace. The authors report on a low-cost automotive millimeter wave (MMW) radar design which addresses shortcomings associated with previously reported ICC system implementations. The importance of the sensor's ability to identify and separately track all obstacles in the field of view is discussed. The applicability of the MMW's FM-CW sensor implementation to collision warning systems is also discussed.

  20. AGT 100 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  1. Characterization of three-way automotive catalysts

    SciTech Connect

    Kenik, E.A.; More, K.L.; LaBarge, W.

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  2. Recycling RIM polymers into automotive fascia

    SciTech Connect

    Not Available

    1994-08-01

    This article reports an important discovery that scrap polymers may not have to be segregated for many of the recycling approaches for automotive thermoset poly-urethane polymers. Recycling painted parts has been a major impediment in most recycling alternatives, but that is not the case with the regrind approach to RIM (reaction injection molded) recycling. Scrap from painted, unpainted, filled, and unfilled polyurethane fascia, fenders, and side claddings can be collected as one resource. The flow of RIM scrap through the recycling process is illustrated.

  3. AGT 100 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  4. Scrap automotive electronics: A mini-review of current management practices.

    PubMed

    Cucchiella, Federica; D'Adamo, Idiano; Rosa, Paolo; Terzi, Sergio

    2016-01-01

    End-of-life vehicles, together with waste from electric and electronic equipment, are known as an important source of secondary raw materials. For many years, their recovery has allowed the restoring of great amounts of metals for new cars production. This article provides a comprehensive mini-review on the end-of-life vehicles recycling topic between 2000 and 2014, with a particular focus on automotive electronics recycling. In fact, in the last years, experts focused their attention on a better exploitation of automotive shredder residue fraction, but not sufficiently on eventual electronic scraps embedded in it. Hence, studies assessing the value embedded in these scraps are rarely available in literature, causing an important gap in both recycling policies and research. The fact that, at present, the management of electronic control units (the most valuable component among automotive electronic equipment) is, as yet, off the radar in both end-of-life vehicles and waste from electric and electronic equipment Directives demonstrates the theory. Of course, their recycling would not contribute in a relevant way to reach the weighted-based recycling and recovery targets characterising current regulations, but would be very important under a critical raw materials recovery view. Results coming from the literature analysis confirm these assumptions. © The Author(s) 2015.

  5. Regression Model for Light Weight and Crashworthiness Enhancement Design of Automotive Parts in Frontal CAR Crash

    NASA Astrophysics Data System (ADS)

    Bae, Gihyun; Huh, Hoon; Park, Sungho

    This paper deals with a regression model for light weight and crashworthiness enhancement design of automotive parts in frontal car crash. The ULSAB-AVC model is employed for the crash analysis and effective parts are selected based on the amount of energy absorption during the crash behavior. Finite element analyses are carried out for designated design cases in order to investigate the crashworthiness and weight according to the material and thickness of main energy absorption parts. Based on simulations results, a regression analysis is performed to construct a regression model utilized for light weight and crashworthiness enhancement design of automotive parts. An example for weight reduction of main energy absorption parts demonstrates the validity of a regression model constructed.

  6. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    UNCLASSIFIED: Distribution A. Approved for public release. REUSABLE MATERIAL FOR DROP TOWER A thesis written at TANK AUTOMOTIVE RESEARCH AND...ABSTRACT This thesis represents the capstone of my five years combined academic work at Kettering University and job experience at Tank Automotive ...NUMBER OF PAGES 57 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form

  7. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  8. Requirements for future automotive batteries - a snapshot

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  9. REVIEW ARTICLE: Sensors for automotive telematics

    NASA Astrophysics Data System (ADS)

    Turner, J. D.; Austin, L.

    2000-02-01

    This article reviews the current practice in sensors and sensor applications for automotive and traffic-control systems. Sensors to control engine fuelling, ignition and transmission (known as the powertrain) are reviewed and the likely course of future development is discussed in the light of regulatory and market requirements as well as trends in sensor design and manufacture. Sensor needs for suspension, braking and control of traction are also reviewed and the likely introduction of wheel and tyre sensors to enhance driving safety is discussed. The recent trend towards vehicle-mounted devices to sense the vehicle's environment (such as radar, optical, ultrasound, capacitive and image-based systems) and the implications of the introduction of safety-critical automotive systems such as adaptive cruise control are discussed. Sensors for initiating the deployment of safety systems such as airbags, together with transducers for disconnecting fuel pumps and vehicle batteries in the event of a crash, are reviewed. The paper includes a brief discussion of highway-based sensors for measuring vehicle speed and presence and concludes with a discussion of the likely future developments in the field.

  10. Automotive Mechanics Curriculum Outline for Secondary Schools. Vocational Education Curriculum Guide.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum outline for secondary automotive mechanics is structured around Louisiana's Vocational-Technical Automotive Mechanics Curriculum. The curriculum is composed of 16 units of instruction, covering the following topics: benchwork, fundamentals of automotive engines, preventive maintenance, automotive brakes, steering and front…

  11. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  12. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    PubMed Central

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products. PMID:28788167

  13. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  14. Challenges and Alternatives to Plastics Recycling in the Automotive Sector.

    PubMed

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-08-15

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  15. Low-cost far infrared bolometer camera for automotive use

    NASA Astrophysics Data System (ADS)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  16. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations

    SciTech Connect

    Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram

    2016-04-01

    Manufacturing capacity for lithium-ion batteries (LIBs) — which power many consumer electronics and are increasingly used to power electric vehicles — is heavily concentrated in East Asia. To illuminate the factors that drive regional competitiveness in automotive LIB cell production, this study models cell manufacturing cost and minimum sustainable price, and examines development of LIB supply chains and current LIB market conditions. The study shows that factors driving the cost competitiveness of LIB manufacturing locations are mostly built—supply chain developments and competition, access to materials, and production expertise. Some regional costs — including cost of capital, labor, and materials — are significant and should be considered.

  17. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  18. Solvent exposure and cognitive function in automotive technicians.

    PubMed

    Bates, Michael N; Reed, Bruce R; Liu, Sa; Eisen, Ellen A; Hammond, S Katharine

    2016-12-01

    Automotive technicians are commonly exposed to organic and chlorinated solvents, particularly through use of cleaning products. Occupational solvent exposures have been associated with deficits in cognitive function but, to our knowledge, no previous studies have investigated automotive technicians. The purpose of the present study was to investigate whether previous exposures to n-hexane, in particular, or general solvents posed a persistent neurotoxic hazard to automotive workers. Enrolled in the study were 830 San Francisco Bay Area automotive repair workers. Each participant underwent a battery of cognitive function tests to investigate central nervous system impairment, with a primary focus on the domains of psychomotor speed, fine motor function, memory and mood. Cognitive test results regressed against estimated hexane and total solvent exposures showed little evidence of associations. Exposures to both solvents and hexane were well below the occupational exposure limits. Our results provide some reassurance about persistent neuropsychological effects in automotive workers who use solvent-based products and those who previously used hexane-containing automotive cleaning products, since this solvent is believed no longer to be used in automotive cleaning products. The lack of observed effect in this study may be attributable to low exposures, or it may reflect improved cognitive function since hexane use in automotive cleaning products was discontinued. However, impacts on results of exposure misclassification and/or the healthy worker survivor effect cannot be discounted. Irrespective of the outcome of this study, the main known neurologic effect of n-hexane is peripheral neuropathy, and such an association in automotive technicians is not excluded by these results. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Automotive and Construction Equipment for Arctic Use, Materials Problems

    DTIC Science & Technology

    1991-11-01

    ropes. where some cracking or chipping may take place at very low temperatures. Nonmetals Wood . ceramics and glass are little affected by extreme cold...most conspicuous casualties of low-temperature Electric and operation among electric and electronic components is wire and electronic cable insulation ...and are seldom installed as standard equipment. Polyvinyl chloride is commonly used in wiring insulation and may be used in the cold where it will

  20. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  1. Automotive Technology Evolved by Electrical and Electronic Systems

    NASA Astrophysics Data System (ADS)

    Teratani, Tatsuo; Okuma, Shigeru

    Automotive electrical and electronic systems, e.g. EHV, FCV, future X-By-Wire, have recently been introduced or planned in place of mechanical systems. Drivers are demanding environmental performance (fuel consumption and weight reduction), safety and comfort. For general use of the new technologies, evolution of the automotive technology is required, including energy conversion efficiency improvement, size and weight reduction of components, cost reduction and high reliability. This paper discusses and summarizes the next generation power systems, the future vehicle image, power source combinations, and problems to be solved for development of automotive electronics.

  2. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    PubMed

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  3. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    PubMed Central

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  4. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    PubMed

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  5. Active gated imaging for automotive safety applications

    NASA Astrophysics Data System (ADS)

    Grauer, Yoav; Sonn, Ezri

    2015-03-01

    The paper presents the Active Gated Imaging System (AGIS), in relation to the automotive field. AGIS is based on a fast gated-camera equipped with a unique Gated-CMOS sensor, and a pulsed Illuminator, synchronized in the time domain to record images of a certain range of interest which are then processed by computer vision real-time algorithms. In recent years we have learned the system parameters which are most beneficial to night-time driving in terms of; field of view, illumination profile, resolution and processing power. AGIS provides also day-time imaging with additional capabilities, which enhances computer vision safety applications. AGIS provides an excellent candidate for camera-based Advanced Driver Assistance Systems (ADAS) and the path for autonomous driving, in the future, based on its outstanding low/high light-level, harsh weather conditions capabilities and 3D potential growth capabilities.

  6. Multi-channel automotive night vision system

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  7. Improvement of Automotive Part Supplier Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Kongmunee, Chalermkwan; Chutima, Parames

    2016-05-01

    This research investigates the problem of the part supplier performance evaluation in a major Japanese automotive plant in Thailand. Its current evaluation scheme is based on experiences and self-opinion of the evaluators. As a result, many poor performance suppliers are still considered as good suppliers and allow to supply parts to the plant without further improvement obligation. To alleviate this problem, the brainstorming session among stakeholders and evaluators are formally conducted. The result of which is the appropriate evaluation criteria and sub-criteria. The analytical hierarchy process is also used to find suitable weights for each criteria and sub-criteria. The results show that a newly developed evaluation method is significantly better than the previous one in segregating between good and poor suppliers.

  8. Downsizing assessment of automotive Stirling engines

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  9. Spectroscopic analysis of automotive engine oil

    NASA Astrophysics Data System (ADS)

    Dahmani, Rachid; Gupta, Neelam

    2002-02-01

    Infrared absorption spectroscopy (IR) and acousto-optic tunable filter (AOTF) technology were combined to develop a portable spectrophotometer for use in engine oil analysis to identify and quantify oil contaminants and residue products, Preliminary measurements were taken with a field-portable AOTF-based spectrometer (2 to 4.5 micrometers ) and an FTIR spectrometer (2 to 25 micrometers ) for comparison. Absorption spectra of used and unused oil samples were measured and compared to determine absorption changes between the various samples resulting from oil degradation and any chemical reactions that might have taken place during high- temperature engine lubrication. These preliminary results indicate that IR spectroscopy can be used for oil quality monitoring in automotive engines, which will help predict and prevent engine failure and degradation. This work can be extended to other remote sensing applications, such as the monitoring of environmental oil spills.

  10. Characterization of nitromethane emission from automotive exhaust

    NASA Astrophysics Data System (ADS)

    Sekimoto, Kanako; Inomata, Satoshi; Tanimoto, Hiroshi; Fushimi, Akihiro; Fujitani, Yuji; Sato, Kei; Yamada, Hiroyuki

    2013-12-01

    We carried out time-resolved experiments using a proton-transfer-reaction mass spectrometer and a chassis dynamometer to characterize nitromethane emission from automotive exhaust. We performed experiments under both cold-start and hot-start conditions, and determined the dependence of nitromethane emission on vehicle velocity and acceleration/deceleration as well as the effect of various types of exhaust-gas treatment system. We found that nitromethane emission was much lower from a gasoline car than from diesel trucks, probably due to the reduction function of the three-way catalyst of the gasoline car. Diesel trucks without a NOx reduction catalyst using hydrocarbons produced high emissions of nitromethane, with emission factors generally increasing with increasing acceleration at low vehicle velocities.

  11. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  12. Determining organic pollutants in automotive industry sludge.

    PubMed

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  13. Advanced automotive diesel engine system study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  14. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  15. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  16. Application of DuPont photopolymer films to automotive holographic display

    NASA Astrophysics Data System (ADS)

    Nakazawa, Norihito; Ono, Motoshi; Takeuchi, Shoichi; Sakurai, Hiromi; Hirano, Masahiro

    1998-03-01

    Automotive holographic head-up display (HUD) systems employing DuPont holographic photopolymer films are presented. Holographic materials for automotive application are exposed to severe environmental conditions and are required high performance. This paper describes the improvement of DuPont photopolymer films for the automotive use, critical technical issues such as optical design, external color and stray light. The holographic HUD combiner embedded in a windshield of an automobile has peculiar problems called external color. Diffraction light from holographic combiner makes its external color tone stimulative. We have introduced RGB three color recording and color simulation in order to improve the external color. A moderate external color tone was realized by the optimization in terms of wavelengths and diffraction efficiencies of the combiner hologram. The stray light called flare arises from a reflection by glass surface of windshield. We have developed two techniques to avoid the flare. First is a diffuser type trap beam guard hologram which reduces the intensity of the flare. Second is the optimization of the design of hologram so that the incident direction of flare is lower than the horizon line. As an example of automotive display a stand-alone type holographic HUD system attached on the dashboard of an automobile is demonstrated, which provides useful driving information such as route guidance. The display has a very simple optical system that consists of only a holographic combiner and a vacuum fluorescent display. Its thin body is only 35 mm high and does not obstruct driver's view. The display gives high contrast and wide image.

  17. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  18. Predictive Process Optimization for Fracture Ductility in Automotive TRIP Steels

    NASA Astrophysics Data System (ADS)

    Gong, Jiadong

    In light of the emerging challenges in the automotive industry of meeting new energy-saving and environment-friendly requirements imposed by both the government and the society, the auto makers have been working relentlessly to reduce the weight of automobiles. While steel makers pushed out a variety of novel Advanced High Strength Steels (AHSS) to serve this market with new needs, TRIP (Transformation Induced Plasticity) steels is one of the most promising materials for auto-body due to its exceptional combination of strength and formability. However, current commercial automotive TRIP steels demonstrate relatively low hole-expansion (HE) capability, which is critical in stretch forming of various auto parts. This shortcoming on ductility has been causing fracture issues in the forming process and limits the wider applications of this steel. The kinetic theory of martensitic transformations and associated transformation plasticity is applied to the optimization of transformation stability for enhanced mechanical properties in a class of high strength galvannealed TRIP steel. This research leverages newly developed characterization and simulation capabilities, supporting computational design of high-performance steels exploiting optimized transformation plasticity for desired mechanical behaviors, especially for the hole-expansion ductility. The microstructure of the automotive TRIP sheet steels was investigated, using advanced tomographic characterization including nanoscale Local Electrode Atom Probe (LEAP) microanalysis. The microstructural basis of austenite stability, the austenite carbon concentration in particular, was quantified and correlated with measured fracture ductility through transformation plasticity constitutive laws. Plastic flow stability for enhanced local fracture ductility at high strength is sought to maintain high hole-expansion ductility, through quantifying the optimal stability and the heat-treatment process to achieve it. An additional

  19. Comparative Environmental Benefits of Lightweight Design in the Automotive Sector: The Case Study of Recycled Magnesium Against CFRP and Steel

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Ranza, Luigi

    A LCA feasibility study was undertaken to determine the environmental impact of an Eco-magnesium process route by recycled chips to manufacture panel for the automotive sector to be compared with comparative scenarios, a non-recycled carbon fiber reinforced polymer (CFRP) and a baseline steel-made component scenario. The objective of this LCA study was to assess the actual benefits of a lightweight solution considering the whole life cycle, including the dirty-phase (i.e. the "cradle-to-exit gate" stage) that impacts differently for the different materials. For this reason the analysis has regarded the net "cradle-to-grave" scenario. Different automotive floor pans were then compared considering the rate of fuel consumption during vehicle operation — i.e. the fuel-mass correlation factor — and the different material substitution factors allowed by the different materials selected.

  20. 40 CFR 91.6 - Reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (1) ASTM material. The following table sets forth material from the American Society for Testing and... materials may be obtained from American Society for Testing and Materials, 1916 Race St., Philadelphia, PA... forth material from the Society of Automotive Engineers which has been incorporated by reference....

  1. TECHNICAL APPROACHES TO CHARACTERIZING AND CLEANUP OF AUTOMOTIVE RECYCLING BROWNFIELDS

    EPA Science Inventory

    The guidance document gives assistance to communities, decision-makers, states and municipalities, academia, and the private sector to address issues related to the redevelopment of Brownfields sites, specifically automotive recycling sites. The document helps users to understand...

  2. 16 CFR 306.5 - Automotive fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the automotive fuel rating of gasoline, add the research octane number and the motor octane number and... octane number, use ASTM standard test method D2699-92, and to determine the motor octane number, use...

  3. 16 CFR 306.5 - Automotive fuel rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the automotive fuel rating of gasoline, add the research octane number and the motor octane number and... octane number, use ASTM standard test method D2699-92, and to determine the motor octane number, use...

  4. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  5. Following Industry's Lead: Revising the Automotive Technology Curriculum

    ERIC Educational Resources Information Center

    Crouse, William H.; Anglin, Donald L.

    1976-01-01

    Today's automotive technology curriculum is changing; curriculum revisions are being made in response to both the changing automobile and to the latest social trends and laws affecting students and teachers alike. (Author)

  6. Springback Compensation Process for High Strength Steel Automotive Parts

    NASA Astrophysics Data System (ADS)

    Onhon, M. Fatih

    2016-08-01

    This paper is about an advanced stamping simulation methodology used in automotive industry to shorten total die manufacturing times in a new vehicle project by means of benefiting leading edge virtual try-out technology.

  7. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  8. INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES

    EPA Science Inventory

    The US Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction and econo...

  9. Robust optical sensors for safety critical automotive applications

    NASA Astrophysics Data System (ADS)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  10. INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES

    EPA Science Inventory

    The US Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction and econo...

  11. TECHNICAL APPROACHES TO CHARACTERIZING AND CLEANUP OF AUTOMOTIVE RECYCLING BROWNFIELDS

    EPA Science Inventory

    The guidance document gives assistance to communities, decision-makers, states and municipalities, academia, and the private sector to address issues related to the redevelopment of Brownfields sites, specifically automotive recycling sites. The document helps users to understand...

  12. Development of VOC RACT rules for automotive plastic coating lines

    SciTech Connect

    Gamble, L.S. )

    1987-01-01

    The Michigan State Implementation Plan (SIP) revision submitted to the US Environmental Protection Agency (EPA) in July 1985 is discussed in this paper. It identified volatile organic compound (VOC) emissions generated by the state's plastic coating industry as a source category for further emission reductions. Plastic coating operations occurring in the state include coating of business machines, automotive parts, toys, furniture, and various other types of plastic parts. The largest plastic coating category is automotive parts.

  13. Vibration isolation of automotive vehicle engine using periodic mounting systems

    NASA Astrophysics Data System (ADS)

    Asiri, S.

    2005-05-01

    Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of

  14. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    NASA Astrophysics Data System (ADS)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  15. Active automotive engine vibration isolation using feedback control

    NASA Astrophysics Data System (ADS)

    Olsson, Claes

    2006-06-01

    Large frequency band feedback active automotive engine vibration isolation is considered. A MIMO (multi-input multi-output) controller design for an active engine suspension system has been performed making use of a virtual development environment for design, analysis, and co-simulation based closed-loop verification. Utilising relevant control object dynamic modelling, this design strategy provides a powerful opportunity to deal with various plant dynamics, such as structural flexibility and nonlinear characteristics where the main objective is to approach the actual physical characteristics for design and verification in early design phases where no prototypes are yet physically available. H2 loop shaping technique proves to be powerful when achieving the desired frequency dependent loop gain while ensuring closed-loop stability. However, to achieve closed-loop stability two kinds of nonlinearities have to be taken into account. Those are nonlinear material characteristics of the engine mounts and large angular engine displacements. It is demonstrated how the adopted design strategy facilitates the investigation of the latter nonlinearity's impact on closed-loop characteristics. To deal with the nonlinearities, gain scheduling has been used.

  16. Industrial waste recycling at an automotive component manufacturing facility

    SciTech Connect

    Jaffurs, J.A.; Hubler, R.L.; Behaylo, D.P.

    1995-09-01

    The AC Rochester Division of General Motors Corporation (GM) develops and manufacturers automotive components for engine management systems at nine facilities in the US. Its largest facility is located in flint, Michigan, and is known as the Flint East site. The Flint East site covers nearly two square miles and consists of several plants housing manufacturing operations for spark plugs, glow plugs, oil filters, air filters, air cleaner assemblies, fuel pumps, fuel level sensors, cruise control systems, and other components. The volume and diversity of the scrap and wastes generated from these operations require skillful waste management to provide environmentally safe and cost-effective disposal options. Over time, a full-scale recycling and waste disposal operation evolved at Flint East. The operation has grown over the past thirty years to handle over 68,000 tons of material annually. Flint East`s program is regarded as a model industrial waste reduction and recycling operation. Elements of the program are presented here as a guide to establishing a successful industrial recycling program.

  17. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  18. 40 CFR 1068.95 - What materials does this part reference?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae... SAE J1930, Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations, and...

  19. 40 CFR 1068.95 - What materials does this part reference?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae... SAE J1930, Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations, and...

  20. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reference? 1045.810 Section 1045.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  1. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reference? 1045.810 Section 1045.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  2. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reference? 1045.810 Section 1045.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  3. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reference? 1045.810 Section 1045.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  4. Occupational lead exposure among automotive garage workers – a case study for Jimma town, Ethiopia

    PubMed Central

    2012-01-01

    Background In Ethiopia, although there are numerous small-scale and medium industries which use lead-based raw materials that may pose health risks to workers, there are no workplace regulations for lead exposure. Moreover, there are no studies carried out on the blood lead levels (BLLs) of workers or on the contribution of common workplace practices to lead poisoning. Method A cross-sectional study on the BLLs of 45 automotive garage workers and 40 non-garage workers was carried out in the town of Jimma, Ethiopia. In addition to BLL analysis, data on some risk factors such as smoking, and chewing ‘khat’ (the leaves of Catha adulis) were gathered through structured questionnaires and interviews and data analysis was performed using SPSS (version 16). The t-test was used to compare mean BLLs of study groups. The analysis of variance (ANOVA), Kruskal-Wallis, Pearson chi-square and odds ratio tests were used to investigate the associations between specific job type, smoking and/or ‘khat’ chewing, service years and occurrence of non-specific symptoms with BLLs. Results The mean BLL of the automotive-garage workers was found to be significantly greater than that of the controls. The BLLs of all the lead-exposed individuals were found to be over 10 μg/dL, and 53% of them had BLLs ranging 12 – 20 μg/dL, with the remaining 47% having over 20 μg/dL. The BLL of the workers increased with the duration of working in an automotive garage. Individuals involved in manual car painting comprise a larger percentage (58%) of those with the highest BLLs (≥ 20 μg/dL). Lead accumulation in individuals who chew ‘khat’ in the work place was found to be faster than in those who are not used to chewing ‘khat’. ‘Khat’ is an evergreen shrub native to tropical East Africa, with dark green opposite leaves which are chewed when fresh for their stimulating effects. Conclusion The findings of the study have clearly demonstrated that the BLLs of automotive

  5. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  6. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  7. Speech recognition system for an automotive vehicle

    SciTech Connect

    Noso, K.; Futami, T.

    1987-01-13

    A speech recognition system is described for an automotive vehicle for activating vehicle actuators in response to predetermined spoken instructions supplied to the system via a microphone, which comprises: (a) a manually controlled record switch for deriving a record signal when activated; (b) a manually controlled recognition switch for deriving a recognition signal when activated; (c) a speech recognizer for sequentially recording reference spoken instructions whenever one reference spoken instruction is supplied to the system through the microphone while the record switch is activated, a memory having a storage area for each spoken instruction, and means for shifting access to each storage area for each spoken instruction has been recorded in the storage area provided therefore. A means is included for activating vehicle actuators sequentially whenever one recognition spoken instruction is supplied to the system via the microphone while the recognition switch is activated and when the spoken instruction to be recognized is similar to the reference spoken instruction; and (d) means for deriving skip instruction signal and for coupling the skip instruction signal to the speech recognizer to shift access from a currently accessed storage area for recording a current reference spoken instruction to a succeeding storage area for recording a succeeding reference spoken instruction even when the current reference spoken instruction is not supplied to the system through the microphone.

  8. Light source modeling for automotive lighting devices

    NASA Astrophysics Data System (ADS)

    Zerhau-Dreihoefer, Harald; Haack, Uwe; Weber, Thomas; Wendt, Dierk

    2002-08-01

    Automotive lighting devices generally have to meet high standards. For example to avoid discomfort glare for the oncoming traffic, luminous intensities of a low beam headlight must decrease by more than one order of magnitude within a fraction of a degree along the horizontal cutoff-line. At the same time, a comfortable homogeneous illumination of the road requires slowly varying luminous intensities below the cutoff line. All this has to be realized taking into account both, the legal requirements and the customer's stylistic specifications. In order to be able to simulate and optimize devices with a good optical performance different light source models are required. In the early stage of e.g. reflector development simple unstructured models allow a very fast development of the reflectors shape. On the other hand the final simulation of a complex headlamp or signal light requires a sophisticated model of the spectral luminance. In addition to theoretical models based on the light source's geometry, measured luminance data can also be used in the simulation and optimization process.

  9. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  10. Washing treatment of automotive shredder residue (ASR).

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2013-08-01

    Worldwide, the amount of end-of-life vehicles (ELVs) reaches 50 million units per year. Once the ELV has been processed, it may then be shredded and sorted to recover valuable metals that are recycled in iron and steelmaking processes. The residual fraction, called automotive shredder residue (ASR), represents 25% of the ELV and is usually landfilled. In order to deal with the leachable fraction of ASR that poses a potential threat to the environment, a washing treatment before landfilling was applied. To assess the potential for full-scale application of washing treatment, tests were carried out in different conditions (L/S = 3 and 5L/kgTS; t = 3 and 6 h). Moreover, to understand whether the grain size of waste could affect the washing efficiency, the treatment was applied to ground (<4 mm) and not-ground samples. The findings obtained revealed that, on average, washing treatment achieved removal rates of more than 60% for dissolved organic carbon (DOC), chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN). With regard to metals and chlorides, sulphates and fluoride leachable fraction, a removal efficiency of approximately 60% was obtained, as confirmed also by EC values. The comparison between the results for ground and not-ground samples did not highlight significant differences.

  11. Reverse shift mechanism for automotive manual transmission

    SciTech Connect

    Inui, M.; Ogawa, S.

    1987-03-03

    A reverse shift mechanism is described for an automotive manual transmission of a type having a reverse idler gear which is movable to selectively complete a reverse gear train, the reverse shift mechanism comprising: a reverse shift arm having a portion disposed adjacent the reverse idler gear and pivotally carried with respect to a transmission casing so that the portion rocks along a direction of axis of the reverse idler gear in response to shifting operation. The portion of the reverse shift arm is provided with a blind hole which is open at a first end toward the reverse idler gear and is closed at a second end away from the reverse idler gear; and a shift arm shoe carried by the portion of the reverse shift arm adjacent the reverse idler gear for pushing the reverse idler gear. The shift arm shoe has an end adapted to engage with a circumferential groove formed in the reverse idler gear and an opposing end shaped to fit in the blind hole of the reverse shift arm; whereby the shift arm shoe is prevented from coming off during assembly by virtue of a vacuum effect created by air confined in the blind hole by fitting engagement between the opposing end and the blind hole, and is held in place after assembly by being clamped between the groove of the reverse idler gear and the blind hole of the reverse shift arm.

  12. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  13. Valve mechanism for an automotive engine

    SciTech Connect

    Ishii, N.

    1988-02-16

    A valve mechanism for an automotive engine having a rocker arm comprising a rocker arm member rocked by a cam and an actuating arm member operatively engaged with the rocker arm member for operating a stem of a valve is described comprising: a sleeve rotatably and slidably mounted on a rocker-arm shaft and having splines on a periphery thereof and a cylindrical portion adjacent the splines. The rocker arm member has splines and slidably engaged with the splines of the sleeve. The actuating arm member has splines corresponding to the splines of the sleeve and slidably engaged with the cylindrical portion of the sleeve at a disengagement position. A piston is slidably mounted on the rocker-arm shaft adjacent the sleeve; and hydraulic means are for applying oil to the piston so as to shift the sleeve to an engagement position to engage the splines thereof with the actuating arm member. A spring is provided between the cylindrical portion and a shaft holder for shifting the sleeve from the engagement position to the disengagement position; and stopping means hold the sleeve at the disengagement position and the engagement position respectively.

  14. Multi-tool design and analysis of an automotive HUD

    NASA Astrophysics Data System (ADS)

    Irving, Bruce; Hasenauer, David; Mulder, Steve

    2016-10-01

    Design and analysis of an optical system is often a multidisciplinary task, and can involve the use of specialized software packages for imaging, mechanics, and illumination. This paper will present a case study on the design and analysis of a basic heads-up display (HUD) for automotive use. The emphasis will be on the special requirements of a HUD visual system and on the tools and techniques needed to accomplish the design. The first section of this paper will present an overview of the imaging design using commercially available imaging design software. Topics addressed in this section include modeling the windshield, visualizing the imaging performance, using constraints and freeform surfaces to improve the system, and meeting specific visual performance specifications with design/analysis methods. The second section will address the use of a CAD program to design a basic mechanical structure to support and protect the optics. This section will also discuss some of the issues and limitations involved in translating data between a CAD program and a lens design or illumination program. Typical issues that arise include the precision of optical surface prescriptions, surface and material properties, and the management of large data files. In the final section, the combined optical and mechanical package will be considered, using an illumination design program for stray light analysis. The stray light analysis will be directed primarily toward finding, visualizing, and quantifying unexpected ray paths. Techniques for sorting optical ray paths by path length, power, and elements or materials encountered will be discussed, along with methods for estimating the impact of stray light on the optical system performance.

  15. Mechanical behaviour of glass fiber weaven UD/high fluidity PA-based polymers for automotive applications

    NASA Astrophysics Data System (ADS)

    Dana, Hossein Ramezani; Gomina, Moussa; Bréard, Joël; Orange, Gilles

    2016-10-01

    This experimental work addresses the mechanical behavior of weaven UD glass fiber-thermoplastic composites designed for layered materials to be used in the automotive industry. The investigation was implemented in terms of the formulation of the PA66-based thermoplastic resins, the architecture of the fibrous reinforcement (warp spacer) and the glass fiber content. Longitudinal and transverse tensile tests results demonstrate the excellent mechanical behavior of these composites, which correlates with the rheological/permeability properties and wettability behaviour.

  16. Deployment of ERP Systems at Automotive Industries, Security Inspection (Case Study: IRAN KHODRO Automotive Company)

    NASA Astrophysics Data System (ADS)

    Ali, Hatamirad; Hasan, Mehrjerdi

    Automotive industry and car production process is one of the most complex and large-scale production processes. Today, information technology (IT) and ERP systems incorporates a large portion of production processes. Without any integrated systems such as ERP, the production and supply chain processes will be tangled. The ERP systems, that are last generation of MRP systems, make produce and sale processes of these industries easier and this is the major factor of development of these industries anyhow. Today many of large-scale companies are developing and deploying the ERP systems. The ERP systems facilitate many of organization processes and make organization to increase efficiency. The security is a very important part of the ERP strategy at the organization, Security at the ERP systems, because of integrity and extensive, is more important of local and legacy systems. Disregarding of this point can play a giant role at success or failure of this kind of systems. The IRANKHODRO is the biggest automotive factory in the Middle East with an annual production over 600.000 cars. This paper presents ERP security deployment experience at the "IRANKHODRO Company". Recently, by launching ERP systems, it moved a big step toward more developments.

  17. Understanding factors that influence protective glove use among automotive spray painters.

    PubMed

    Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael

    2014-01-01

    Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4-5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4-5 mil) and thick (14 mil) latex. We found that medium to thick (6-8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4-5 mil) latex gloves. Of concern is the user's difficulty in distinguishing between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints, most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness.

  18. Understanding Factors that Influence Protective Glove Use among Automotive Spray Painters

    PubMed Central

    Ceballos, Diana; Reeb-Whitaker, Carolyn; Glazer, Patricia; Murphy-Robinson, Helen; Yost, Michael

    2017-01-01

    Dermal contact with isocyanate-based coatings may lead to systemic respiratory sensitization. The most common isocyanates found in sprayed automotive coatings are monomeric and oligomeric 1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI). Most spray painters use thin (4–5 mil) latex gloves that are not effective at preventing dermal exposures when spraying isocyanate paints. Personal interviews with collision repair industry personnel and focus groups with spray painters were held to characterize risk awareness, to examine perceptions and challenges concerning protective glove use and selection, and to generate ideas for protective glove use interventions. The most popular gloves among spray painters were thin (4–5 mil) and thick (14 mil) latex. We found that medium to thick (6–8 mil) nitrile were not always perceived as comfortable and were expected to be more expensive than thin (4–5 mil) latex gloves. Of concern is the users’ difficulty to distinguish between nitrile and latex gloves; latex gloves are now sold in different colors including blue, which has traditionally been associated with nitrile gloves. Even though spray painters were familiar with the health hazards related to working with isocyanate paints; most were not always aware that dermal exposure to isocyanates could contribute to the development of occupational asthma. There is a need for more research to identify dermal materials that are protective against sprayed automotive coatings. Automotive spray painters and their employers need to be educated in the selection and use of protective gloves, specifically on attributes such as glove material, color, and thickness. PMID:24215135

  19. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Ngoc

    metamaterials show material properties closely matching those predicted by full-wave simulations. Due to the high losses associated with resonant metamaterials, I shift my focus to non-resonant metamaterials. I discuss the design, fabrication, and testing of non-resonant metamaterials for fabrication on multilayer LCP printed circuit boards (PCBs). I then use these non-resonant metamaterials in a W-band planar metamaterial GRIN lens. Radiation pattern measurements show that this lens functions as a strong collimating element. Using similar lens design methods, I design a metamaterial GRIN lens from polytetrafluoroethylene-based (PTFE-based) non-resonant metamaterials. This GRIN lens is designed to match a target dielectric lens's radiation characteristics across a +/-6° field of view. Measurements at automotive radar frequencies show that this lens has approximately the same radiation characteristics as the target lens across the desired field of view. Finally, I describe the development of electrically reconfigurable metamaterials using thin-film silicon semiconductors. These silicon-based reconfigurable metamaterials were developed in close collaboration with several other researchers. My major contribution to the development of these reconfigurable metamaterials consisted of the initial metamaterial design. The Jokerst research group fabricated this initial design while TRI-NA characterized the fabricated metamaterial experimentally. Measurements showed approximately 8% variation in transmission under a 5 Volt DC bias. This variation in transmission closely matched the variation in transmission predicted by coupled electronic-electromagnetic simulation run by Yaroslav Urzhumov, one of other contributors to the development of the reconfigurable metamaterial.

  20. Overview of Automotive Core Tools: Applications and Benefits

    NASA Astrophysics Data System (ADS)

    Doshi, Jigar A.; Desai, Darshak

    2017-08-01

    Continuous improvement of product and process quality is always challenging and creative task in today's era of globalization. Various quality tools are available and used for the same. Some of them are successful and few of them are not. Considering the complexity in the continuous quality improvement (CQI) process various new techniques are being introduced by the industries, as well as proposed by researchers and academia. Lean Manufacturing, Six Sigma, Lean Six Sigma is some of the techniques. In recent years, there are new tools being opted by the industry, especially automotive, called as Automotive Core Tools (ACT). The intention of this paper is to review the applications and benefits along with existing research on Automotive Core Tools with special emphasis on continuous quality improvement. The methodology uses an extensive review of literature through reputed publications—journals, conference proceedings, research thesis, etc. This paper provides an overview of ACT, its enablers, and exertions, how it evolved into sophisticated methodologies and benefits used in organisations. It should be of value to practitioners of Automotive Core Tools and to academics who are interested in how CQI can be achieved using ACT. It needs to be stressed here that this paper is not intended to scorn Automotive Core Tools, rather, its purpose is limited only to provide a balance on the prevailing positive views toward ACT.

  1. Overview of Automotive Core Tools: Applications and Benefits

    NASA Astrophysics Data System (ADS)

    Doshi, Jigar A.; Desai, Darshak

    2016-06-01

    Continuous improvement of product and process quality is always challenging and creative task in today's era of globalization. Various quality tools are available and used for the same. Some of them are successful and few of them are not. Considering the complexity in the continuous quality improvement (CQI) process various new techniques are being introduced by the industries, as well as proposed by researchers and academia. Lean Manufacturing, Six Sigma, Lean Six Sigma is some of the techniques. In recent years, there are new tools being opted by the industry, especially automotive, called as Automotive Core Tools (ACT). The intention of this paper is to review the applications and benefits along with existing research on Automotive Core Tools with special emphasis on continuous quality improvement. The methodology uses an extensive review of literature through reputed publications—journals, conference proceedings, research thesis, etc. This paper provides an overview of ACT, its enablers, and exertions, how it evolved into sophisticated methodologies and benefits used in organisations. It should be of value to practitioners of Automotive Core Tools and to academics who are interested in how CQI can be achieved using ACT. It needs to be stressed here that this paper is not intended to scorn Automotive Core Tools, rather, its purpose is limited only to provide a balance on the prevailing positive views toward ACT.

  2. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  3. Change management methodologies trained for automotive infotainment projects

    NASA Astrophysics Data System (ADS)

    Prostean, G.; Volker, S.; Hutanu, A.

    2017-01-01

    An Automotive Electronic Control Units (ECU) development project embedded within a car Environment is constantly under attack of a continuous flow of modifications of specifications throughout the life cycle. Root causes for those modifications are for instance simply software or hardware implementation errors or requirement changes to satisfy the forthcoming demands of the market to ensure the later commercial success. It is unavoidable that from the very beginning until the end of the project “requirement changes” will “expose” the agreed objectives defined by contract specifications, which are product features, budget, schedule and quality. The key discussions will focus upon an automotive radio-navigation (infotainment) unit, which challenges aftermarket devises such as smart phones. This competition stresses especially current used automotive development processes, which are fit into a 4 Year car development (introduction) cycle against a one-year update cycle of a smart phone. The research will focus the investigation of possible impacts of changes during all phases of the project: the Concept-Validation, Development and Debugging-Phase. Building a thorough understanding of prospective threats is of paramount importance in order to establish the adequate project management process to handle requirement changes. Personal automotive development experiences and Literature review of change- and configuration management software development methodologies led the authors to new conceptual models, which integrates into the structure of traditional development models used in automotive projects, more concretely of radio-navigation projects.

  4. 75 FR 41521 - Delphi Corporation, Automotive Holding Group, Instrument Cluster Plant, Currently Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Employment and Training Administration Delphi Corporation, Automotive Holding Group, Instrument Cluster Plant..., 2007, applicable to workers of Delphi Corporation, Automotive Holding Group, Instrument Cluster Plant... Holding Group, Instrument Cluster Plant, currently known as General Motors Corporation, Flint,...

  5. 77 FR 13350 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same... importation of certain automotive GPS navigation systems, components thereof, and products containing the...

  6. Automotive non-pressure cooling system

    SciTech Connect

    Skinner, A.A.

    1987-07-07

    This patent describes a non-pressure automotive engine cooling system comprising: a radiator containing a liquid coolant, coupling hoses that intercouple the radiator to the engine, pump means associated with the engine for circulating coolant through the engine and radiator. The pump means has a suction side, a radiator cap sealed on the radiator, an expansion tank disposed in the engine compartment, vent means on the tank for venting the tank to atmosphere, a coupling tube disposed between the radiator below the radiator cap and the expansion tank to enable free flow of the coolant under expansion from the radiator to the expansion tank. The radiator cap seals the radiator but provides a substantially non-pressure and unimpeded fluid path from the radiator to the coupling tube, a return line coupled from the expansion tank to the suction side of the pump means. The radiator has a gooseneck with the radiator cap sealably engaged with the gooseneck, an outlet port from the top of the radiator to which the coupling tube is connected. The outlet port is continuously open and unblocked by the radiator cap to provide free fluid flow from the radiator to the expansion tank over the entire operating temperature range, the radiator cap sealing only at the top of the gooseneck, and means for supporting the expansion tank at a position at a height corresponding to the top of the radiator. Under normal temperature operating conditions, the liquid level line is substantially the same in both the radiator and the expansion tank.

  7. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  8. Low-Density Steels: Complex Metallurgy for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Zuazo, I.; Hallstedt, B.; Lindahl, B.; Selleby, M.; Soler, M.; Etienne, A.; Perlade, A.; Hasenpouth, D.; Massardier-Jourdan, V.; Cazottes, S.; Kleber, X.

    2014-09-01

    The current aim in the development of third-generation steels for lightweighting automotive applications is to increase strength keeping at least the same formability as current steel concepts. In this philosophy, an optimal concept would be one that brings, in addition, a lower density. For this purpose, low-density steels have been designed with important aluminum additions obtaining density reductions of 8-10% or higher in comparison with low-carbon steels. At the levels required for lightweighting, aluminum introduces complex phenomena in steels. Here, some of the effects of aluminum in phase stability, CALPHAD-type modeling, and microstructure development are described, the latter in relation with mechanical properties. Finally, the potential of two families of lightweight steels for automotive applications is assessed by comparison with a steel currently present in automotive structures.

  9. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  10. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  11. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  12. Hostile environmental conditions facing candidate alloys for the automotive Stirling engine

    SciTech Connect

    Stephens, J.R.

    1981-01-01

    A materials research program is underway at NASA Lewis Research Center in support of the DOE/NASA Automotive Stirling Engine Project. The program focuses on the hot heater head of the engine including the heater head tubes, cylinders, and regenerator housings, which are considered to be the most critical components from a materials viewpoint. The specific areas of investigation in the progam involve hydrogen permeability testing, doping of the hydrogen working fluid to reduce permeability rates, oxidation/corrosion studies, creep-rupture evaluation, and assessing effects of hydrogen environment on mechanical properties. Recent results in each of the aforementioned areas of research are described. Special emphasis is placed on the materials challenges that result from the use of hydrogen as the working fluid in this potential alternative engine to today's internal combustion engines.

  13. Evaluation of an attributive measurement system in the automotive industry

    NASA Astrophysics Data System (ADS)

    Simion, C.

    2016-08-01

    Measurement System Analysis (MSA) is a critical component for any quality improvement process. MSA is defined as an experimental and mathematical method of determining how much the variation within the measurement process contributes to overall process variability and it falls into two categories: attribute and variable. Most problematic measurement system issues come from measuring attribute data, which are usually the result of human judgment (visual inspection). Because attributive measurement systems are often used in some manufacturing processes, their assessment is important to obtain the confidence in the inspection process, to see where are the problems in order to eliminate them and to guide the process improvement. It was the aim of this paper to address such a issue presenting a case study made in a local company from the Sibiu region supplying products for the automotive industry, specifically the bag (a technical textile component, i.e. the fabric) for the airbag module. Because defects are inherent in every manufacturing process and in the field of airbag systems a minor defect can influence their performance and lives depend on the safety feature, there is a stringent visual inspection required on the defects of the bag material. The purpose of this attribute MSA was: to determine if all inspectors use the same criteria to determine “pass” from “fail” product (i.e. the fabric); to assess company inspection standards against customer's requirements; to determine how well inspectors are conforming to themselves; to identify how inspectors are conforming to a “known master,” which includes: how often operators ship defective product, how often operators dispose of acceptable product; to discover areas where training is required, procedures must be developed and standards are not available. The results were analyzed using MINITAB software with its module called Attribute Agreement Analysis. The conclusion was that the inspection process must

  14. PEM fuel cell stack development for automotive applications

    SciTech Connect

    Ernst, W.D.

    1996-12-31

    Presently, the major challenges to the introduction of fuel cell power systems for automotive applications are to maximize the effective system power density and minimize cost. The material cost, especially for Platinum, had been a significant factor until recent advances by Los Alamos National Laboratory and others in low Platinum loading electrode design has brought these costs within control. Since the initiation of its PEM stack development efforts, MTI has focused on applying its system and mechanical engineering heritage on both increasing power density and reducing cost. In May of 1995, MTI was selected (along with four other companies) as a subcontractor by the Ford Motor Company to participate in Phase I of the DOE Office of Transportation Technology sponsored PNGV Program entitled: {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}. This Program was instituted to: (1) Advance the performance and economic viability of a direct-hydrogen-fueled PEM fuel cell system, (2) Identify the critical problems that must be resolved before system scale-up and vehicle integration, and (3) Integrate the fuel cell power system into a sub-scale vehicle propulsion system. The Phase I objective was to develop and demonstrate a nominal 10 kW stack meeting specific criteria. Figure I is a photograph of the stack used for these demonstrations. After completion of Phase I, MTI was one of only two companies selected to continue into Phase II of the Program. This paper summarizes Phase I stack development and results.

  15. Thermoelectric-Generator-Based DC-DC Conversion Networks for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Li, Molan; Xu, Shaohui; Chen, Qiang; Zheng, Li-Rong

    2011-05-01

    Maximizing electrical energy generation through waste heat recovery is one of the modern research questions within automotive applications of thermoelectric (TE) technologies. This paper proposes a novel concept of distributed multisection multilevel DC-DC conversion networks based on thermoelectric generators (TEGs) for automotive applications. The concept incorporates a bottom-up design approach to collect, convert, and manage vehicle waste heat efficiently. Several state-of-the-art thermoelectric materials are analyzed for the purpose of power generation at each waste heat harvesting location on a vehicle. Optimal materials and TE couple configurations are suggested. Moreover, a comparison of prevailing DC-DC conversion techniques was made with respect to applications at each conversion level within the network. Furthermore, higher-level design considerations are discussed according to system specifications. Finally, a case study is performed to compare the performance of the proposed network and a traditional single-stage system. The results show that the proposed network enhances the system conversion efficiency by up to 400%.

  16. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.

    PubMed

    Tian, Jin; Chen, Ming

    2014-02-01

    The growth in automotive production has increased the number of end-of-life vehicles (ELVs) annually. The traditional approach ELV processing involves dismantling, shredding, and landfill disposal. The "3R" (i.e., reduce, reuse, and recycle) principle has been increasingly employed in processing ELVs, particularly ELV parts, to promote sustainable development. The first step in processing ELVs is dismantling. However, certain parts of the vehicle are difficult to disassemble and use in practice. The extended producer responsibility policy requires carmakers to contribute in the processing of scrap cars either for their own developmental needs or for social responsibility. The design for dismantling approach can be an effective solution to the existing difficulties in dismantling ELVs. This approach can also provide guidelines in the design of automotive products. This paper illustrates the difficulty of handling polymers in dashboards. The physical properties of polymers prevent easy separation and recycling by using mechanical methods. Thus, dealers have to rely on chemical methods such as pyrolysis. Therefore, car designers should use a single material to benefit dealers. The use of materials for effective end-of-life processing without sacrificing the original performance requirements of the vehicle should be explored.

  17. 40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass...

  18. 40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass...

  19. 40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive...

  20. 40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive glass...